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Abstract—Current research in end-to-end speech deepfake de-
tection predominantly centers around inputting “raw” waveforms
to a deep architecture, such as RawNet2, and training the deep
neural network to predict if the waveforms are fake. However,
direct processing of waveforms could cause over-parameterization
in the network, reducing its generalizability. To overcome this lim-
itation, we propose a multi-level variational regularization frame-
work integrating a modified Variational Autoencoder (VAE) with
discriminative constraints. Specifically, we adopt an VAE with
a deepfake discrimination constraint to regularize a RawNet2-
based high-level feature map (HFM) extractor. Experimental
results show that the proposed variational regularization leads
to HFM features that improve the performance of AASIST, SE-
Rawformer, and RawBMamba by 36.01%, 10.07%, and 6.35%,
respectively.

I. INTRODUCTION

Speech deepfakes are a type of Al-generated content created
by manipulating existing or synthesizing new speech data
from scratch to deceive humans. Recent advancements in
speech deepfakes have made it nearly impossible for the naked
ear to distinguish between fake and genuine speech. Conse-
quently, speech deepfake detection—the process of determin-
ing whether a speech signal is naturally uttered or artificially
generated—has gained significant attention [1]-[3]. Existing
solutions predominantly adopt one of two main approaches.
The first approach employs a front-end feature extractor paired
with a back-end classifier [4], [5]. The second approach
utilizes end-to-end models, simultaneously optimizing feature
extraction and classification by directly processing raw audio
waveforms [6], [7].

Research on end-to-end models for speech deepfake detec-
tion is progressing rapidly. A pioneering approach, RawNet2
[6], employs a time-domain convolution on raw audio to cap-
ture subtle artifacts overlooked by traditional spectral methods.
Building upon the RawNet2’s encoder architecture, subsequent
studies have explored innovative designs. For example, AA-
SIST [8], [9] leverages graph attention networks to model the
non-Euclidean relationships between time-frequency nodes.
Similarly, SE-Rawformer [10] enhances RawNet2 capability
by integrating squeeze-and-excitation blocks with Transformer
layers, enabling dynamic channel recalibration for raw signal
processing. Another variant, RawBMamba [11], replaces the
transformer layer in Rawformer with a bidirectional state space
model (SSM) to improve sequential modeling efficiency. These

end-to-end methods show better performance than the classical
approaches [4], [5]. Consequently, we adopt an end-to-end
framework in our paper.

Current research on detecting speech deepfakes shows
promise but still struggles with poor generalization, limiting
its practical applications due to the variations in speech quality
and style [12]-[14]. While data augmentation, self-supervised
learning, and domain-adaptation could improve cross-domain
performance [15]-[17], the use of generative models for do-
main adaptation in anti-spoofing systems is still underexplored.
This gap prompts an investigation into integrating traditional
generative models with end-to-end classification frameworks.

Generative models, such as variational encoders (VAEs)
[18], have proven to be effective for feature regularization
[19], [20], particularly in addressing domain mismatches be-
tween training and evaluation data and in enhancing overall
generalization capability. Prior studies [21] have assessed
the Gaussianization effects of deep normalization flow (GM-
DNF) [22], maximum likelihood deep normalization flow
(ML-DNF), and VAE normalization methods in out-of-domain
contexts. The study highlights the significance of normalization
and regularization in the extraction of speaker embeddings.

DNF and VAE are both generative models but utilize differ-
ent regularization mechanisms. While DNF employs reversible
transformation chains to achieve Gaussianization, VAE explic-
itly regularizes via the evidence lower bound (ELBO), which is
more interpretable and can be adapted across different models.
Recent findings suggest that incorporating discriminative infor-
mation through the class-related structures of the learned latent
space can improve the regularization performance in DNF [21],
[22]. However, the impact of discriminative information on the
latent space learned through VAE regularization remains un-
derstudied. Moreover, these investigations have predominantly
concentrated on the probabilistic linear discriminative analysis
(PLDA) back-end instead of end-to-end models. Hence, explor-
ing whether the Gaussianization can improve the generalization
capacity of end-to-end anti-spoofing models remains an open
question.

In [23], an VAE is used in conjunction with a Wav2Vec
frontend to retain the most informative feature for spoofing
detection. In contrast to the variational information bottleneck
approach in [23], we advocate the integration of variational
regularization alongside an auxiliary discriminative decision



boundary. This paper introduces a novel form of variational
regularization, grounded in VAE, to enhance the generalization
of end-to-end speech deepfake detection. The primary contri-
butions of our proposed method are summarized as follows:

o We undertake a comprehensive investigation into the
benefits of using VAE divergence for model regularization
to enhance generalization capability. We show that, during
the High-level Feature Maps (HFM) extraction process,
the Kullback-Leibler (KL) divergence in VAE can facili-
tate the Gaussianization of latent vectors.

« To ensure class separation in latent space while regular-
izing the distributions of individual classes, we integrate
discriminative information. By establishing appropriate
decision boundaries, the model can effectively balance
the processes of generation and classification, alleviating
issues related to posterior collapse.

« We provide experimental evidence for effectively integrat-
ing the VAE regularization into mainstream end-to-end
models in deepfake detection systems. Our results show
that the proposed method significantly outperforms lead-
ing raw audio-input models, thereby enhancing overall
accuracy.

II. RAWNET2 ENCODER BACKBONE

There is a growing trend in using end-to-end models, such
as RawNet2 and its variants [6], to detect spoofed speech.
RawNet2 has three core innovations. First, it uses a parameter-
sharing sinc-convolution layer to reduce computational com-
plexity while maintaining performance; second, it leverages the
frequency-channel interdependency through the squeeze-and-
excitation (SE) operations in the ResNet blocks to enhance
the network’s robustness to acoustic noise; and, third, it uses
hierarchical feature learning to derive HFM directly from
waveforms. This paper considers several advanced models,
including AASIST [8], RawFormer [10], and RawBmamba
[11]. All of these models are equipped with a RawNet2
encoder.

The RawNet2 encoder employs a sinc layer to function as
a band-pass filter, as shown in Figure 1. This layer gener-
ates Low-level short-range Feature Map (LFM), denoted as
F,,, € RFXT where F is the number of frequency bins and T
represents the temporal duration. Then, the LFM is considered
as an image and a sequence of ResNet blocks is applied to
extract High-level Feature Maps (HFM), denoted as Fi, €
RE*F'*T" Here, C' is the number of output channels, F/ < F
reflects the reduced frequency resolution after the Conv2D
and pooling operations, and 77 < T indicates the reduced
temporal resolution. Each ResNet block incorporates squeeze-
and-excitation operations to enhance feature discrimination.
Finally, the HFM undergoes flattening along both the time and
frequency axes. This process yields a two-dimensional feature
sequence F, € RO*F'T’ which is passed to the downstream
modules.
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Fig. 1. Diagram illustrating the idea of multi-level VAE regularization. T’

and F' denote the input’s temporal duration and number of frequency bins; C,
F’, and T’ represent the number of channels, reduced number of frequency
bins, and reduced temporal length. The encoder ¢ outputs the latent variable
z’s mean p,, and log-variance log o2 of the Gaussian distribution from which
the latent vector z is sampled, and the dotted arrow represents the sampling
processing (in (1)). The decoder reconstructs the input x € RCXF'XT",
The model optimizes four losses: reconstruction loss ..., KL divergence loss
Ik, and binary classification losses Ip and ¢ for spoofed/bonafide detection.
Frame-level regularization includes all modules, whereas class-conditional
regularization excludes the decoder and nullifies /.

III. MULTI-LEVEL REGULARIZATION

This section presents a variational regularization method
for the RawNet2 encoder by adding a KL divergence term
into the loss function. Inspired by the variational autoencoder
(VAE) [18], we propose a multi-level variational regulariza-
tion framework that synergizes latent space alignment with
discriminative objectives. For regularization at the frame-level,
we leverage the VAE’s reconstruction term to ensure that the
latent variables follow a distribution capable of reconstructing
the HFM, preserving the fine-grained acoustic details essential
for capturing subtle deepfake artifacts. For regularization at the
class-level, we remove the reconstruction constraint and opti-
mize the latent space to generate embeddings that are compact
within the genuine and spoof classes while maximizing their
separation through KL-driven alignment.

A. VAE Regularization

VAE regularization is an effective approach to avoid over-
fitting in the front-end feature extractor, especially when the
extractor is used with a PLDA back-end [20]. In essence,
an VAE defines the latent space through its encoder and
decoder. The encoder parameterized by ¢ maps an input x to a
Gaussian distribution ¢ (z|x) that approximates the posterior
distribution p(z|x). The decoder maps a simple distribution
p(z) to a complex distribution p(x). These mappings can be
expressed as follows:

p(z[x) ~ qg(2|x) = N(,(x), 05 (x)), 4))

p(x) = / po (x|z)p(z)dz @



with ¢ and 0 representing the encoder and decoder parameters,
respectively, and p,(x) and o2(x) represent the mean and
variance functions provided by the encoder. p(z) is the prior
distribution of z.

Previous work on VAE regularization for speaker verifica-
tion [24], [25] aligns the latent distribution with a Gaussian
distribution because PLDA requires that the i-vectors follow
a Gaussian distribution. However, the unsupervised nature
of VAE may compromise class separability. In particular,
the absence of label-aware constraints could lead to latent
space congestion [21], thereby degrading discriminative per-
formance.

To regularize the distributions of individual classes and
maintain their separation, we propose a novel approach that
allows the HFM extractor to enforce class separation via
discriminative constraints. This key distinction facilitates better
differentiation between classes in the latent space. Specifically,
by utilizing the encoder output p,(x) as the input to a
discriminator (binary classifier), we explicitly regularize the
first moment of the latent distribution. This design enforces
discriminative structure in the latent space, ensuring that class
centroids are maximally separated while maintaining a well-
regularized learning. Such learning not only stabilizes end-
to-end training by preventing latent space collapse but also
aligns the feature extractor’s outputs with the downstream
classifier’s inductive biases, thereby harmonizing generative
and discriminative objectives within a unified framework.

As shown in Figure 1, the discriminator is expressed as
follows:

p(ylx) = softmax(Wi, (x) + b). 3)

where y denotes the class label (bonafide/spoofed), and W and
b represent the parameters of the fully-connected (FC) layer.
We utilize cross-entropy in the loss function, as follows:

N 2
1
Ib=-5 Z Z Yi.c log p(yilxi), @

=1 c=1

where NN is the number of samples in a minibatch and y; . = 1
when x; € Class c; otherwise, y; . = 0.. The minimization of
I, will cause the encoder to produce latent means p,(x) that
form two distinct groups according to the class labels.

B. Frame-Level VAE Regularization

The training algorithm of VAE optimizes the model pa-
rameters (6 and ¢) by maximizing the evidence lower bound
(ELBO), which is accomplished by minimizing the loss func-
tion

L(0,¢) = —Eqy (a/x) [log po(x|2)] + KL (g4 (2[%)|p(2)),
®)
where p(z) is the prior distribution of z. The first and second
term in (5) encompasses the negative reconstruction error
and the KL divergence, respectively. Due to the constraints
imposed by the reconstruction error, the regularizer has the
potential to reconstruct the temporal and frequency structure

of the input x € RE*F'*T" Consequently, the model will
learn the mappings at the frame level.

The reparameterization trick is used to sample the latent
z € R as follows:

z=p,(x)+0,(x)Oe, 6)

where € is a random vector drawn from a standard normal
distribution A/(0,I), ® is the elementwise multiplication, and
L is the dimension of the latent space. Assuming Gaussian
prior for z, the KL divergence in (5) can be evaluated as

Lo = KL(qe(2[x)||p(2))

1 L
=3 Z(l + log(og’j(x)) - Ng,j(x) - Uij(x»

The reconstruction term /... in Figure 1 can be implemented by

mean square error (MSE). The downstream classification loss

lc is the cross-entropy (CE) loss on detecting fake/bonafide.
The loss function with frame-level VAE regularization is

Liame = @ X le+ —= 5 [(lu 4+ Bx ba) + 1], (8)
where « € [0, 1] controls task focus (regularization vs. classi-
fication), and 8 > 0 adjusts the regularization intensity. This
formulation enables simultaneous learning of discriminative
features while maintaining reconstruction capability at the
frame level.

C. Class-Conditional VAE Regularization

We propose a class-conditional variant of VAE regulariza-
tion that focuses on the class discriminability of the latent
variables z’s. To this end, we remove the decoder in Figure
1 from the VAE. By eliminating the reconstruction constraint,
the HFM extractor is more discriminative but not over-trained
on a specific dataset, as the KL divergence term ensures the
penalization of excessive separation of the two classes.

The removal of the decoder alters the regularization mech-
anism. Specifically, the cross-entropy loss [, explicitly max-
imizes decision margins to separate the distributions of the
two classes. Meanwhile, the KL divergence term [ com-
presses each class’s latent distribution toward a shared prior
p(z) = N(0,1I). This trick realizes discriminability and avoids
over-fitting at the same time. So, the loss function is

—

Lelass = o X lc + ! X (5 X g + ZD)' )

We postulate that the absence of a reconstruction process
empowers the regularizer to better optimize the HFM extrac-
tor in generating embeddings while effectively distinguishing
between different classes. Meanwhile, the KL divergence reg-
ularization avoids intra-class compactness and reduces inter-
class separation, which helps avoid over-fitting. Therefore, the
learned latent space prioritizes class discrimination, rather than
the individual reconstruction of each inputted vector x.



TABLE I
VAE ENCODER MODEL ARCHITECTURE. CONV DENOTES A
CONVOLUTIONAL OPERATION. T': THE NUMBER OF TIME FRAMES. F': THE
NUMBER OF FREQUENCY BINS. M = 32.

Layer Input shape Stride size
Convl CxFxT 2x2
Conv2 M x F/2xT/2 2% 2
Convd  2M x F/4x T/4 2% 2

TABLE 11
IMPACT OF THE VALUES OF THE HYPERPARAMETER 3 ON THE
PERFORMANCE ON THE 19LA, 21LA, AND 21DF DATASETS. HERE, T IS
THE REPRODUCED RESULTS IN [11]. THE CLASS-CONDITIONAL (IN (9))
VAE REGULARIZATION WAS APPLIED IN THIS EXPERIMENT.

Beta 3 19LA 21LA 21DF
EER(%)t-DCF EER(%)t-DCF EER(%)

0.93 0.0285 10.51 0.4884 -

090 0.02522 7.61 0.3967 21.85
1.35 0.0347 6.40 0.3632 21.64
0.94 0.0260 6.80 0.3753 20.89

1.15 0.0314 4.31 0.2851 20.26
0.91 0.0251 3.28 0.2673 18.93
0.99 0.0315 3.81 0.2673 19.44
0.76  0.0232 4.48 0.3102 17.63

1.19 0.0360 3.28 0.2709 15.85
1.05 0.0276 3.37 0.2726 14.59
1.10 0.0342 6.67 0.3444 19.67
1.14 0.0343 3.06 0.2632 18.04

Models

AASIST [8]

- I

SE-Rawformert [10]

< I

RawBMamba [11]

= N

IV. EXPERIMENTS AND ANALYSIS
A. Experimental Settings

a) Dataset: We evaluate the effectiveness and generaliz-
ability of the proposed VAE regularization on the ASVspoof
datasets [1], [2], specifically, ASVspoof2019 LA (19LA),
ASVspoof2021 LA (21LA), and ASVspoof2021 DF (21DF).
The 19LA dataset comprises two types of spoofing attacks,
namely Text-to-Speech (TTS) and Voice Conversion (VC), im-
plemented across 19 distinct algorithms (A01-A19). The 21LA
dataset contains both genuine and artificially generated speech
transmitted through telephony systems, including voice over
IP and the public switched telephone network. Meanwhile, the
21DF dataset features bonafide and spoofed audio samples that
have been modified by various media codecs, which introduce
distortion during the processes of encoding, compressing, and
decoding.

b) Metrics: Performance metrics used in this study in-
clude the equal error rate (EER) and the minimum tandem
detection cost function (min t-DCF) [26].

c¢) Models and architectures: The model structure of the
HFM extractor and the downstream feature extractor adheres
to the original configurations of AASIST (Baseline 1) [8],
SE-Rawformer (Baseline 2) [10], and RawBMamba (Baseline
3)[11]. These models serve as the baselines in this paper. The
settings for the VAE variants are detailed in Table I. The latent
dimension was set to 64.

d) Training configuration: During the training phase,
we utilized input waveform that comprises 64, 000 time points,
roughly equivalent to 4 seconds. And « in (8) and (9) was
set to 0.7. The Adam optimizer [27] was employed, with

TABLE III
PERFORMANCE ON THE 19LA, 21LA, AND 21DF DATASETS. HERE, | IS
THE REPRODUCED RESULTS IN [11]. “FRAME-LEVEL” AND
“CLASS-CONDITIONAL” MEAN THAT THE FRAME-LEVEL (IN (8)) AND
CLASS-CONDITIONAL (IN (9)) VAE REGULARIZATIONS WERE APPLIED,
RESPECTIVELY. - MEANS THIS METHOD IS NON-APPLICABLE (FOR
BASELINES ONLY).

Models VAE Beta 3 19LA 21LA 21DF
Regularization EER(%)t-DCF EER(%)t-DCF EER(%)

- - 0.93 0.0285 10.51 0.4884 -
AASIST [8] Frame-level 6 0.94 0.0293 6.38 0.3630 23.01

Class-conditional 6 0.94 0.0260 6.80 0.3753 20.89

1.15 0.0314 4.31 0.2851 20.26

SE-Rawformert  Frame-level 2 0.92 0.0263 2.72 0.2572 19.64

Class-conditional 2 0.91 0.0251 3.28 0.2673 18.93

- - 1.19 0.0360 3.28 0.2709 15.85

RawBMamba [11] Frame-level 2 1.18 0.0354 2.97 0.2585 14.93
Class-conditional 2 1.05 0.0276 3.37 0.2726 14.59

a training batch size of 32. Models were trained on the
combination of ASVspoof 2019 LA training and development
sets, following the training settings in [10], [11], using a single
RTX 4090 GPU.

e) Evaluation configuration: In previous research, var-
ious datasets have been considered as representing different
domains because of the varying compression and transmission
conditions [17], [28], [29]. To assess the generalization ca-
pacity of models, we define 19LA as an in-domain setting
due to its consistent acoustic conditions and speech codecs. In
contrast, 21LA involves changes in the acoustic environment
and transmission conditions, representing a shift in acoustic
conditions. Furthermore, 21DF alters the speech codecs, cate-
gorizing it as a codec shift. Consequently, these two datasets
serve as our cross-domain settings, where domain shifts occur
due to alterations in acoustic conditions or codecs. To fairly
assess the model’s generalization performance, we selected
the epoch in which the models performed the best on the
ASVspoof 2019 LA evaluation set to do the cross-domain
evaluation. This approach ensures that we are evaluating
the models at their optimal performance level of the source
domain.

B. Analysis of the Hyperparameter Settings

This section discusses the selection of the hyperparameter
in (8) and (9), as detailed in Table II. Each framework exhibits
an optimal value of 3 for different evaluation sets. Specifically,
in the remaining experiments, we selected [ values of 6,
2, and 2 for AASIST, SE-Rawformer, and RawBMamba,
respectively, to achieve the best generalization capacity while
maintaining strong in-domain performance.

C. Results of Frame-Level Regularization

This section evaluates the effectiveness of the proposed
frame-level regularization method by applying it to various
baselines, as detailed in Table IIL. In this experiment, the VAE
regularization contains the reconstruction loss.

The frame-level regularization exhibits enhanced perfor-
mance on unseen datasets. Notably, when assessed on the



TABLE IV
ABLATION STUDY OF THE PROPOSED FRAME-LEVEL (FL) VAE
REGULARIZATION AND CLASS-CONDITIONAL (CC) VAE
REGULARIZATION ON THE 19LA, 21LA, AND 21DF DATASETS. HERE, IS
THE REPRODUCED RESULTS IN [11]. “DI” IS SHORT FOR DISCRIMINATIVE
INFORMATION. v/ AND X REPRESENT WHETHER THE CORRESPONDING
METHOD IS IMPLEMENTED OR NOT.

Models VAE Regularization 19LA 21LA 21DF

FL CC DI EER(%) t-DCF EER(%)t-DCF EER(%)

v X v 0.92 0.0263 2.72 0.2572 19.64

x v v 0.91 0.0251 3.28 0.2673 18.93

SE-Rawformert v X X 1.09 0.0326 6.86 0.2957 21.27
X v X 0.63 0.0179 3.29 0.2730 19.21

X X v 0.87 0.0258 4.82 0.3091 19.83

v X v 1.18 0.0354 2.97 0.2585 14.93

X v v 1.05 0.0276 3.37 0.2726 14.59

RawBMamba[l1] v X X 1.11 0.0372 3.96 0.2957 16.46
X v X 0.94 0.0301 3.35 0.2630 16.91

X X v 1.07 0.0316 3.84 0.2786 18.24

19LA dataset, which belongs to the same domain as the
training set, it performs nearly identically to Baseline 1.
However, it demonstrates superior generalizability when tested
on the 21LA dataset, achieving a 36.01% relative reduction in
average EER.

In the case of Baseline 2, the proposed frame-level regular-
ization consistently displays better generalizability across all
evaluation sets. It results in an overall 9.45% relative reduction
in average EER. When compared to Baseline 3 in prior studies,
our method also shows performance improvement across all
evaluation sets, with a 6.06% relative reduction in average
EER.

The proposed frame-level variational regularization shows
improved performance across all three baselines. Notably,
generalization is enhanced to a lesser extent when there is
a change in codec compared to shifts in acoustic conditions.
This suggests that frame-level variational regularization is
particularly effective in managing varying acoustic conditions.
We reason that the reconstruction loss in frame-level VAE
helps the model become more robust to acoustic perturbations
by preserving finer temporal-frequency structure.

D. Results of Class-Conditional Regularization

This section discusses the benefits of the proposed class-
conditional regularization method. In this experiment, the re-
construction process is eliminated by invalidating the decoder
in VAE.

As indicated in Table III, there is a slight improvement in
t-DCF on the 19LA dataset compared to Baseline 1. However,
the generalizability is significantly enhanced on the 21LA and
21DF datasets in relation to both Baseline 1 and the frame-
level regularized model.

In terms of Baseline 2, the model performance shows a
relative reduction of 10.07% in average EER. Interestingly,
there is a decrease in EER on the 21DF dataset compared
to the frame-level regularization, despite a slight performance
decline on the 21LA dataset. The class-conditional method on
RawBMamba witnesses the same trend with a relative EER
reduction of 6.35%. This indicates an improved generalization

ability of the proposed model when evaluated on data from a
completely different domain.

Compared to frame-level regularization, the proposed ap-
proach demonstrates better performance in addressing codec
shifts across three different models. This suggests that the
class-conditional variant emphasizes utterance-level general-
ization, which may be more helpful under codec variability.

E. Ablation Study

This section examines the effectiveness of frame-level VAE
regularization, class-conditional VAE regularization, and the
discriminative branch.

a) The Effectiveness of Discriminative Information: We
evaluated the impact of discriminative information by remov-
ing the discriminative term /p from the frame-level (FL) and
class-conditional (CC) regularization approaches. As shown
in Table IV, excluding discriminative information in VAE
regularization resulted in reduced cross-dataset performance,
highlighting an overfitting issue, evidenced by the increased
EER on the ASVspoof 2019 LA evaluation set, representing an
in-domain scenario. The findings confirm the effectiveness of
integrating discriminative information into VAE regularization.
It is noteworthy that this ablation experiment led to posterior
collapse within the VAE, indicating that the synergy between
discriminative and generative learning can help mitigate pos-
terior collapse.

b) The Effectiveness of Multi-Level Regularization: To
validate the effectiveness of the proposed FL regularization,
we disabled the KL divergence /iy, and reconstruction term
lrec in (8). The outcomes, presented in Table IV, reveal a
decline in generalization across cross-domain settings without
FL regularization. This suggests that without FL regularization,
the discriminative term applied to the HFM extractor fails to
enhance the model’s generalizability. Besides, disabling the
KL divergence [ky, in (9) resulted in a noticeable decline in
generalization performance on the 21LA and 21DF datasets.
Through these comprehensive experiments, we demonstrate
that the proposed methods effectively address the general-
ization problem. Discriminative information strengthens VAE
regularization by preventing posterior collapse and facilitating
class separation within the latent space.

V. CONCLUSION

This paper proposes a novel variational regularization
framework to enhance the generalization capability of end-
to-end models for speech deepfake detection. Experimental
results demonstrate that frame-level regularization achieves
great performance on acoustic conditions shifts, while class-
conditional regularization significantly improves cross-codec
generalization. We also investigated the relationship between
the weighting factor of KL divergence and the HFM extractor’s
depth. Ablation studies and analysis confirm the critical roles
of discriminative information in model regularization and the
effectiveness of the proposed multi-level variational regulariza-
tion. Future work will explore discriminative Gaussian priors
and visualize the regularization’s impact on gradients.
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