Think2SQL: Reinforce LLM reasoning capabilities for Text2SQL

Papicchio, Simone; Rossi, Simone; Cagliero, Luca; Papotti, Paolo
Submitted to ArXiV, 21 April 2025

Large Language Models (LLMs) have shown impressive capabilities in transforming natural language questions about relational databases into SQL queries. Despite recent improvements, small LLMs struggle to handle questions involving multiple tables and complex SQL patterns under a Zero-Shot Learning (ZSL) setting. Supervised Fine-Tuning (SFT) partially compensates for the knowledge deficits in pretrained models but falls short while dealing with queries involving multi-hop reasoning. To bridge this gap, different LLM training strategies to reinforce reasoning capabilities have been proposed, ranging from leveraging a thinking process within ZSL, including reasoning traces in SFT, or adopt Reinforcement Learning (RL) strategies. However, the influence of reasoning on Text2SQL performance is still largely unexplored. This paper investigates to what extent LLM reasoning capabilities influence their Text2SQL performance on four benchmark datasets. To this end, it considers the following LLM settings: (1) ZSL, including general-purpose reasoning or not; (2) SFT, with and without task-specific reasoning traces; (3) RL, exploring the use of different rewarding functions, both the established EXecution accuracy (EX) and a mix with fine-grained ones that also account the precision, recall, and cardinality of partially correct answers; (4) SFT+RL, i.e, a two-stage approach that combines SFT and RL. The results show that general-purpose reasoning under ZSL proves to be ineffective in tackling complex Text2SQL cases. Small LLMs benefit from SFT with reasoning much more than larger ones. RL is generally beneficial across all tested models and datasets. The use of the fine-grained metrics turns out to be the most effective RL strategy. Thanks to RL and the novel text2SQL rewards, the 7B Qwen-Coder-2.5 model performs on par with 400+ Billion ones (including gpt-4o) on the Bird dataset.


Type:
Conference
Date:
2025-04-21
Department:
Data Science
Eurecom Ref:
8202
Copyright:
© EURECOM. Personal use of this material is permitted. The definitive version of this paper was published in Submitted to ArXiV, 21 April 2025 and is available at :

PERMALINK : https://www.eurecom.fr/publication/8202