
PRISM: Profiling-Free Symbolic Memory-Driven Strategy Planner for Large
DNN Model Training

The rapid growth of large-scale deep neural networks (DNNs) has introduced severe memory and performance bottlenecks during

distributed training. Existing automated planners for parallelization strategies often rely heavily on profiling or empirical tuning,

which significantly increases engineering cost and wastes large-scale cluster resources. In this work, we present PRISM, a profiling-free,

symbolic memory-driven strategy planner for large DNN training. PRISM introduces a unified symbolic memory cost model that

captures the layered structure of modern architectures and integrates with a communication model to evaluate trade-offs across

data, tensor, pipeline, virtual pipeline, expert, and sequence parallelism, as well as activation recomputation and optimizer sharding.

By formulating strategy selection as an optimization problem, PRISM identifies globally optimal parallel strategies under device

memory budgets. Our evaluation across representative large models demonstrates that PRISM achieves accurate memory prediction

and substantial improvements in Model FLOPs Utilization (MFU), reducing bubble and communication overheads without costly

profiling.

1 Introduction

DNNs have progressed rapidly in recent years—improving accuracy across language, vision, andmultimodal tasks—while

simultaneously growing in parameter count, sequence length, and modality breadth. Training such models now requires

large distributed high-performance computing (HPC) systems that compose multiple forms of parallelism to sustain

throughput and fit within device memory, including Data Parallelism (DP) [6], Tensor/Model Parallelism (TP) [18],

Pipeline Parallelism (PP) [8, 13], Virtual Pipeline Parallelism (VPP) [14], Expert Parallelism (EP) for Mixture-of-Experts

[7, 11], Sequence (SP) [9, 10], Optimizer Partitioning (OP, ZeRO) [16], and activation recomputation (checkpointing) [5].

Memory is the primary limiter of DNN training throughput. Even when multiple parallelisms are composed, the

instantaneous peak on each accelerator gates feasible micro-batch size, interleaving depth, and overlap. Simply “adding

machines” raises the volume and cadence of collectives, often amplifying communication and eroding expected gains.

As a rule of thumb: DP is memory-hungry and prone to OOM; TP is communication-intensive; SP reduces activation

footprint by sharding along the sequence dimension but introduces additional collectives around attention; PP creates

pipeline bubbles; EP is heavy due to token routing; and OP (ZeRO-style optimizer-state sharding) cuts memory at the cost

of optimizer-step traffic. Concretely, DP keeps full parameters, gradients, and optimizer states on every rank, so per-rank

peak scales with model size (not DP degree), and gradient all-reduce occurs after activations are materialized—DP alone

rarely relieves peaks. TP shards tensors across ranks but forces frequent all-gather / reduce-scatter / all-reduce around

matmuls and attention every forward/backward step; both collective count and payload grow with the shard dimension,

making TP communication-dominant. SP computes attention via efficient communication, when sequence length and

device count scale proportionally, the per-step communication volume remains roughly constant—enabling extreme

long-sequence training without exploding memory. PP partitions the network into stages and uses micro-batches
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System Techniques Cost model Planner

Megatron-LM [14, 18] DP, SP, TP, PP, Recomp Specific Manual

ZeRO-DP/OP [16] DP, OP Specific Manual

Galvatron [12] DP, OP, TP, PP Profiling-based Tuning

vTrain [4] DP, TP, PP Profiling-based Tuning

PRISM (this work) DP, SP, TP, PP, VPP, EP, OP, Recomp Symbolic Algorithmic

Table 1. Representative systems for large-model training. “Specific” denotes system-specific cost accounting embedded in the imple-
mentation; “Profiling-based” denotes empirical cost estimation obtained via short trial runs; “Symbolic” denotes an implementation-
agnostic closed-form model.

to fill and drain the pipeline, introducing warm-up/flush idle slots and sensitivity to stage imbalance. EP distributes

experts but routes tokens via all-to-all at each expert layer in both directions; traffic scales with sequence length,

hidden size, and capacity factor, while routing/padding and load skew inflate latency and bandwidth demand. OP shards

optimizer states—and in higher stages, gradients and even parameters—across the DP group, reducing per-rank memory

roughly with sharding degree; however, it introduces per-step reduce-scatter/all-gather of gradients and (ZeRO-3–like)

parameter all-gathers that must be carefully prefetched and overlapped to avoid optimizer-step latency and background

bandwidth pressure. Balancing these modes in practice means trading memory headroom against collective volume,

bubble overhead, and overlappability.

Memory-Performance trade-offs are tightly coupled. Mechanisms that lower on-rank residency typically increase

communication or pipeline idle time; mechanisms that reduce bubbles often widen activation liveness or add FLOPs. For

a fixed model and global batch, useful compute per step is essentially invariant, so performance hinges on minimizing

communication and bubble overhead while staying within per-accelerator memory limits and satisfying the schedule.

The design space is discrete, non-separable, and topology dependent across DP, SP, TP, PP, VPP, EP, OP settings,

recomputation policy, and micro-batches. Micro-batching co-determines both peak memory and pipeline bubbles and

cannot be tuned independently. Practical planners must jointly choose strategy and micro-batching under the actual

execution schedule, balancing memory feasibility with communication and bubble costs.

State of the art and limitations. Table 1 contrasts representative systems along three axes—mechanism coverage, cost

modeling, and planning method. Megatron-LM [14, 18] exposes a rich set of mechanisms (DP/SP/TP/PP, recomputation)

but relies on system-specific accounting embedded in implementation choices with a manual planner, which shifts

the burden to practitioners and limits portability and reproducibility across clusters. ZeRO-DP/OP [16] offers precise,

specific accounting for optimizer/parameter sharding and offload but remains a component rather than a unified planner;

strategy composition across TP/PP/EP/VPP still requires manual coordination. Galvatron [12] and vTrain [4] enlarge

the mechanism set to hybrid strategies and replace hard-coded accounting with profiling-based cost models coupled

to tuning loops; this improves automation on a fixed stack but consumes accelerator hours for trial runs, lengthens

queue time, and degrades when model shapes, schedules/interleaving variants, kernels, or interconnect/topology

change. Moreover, empirical regressors provide limited visibility into where peak memory occurs and scale poorly

as the DP/SP/TP/PP/VPP, EP/OP, and micro-batching dimensions interact combinatorially. In contrast, PRISM (this

work) covers a superset of mechanisms—including VPP and EP—and replaces profiling with a symbolic model and an

algorithmic planner. This yields portable, schedule-aware feasibility checks and transparent communication–bubble

trade-offs without trial runs, enabling dependable planning across hardware and workloads.

Scalability of profiling and tuning. As the mechanism set grows (DP/TP/PP/VPP, SP, EP, OP, recomputation, micro-

batch size,schedules), the strategy space expands combinatorially. Let S = D×T ×P ×V ×S×E ×O ×R ×B × Sched
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denote choices for DP degree, TP degree, PP stages, VPP interleaving degree, EP degree, OP degree, recompute

policy, micro-batch size, and schedule. Even with modest per-axis cardinalities, |S| quickly reaches 10
4
–10

6
per

model–hardware setting. Profiling-based estimation then costs roughly |S| ·𝜏
trial

and must be repeated whenever

shapes/schedules/topology change, while tuning on a discrete, non-separable surface suffers superlinear complexity

due to cross-terms and schedule-dependent peaks. As dimensions proliferate, the profiling and tuning burdens explode,

making the approaches in Table 1 increasingly hard to sustain at scale.

Our position. Memory is the binding constraint for large-model training. A profiling-free, symbolic view of the model

and schedule is sufficient to (i) bound per-stage peak memory and (ii) expose the trade-off between pipeline bubbles

and communication. Hence the choice of DP/TP/PP/VPP, SP, EP, OP, recomputation, micro-batch size,schedule should

be solved jointly under a memory budget.

In this paper, we introduce PRISM, a profiling-free planner that analytically predicts peakmemory and communication

costs, then searches for a configuration that minimizes both bubble and communication overhead subject to memory

limits. PRISM supports dense and MoE models and outputs deployable strategies.

Contributions.

(1) Profiling-free symbolic memory model. A grammar-driven, closed-form model that computes stage-wise peak

memory without profiling, covering DP/TP/PP/VPP/SP/EP/OP, recomputation, micro-batch size, schedule.

(2) Unified memory+communication model with a joint solver. We define a unified cost 𝐽 = B +𝑇comm combining

pipeline bubbles and communication, and propose an algorithmic planner (PRISM-Search) that jointly selects

(𝑑𝑝, 𝑡𝑝, 𝑝𝑝, 𝑣𝑝𝑝, 𝑠𝑝, 𝑒𝑝, 𝑜𝑝, 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒, 𝑏, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) under a memory budget.

(3) Experimental results. On an Ascend-910 cluster (up to 1,024 devices) across DeepSeek, LLaMA, TextHawk, and

MoE workloads, PRISM delivers up to 1.93×MFU speedup and achieves tight memory prediction with median

absolute error within ≈7%.

2 Approach

2.1 Notation

This subsection catalogs the symbols used by our memory and performance models. We group notation into six

categories: Model hyperparameters, Data types and byte widths, Buckets, Sharding divisors and indicators, Schedule-aware

terms, and Communication timing.

Model hyperparameters. ℎ (hidden width), ℎ𝑓 𝑓 (Feed-Forward Network, FFN inner width), 𝑣 (vocabulary size), 𝑛ℎ

(number of attention query heads), 𝑑ℎ (per-head projection width), 𝑛𝑘𝑣 (number of key–value heads under Grouped-

Query Attention, GQA or Multi-Query Attention, MQA; typically 𝑛𝑘𝑣 ≤𝑛ℎ), 𝑠 (sequence length), and 𝐿 (number of layers).

Batching: 𝑏 is the per-rank micro-batch size and𝑚 is the number of micro-batches per iteration; the global batch is

𝐺 = 𝑑𝑝 · 𝑏 ·𝑚. A strategy specifies parallel degrees (𝑑𝑝, 𝑡𝑝, 𝑝𝑝, 𝑣𝑝𝑝, 𝑠𝑝, 𝑜𝑝, 𝑒𝑝), where Data Parallelism (DP) replicates

parameters across ranks; Tensor Parallelism (TP) shards tensors along model dimensions; Pipeline Parallelism (PP)

partitions layers into stages; Virtual Pipeline Parallelism (VPP) interleaves multiple virtual chunks per stage to reduce

bubbles; Sequence Parallelism (SP) shards tokens along the time/sequence axis; and Expert Parallelism (EP) distributes

experts inMixture-of-Experts (MoE) layers across ranks. We also specify a schedule sched∈ {1F1B, SeqPipe, DualPipeV},
an optional recomputation policy R (recomputation), and the𝑜𝑝 ≤𝑑𝑝 for Optimizer State parallel (OP).

Data types and byte widths. Bytes per element are denoted by 𝐵𝐹𝑃𝑝 (parameters), 𝐵𝐹𝑃
𝑔𝑟𝑎𝑑

(gradients), 𝐵𝐹𝑃𝑎𝑐𝑡 (activations),

and 𝐵𝐹𝑃𝑜𝑠 (optimizer states), typically chosen from {1, 2, 4} for FP8/FP16/FP32.
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Buckets. For each layer ℓ we track element counts Param(ℓ), Grad(ℓ), and activation buckets Act𝐴 (ℓ) with 𝐴 ∈
{Attn:QKV,Attn:Score,Attn:Proj, FFN,MoE:router,MoE:routed,MoE:shared,MoE:concat,Norm/Util}, whereMoE (Mix-

ture of Experts) uses a router with top-𝑘 gating and a capacity factor. Byte sizes follow bymultiplication: ParamBytes(ℓ) =
Param(ℓ) 𝐵𝐹𝑃𝑝 , GradBytes(ℓ) = Param(ℓ) 𝐵𝐹𝑃

𝑔𝑟𝑎𝑑
, and ActBytes𝐴 (ℓ) = Act𝐴 (ℓ) 𝐵𝐹𝑃𝑎𝑐𝑡 . Peak device memory aggregates (i)

static residency (parameters, gradients, optimizer states) and (ii) dynamic terms.

Sharding divisors and indicators. Materialization under sharding is captured by 𝜙
in/out
𝑡𝑝 (ℓ) ∈ {𝑡𝑝, 1} and𝜓 in/out

seq
(ℓ) ∈

{𝑠𝑝, 1}, marking whether inputs/outputs are in sharded or global view for TP, SP. Communication needs are indicated by

𝜒
in-gather

ℓ
, 𝜒out-red
ℓ

(TP all-gather / all-reduce) and 𝜒
seq-gather

ℓ
, 𝜒

seq-red

ℓ
(SP gather / reduce-scatter). For MoE, 𝜙route (ℓ) ∈

[0, 1] is the fraction of routed activations that leave a rank under (𝑒𝑝, top_k, capacity). Pipeline boundaries incident to
stage 𝑖 are enumerated byU𝑖 , with an effective shard divisor 𝜑𝑡𝑝,𝑠𝑝 ∈ {𝑡𝑝, 𝑠𝑝, 𝑡𝑝 ·𝑠𝑝, 1} on boundary tensors.

Schedule-aware terms. Activation concurrency on stage 𝑖 is PPFactorsched
𝑖

= 𝑓pp (𝑖; 𝑚, 𝑝𝑝, 𝑣𝑝𝑝, sched) (Eq. (5));
BackwardOverhead

sched
𝑖 accounts for warm-up/flush tails and recomputation. The bubble model uses Θ

mb
(𝑏) (per-

micro-batch compute time), 𝑔sched (𝑝𝑝, 𝑣𝑝𝑝,𝑚,Δimb
) (schedule factor for imbalance Δ

imb
), and 𝑐recomp (R) (recompute

overhead) as in Eq. (37).

Communication timing (for the performance objective). Collectives follow the latency–bandwidth (𝛼–𝛽) model

𝜏
coll
(𝑏;𝑔, pat) = 𝛼pat (𝑔)+𝑏/Bpat (𝑔) for pat∈ {allreduce, allgather, reducescatter, alltoall, point-to-point (p2p)} (Eq. (24));

multiplicities per step follow Eq. (35). Per-step communication time 𝑇 comm

step
(Eq. (36)) is combined with the bubble term

to form the overall objective 𝐽 (𝑠, 𝑏,𝑚) (Eq. (39)), while memory feasibility of (𝑠, 𝑏,𝑚) is checked solely against Eq. (2)

(excluding transient comm buffers).

2.2 Model abstraction

Any DNN model can be abstracted as a sequence of building blocks, of which the coarsest-grained are called layers. In

particular, all LLMs encountered so far respect a specific architecture represented by the following grammar:

DNN → embedding · Layer+ ·MTP
∗ · Output

Layer → (Norm · Attention)∗ · Norm · FFN
Norm → layerNorm | rmsNorm | . . .

Attention → selfAttention | crossAttention | . . .
FFn → feedForward | routedExpert | . . .
MTP → Norm · Norm · linear · Layer

Output → Norm · linear

(1)

Also, a complex multimodal model is easily represented as: MultiModal→ DNN
+
. Once a network is expressed in

the language represented by this grammar, it can be easily parsed and analyzed to compute the memory it needs. Hence,

rather than analyzing the liveness of each data structure in a complex dataflow graph as a low-level approach would,

this only requires memory functions for each symbol of the grammar. The terminal symbols of the grammar, or the

most basic building blocks (represented with a lowercase first letter), are detailed:

• Embedding/Adapters map raw inputs (tokens, patches) and positional information to width ℎ;

• Self-Attention operates on a single stream with 𝑛ℎ heads of width 𝑑ℎ , optionally using 𝑛𝑘𝑣 for GQA/MQA [3, 17];

• Cross-Attention allows queries from one stream to attend to keys/values from another, which is how multimodal

stacks couple modalities;

• Feed-Forward/MLP applies a position-wise projection with expansion ℎ𝑓 𝑓 ;

• Mixture-of-Experts (MoE) replaces anMLP by a gated expert bundle parameterized by𝑛𝑟𝑒𝑥 ,𝑛
𝑠
𝑒𝑥 , and 𝑡𝑜𝑝𝑘 [7, 11, 15];

• light-weight utilities such as the normalizations or linear layers.
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2.3 Memory cost model

Goal. Given the layer–stage/chunkmapping from Section 2.2, the per-device peakmemory is the stage-wise maximum

of static and dynamic terms plus a small schedule tail:

Peakmem = max

𝑖∈Stages

[ ∑︁
𝑐𝑖 𝑗 ∈Chunks𝑖

( ∑︁
ℓ∈L𝑐𝑖 𝑗

(
Memstat (ℓ) +Mem

dyn
(ℓ)

))
+ BackwardOverheadsched𝑖

]
. (2)

Equation (2) computes the peak memory usage across all pipeline stages. Inside the max[·], for each stage 𝑖 we

sum over all chunks 𝑐𝑖 𝑗 on that stage, and within each chunk we sum over all layers ℓ in that chunk the layer’s static

memory Memstat (ℓ) plus dynamic memory Mem
dyn
(ℓ). We then add BackwardOverhead

sched𝑖 , an extra memory term

accounting for the pipeline’s tail end (the warm-up/flush overhead on stage 𝑖 due to the schedule and any recomputation).

Taking the maximum over 𝑖 yields the peak memory usage of the most memory-demanding stage. In other words, a

strategy is feasible only if each device has at least Peak𝑚𝑒𝑚 memory available.

2.3.1 Decomposition. We express each layer’s memory as the sum of a static component and a dynamic component.

Memstat (ℓ) covers the memory for layer ℓ ’s parameters, gradients, and optimizer states (accounting for any sharding by

𝑑𝑝 , 𝑡𝑝 , 𝑠𝑝 , 𝑒𝑝 , or 𝑜𝑝). Mem
dyn
(ℓ) contains (i) live activations (intermediate activations that must be kept for backward)

scaled by schedule-aware concurrency and (ii) transient communication buffers from collectives or point-to-point

transfers. We formalize these in Eqs. (3)–(4).

Mem
dyn
(ℓ) = PPFactor

sched
𝑖 ActBytes(ℓ) 1

𝑡𝑝 ·𝑠𝑝︸                                       ︷︷                                       ︸
live activations

+CommTransBytes(ℓ)︸                     ︷︷                     ︸
comm. transients

, (3)

CommTransBytes(ℓ) = max

(
Comm

DP/OP (ℓ), CommTP (ℓ), CommSP (ℓ)
)
+ CommEP (ℓ) . (4)

In Eq. (3), the first term is the memory from live activations of layer ℓ on stage 𝑖 , computed as ActBytes(ℓ) (the total
bytes of activations produced by layer ℓ for one micro-batch) multiplied by PPFactor

sched𝑖 (the number of micro-batches

concurrently alive on stage 𝑖 under the pipeline schedule) and divided by 𝑡𝑝 ·𝑠𝑝 (since if tensor or sequence parallelism is

applied, each rank only holds a 1/(𝑡𝑝 · 𝑠𝑝) fraction of those activations). The third term CommTransBytes(ℓ) represents
the bytes of transient communication buffers. Equation (4) defines CommTransBytes(ℓ) more concretely: we take

the maximum among the required communication buffers for data parallel / optimizer partitioning (Comm𝐷𝑃/𝑂𝑃 ),
tensor parallel (Comm𝑇𝑃 ), and sequence parallel (Comm𝑆𝑃 ) for layer ℓ (since typically only one of these largest

communications would be active at a time), and we add Comm𝐸𝑃 (ℓ), the MoE expert-parallel communication (which

usually occurs separately as an all-to-all). This formulation assumes that different types of collective communications

do not peak simultaneously, so the largest one dominates the transient memory.

2.3.2 Pipeline factor and tail. Activation concurrency on stage 𝑖:

PPFactor
sched
𝑖 = 𝑓pp (𝑖; 𝑚, 𝑝𝑝, 𝑣𝑝𝑝, sched ∈ {1F1B, SeqPipe,DualPipeV}) , (5)

and BackwardOverhead
sched𝑖 models the pipeline warm-up/flush tail and any recomputation effects for stage 𝑖 . In

other words, 𝑓 pp gives the number of micro-batches simultaneously active on stage 𝑖 for a given schedule sched (with

𝑝𝑝 physical stages, 𝑣𝑝𝑝 virtual stages per physical, and𝑚 micro-batches), and BackwardOverhead quantifies how much

extra memory is used at stage 𝑖 at the end of an iteration (e.g., the last activation that remains until its backward pass,
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or duplicated activations due to recomputation). We will derive closed-form expressions for these schedule-dependent

terms below.

2.3.3 Embedding layer.

Memstat (Embed) = Param(Embed)
(
𝐵𝐹𝑃𝑝 + 𝐵𝐹𝑃grad + 2𝐵

𝐹𝑃
os

) 1

shard
emb
· 𝑠𝑝 , (6)

Mem
dyn
(Embed) = PPFactor

sched
𝑖

ActBytes(Embed)
𝑡𝑝 · 𝑠𝑝 + CommTransBytes(Embed), (7)

with Transformer-based shapes

Param(Embed) = ℎ 𝑣, ActBytes(Embed) = 𝐵𝐹𝑃𝑎𝑐𝑡 𝑠 𝑏 ℎ.

A convenient transient bound consistent with the comm formulas is

CommTransBytes(Embed) = max

©­­­­­­«
comm𝑑𝑝

ParamBytes(Embed)
shard

emb
· 𝑠𝑝︸                                   ︷︷                                   ︸

DP/OP

, comm𝑡𝑝 𝐵
𝐹𝑃
𝑎𝑐𝑡 𝑠 · 𝑏 · ℎ

𝑡𝑝 − 1
𝑡𝑝 · 𝑠𝑝︸                                ︷︷                                ︸

TP gather

ª®®®®®®¬
, (8)

where 𝑡=𝑡𝑝 , shard
emb
∈ {1, 𝑑𝑝, 𝑑𝑝 · 𝑡𝑝}, and comm𝑑𝑝 , comm𝑡𝑝 ∈ {0, 1, 2, 3} denote mode/masks.

Equation (6) calculates the static memory for the embedding layer. It multiplies the number of embedding parameters

Param(Embed) by (𝐵𝐹𝑃𝑝 + 𝐵𝐹𝑃grad + 2𝐵𝐹𝑃os) (bytes per parameter + gradient + two optimizer states). This formula

covers storing the embedding weight, its gradient, and two optimizer moments per parameter, consistent with a typical

Adam optimizer memory breakdown [16]. For a Transformer embedding layer of hidden dimension ℎ and vocabulary

size 𝑣 , Param(Embed) = ℎ · 𝑣 .
Equation (7) gives the dynamic memory of the embedding layer. The first term PPFactor

sched𝑖 · ActBytes(Embed)
𝑡𝑝 ·𝑠𝑝

is the memory used by live embedding activations on stage 𝑖 , scaled by the pipeline concurrency factor. We divide

by 𝑡𝑝 and 𝑠𝑝 because if the embedding’s output is partitioned across 𝑡𝑝 model-parallel ranks or 𝑠𝑝 sequence-parallel

ranks, each rank holds only a fraction of the activations. We have ActBytes(Embed) = 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 · ℎ, since the
embedding produces an ℎ-dimensional activation for each of 𝑠 tokens in each of 𝑏 micro-batch samples. The second

term CommTransBytes(Embed) accounts for any transient communication buffer needed for the embedding layer (for

example, if using ZeRO partitioning, gathering the embedding weights, or if using model parallelism, all-gathering the

token embeddings).

The expression above for CommTransBytes(Embed) takes the maximum of two possible communication contribu-

tions: (i) a data-parallel or optimizer-partitioning related buffer (labeled "DP/OP"), and (ii) a tensor-parallel all-gather

of activations (labeled "TP gather"). The DP/OP term comm𝑑𝑝 · ParamBytes(Embed)
shard

emb
·𝑠𝑝 would be nonzero if, for example,

ZeRO-3 partitioning is used for the embedding weight (so each rank initially has only 1/𝑑𝑝 of the embedding and must

all-gather it, or similarly must all-reduce the gradients) [16]. The TP term comm𝑡𝑝 · 𝐵𝐹𝑃𝑎𝑐𝑡, 𝑠, 𝑏, ℎ · 𝑡𝑝−1𝑡𝑝 ·𝑠𝑝 represents

model-parallel communication: if the embedding output (of size 𝑠 · 𝑏 · ℎ per rank globally) is split across 𝑡𝑝 ranks,

an all-gather of those activations might be needed so that each rank obtains the full ℎ-dimensional embedding for

each token. The factor (𝑡𝑝 − 1)/(𝑡𝑝 · 𝑠𝑝) indicates that each rank sends (𝑡𝑝 − 1)/𝑡𝑝 of the activation (and receives an

equivalent amount) across the 𝑠𝑝 sequence groups (if 𝑠𝑝 > 1, multiple ranks share each portion). We take the maximum

of these two under the assumption that the largest of these communication buffers will determine the transient memory.
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Here comm𝑑𝑝 , comm𝑡𝑝 are mode flags: for example, comm𝑑𝑝 = 2 or 3 might signal ZeRO-3 is in use, requiring gather

and scatter operations, while comm𝑡𝑝 = 1 might signal that model parallel all-gather is needed.

2.3.4 Output / LM head (with optional MTP).

Memstat (Output) =

(
Param(Output) + 𝑛MTPParamMTP

) (
𝐵FP𝑝 + 𝐵FPgrad + 2𝐵

FP

os

)
𝑜𝑝 · 𝑠𝑝 , (9)

Mem
dyn
(Output) = PPFactor

sched

𝑖 ·
ActBytes(Output) + 𝑛MTP · ActBytesMTP

shardout

+ CommTransBytes(Output)

+ 𝑛MTP · CommTransBytes
MTP

. (10)

with Transformer-based

Param(Output) = ℎ · 𝑣 + 𝑣, ActBytes(Output) = 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 (𝑣 + ℎ),

and DP/OP transients

CommTransBytes(Output) = comm𝑑𝑝

ParamBytes(Output)
𝑡𝑝 · 𝑠𝑝 .

For multi-token prediction (MTP),

ParamMTP = 2ℎ2+4ℎ+Param(Embed)+Param(Output), ActBytes
MTP

= 𝐵𝐹𝑃𝑎𝑐𝑡 3𝑠𝑏ℎ+ActBytes(Embed)+ActBytes(Output),

CommTransBytes
MTP

= comm𝑑𝑝

ParamBytes
MTP

𝑡𝑝 · 𝑠𝑝 , shardout ∈ {1, 𝑡𝑝}.

Equation (9) is the static memory for the output layer plus an optional multi-token prediction module. Param(Output) +
𝑛MTPParamMTP represents the total number of parameters in the output softmax/linear layer and the MTP block (if

𝑛MTP > 0 MTP blocks are present). This is multiplied by (𝐵𝐹𝑃𝑝 + 𝐵𝐹𝑃𝑔𝑟𝑎𝑑 + 2𝐵𝐹𝑃𝑜𝑠) and divided by 𝑜𝑝 · 𝑠𝑝 . Here 𝑜𝑝
(with 𝑜𝑝 ≤ 𝑑𝑝) is the number of partitions for optimizer state. Thus, if 𝑜𝑝 > 1, each rank holds only a 1/𝑜𝑝 fraction

of the output (and MTP) parameters and states. The factor 𝑠𝑝 in the denominator reflects that if sequence parallelism

is splitting the batch by sequences, the output weights might be further effectively replicated across 𝑠𝑝 groups. In a

typical Transformer language model head, Param(Output) = ℎ · 𝑣 + 𝑣 , the weight matrix of shape ℎ × 𝑣 plus a bias or
embedding tying vector of length 𝑣 .

Equation (10) gives the dynamic memory for the output layer (and MTP). The first term scaled by PPFactor
sched𝑖 .

accounts for live activations in the output and MTP sections, scaled by pipeline concurrency. shardout ∈ 1, 𝑡𝑝 indicates

whether the output activations are replicated across all 𝑡𝑝 ranks or partitioned (e.g., if the output linear layer is

model-parallel, then each rank only has 1/𝑡𝑝 of the output activations and shard𝑜𝑢𝑡 = 𝑡𝑝). The remaining terms

CommTransBytes(Output) + 𝑛MTPCommTransBytesMTP are the transient communication buffers associated with the

output and MTP parameters. For instance, CommTransBytes(Output) = comm𝑑𝑝
ParamBytes(Output)

𝑡𝑝 ·𝑠𝑝 corresponds to the

data-parallel all-reduce of output gradients (since each rank has only 1/(𝑡𝑝 ·𝑠𝑝) of the output parameters if model/context

parallelism is applied, they must be synchronized across 𝑑𝑝 ranks after backward). Similarly, CommTransBytes
MTP

is

the analogous term for the MTP parameters.

The displayed formulas for the MTP component provide an example of how we compute its parameter and activation

sizes. Considering the MTP’s extra Transformer layer as part of the number of layers 𝐿, the formulas only counts the rest

of the component. In amulti-token prediction head that generates, say,𝑘 tokens per sequence at once, ParamMTP includes

additional linear and normalization operations. The formula ParamMTP = 2ℎ2 +4ℎ+Param(Embed) +Param(Output) is
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a possible configuration counting linear and normalization weight matrices, plus reuse of embedding/output parameters;

ActBytes
MTP

= 𝐵𝐹𝑃𝑎𝑐𝑡 (3𝑠 · 𝑏 · ℎ) + ActBytes(Embed) + ActBytes(Output) suggests the MTP might produce about 3× the

usual activation volume (for example, if it involves an extra forward pass of similar complexity to the main network)

in addition to reusing embedding/output activations. These specifics depend on the MTP design and are included for

completeness. Their communication transient CommTransBytes
MTP

is defined similarly to the output layer’s. In our

model, we treat 𝑛MTP as the number of extra output layers of this form; if none, 𝑛MTP = 0 and these terms drop out.

Also note shardout ∈ 1, 𝑡𝑝 indicates that the output of the MTP might or might not be model-parallel sharded (often it is

not, so shard𝑜𝑢𝑡 = 1 for the final logits).

2.3.5 Transformer block (regular / recomputation).

Regular (no recomputation).

𝑀𝑒𝑚stat (NotRecLayer) =
(
𝑃𝑎𝑟𝑎𝑚Attn + 𝑃𝑎𝑟𝑎𝑚Norm

𝑜𝑝 · 𝑠𝑝 + 𝑃𝑎𝑟𝑎𝑚FFn

𝑔𝑐𝑑 (𝑛𝑟𝑒𝑥 , 𝑜𝑝 · 𝑠𝑝)

)
· (𝐵𝐹𝑃𝑝 + 𝐵𝐹𝑃𝑔𝑟𝑎𝑑 + 2𝐵

𝐹𝑃
𝑜𝑠 ), (11)

𝑀𝑒𝑚
dyn
(NotRecLayer) = 𝑃𝑃𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑐ℎ𝑒𝑑𝑖

(
𝐴𝑐𝑡

𝑄𝐾𝑉

𝐴𝑡𝑡𝑛
+𝐴𝑐𝑡𝑆𝑐𝑜𝑟𝑒

𝐴𝑡𝑡𝑛
+𝐴𝑐𝑡𝑃𝑟𝑜 𝑗

𝐴𝑡𝑡𝑛

𝑡𝑝 · 𝑠𝑝

+
𝐴𝑐𝑡𝑀𝑂𝐸𝑟𝑜𝑢𝑡𝑒𝑟 +𝐴𝑐𝑡𝑀𝑂𝐸𝑟𝑜𝑢𝑡𝑒𝑑

+𝐴𝑐𝑡𝑀𝑂𝐸
𝑠ℎ𝑎𝑟𝑒𝑑

+𝐴𝑐𝑡𝑀𝑂𝐸𝑐𝑜𝑛𝑐𝑎𝑡

𝑡𝑝 · 𝑠𝑝 + 𝐴𝑐𝑡Norm
𝑡𝑝 · 𝑠𝑝

)
+𝐶𝑜𝑚𝑚𝑇𝑟𝑎𝑛𝑠𝐵𝑖 .

(12)

with the transient bound in (4):

CommTransBytes(NotRecLayer) = max

(
Comm

DP/OP, CommTP, CommSP

)
+ CommEP .

Equation (11) gives the static memory for a standard Transformer layer without recomputation (denoted NotRecLayer).

Inside the parentheses,
ParamAttn+ParamNorm

𝑜𝑝 ·𝑠𝑝 represents the fraction of the attention and normalization parameters

stored per rank (since ZeRO optimizer partitioning and context parallelism can shard those parameters across 𝑜𝑝

and 𝑠𝑝 ranks respectively), and
ParamFFN

gcd(𝑛𝑟𝑒𝑥 ,𝑜𝑝 ·𝑠𝑝 ) represents the per-rank FFN parameter count. The gcd(𝑛𝑟𝑒𝑥 , 𝑜𝑝 · 𝑠𝑝)
in the denominator handles MoE scenarios: if 𝑛𝑟𝑒𝑥 experts are local to each rank and 𝑜𝑝 · 𝑠𝑝 shards also partition

those experts, the greatest common divisor gives the replication factor of FFN parameters per rank (for example, if

𝑛𝑟𝑒𝑥 = 4 and 𝑜𝑝 · 𝑠𝑝 = 2, each rank holds FFN parameters for 4/gcd(4, 2) = 2 experts). This sum is multiplied by

(𝐵𝐹𝑃𝑝 + 𝐵𝐹𝑃𝑔𝑟𝑎𝑑 + 2𝐵𝐹𝑃𝑜𝑠 ) to convert to bytes (one copy each for weight and gradient, two for optimizer states).

Equation (12) gives the dynamicmemory for the same layer. The term inside the large parentheses is the total activation

bytes produced by this layer, broken into contributions from different sub-components: (1) the attention mechanism

outputs (queries/keys/values, attention scores, and output projections), (2) the MoE expert outputs (router output, routed

tokens to experts, any shared expert outputs, and the concatenated expert outputs), and (3) the normalization/utility

outputs. Each of these sums is divided by 𝑡𝑝 · 𝑠𝑝 because we assume that if tensor or sequence parallelism is used,

each rank only holds a portion of those activations. This total is then multiplied by PPFactor
sched𝑖 , reflecting that 𝑓 pp

micro-batches worth of these activations can be alive concurrently on stage 𝑖 . Finally, CommTransB𝑖 (a shorthand for

CommTransBytes on that layer at stage 𝑖) is added, representing the transient communication buffer for this layer. As

defined by Eq. (4), CommTransBytes(NotRecLayer) takes the maximum of the DP/OP, TP, and SP communication needs

and adds any EP communication. Essentially, for each layer, we budget memory for whichever collective communication

(gradient all-reduce, activation all-gather, etc.) is largest.
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Selective recomputation (SelRecLayer). Keep (11); in (12) apply a mask Rec(·) ∈ {0, 1} to the activation buckets

to drop kept-not-needed parts; typical recomputable ops include (batch) matmul, dropout, softmax, norm, gather,

activation, and cast.

Full recomputation (FullRecLayer). Static unchanged; dynamic approximated by

Mem
dyn
(FullRecLayer) = PPFactor

sched
𝑖

𝐵𝐹𝑃𝑎𝑐𝑡𝑠 · 𝑏 · ℎ
shardrec

+ Comm
DP/OP, shardrec ∈ {1, 𝑡}.

2.3.6 Attention buckets (Transformer-based). For multi-head, grouped-query, and multi-query attention:

ParamAttn = 𝑛Attn
MM
· 1
2

(
(ℎ2 + ℎ) + (ℎ · 𝑑ℎ · 𝑛𝑘𝑣 + ℎ)

)
, (13)

Act
QKV

Attn
= 𝐵𝐹𝑃𝑎𝑐𝑡 𝑠 · 𝑏

(
1

4
(𝑛Attn

MM
+ 𝑛Attn𝑝Cast)ℎ +

1

2
(𝑛Attn

MM
+ 𝑛Attn𝑝Cast) · 𝑑ℎ𝑛𝑘𝑣 + 𝑛

Attn

BMM
· 𝑑ℎ

)
, (14)

Act
Score

Attn
= 𝐵𝐹𝑃

soft
· 𝑛

soft
· (𝑠 · 𝑆𝐹𝐴 · 𝑏 · 𝑛ℎ) + 𝐵𝐹𝑃drop · 𝑛drop · (𝑠 · 𝑆𝐹𝐴 · 𝑏 𝑛ℎ), (15)

Act
Proj

Attn
= 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 · ℎ · 14 (𝑛

Attn

MM
+ 𝑛Attn𝑝Cast) + 𝐵

𝐹𝑃
drop
· 𝑛

drop
. (16)

For multi-head latent attention (MLA), with compressed dims 𝑑𝑐
𝐾
, 𝑑𝑐
𝑄
and RoPE head dim 𝑑𝑟

ℎ
:

ParamAttn = 𝑛Attn
MM

(
1

2
(𝑑𝑐𝐾 (𝑑ℎ · 𝑛𝑘𝑣 + ℎ)) +

1

4
(𝑑𝑐𝑄 (𝑛ℎ · 𝑑ℎ + ℎ + 𝑛ℎ · 𝑑

𝑟
ℎ
) + (ℎ · 𝑛ℎ · 𝑑ℎ + ℎ · 𝑑𝑟ℎ))

)
, (17)

Act
QKV

Attn
= 𝐵𝐹𝑃𝑎𝑐𝑡 𝑠 · 𝑏

(
1

4
(𝑛Attn

MM
+ 𝑛Attn𝑝Cast)

(
(𝑑𝑐𝑄 + 2𝑛ℎ (𝑑ℎ + 𝑑

𝑟
ℎ
) + (𝑑𝑟

ℎ
+ 𝑛𝑘𝑣 (2𝑑ℎ + 𝑑𝑟ℎ)) + (𝑛𝑘𝑣 · 𝑑ℎ + 𝑑

𝑐
𝑘𝑣
)
)
+ 𝑛Attn

BMM
· 𝑑ℎ

)
.

(18)

The above formulas detail the memory contribution of various parts of the attention mechanism. In summary,

ParamAttn calculates the total number of attention parameters. For standard multi-head attention, it accounts for the

𝑄,𝐾,𝑉 projection matrices and the output projection matrix (each of dimension approximately ℎ ·ℎ or ℎ ·𝑑ℎ). Factors like
1

2
or

1

4
depict the distribution of the activations across operators 𝑛𝐴𝑡𝑡𝑛∗ . Act

𝑄𝐾𝑉

Attn
is the total bytes of the Query, Key, and

Value activations. It scales with 𝑠, 𝑏 (tokens per micro-batch) and includes terms for each: the
1

4
(𝑛𝐴𝑡𝑡𝑛
𝑀𝑀
+𝑛𝐴𝑡𝑡𝑛𝑝𝐶𝑎𝑠𝑡) ·ℎ

part corresponds to the 𝑄 (and similarly 𝐾) matrices, the
1

2
(𝑛𝐴𝑡𝑡𝑛
𝑀𝑀
+ 𝑛𝐴𝑡𝑡𝑛𝑝𝐶𝑎𝑠𝑡) · 𝑑ℎ𝑛𝑘𝑣 corresponds to 𝐾/𝑉 which

have 𝑑ℎ · 𝑛𝑘𝑣 elements per head, and 𝑛𝐴𝑡𝑡𝑛
𝐵𝑀𝑀

· 𝑑ℎ covers any batched matrix multiply outputs (like 𝑄𝐾𝑇 products) of

width 𝑑ℎ . Act
𝑆𝑐𝑜𝑟𝑒
Attn

is the bytes of the attention score (softmax) and dropout outputs; it is proportional to 𝑠 · 𝑆𝐹𝐴 · 𝑏 · 𝑛ℎ
(the size of the attention score matrix for 𝑛ℎ heads and the chunk of sequence 𝑆𝐹𝐴 (if tiling is applied on attention))

and multiplied by 𝐵𝐹𝑃
𝑠𝑜 𝑓 𝑡

or 𝐵𝐹𝑃
𝑑𝑟𝑜𝑝

and the number of such ops (𝑛𝑠𝑜 𝑓 𝑡 , 𝑛𝑑𝑟𝑜𝑝 ). Act
𝑃𝑟𝑜 𝑗

Attn is the bytes of the output of

the attention layer (projected back to hidden size ℎ) plus any dropout applied to it; it scales with 𝑠, 𝑏, ℎ and includes a

proportion of 1/4 of (𝑛𝐴𝑡𝑡𝑛
𝑀𝑀
+ 𝑛𝐴𝑡𝑡𝑛

𝑝𝐶𝑎𝑠𝑡
) for activations.

For multi-head latent attention (MLA), which involves compressed key/query representations and possibly Rotary

Positional Embeddings (RoPE) of dimension 𝑑𝑟
ℎ
, the formulas adjust accordingly. The parameter count Param𝐴𝑡𝑡𝑛 in

MLA is lower because 𝑑𝑐
𝐾
and 𝑑𝑐

𝑄
(compressed dimensions) replace ℎ in some weight matrices, and there are additional

terms for RoPE. The activation Act
𝑄𝐾𝑉

𝐴𝑡𝑡𝑛
similarly becomes more complex, but essentially it shows that when keys/queries

are compressed (smaller 𝑑𝑐
𝐾
, 𝑑𝑐
𝑄
) and RoPE is applied, the activation size is reduced (fewer values per token to store) at

the cost of slightly more complicated per-head computations (the formula inside the big parentheses captures that).

While these detailed formulas are used internally for precise accounting, a high-level understanding is that our

model keeps track of each significant intermediate in the attention computation (Q, K, V, attention scores, outputs)

and their contributions to memory. This allows it to adjust memory usage for variations like grouped-query attention
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(where 𝑛𝑘𝑣 < 𝑛ℎ), or using FP32 for softmax (𝐵𝐹𝑃
𝑠𝑜 𝑓 𝑡

) versus FP16 for other parts, etc., and to plug these into both the

memory and communication cost estimates.

2.3.7 Feed-forward and Mistral of Experts (MoE).

Standard FFN (Transformer-based).

Act
MOE

router
= Act

MOE

shared
= Act

MOE

concat
= 0, Act

routed

expert
= 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 · ℎ𝑓 𝑓

(
max(𝑛FFn

MM
, 𝑛FFn

BMM
) + 𝑛FFn𝑝Cast + 1

)
.

In a standard dense FFN (with no MoE), there are no MoE-specific activations. Thus Act
𝑀𝑂𝐸
𝑟𝑜𝑢𝑡𝑒𝑟 , Act

𝑀𝑂𝐸
𝑠ℎ𝑎𝑟𝑒𝑑

, and

Act
𝑀𝑂𝐸
𝑐𝑜𝑛𝑐𝑎𝑡 are all zero. The only activation to consider from the FFN is the output of the hidden layer (which we treat as

Act
𝑟𝑜𝑢𝑡𝑒𝑑
𝑒𝑥𝑝𝑒𝑟𝑡 for uniformity of notation). The formula above for Act

𝑟𝑜𝑢𝑡𝑒𝑑
expert

essentially calculates 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 · ℎ𝑓 𝑓 (bytes for

the ℎ𝑓 𝑓 -dimensional FFN hidden output for all 𝑠 · 𝑏 tokens) times a factor accounting for the operations that produce

this output. The term max(𝑛𝐹𝐹𝑁
𝑀𝑀

, 𝑛𝐹𝐹𝑁
𝐵𝑀𝑀

) corresponds to however many matrix multiplications are used in the FFN

(e.g., one for a fused FFN or two for separate in/out projections), 𝑛𝐹𝐹𝑁
𝑝𝐶𝑎𝑠𝑡

covers any extra precision cast operations, and

the +1 accounts for the activation function’s output (ReLU, SwiGLU, ...). In simpler terms, we ensure that if the FFN has,

say, two matmuls and one activation function, we count those intermediate outputs appropriately.

Mixture of Experts (MoE) FFN. Let ℎ𝑓 𝑓 = ℎ𝑒𝑥
𝑓 𝑓

.

ParamFFn = (𝑛𝑟𝑒𝑥 + 𝑛𝑠𝑒𝑥 ) ·max(𝑛FFn
MM

, 𝑛FFn
BMM
) · (ℎ · ℎ𝑓 𝑓 + ℎ𝑓 𝑓 ), (19)

Act
MOE

router
= 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 · (2𝑛𝑟𝑒𝑥 + 𝑡𝑜𝑝𝑘 ), (20)

Act
MOE

shared
= 𝐵𝐹𝑃𝑎𝑐𝑡 𝑛

𝑠
𝑒𝑥 · 𝑠 · 𝑏 · ℎ𝑓 𝑓 ·

(
max(𝑛FFn

MM
, 𝑛FFn

BMM
) + 𝑛FFn𝑝Cast + 1

)
, (21)

Act
MOE

concat
= 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 · ℎ, (22)

Act
MOE

routed
= 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑡𝑜𝑝𝑘 · 𝑠 · 𝑏 · ℎ𝑓 𝑓 ·

(
max(𝑛FFn

MM
, 𝑛FFn

BMM
) + 𝑛FFn𝑝Cast + 1

)
. (23)

In the MoE version of the FFN, Param𝐹𝐹𝑁 multiplies the number of experts per rank (routed plus any shared

experts) by the per-expert parameter count. Each expert is essentially an FFN of size ℎ → ℎ𝑓 𝑓 → ℎ, which has about

(ℎ · ℎ𝑓 𝑓 + ℎ𝑓 𝑓 ) parameters (weights plus biases for both layers). We multiply by max(𝑛𝐹𝐹𝑁
𝑀𝑀

, , 𝑛𝐹𝐹𝑁
𝐵𝑀𝑀

) to account for

whether one or two matrix multiplications define the FFN (similar reasoning as the dense case). Thus, for example, if

each expert has two linear layers, this formula yields (𝑛𝑟𝑒𝑥 + 𝑛𝑠𝑒𝑥 ) times two sets of (ℎ · ℎ𝑓 𝑓 + ℎ𝑓 𝑓 ) parameters.

The MoE activation terms are as follows. Act
𝑀𝑂𝐸
𝑟𝑜𝑢𝑡𝑒𝑟 is the gating output: for each of the 𝑠 · 𝑏 tokens, the router

produces a probability or score for 𝑛𝑟𝑒𝑥 (the number of local experts) and perhaps additional 𝑡𝑜𝑝𝑘 signals (like the

indices or probabilities of the top-𝑘 selected experts). The factor (2𝑛𝑟𝑒𝑥 + 𝑡𝑜𝑝𝑘 ) is a proxy for the size of the router

output per token (commonly, routers output 𝑛𝑟𝑒𝑥 probabilities and we might count the top-2 experts, so 2𝑛𝑟𝑒𝑥 covers a

one-hot or mask plus maybe two chosen indices).

Act
𝑀𝑂𝐸
𝑠ℎ𝑎𝑟𝑒𝑑

is the activation output of any shared experts on that rank. There are 𝑛𝑠𝑒𝑥 shared experts (which each

process all tokens, as opposed to routed experts where each token goes to only one). Each shared expert produces an

ℎ𝑓 𝑓 -dimensional output per token. We multiply 𝑛𝑠𝑒𝑥 , 𝑠, 𝑏, ℎ𝑓 𝑓 by the same factor (max(𝑛𝐹𝐹𝑁
𝑀𝑀

, 𝑛𝐹𝐹𝑁
𝐵𝑀𝑀

) + 𝑛𝐹𝐹𝑁
𝑝𝐶𝑎𝑠𝑡

+ 1) as
in the dense case to account for intermediate outputs within the shared expert’s computation.

Act
𝑀𝑂𝐸
𝑐𝑜𝑛𝑐𝑎𝑡 is the output of the MoE layer after combining all expert outputs. After each token is processed by either

one of 𝑛𝑟𝑒𝑥 experts or all 𝑛𝑠𝑒𝑥 shared experts, the results are summed/concatenated back into a single ℎ-dimensional

output per token. Thus we allocate 𝐵𝐹𝑃𝑎𝑐𝑡 · 𝑠 · 𝑏 · ℎ bytes for this combined output.
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Act
𝑀𝑂𝐸
𝑟𝑜𝑢𝑡𝑒𝑑

is the activation output of the routed experts. Each token that is routed goes to 𝑡𝑜𝑝𝑘 experts (often 𝑡𝑜𝑝𝑘 = 1

or 2). Thus we consider 𝑡𝑜𝑝𝑘 · 𝑠 · 𝑏 "token-expert" combinations per micro-batch. Each such combination produces an

ℎ𝑓 𝑓 -dimensional hidden activation (with the same factor max(𝑛𝐹𝐹𝑁
𝑀𝑀

, , 𝑛𝐹𝐹𝑁
𝐵𝑀𝑀

) + 𝑛𝐹𝐹𝑁
𝑝𝐶𝑎𝑠𝑡

+ 1 accounting for the expert’s

internal layers). We multiply by 𝐵𝐹𝑃𝑎𝑐𝑡 to convert to bytes.

2.3.8 Normalization.

ParamNorm = 𝑛
𝑜𝑝
norm

· 2ℎ, ActNorm = 𝐵𝐹𝑃
norm

· 𝑛𝑜𝑝
norm

· 𝑠 · 𝑏 · ℎ.

Normalization layers (e.g., LayerNorm or RMSNorm) have two parameters per instance: a scale and a bias, each of length

ℎ. Thus, if a model has 𝑛
𝑜𝑝
norm

normalization operations in total (including those in each layer), the total parameters

are 2ℎ per operation times 𝑛
𝑜𝑝
norm

. The activations from normalization are of the same shape as the input: for each

normalization op, an ℎ-dimensional output is produced for each of the 𝑠 ·𝑏 tokens. Therefore ActNorm = 𝑛
𝑜𝑝
norm
· 𝑠 ·𝑏 ·ℎ

elements, each stored in 𝐵𝐹𝑃
norm

bytes (which could be FP16 or FP32 depending on implementation). In summary, the

normalization contributions scale linearly with the number of normalization layers and have negligible additional

structure beyond counting the vectors.

2.3.9 Transient byte formulas (consistent with the comm model). Let 𝑒𝑡𝑝 ∈ {1, 𝑡} denote expert-model parallel, and

comm𝑑 , comm𝑡 , comm𝑐 , comm𝑒 ∈ {0, 1, 2, 3} be mode/masks. We use the following byte bounds to instantiate the

subterms in (4):

Data Parallel/Optimizer Parallel:

Comm
DP/OP =


(ParamAttn + ParamNorm)

(
1

𝑠𝑝 ·𝑡𝑝 +
1

𝑡𝑝

)
+ ParamFFn

(
1

𝑠𝑝 ·𝑒𝑡𝑝 ·𝑒𝑝 +
1

max(𝑒𝑝,𝑒𝑡𝑝 )

)
, comm𝑑 = 2,

(ParamAttn + ParamNorm)
(

1

𝑠𝑝 ·𝑡𝑝 +
2

𝑡𝑝

)
+ ParamFFn

(
2

𝑠𝑝 ·𝑒𝑡𝑝 ·𝑒𝑝 +
1

max(𝑒𝑝,𝑒𝑡𝑝 )

)
, comm𝑑 = 3,

0, otherwise.

Tensor Parallel:

CommTP = comm𝑡 ·
1

𝑠𝑝
×


1

4
𝑛
gather

𝑠 · 𝑏 (ℎ + ℎ𝑓 𝑓 ) · PPFactorsched𝑖
, 𝑛𝑟𝑒𝑥 = 1,

1

4
𝑛
gather

· 𝐵𝐹𝑃𝑎𝑐𝑡 · ℎ ·
(
ℎ𝑓 𝑓 · 𝑛FFnMM

· ( 𝑛
𝑟
𝑒𝑥

𝑒𝑝 + 𝑛
𝑠
𝑒𝑥 ) + ℎ · 𝑛AttnMM

)
, 𝑛𝑟𝑒𝑥 > 1.

Expert Parallel:

CommEP = comm𝑒 · PPFactorsched𝑖 · 2 · 𝑠 · 𝑏 · ℎ
𝑠𝑝 · 𝑡 .

Sequence Parallel:

CommCP = comm𝑠 · 𝑠 · 𝑏
(
3ℎ · 𝑛Attn

MM
+ 2ℎ𝑓 𝑓 · 𝑛FFnMM

)
· 1𝑡 ,

All byte expressions above are linear functions of the same parameter and activation bucket counts defined for

each layer, and they share the same shard divisors (𝑑𝑝, 𝑡𝑝, 𝑠𝑝, 𝑐𝑝, 𝑒𝑝) we have been using. Therefore, any change in a

strategy’s hyperparameters (𝑠, 𝑏,𝑚) or parallelization choices consistently affects both the dynamic memory usage

and the communication volumes. For example, if we increase the micro-batch size 𝑏, then 𝑠, 𝑏 increases linearly, which

in turn linearly scales up both the activation memory in Eq. (3) and the activation-derived communication bytes in

formulas like 𝜏𝑇𝑃
ℓ

, 𝜏𝑆𝑃
ℓ

, etc. Conversely, if we shard a dimension more (say increase 𝑡𝑝), then terms like
1

𝑡 in the above

expressions will reduce the memory per rank for that layer’s activations and parameters, while the number of ranks

participating in communications increases (reflected in different comm modes and multiplicities, as we’ll see), which
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might increase total communication time. This coherence between memory and communication models ensures that our

strategy search (next section) can trade one for the other without inconsistency. Note also that increasing 𝑣𝑝𝑝 (virtual

pipeline parallelism) does not change the per-micro-batch payloads in any communication term (e.g., the boundary

message size in Eq. (33) remains the same); it only changes how frequently such messages occur.

2.4 Communication cost model

From memory buckets to bytes. For a layer ℓ , let the memory buckets from Sec. 2.3 be Param(ℓ), Grad(ℓ), and Act𝐴 (ℓ)
with𝐴 ∈ {Attn:QKV,Attn:Score,Attn:Proj, FFN,MOE:router,MOE:routed,MOE:shared,MOE:concat,Norm/Util}. Their
byte sizes are

ParamBytes(ℓ) = Param(ℓ) 𝐵𝐹𝑃𝑝 , GradBytes(ℓ) = Param(ℓ) 𝐵𝐹𝑃
grad

, ActBytes𝐴 (ℓ) = Act𝐴 (ℓ) 𝐵𝐹𝑃𝑎𝑐𝑡 .

In other words, we multiply each count by the number of bytes per element of that type (parameters, gradients, or

activations) to get the total bytes. When a model dimension is sharded, the relationship between a local shard and the full

global tensor is captured by explicit divisors (e.g., each rank might hold 1/(𝑡𝑝 · 𝑠𝑝) of a fully sharded parameter, or 1/𝑠𝑝
of a sequence-split activation). We introduced layer-specific divisors 𝜙 in/out𝑡𝑝 (ℓ) ∈ 𝑡𝑝, 1 and𝜓 in/out

seq(ℓ) ∈ 𝑠𝑝, 𝑠𝑝, 1
earlier, which mark whether layer ℓ’s inputs/outputs are in a sharded or global view for tensor or sequence parallelism.

We also have two bucket sets Ainℓ and Aoutℓ that enumerate which activation buckets each layer consumes as inputs

and produces as outputs, respectively. We will use these to sum up activation bytes for communication.

Latency bandwidth model. For any collective pattern pat ∈ {allreduce, allgather, reducescatter, alltoall, p2p} over a
group of size 𝑔 and payload 𝑏 bytes,

𝜏
coll
(𝑏; 𝑔, pat) = 𝛼pat (𝑔) +

𝑏

Bpat (𝑔)
, (24)

with 𝛼pat (𝑔) (latency) and Bpat (𝑔) (effective bandwidth) set by topology/algorithm.

Per-micro-batch layer costs 𝜏 ( ·)
ℓ
(𝑏).We now derive the per-micro-batch communication cost for each layer (or each

parallel dimension) using the above model. All 𝜏 ( ·) ℓ (𝑏) are per-micro-batch costs (for clarity we omit the dependency on

𝑖 or stage in the notation, as each layer ℓ is associated with a specific stage). Importantly, activation-derived bytes scale

with the per-rank micro-batch size 𝑏 (larger micro-batch means proportionally more activation data to communicate).

Data parallel (classic) and optimizer sharding (OP/ZeRO-3). Let 𝑔𝑑𝑝=𝑑𝑝 and 𝑜𝑝 ≤𝑑𝑝 be the optimizer partition count.

𝜏DPℓ = 𝜏
coll

(
𝑏=

GradBytes(ℓ )
𝑡𝑝 ·𝑠𝑝 ; 𝑔 =𝑔𝑑𝑝 , pat=allreduce

)
, (25)

𝜏OPAGℓ = 𝜏
coll

(
𝑏=

ParamBytes(ℓ )
𝑡𝑝 ·𝑠𝑝 ; 𝑔=𝑜𝑝, pat =allgather

)
, (26)

𝜏OPRSℓ = 𝜏
coll

(
𝑏=

GradBytes(ℓ )
𝑡𝑝 ·𝑠𝑝 ; 𝑔 =𝑜𝑝, pat =reducescatter

)
. (27)

Equation (25) is the time to perform an all-reduce on layer ℓ’s gradients across the 𝑑𝑝 data-parallel ranks (classic

data-parallel gradient synchronization). The payload 𝑏 is the number of bytes of gradients each rank has for that

layer, which is GradBytes(ℓ) divided by 𝑡𝑝 · 𝑠𝑝 (since if tensor or sequence parallelism is applied, each rank only has

1/(𝑡𝑝 · 𝑠𝑝) of the layer’s gradients). The collective group size is 𝑔𝑑𝑝 = 𝑑𝑝 . Equations (26) and (27) are the additional

costs introduced by ZeRO-3 style optimizer partitioning. 𝜏OP;AGℓ is the time to all-gather the layer’s parameters (of size

ParamBytes(ℓ) per full model) across 𝑜𝑝 ranks (each rank originally has 1/𝑜𝑝 of the parameters if 𝑜𝑝 groups are used).

This occurs at the start of the forward pass for that layer. 𝜏OP;RSℓ is the time to reduce-scatter the layer’s gradients
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across those 𝑜𝑝 ranks after backward (each rank ends up with the 1/𝑜𝑝 portion of gradients to update its partition of

the parameters). In many cases 𝑜𝑝 = 𝑑𝑝 (full partitioning across all data ranks), but we allow 𝑜𝑝 < 𝑑𝑝 to model partial

ZeRO (in which case 𝑑𝑝/𝑜𝑝 ranks form each partition group). These operations use group size 𝑔 = 𝑜𝑝 and payloads

similarly divided by 𝑡𝑝 · 𝑠𝑝 if model parallelism or sequence parallelism also split the gradients/parameters.

Tensor/model parallel (TP). With indicators 𝜒
in-gather

ℓ
, 𝜒out-red
ℓ

∈ {0, 1},

𝜏TPℓ,AG (𝑏) = 𝜒
in-gather

ℓ
𝜏
coll

(
𝑏 = 1

𝜙 in

𝑡𝑝 (ℓ )

∑︁
𝐴∈Ain

ℓ

ActBytes𝐴 (ℓ); 𝑔=𝑡𝑝, pat=allgather
)
, (28)

𝜏TPℓ,AR (𝑏) = 𝜒out-redℓ 𝜏
coll

(
𝑏 = 1

𝜙out

𝑡𝑝 (ℓ )

∑︁
𝐴∈Aout

ℓ

ActBytes𝐴 (ℓ); 𝑔=𝑡𝑝, pat=allreduce
)
, (29)

𝜏TPℓ (𝑏) = 𝜏
TP

ℓ,AG (𝑏) + 𝜏
TP

ℓ,AR (𝑏) . (30)

If a layer ℓ is tensor-parallel sharded (for example, a linear layer whose weight matrix is split across 𝑡𝑝 GPUs),

then before computing the layer we may need to all-gather the input activations from the 𝑡𝑝 ranks (so that each

rank has the full input). This cost is 𝜏𝑇𝑃 ℓ,AG. We determine the payload by summing the sizes of all input activation

buckets A𝑖𝑛ℓ for that layer (e.g., for a linear layer this might just be the output of the previous layer, whereas for

attention it might include multiple inputs like 𝑄,𝐾,𝑉 ), then dividing by 𝜙𝑖𝑛𝑡𝑝 (ℓ). If ℓ’s input was originally split

across 𝑡𝑝 ranks, then 𝜙𝑖𝑛𝑡𝑝 (ℓ) = 𝑡𝑝 and 1/𝜙𝑖𝑛𝑡𝑝 (ℓ) gives the fraction of global input that each rank initially had, thus

1

𝜙𝑖𝑛𝑡𝑝 (ℓ )
∑
𝐴∈A𝑖𝑛ℓ ActBytes𝐴(ℓ) is the bytes each rank must send (and receive) in the all-gather. If ℓ’s inputs were not

split (𝜙𝑖𝑛𝑡𝑝 (ℓ) = 1), then no all-gather is needed (which is also signaled by 𝜒𝑖𝑛−𝑔𝑎𝑡ℎ𝑒𝑟 ℓ = 0 in that case). Similarly,

𝜏𝑇𝑃 ℓ,AR covers a possible all-reduce after the layer. For instance, if layer ℓ produced outputs that were model-parallel

replicated across ranks (like a bias gradient that every rank computed independently and now needs to be summed), we

perform an all-reduce over 𝑡𝑝 ranks on that output. The payload is the sum of the relevant output activation buckets

(divided by 𝜙𝑜𝑢𝑡 𝑡𝑝 (ℓ) if that output is split among ranks). We gate these costs with 𝜒out-redℓ , which would be 1 if,

say, the layer produced some globally shared value (like a fully-connected layer’s bias term’s gradient). In practice,

many layers have either an input gather or an output reduce or both. We sum 𝜏𝑇𝑃𝐴𝐺 and 𝜏𝑇𝑃𝐴𝑅 to get the total

tensor-parallel comm cost 𝜏𝑇𝑃 ℓ .

Sequence (SP). With indicators 𝜒
seq-gather

ℓ
, 𝜒

seq-red

ℓ
∈ {0, 1},

𝜏SPℓ (𝑏) = 𝜒
seq-gather

ℓ
𝜏
coll

(
𝑏 = 1

𝜓 in

seq
(ℓ )

∑︁
𝐴∈Aseq

ℓ

ActBytes𝐴 (ℓ); 𝑔=𝑠𝑝, pat=allgather
)

+ 𝜒seq-red
ℓ

𝜏
coll

(
𝑏 = 1

𝜓 out

seq
(ℓ )

∑︁
𝐴∈Aseq

ℓ

ActBytes𝐴 (ℓ); 𝑔=𝑠𝑝, pat=reducescatter
)
. (31)

This is analogous to the tensor parallel case but for sequence (or context) parallelism. If layer ℓ has its sequence

input split across 𝑠𝑝 ranks (e.g., each rank processes only a subset of the sequence positions), then before the layer we

might need to gather the full sequence on each rank. 𝜓 𝑖𝑛𝑠𝑒𝑞(ℓ) is either 𝑠𝑝 depending on which parallelism is used

(or their product if both apply), or 1 if the inputs are not sequence-sharded. We sum the input activations and divide

by 𝜓 𝑖𝑛𝑠𝑒𝑞(ℓ) to get the bytes per rank to all-gather. Similarly, if the outputs were sequence-sharded and need to be

combined (e.g., for a subsequent all-reduce), we include the reduce-scatter term. These communications happen over 𝑠𝑝

ranks.
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Expert parallel (EP, MoE). Let 𝜙route (ℓ) ∈ [0, 1] be the fraction of routed activations that leave the rank (given

(𝑒𝑝, 𝑡𝑜𝑝𝑘 , 𝑛𝑟𝑒𝑥 , 𝑛𝑠𝑒𝑥 , moe_cap)).

𝜏EPℓ (𝑏) = 𝜏coll
(
𝑏 = 2𝜙route (ℓ) ActBytesMOE:routed

(ℓ); 𝑔=𝑒𝑝, pat=alltoall
)
. (32)

This means that for MoE layer ℓ , a fraction 𝜙route of the token activations (those routed to other ranks’ experts) are

sent, and an equal fraction are received (hence 2, 𝜙route portion of the total bytes of routed activations are exchanged).

The group size is 𝑒𝑝 (all expert-parallel ranks participate in the all-to-all).

Pipeline boundary (PP). Let U𝑖 be the set of point-to-point boundary transfers on stage 𝑖 . With shard divisor

𝜑𝑡𝑝,𝑠𝑝 ∈ {𝑡𝑝, 𝑠𝑝, 𝑡𝑝 · 𝑠𝑝, 1} on the boundary tensor,

𝜏PP𝑖 (𝑏) =
∑︁
𝑢∈U𝑖

𝜏
coll

(
𝑏 =

BoundaryBytes(𝑖→𝑖+1,𝑢 )
𝜑𝑡𝑝,𝑠𝑝

; 𝑔=1, pat=p2p

)
. (33)

This sums the times for all point-to-point sends from stage 𝑖 to stage 𝑖 + 1 for one micro-batch. Each such boundary

message 𝑢 (e.g., the activations output by a certain layer that gets sent to the next device) has size BoundaryBytes(𝑖 →
𝑖 + 1, 𝑢) bytes if it were not sharded. We divide by 𝜑𝑡𝑝,𝑠𝑝 to account for any model or context parallel partitioning of

that message.

2.5 Strategy solving

Decision variables and constraint. A strategy is 𝑠 = (𝑑𝑝, 𝑡𝑝, 𝑝𝑝, 𝑣𝑝𝑝, 𝑠𝑝, 𝑒𝑝, 𝑜𝑝,R, 𝑏, sched) with
sched ∈ {1F1B, SeqPipe,DualPipeV}, recomputation policy R, schedule Sched and optimizer partition 𝑜𝑝 ≤ 𝑑𝑝 . We

jointly choose per-rank micro-batch size 𝑏 ∈ N+ and accumulation steps𝑚 ∈ N+ under the global-batch constraint

𝐺 = 𝑑𝑝 · 𝑏 ·𝑚. (34)

Communication multiplicities. Let 𝜌 · (𝑚) be how many times a collective appears in one training step:

𝜌TP = 𝜌SP = 𝜌EP = 𝜌PP = 𝜌OP AG =𝑚, 𝜌DP AR = 𝜌OP RS = 1. (35)

These match the semantics: TP/SP/SP/EP collectives and PP P2P are per micro-batch; classic DP all-reduce and OP

reduce-scatter are once per step

Per-step communication time. Using the per-micro-batch layer costs from Sec. 2.4,

𝑇 comm

step
(𝑠, 𝑏,𝑚) =𝑚

∑︁
𝑖

𝜏PP𝑖 (𝑏) +
∑︁
ℓ∈L

[
𝑚𝜏TPℓ (𝑏) +𝑚𝜏

SP

ℓ (𝑏) +𝑚𝜏
EP

ℓ (𝑏) +𝑚𝜏
OP AG

ℓ + 𝜏OP RS

ℓ + 𝜏DPℓ
]
, (36)

where L is the layer set. Equation (36) is a no-overlap bound; a schedule-aware overlap map can refine it without

changing bytes or multiplicities.

Bubble term. LetΘ
mb
(𝑏) be the per-micro-batch compute time (approximately linear in 𝑏 from operator enumerations).

Let 𝑔sched (𝑝𝑝, 𝑣𝑝𝑝,𝑚,Δimb
(𝑠)) be a dimensionless schedule factor (decreasing in𝑚) and Δ

imb
(𝑠) a normalized stage-

imbalance measure. With 𝑐recomp (R) the recomputation overhead in micro-batch-equivalents,

B(𝑠, 𝑏,𝑚) = Θ
mb
(𝑏)

[
𝑔sched (𝑝𝑝, 𝑣𝑝𝑝,𝑚,Δimb

(𝑠)) + 𝑐recomp (R)
]
. (37)
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Feasibility and objective. We require steady-state schedulability and per-accelerator memory feasibility:

ScheduleValidWith(𝑝𝑝, 𝑣𝑝𝑝, sched,𝑚), max

𝑖
Peakmem,𝑖 (𝑠; 𝑏,𝑚) ≤ 𝑀

budget
, (38)

where Peakmem,𝑖 is given by Eq. (2). Since useful compute per step is invariant, we minimize

𝐽 (𝑠, 𝑏,𝑚) = B(𝑠, 𝑏,𝑚) +𝑇 comm

step
(𝑠, 𝑏,𝑚) (39)

subject to (34) and (38).

Solution sketch. Let 𝜂 be any residual tiling factor (often 𝜂=1). Enumerate structural tuples (𝑝𝑝, 𝑑𝑝, 𝑡𝑝, 𝑒𝑝) such that

𝑝𝑝 · 𝑑𝑝 · 𝑡𝑝 · 𝑒𝑝 · 𝜂 = 𝑁 . For each, try legal 𝑣𝑝𝑝 , 𝑜𝑝 | 𝑑𝑝 , sched, and R. Set 𝑄 = 𝐺/𝑑𝑝 and jointly scan integer pairs

(𝑏,𝑚) with𝑚 ∈ Divisors(𝑄) and 𝑏 = 𝑄/𝑚. Keep only candidates that satisfy (38); score them by (39) and return the

minimizer (𝑠★, 𝑏★,𝑚★). This joint solve captures the couplings: increasing 𝑏 raises per-call payloads but reduces𝑚

(fewer per-micro-batch collectives and smaller bubble), while 𝑣𝑝𝑝 reduces 𝑔sched but raises activation liveness already

reflected in Peakmem,𝑖 [14].

Consistency check. By construction, all payloads in (36) are linear forms of the same buckets appearing in Sec. 2.3,

with identical shard divisors (𝑑𝑝, 𝑡𝑝, 𝑠𝑝, 𝑒𝑝). Thus any change in (𝑠, 𝑏,𝑚) affects memory and communication coherently:

if a modification reduces dynamic memory by sharding a dimension, the corresponding collectives in (36) increase

(more traffic or more calls), and vice versa.

Algorithm: joint memory-feasible, communication-aware search. We turn the formulation in Eqs. (34)–(39) into a

concrete search that (1) enumerates structural degrees (𝑑𝑝, 𝑡𝑝, 𝑝𝑝, 𝑒𝑝) and legal 𝑣𝑝𝑝 , 𝑜𝑝 |𝑑𝑝 , schedules and recomputation

policies; (2) jointly scans integer pairs (𝑏,𝑚) that satisfy the global-batch constraint𝐺 = 𝑑𝑝 · 𝑏 ·𝑚; (3) enforces memory

feasibility using the peak estimator in Eq. (2); and (4) scores feasible candidates with the objective in Eq. (39), where the

communication time 𝑇 comm

step
is given by Eq. (36). All byte payloads are linear in the same buckets as the memory model,

and multiplicities follow Eq. (35), ensuring consistency between memory and communication.

3 Experiments

We evaluate PRISM across four widely used dense model families—DeepSeek3, Llama2/3, Mistral, and Multi-modal

model–TextHawk and one sparse architecture, Llama-MoE. This suite allows us to assess PRISM’s scalability and

generality under heterogeneous model architectures.

Hardware setup. Experiments are conducted on a Huawei Ascend-910 (A910) AI cluster, scaling up to a maximum of

1,024 NPUs. Each compute node contains 8× A910–64GB NPUs. Intra-node communication adopts a mesh topology via

HCCL [1], delivering up to 392 GB/s aggregate bandwidth per NPU. For inter-node communication, multiple A910

nodes are connected in a RoCE-based ring, with each interface providing 25 GB/s of unidirectional link bandwidth.

Software setup.We integrate our PRISM into MindSpore [2] and execute deep learning models within this framework.

Using the framework’s profiling utilities and device counters, we report per-run step time (ms/step) and peak HBM

memory usage (GB). Unless otherwise specified, measurements exclude warm-up and are averaged over steady-state

steps.
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Algorithm 1 PRISM-Search

Require: L,𝑀
budget

,𝐺 , candidate sets for (𝑠 = (𝑑𝑝, 𝑡𝑝, 𝑝𝑝, 𝑣𝑝𝑝, 𝑠𝑝, 𝑒𝑝, 𝑜𝑝, R, 𝑏, sched)
Ensure: (𝑠★, 𝑏★,𝑚★) minimizing 𝐽

1: 𝐽★ ← +∞, (𝑠★, 𝑏★,𝑚★) ← ∅
2: for all (𝑑𝑝, 𝑡𝑝, 𝑝𝑝, 𝑒𝑝 ) do
3: for all 𝑣𝑝𝑝 do
4: for all 𝑜𝑝 | 𝑑𝑝 do
5: for all sched do
6: for all R do
7: 𝑄 ← 𝐺/𝑑𝑝
8: for all𝑚 ∈ Divisors(𝑄 ) do
9: 𝑏 ← 𝑄/𝑚
10: if not ScheduleValidWith(𝑝𝑝, 𝑣𝑝𝑝, sched,𝑚) then
11: continue
12: end if
13: 𝑠 ← (𝑑𝑝, 𝑡𝑝, 𝑝𝑝, 𝑣𝑝𝑝, 𝑠𝑝, 𝑒𝑝, 𝑜𝑝, sched, R)
14: PeakMem𝑖 ← PeakMemByStage(L, 𝑠, 𝑏,𝑚)
15: if max𝑖 PeakMem𝑖 > 𝑀budget

then
16: continue
17: end if
18: 𝑇 comm

step
← CommStep(L, 𝑠, 𝑏,𝑚)

19: B ← Bubble(𝑠,𝑏,𝑚)
20: 𝐽 ← B +𝑇 comm

step

21: if 𝐽 < 𝐽★ or (𝐽 = 𝐽★ and max𝑖 PeakMem𝑖 smaller) then
22: (𝑠★, 𝑏★,𝑚★) ← (𝑠,𝑏,𝑚) ; 𝐽★ ← 𝐽

23: end if
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for
30: return (𝑠★, 𝑏★,𝑚★)

3.1 Evaluation of memory prediction accuracy

We evaluate PRISM’s per-device peak HBM memory prediction against runtime measurements. Accuracy is computed

as

Acc = 100 ×
(
1 − |Pred − Real|

Real

)
%,

and we also report mean absolute percentage error (MAPE). Tables 2 and 3 list configuration details and the predicted

(Pred) versus measured (Real) peaks in MB; for readability, discussion below converts absolute errors to GB.

DeepSeek3 scaling from 64 to 1,024 devices (Table 2). Across the five configurations, mean accuracy is 92.03% (median

91.52%; range 86.11–98.72%); the corresponding MAPE is 7.97%. The mean (median) absolute error is 4.14 GB (5.05 GB);

RMSE is 4.70 GB with a minimum error of 0.46 GB and a maximum of 7.01 GB. The DualPipe case at 128 devices (row 2)

shows the largest deviation (86.11% accuracy), consistent with additional warm-up/flush micro-steps not overfit by our

profiling-free model. Restricting to 1F1B rows (4/5 cases), mean accuracy improves to 93.51% (MAPE 6.49%). At the

largest scale, accuracy remains high: 94.54% at 1,024 devices (row 5).

Cross-model generalization at varied scales (Table 3). Over eight configurations spanning Llama2/3, Mistral, MoE,

and Texthawk, mean accuracy is 95.80% (median 96.42%; range 87.72–99.82%) with MAPE 4.20%. The mean (median)

absolute error is 1.80 GB (1.42 GB); RMSE is 2.41 GB; the smallest error is 0.08 GB (Llama3, 80 layers, 64 devices), and the

largest is 5.03 GB (Llama2, 32 layers, 8 devices). Errors are balanced (4 underestimates vs. 4 overestimates). At extreme

scale, Llama-MoE on 1,024 devices retains high accuracy (97.05%).

Discussion. Together, Table 2 (intra-model scaling) and Table 3 (inter-model diversity) show that PRISM achieves robust

peak-memory prediction across schedulers (1F1B, DualPipe), parallelism mixes (DP/TP/PP/EP/OP/SP with/without

VPP), and cluster sizes up to 1,024 devices, all without profiling. The largest deviations occur in schedule variants with

additional warm-up/flush and chunk-boundary effects, whereas mainstream 1F1B settings track closely to measurements.

Despite intentionally excluding communication buffers in our memory model, PRISM’s predictions are sufficiently

accurate to act as a reliable feasibility constraint for strategy planning at scale.
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Num layers Num device DP TP PP EP SP OP VPP GBS Sched Pred Real Accuracy(%)

9 64 8 8 1 64 1 8 1 8 1f1b 36032 36498 98.72

16 128 32 2 2 64 1 32 2 1920 dualpipe 44542 51724 86.11

62 256 256 1 1 256 1 256 1 8192 1f1b 43640 48899 89.24

60 512 4 8 16 8 1 4 1 512 1f1b 55765 60931 91.52

62 1024 128 4 2 256 1 8 1 8192 1f1b 60707 57563 94.97

Table 2. Configurations for DeepSeek3. Reported Pred and Real are per-device peak HBM memory in MB

Model Num layers Num device DP TP PP EP SP OP VPP GBS Sched Pred Real Accuracy(%)

Llama2 32 8 1 2 4 1 1 1 1 256 1f1b 47137 41983 87.72

Llama2 80 64 2 4 8 1 1 2 1 256 1f1b 55380 54899 99.12

Llama3 80 64 1 8 8 1 1 1 1 256 1f1b 46320 46236 99.82

Llama3 80 128 1 8 8 1 2 1 1 256 1f1b 43013 46718 92.07

Mistral 32 16 8 1 2 8 1 8 1 128 1f1b 48420 47956 99.03

Llama-MoE 70 1024 32 2 16 8 1 32 1 1536 1f1b 50150 51675 97.05

Texthawk (6, 1, 4, 4) 8 2 2 2 1 1 2 1 4 1f1b 31728 33120 95.80

Texthawk (26, 1, 4, 61) 512 8 4 16 4 1 8 1 128 1f1b 44307 46265 95.77

Table 3. Consolidated configurations across model families. Metrics follow Table 2.

Model Devices Megatron-LM MFU (%) PRISM MFU (%) Speedup (×)
DeepSeek3 128 29.40 36.20 1.23×
Llama-MoE 128 13.63 19.50 1.43×
Llama-MoE 256 19.90 25.20 1.27×

Table 4. MFU comparison between the baseline (Megatron-LM) and PRISM across models and scales. Speedup is PRISM / baseline.

3.2 Performance Evaluation

We assess PRISM using Model FLOPs Utilization (MFU, %), a standard proxy for training efficiency. As shown in Table 4,

PRISM consistently improves MFU across models and scales.

On DeepSeek3 with 128 devices, MFU rises from 29.40% to 36.20% with 1.23× speedup. For Llama-MoE at 128 devices,

it increases from 13.63% to 19.50% with 1.43× speedup. Even at 256 devices, Llama-MoE improves from 19.90% to 25.20%

with 1.27× speedup. Overall, these results correspond to 1.23×–1.43× speedups.

4 Conclusion

In this paper, we proposed PRISM, the first profiling-free symbolic planner that unifies memory and communication

modeling to automatically select optimal parallelization strategies for large-scale DNN training. PRISM captures the

intrinsic memory behavior of layered architectures through a symbolic grammar and extends it to account for diverse

parallelism and optimization techniques. This enables accurate peak memory prediction and principled exploration of

the trade-off between pipeline bubbles and communication costs. Our results show that PRISM consistently improves

utilization and scalability across different models and device scales. Moving forward, we plan to extend PRISM to a

broader range of model architectures and heterogeneous training environments, and to integrate interactive visualization

to help users better understand how parallel strategies impact memory and performance.
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