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ABSTRACT

Most face expression algorithms assume a front or 'near-to-front'
head position. This assumption becomes an important limitation
when studying input from real systems. In this article we present
a new approach to robustly determine face expression
independently of the head pose. Our analysis-synthesis
cooperation, possible thanks to the use of a highly realistic 3D
head model and the application of Kalman filtering to predict the
user pose, permits to correctly track the interesting face features.
Adapting 'near-to-front' analysis techniques based on the
predicted pose enables us to use such algorithms with moving
speakers.

1. INTRODUCTION

Face video analysis is often performed through the analysis of
specific face features (eyes, eyebrows and mouth) to extract the
most significant information regarding expression and speech.
Many of the current feature analysis algorithms are developed to
work in 'near-to-front' face position. Whether the algorithms are
used to do only expression analysis [1,2] or they are oriented to
perform Model Based coding [3], these systems do not allow the
user to move freely.

Assuming that we control the user pose is an important
restriction when doing analysis for videoconferencing purposes.
Yet, most virtual telecommunication schemes [4,5] try to avoid
the pose-expression coupling issue by minimizing its effects.
Nevertheless, for their analysis algorithms to remain robust, they
only allow the user to do slight movements.

Y. Tian et al. [6] overcome the pose limitation in their
analysis by defining a "multiple state face model", where
different facial component models are used for different head
states (left, left-front, right, down, etc.). This approach proves to
be heavy. The complexity of such a solution increases with the
number of the states, which would be large if much accuracy was
needed. The approach given by Y. Chang et al. [7] tracks the
head pose to use their 'near-to-front'-defined feature analysis
algorithms over images where the head has a different pose.
They use the estimated angles to rectify the input image to an
almost straight frontal face. Although they do not give results on
rectifying images from extreme head poses, this system seems to
work well when pose changes are minor. Furthermore, they have
to perform the complete face transformation, even though they
only analyze some concrete features, not optimizing
computation. Other approaches [8] project and fit a 3D head
mesh onto the face image to keep track of the movements and
perform the expression analysis. This is a complex and

computing costly process that has not proved yet giving better
results than analyzing the face features individually without
fitting a 3D-mesh.

Developing a video analysis framework where head pose
tracking and face feature analysis are treated separately permits
to design specialized image analysis algorithms adjusted to
specific needs, feature characteristics, etc. For our work on
virtual teleconferencing environments, we first developed a pose
tracking algorithm that profits from a tight analysis-synthesis
cooperation. We are able to track and predict the pose of the
speaker frame by frame with the help of the synthesis of its
realistic 3D head model (clone). In parallel, we design image
analysis algorithms to study the expression motion from a head
on a ‘near-to-front’ position, situation at which faces show most
of their gesture information. Having already developed and
positively tested an eye-state analysis algorithm [10] for heads in
front position, we faced the difficulty of adapting the algorithm
to make it work at any pose. The solution we propose defines the
eye-feature regions to be analyzed and the parameters of the eye-
state analysis on 3D, over the head model in its frontal position.
The complete procedure goes as follows:

(i) We define and shape the area to be analyzed on the
video frame. To do so, we project the 3D-ROI defined over the
head model on the video image by using the predicted pose
parameters of the synthesized clone, thus getting the 2D-ROI.

(ii) We apply the eye image analysis algorithm on this area
extracting the data required.

(iii) We interpret these data from a three dimensional
perspective by inverting the projection and the transformations
due to the pose (data pass from 2D to 3D). At this point, we can
compare the results with the eye-state analysis parameters
already predefined on the neutral clone and decide which has
been the eye action.

 The technique used differs from other previous approaches
on that we explicitly use the clone data to define the analysis
algorithm on 3D. The main advantages of our solution are the
complete control of the location and shape of the region of
interest (ROI) and the reutilization of image analysis algorithms
already tested for a head front position. We can also improve the
synthesis feedback utilized for the pose tracking by updating the
face expressions of the clone.

In this paper, Section 2 recalls the complete tracking plus
the feature analysis framework. In Section 3 we develop the
novel approach for the definition of ROI for video face analysis.
We describe the expression-pose analysis coupling in Section 4
and next, we give the influence of the pose prediction over the
expression analysis algorithms. Section 6 shows some
preliminary results and we draw our conclusions in Section 7.



2. COMPLETE POSE TRACKING AND FEATURE
ANALYSIS

We consider face analysis from a video sequence as a function of
the general pose of the face on the sequence, the illumination
conditions under which the video is recorded and the face
expression movements. To obtain animation parameters from
video frames, we first study the illumination conditions of the
face in the sequence; this information will enable our algorithms
to work under any lighting conditions. Then, we estimate the
pose of the face obtaining translation and rotation parameters.
Finally, we extract some specific features from the face and we
apply on them some dedicated analysis techniques to obtain face
animation parameters. Synthesis cooperation can be done at
different stages of the analysis chain (see Figure 1).

To obtain the global pose of the synthetic model we have
developed a tracking algorithm that profits from a high analysis-
synthesis cooperation. This algorithm utilizes a feedback loop.
The predicted synthesized image from the clone is compared to
the image of the face in the sequence to extract some 2D
information. We feed a Kalman filter with this information and
the filter predicts the translation and rotation parameters (tx, ty, tz,
α around x-axis, β  around y-axis, γ  around z-axis) to apply onto
the synthetic clone, whose image is again compared to the
following frame. This algorithm analyzes the model and the
video sequence at the image level therefore we have to
previously perform some light compensation on the synthetic
model to adapt it to the lighting conditions of the video
sequence. More details about this part can be found in [11]. The
projection model used by the Kalman filter is:
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where cϕ stands for cos(ϕ), sϕ for sin(ϕ), tϕ for tan(ϕ), P for
projected coordinates and n for neutral 3D-coordinates.

Our expression analysis techniques are designed for a
frontal head. Generally, we are able to interpret motion more
easily when the face has this pose because this way, it shows
most of its expression information. Since we study specific areas
of the face, these features must be tracked with precision. We use
some face features during the Kalman filtering, therefore we
could also utilize them to delimit the areas where we will do
expression analysis. This approach is not convenient because the
pose-tracking algorithm assumes the movements on the tracked
features are only due to pose motion; it cannot compensate for
errors from expression changes. Moreover, we need to obtain the
relationship between the analysis area and the six predicted pose
parameters so to know how to interpret our analysis algorithm in
a 'non-frontal' position.

To overcome these limitations, we define the expression
analysis features on the 3D head model and independently of the
image features for the pose tracking. Next sections present how
pose prediction becomes useful for: i) correct ROI definition
and ii) proper expression analysis recovery. The procedure
presented does not only allow us to study the important areas of
the face on the image but also to understand the data that the
analysis provides. We are able to well detect the eye, analyze it
and interpret the derived information regardless of the pose of
the head.

3. DEFINITION OF VIDEO ANALYSIS ROI

The control of the area being analyzed is very important for
many expression analysis algorithms, more specifically for the
analysis technique that we have developed for eye state tracking
[10]. The definition of a well-established ROI has two purposes.
On the one hand, we want to extract the maximum amount of
information, optimizing the area to analyze (minimizing
computation). On the other hand, we want to foresee the
relevance of the information we could obtain from the feature
even before having started its analysis.

To achieve these goals, we define the ROI over the 3D head
model and not over the image itself. We obtain the region to
analyze by projecting this 3D area on the image (Fig. 2(a-b)
shows which area is chosen for the eye analysis). Projecting
using the predicted pose parameters allows us to reshape the
areas on the frames along with the pose and to foresee the
relevance of the analysis of one feature. We define a threshold
Th, computed as the surface of the projected ROI, below which
the algorithm will not act because we consider that there will not
be enough visible surface. This threshold is feature dependent.
Section 6 gives details about the chosen Th for the eye analysis.
Fig. 2(c) also shows the deformation of the area and Graphs 1-2
represent the evolution of the area depending on the pose
parameters (each one independently and α-γ conjointly). The
surface expression is:
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Figure 1. Complete diagram of the head pose and expression
analysis for our teleconference system

tx, ty, tz, α, β, γ



To make the deformed areas more suitable for image
analysis we enclose them in video analysis rectangles
(xt,yt)�(xb,yb):
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4. EXPRESSION-POSE ANALYSIS COUPLING

Expression analysis algorithms defined for a frontal position
cannot be directly used over image features obtained at any
given pose. Our eye analysis algorithm searches for the point of
lower energy or minimum intensity of the feature area to
determine the eye state (open-close, left-center-right). In [9] we
show how the restriction of having the same action in both eyes
allow us to define the eye states from the situation of the lower
energy point. The different states are defined for a head in a
frontal position. Thanks to the pose prediction we could rectify
the image and then apply the algorithm. Instead, we prefer
slightly adapting the algorithm. It is less computing costly and
gives more accurate results. To adapt the algorithm, first, we
reformulate it to fit 3D space by defining the analysis
parameters and state measurements in 3D, over the model. Next,
we find the minimal energy point on the projected ROI image.
Then, we inverse the projection and the pose transformation
of the point to deduce its 3D coordinates.

By inverting the pose and projection used by the Kalman
filter (see Equation 1), we recover the straight line that defines
the ray of possible solutions for the projected point in 3D space.
To obtain its 3D coordinates, we use the information provided
by the model of the feature we are analyzing. For the eye, we
model it as the sphere ─ (xn - x0)2 + (yn - y0)2 + (zn - z0)2 = Rad2 ─
that better suits the eye on the head model (Fig. 2(a-b)). To
simplify, we linearize the model by developing the linear
approximation of the sphere on the point tangent to the pupil in
its neutral position ─ zn = M = z0+Rad. This plane is also used to
define the 3D-ROI tracking area. The intersection of the ray with
the modeled surface provides the point 3D-coordinates. These
3D-coordinates are the solution to the following system:

�
�

�
�
�

�

−
−

=�
�

�
�
�

�
�
�

�
�
�

�

34

34

21

21
Mbb
Maa

y
x

bb
aa

n

n

XZp
p
p
p

tFFtxa
Fsccxa

sFccssscxa
cFcsscscxa

.).(
)(

)(
)(

4
3
2
1

−−−=
+=

−+=
+−−=

ββα
γβγαγβα
γβγαγβα

YZp
p
p
p

tFFtyb
cFsccyb

ccsssFcssscyb
sccssFsscscyb

.)(
)(

)()(
)()(

4
3
2
1

−−−=
−=

+−++=
++−−=

βαβα
γαγβαγαγβα
γαγβαγαγβα

We consider conflictive the cases where the system does not
present a solution. This always occurs for angles over 4/π± .
Therefore, coupling is reliable for angles between 4/π+ and

4/π− . Once the 3D position is recovered, we can compare it to
the analysis parameters previously defined in 3D and deduce the
eye state. The error precision due to the model linearization is
known and always smaller than Rad,  | εmax_app | <Rad.

5. INFLUENCE OF POSE PREDICTION OVER
FEATURE ANALYSIS: ERROR BEHAVIOR

The coupled feature-analysis pose-tracking procedure results on
a system that works under the influence of errors cumulated from
two different origins.

In [12] we have developed the error expressions of the
obtained 'neutral' coordinates from the analyzed projected data.
Along with the analysis precision error we find errors due to the
Kalman prediction. Analyzing these expressions, we check that
when coupling pose prediction with feature expression analysis,
the inaccuracy of pose predicting becomes the major source of
error. Unlike the error introduced when analyzing the video
image, the pose prediction error could hardly be minimized by
any image analysis technique and therefore cannot be easily
controlled. This error analysis shows how critical the accuracy of
the prediction is for our method.

6. TESTS AND RESULTS

In previous articles [10,11], we showed the positive results pose
and eye-state tracking algorithms had, when working separately.
To study the feasibility of the pose-expression analysis coupling,
first, we analyzed ROI adaptation and tracking on some synthetic
sequences. Tests presented perfect adaptation of the eye ROI
through the frames. Even though these preliminary tests did not
show that the predicted pose parameters could recover well the
minimum energy point of the tracked ROI, they showed that eye

Graphs 1-2. Surface evolution with pose parameters
independently and conjointly (αααα-γγγγ) for the eye feature.
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features were correctly enclosed as long as the tracking was well
performed.

Next, to test the eye-state algorithm coupled with the pose,
we applied the 3D-adapted eye-tracking algorithm over the
tracked ROI on real video sequences. We used a 3D model that
not matched the person on the video. We are able to utilize the
pose-tracking algorithm under these conditions, although it
permits less freedom of movement than when used with the
analysis-synthesis feedback of a realistic speaker-dependent
model. In sequences where the movements were not too extreme,
the adaptation worked fine. The success of the eye expression
analysis algorithm, evaluated as the number of times the 3D
model closed, opened its eyes, looked right, left correctly, stayed
the same level as when it was not coupled with the pose tracking
(80%). As expected, the system showed worse performance
when the pose-analysis algorithm started losing track.

The correct behavior of the pose-tracking algorithm ensures
good analysis coupling, therefore we expect better results using
the analysis-synthesis feedback with high realistic models. The
threshold, Th, used to judge the relevance of the feature analysis
is dependent of the ROI analysis technique. In our tests, we used
Th=3*AreaMinEnergySearch, because our algorithm is able to
detect up to three possible sight states (left-center-right).

The robustness of our approach is best appreciated by
visually comparing video input with the synthetic results
obtained from interpreting the analysis done over it. Video
sequences showing video input analysis and its synthesis
representation can be found on the web site of our project:

http://www.eurecom.fr/~image/Clonage/demos.html
We are currently able to perform the coupled analysis over

real-time video input at a rate of 1.5 f/s (PC: Pentium III –BiPro
at 700MHz). These results show the possibility of future online
performance with better equipment and implementation.

7. CONCLUSION AND FUTURE WORK

Proper ROI definition is critical to accurately do face expression
analysis. We have shown that controlling and predicting ROI
evolution becomes very useful in this context. From our analysis,
we have concluded that the Kalman filter based pose-feature
analysis coupling is completely stable to head translations and
becomes unstable for those head angles beyond 4/π± .
Nevertheless our tracking system finds its limitation beyond
these angles because the tracked data start to fall onto the same
projected points.

Parallel to the eye analysis, we have developed algorithms
to study the eyebrow motion. We intend to perform our pose-
feature analysis coupling over these algorithms as well.
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Figure 3. Evolution of the pose and feature expression analysis coupling with a non-similar 3D head model, over a real sequence.
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