PRISM: Profiling-Free Symbolic Memory-Driven Strategy Planner for Large
DNN Model Training

The rapid growth of large-scale deep neural networks (DNNs) has introduced severe memory and performance bottlenecks during
distributed training. Existing automated planners for parallelization strategies often rely heavily on profiling or empirical tuning,
which significantly increases engineering cost and wastes large-scale cluster resources. In this work, we present PRISM, a profiling-free,
symbolic memory-driven strategy planner for large DNN training. PRISM introduces a unified symbolic memory cost model that
captures the layered structure of modern architectures and integrates with a communication model to evaluate trade-offs across
data, tensor, pipeline, virtual pipeline, expert, and sequence parallelism, as well as activation recomputation and optimizer sharding.
By formulating strategy selection as an optimization problem, PRISM identifies globally optimal parallel strategies under device
memory budgets. Our evaluation across representative large models demonstrates that PRISM achieves accurate memory prediction
and substantial improvements in Model FLOPs Utilization (MFU), reducing bubble and communication overheads without costly

profiling.

1 Introduction

DNNs have progressed rapidly in recent years—improving accuracy across language, vision, and multimodal tasks—while
simultaneously growing in parameter count, sequence length, and modality breadth. Training such models now requires
large distributed high-performance computing (HPC) systems that compose multiple forms of parallelism to sustain
throughput and fit within device memory, including Data Parallelism (DP) [6], Tensor/Model Parallelism (TP) [18],
Pipeline Parallelism (PP) [8, 13], Virtual Pipeline Parallelism (VPP) [14], Expert Parallelism (EP) for Mixture-of-Experts
[7, 11], Sequence (SP) [9, 10], Optimizer Partitioning (OP, ZeRO) [16], and activation recomputation (checkpointing) [5].

Memory is the primary limiter of DNN training throughput. Even when multiple parallelisms are composed, the
instantaneous peak on each accelerator gates feasible micro-batch size, interleaving depth, and overlap. Simply “adding
machines” raises the volume and cadence of collectives, often amplifying communication and eroding expected gains.
As a rule of thumb: DP is memory-hungry and prone to OOM; TP is communication-intensive; SP reduces activation
footprint by sharding along the sequence dimension but introduces additional collectives around attention; PP creates
pipeline bubbles; EP is heavy due to token routing; and OP (ZeRO-style optimizer-state sharding) cuts memory at the cost
of optimizer-step traffic. Concretely, DP keeps full parameters, gradients, and optimizer states on every rank, so per-rank
peak scales with model size (not DP degree), and gradient all-reduce occurs after activations are materialized—DP alone
rarely relieves peaks. TP shards tensors across ranks but forces frequent all-gather / reduce-scatter / all-reduce around
matmuls and attention every forward/backward step; both collective count and payload grow with the shard dimension,
making TP communication-dominant. SP computes attention via efficient communication, when sequence length and
device count scale proportionally, the per-step communication volume remains roughly constant—enabling extreme

long-sequence training without exploding memory. PP partitions the network into stages and uses micro-batches
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System Techniques Cost model Planner
Megatron-LM [14, 18] DP, SP, TP, PP, Recomp Specific Manual
ZeRO-DP/OP [16] DP, OP Specific Manual
Galvatron [12] DP, OP, TP, PP Profiling-based Tuning
vTrain [4] DP, TP, PP Profiling-based Tuning
PRISM (this work) DP, SP, TP, PP, VPP, EP, OP, Recomp Symbolic Algorithmic

Table 1. Representative systems for large-model training. “Specific” denotes system-specific cost accounting embedded in the imple-
mentation; “Profiling-based” denotes empirical cost estimation obtained via short trial runs; “Symbolic” denotes an implementation-
agnostic closed-form model.

to fill and drain the pipeline, introducing warm-up/flush idle slots and sensitivity to stage imbalance. EP distributes
experts but routes tokens via all-to-all at each expert layer in both directions; traffic scales with sequence length,
hidden size, and capacity factor, while routing/padding and load skew inflate latency and bandwidth demand. OP shards
optimizer states—and in higher stages, gradients and even parameters—across the DP group, reducing per-rank memory
roughly with sharding degree; however, it introduces per-step reduce-scatter/all-gather of gradients and (ZeRO-3-like)
parameter all-gathers that must be carefully prefetched and overlapped to avoid optimizer-step latency and background
bandwidth pressure. Balancing these modes in practice means trading memory headroom against collective volume,
bubble overhead, and overlappability.

Memory-Performance trade-offs are tightly coupled. Mechanisms that lower on-rank residency typically increase
communication or pipeline idle time; mechanisms that reduce bubbles often widen activation liveness or add FLOPs. For
a fixed model and global batch, useful compute per step is essentially invariant, so performance hinges on minimizing
communication and bubble overhead while staying within per-accelerator memory limits and satisfying the schedule.
The design space is discrete, non-separable, and topology dependent across DP, SP, TP, PP, VPP, EP, OP settings,
recomputation policy, and micro-batches. Micro-batching co-determines both peak memory and pipeline bubbles and
cannot be tuned independently. Practical planners must jointly choose strategy and micro-batching under the actual

execution schedule, balancing memory feasibility with communication and bubble costs.

State of the art and limitations. Table 1 contrasts representative systems along three axes—mechanism coverage, cost
modeling, and planning method. Megatron-LM [14, 18] exposes a rich set of mechanisms (DP/SP/TP/PP, recomputation)
but relies on system-specific accounting embedded in implementation choices with a manual planner, which shifts
the burden to practitioners and limits portability and reproducibility across clusters. ZeRO-DP/OP [16] offers precise,
specific accounting for optimizer/parameter sharding and offload but remains a component rather than a unified planner;
strategy composition across TP/PP/EP/VPP still requires manual coordination. Galvatron [12] and vTrain [4] enlarge
the mechanism set to hybrid strategies and replace hard-coded accounting with profiling-based cost models coupled
to tuning loops; this improves automation on a fixed stack but consumes accelerator hours for trial runs, lengthens
queue time, and degrades when model shapes, schedules/interleaving variants, kernels, or interconnect/topology
change. Moreover, empirical regressors provide limited visibility into where peak memory occurs and scale poorly
as the DP/SP/TP/PP/VPP, EP/OP, and micro-batching dimensions interact combinatorially. In contrast, PRISM (this
work) covers a superset of mechanisms—including VPP and EP—and replaces profiling with a symbolic model and an
algorithmic planner. This yields portable, schedule-aware feasibility checks and transparent communication-bubble

trade-offs without trial runs, enabling dependable planning across hardware and workloads.

Scalability of profiling and tuning. As the mechanism set grows (DP/TP/PP/VPP, SP, EP, OP, recomputation, micro-
batch size,schedules), the strategy space expands combinatorially. Let S = DX T XP XV xS X EXO X R X B x Sched
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denote choices for DP degree, TP degree, PP stages, VPP interleaving degree, EP degree, OP degree, recompute
policy, micro-batch size, and schedule. Even with modest per-axis cardinalities, |S| quickly reaches 10*-10° per
model-hardware setting. Profiling-based estimation then costs roughly |S|- 7y, and must be repeated whenever
shapes/schedules/topology change, while tuning on a discrete, non-separable surface suffers superlinear complexity
due to cross-terms and schedule-dependent peaks. As dimensions proliferate, the profiling and tuning burdens explode,
making the approaches in Table 1 increasingly hard to sustain at scale.
Our position. Memory is the binding constraint for large-model training. A profiling-free, symbolic view of the model
and schedule is sufficient to (i) bound per-stage peak memory and (ii) expose the trade-off between pipeline bubbles
and communication. Hence the choice of DP/TP/PP/VPP, SP, EP, OP, recomputation, micro-batch size,schedule should
be solved jointly under a memory budget.

In this paper, we introduce PRISM, a profiling-free planner that analytically predicts peak memory and communication
costs, then searches for a configuration that minimizes both bubble and communication overhead subject to memory

limits. PRISM supports dense and MoE models and outputs deployable strategies.

Contributions.

(1) Profiling-free symbolic memory model. A grammar-driven, closed-form model that computes stage-wise peak
memory without profiling, covering DP/TP/PP/VPP/SP/EP/OP, recomputation, micro-batch size, schedule.

(2) Unified memory+communication model with a joint solver. We define a unified cost J = B + Teomm combining
pipeline bubbles and communication, and propose an algorithmic planner (PRISM-SEaRcH) that jointly selects
(dp, tp, pp, vpp, sp, ep, op, recompute, b, schedule) under a memory budget.

(3) Experimental results. On an Ascend-910 cluster (up to 1,024 devices) across DeepSeek, LLaMA, TextHawk, and
MoE workloads, PRISM delivers up to 1.93x MFU speedup and achieves tight memory prediction with median

absolute error within ~7%.

2 Approach
2.1 Notation

This subsection catalogs the symbols used by our memory and performance models. We group notation into six
categories: Model hyperparameters, Data types and byte widths, Buckets, Sharding divisors and indicators, Schedule-aware
terms, and Communication timing.

Model hyperparameters. i (hidden width), hyf (Feed-Forward Network, FFN inner width), v (vocabulary size), ny,
(number of attention query heads), dj, (per-head projection width), ny, (number of key—value heads under Grouped-
Query Attention, GQA or Multi-Query Attention, MQA; typically ny, <np), s (sequence length), and L (number of layers).
Batching: b is the per-rank micro-batch size and m is the number of micro-batches per iteration; the global batch is
G =dp - b- m. A strategy specifies parallel degrees (dp, tp, pp, vpp, sp, op, ep), where Data Parallelism (DP) replicates
parameters across ranks; Tensor Parallelism (TP) shards tensors along model dimensions; Pipeline Parallelism (PP)
partitions layers into stages; Virtual Pipeline Parallelism (VPP) interleaves multiple virtual chunks per stage to reduce
bubbles; Sequence Parallelism (SP) shards tokens along the time/sequence axis; and Expert Parallelism (EP) distributes
experts in Mixture-of-Experts (MoE) layers across ranks. We also specify a schedule sched € {1F1B, SeqPipe, DualPipeV},
an optional recomputation policy R (recomputation), and theop < dp for Optimizer State parallel (OP).

BFP

acy (activations),

Data types and byte widths. Bytes per element are denoted by BI};P (parameters), Bg r’; 4 (gradients),
and BEP (optimizer states), typically chosen from {1, 2, 4} for FP8/FP16/FP32.

Manuscript submitted to ACM



4 Wang et al.

Buckets. For each layer £ we track element counts Param(¢), Grad(¢), and activation buckets Acty(¢) with A €
{Attn:QKV, Attn:Score, Attn:Proj, FFN, MoE:router, MoE:routed, MoE:shared, MoE:concat, Norm/Util}, where MoE (Mix-
ture of Experts) uses a router with top-k gating and a capacity factor. Byte sizes follow by multiplication: ParamBytes(¢) =
Param(¢) ng, GradBytes(¢) = Param(¢) B;:;d, and ActBytes 4 (£) = Actg () ng. Peak device memory aggregates (i)
static residency (parameters, gradients, optimizer states) and (ii) dynamic terms.

Sharding divisors and indicators. Materialization under sharding is captured by ¢;r;/ i) e {tp,1} and t//sheléout({’) €
{sp, 1}, marking whether inputs/outputs are in sharded or global view for TP, SP. Communication needs are indicated by
)(ti,n_gather, )(t?“t'red (TP all-gather / all-reduce) and )(;eq_gather, )(;eq_red (SP gather / reduce-scatter). For MoE, ¢route () €
[0, 1] is the fraction of routed activations that leave a rank under (ep, top_k, capacity). Pipeline boundaries incident to
stage i are enumerated by U;, with an effective shard divisor ¢y sp € {tp, sp, tp-sp, 1} on boundary tensors.

Schedule-aware terms. Activation concurrency on stage i is PPFactor?Ched = fpp(i; m, pp,vpp, sched) (Eq. (5));
BackwardOverheadfChed accounts for warm-up/flush tails and recomputation. The bubble model uses ©,;, (b) (per-
micro-batch compute time), gsched (PP, vpp, M, Aimp,) (schedule factor for imbalance Ajmp), and crecomp (R) (recompute
overhead) as in Eq. (37).

Communication timing (for the performance objective). Collectives follow the latency-bandwidth («¢—f) model
Teoll (D3 9, pat) = apat(9)+b/Bpat (g) for pat € {allreduce, allgather, reducescatter, alltoall, point-to-point (p2p)} (Eq. (24));
multiplicities per step follow Eq. (35). Per-step communication time Tsct‘;g‘m (Eq. (36)) is combined with the bubble term
to form the overall objective J (s, b, m) (Eq. (39)), while memory feasibility of (s, b, m) is checked solely against Eq. (2)

(excluding transient comm buffers).

2.2 Model abstraction

Any DNN model can be abstracted as a sequence of building blocks, of which the coarsest-grained are called layers. In

particular, all LLMs encountered so far respect a specific architecture represented by the following grammar:

DNN — embedding - Layer* - MTP* - Output
Layer — (Norm - Attention)* - Norm - FEN
Norm — layerNorm | rmsNorm | ...
Attention —  selfAttention | crossAttention | ... (1)
FFn — feedForward | routedExpert | ...
MTP — Norm - Norm - linear - Layer
Output — Norm - linear

Also, a complex multimodal model is easily represented as: MultiModal — DNN*. Once a network is expressed in
the language represented by this grammar, it can be easily parsed and analyzed to compute the memory it needs. Hence,
rather than analyzing the liveness of each data structure in a complex dataflow graph as a low-level approach would,
this only requires memory functions for each symbol of the grammar. The terminal symbols of the grammar, or the
most basic building blocks (represented with a lowercase first letter), are detailed:

o Embedding/Adapters map raw inputs (tokens, patches) and positional information to width h;

o Self-Attention operates on a single stream with nj, heads of width dj,, optionally using ng, for GQA/MQA [3, 17];

o Cross-Attention allows queries from one stream to attend to keys/values from another, which is how multimodal
stacks couple modalities;

e Feed-Forward/MLP applies a position-wise projection with expansion hy f;

o Mixture-of-Experts (MoE) replaces an MLP by a gated expert bundle parameterized by n,, ni,., and topy [7, 11, 15];

o light-weight utilities such as the normalizations or linear layers.

Manuscript submitted to ACM



PRISM: Profiling-Free Symbolic Memory-Driven Strategy Planner for Large DNN Model Training 5

2.3 Memory cost model

Goal. Given the layer-stage/chunk mapping from Section 2.2, the per-device peak memory is the stage-wise maximum

of static and dynamic terms plus a small schedule tail:

Peakpem = max [ Z ( Z (Memstat([) + Memdyn(f))) + B.ackwardOverhead?Ched . 2)
i€Stages
c;j€Chunks; \ f€ ‘Lcij
Equation (2) computes the peak memory usage across all pipeline stages. Inside the max[-], for each stage i we
sum over all chunks c;; on that stage, and within each chunk we sum over all layers ¢ in that chunk the layer’s static

memory Memgtat (£) plus dynamic memory Memgyy, (¢). We then add BackwardOverhead®c"e?

i, an extra memory term
accounting for the pipeline’s tail end (the warm-up/flush overhead on stage i due to the schedule and any recomputation).
Taking the maximum over i yields the peak memory usage of the most memory-demanding stage. In other words, a

strategy is feasible only if each device has at least Peakyem memory available.

2.3.1 Decomposition. We express each layer’s memory as the sum of a static component and a dynamic component.
Memgiat (£) covers the memory for layer £’s parameters, gradients, and optimizer states (accounting for any sharding by
dp. tp, sp, ep, or op). Memgy, (£) contains (i) live activations (intermediate activations that must be kept for backward)
scaled by schedule-aware concurrency and (ii) transient communication buffers from collectives or point-to-point

transfers. We formalize these in Egs. (3)-(4).

1
Memgyy, (¢) = PPFactorfChed ActBytes(¢) s + CommTransBytes(¢), (3)
-s
comm. transients
live activations
CommTransBytes(f) = max(CommDP/op(t’), Commrp (£), Commgp(£)) + Commgp(¢). 4)

In Eq. (3), the first term is the memory from live activations of layer ¢ on stage i, computed as ActBytes(¢) (the total
bytes of activations produced by layer ¢ for one micro-batch) multiplied by PPFactors"ed; (the number of micro-batches
concurrently alive on stage i under the pipeline schedule) and divided by ¢p - sp (since if tensor or sequence parallelism is
applied, each rank only holds a 1/(tp - sp) fraction of those activations). The third term CommTransBytes(¢) represents
the bytes of transient communication buffers. Equation (4) defines CommTransBytes(£) more concretely: we take
the maximum among the required communication buffers for data parallel / optimizer partitioning (CommDP/OP),
tensor parallel (CommTP), and sequence parallel (CommSP) for layer ¢ (since typically only one of these largest
communications would be active at a time), and we add Commgp(¢), the MoE expert-parallel communication (which
usually occurs separately as an all-to-all). This formulation assumes that different types of collective communications

do not peak simultaneously, so the largest one dominates the transient memory.

2.3.2 Pipeline factor and tail. Activation concurrency on stage i:
PPFactorfched = fop(i; m, pp, vpp, sched € {1F1B, SeqPipe, DualPipeV}), (5)

and BackwardOverhead®"®?i models the pipeline warm-up/flush tail and any recomputation effects for stage i. In
other words, fpp gives the number of micro-batches simultaneously active on stage i for a given schedule sched (with
pp physical stages, vpp virtual stages per physical, and m micro-batches), and BackwardOverhead quantifies how much
extra memory is used at stage i at the end of an iteration (e.g., the last activation that remains until its backward pass,
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or duplicated activations due to recomputation). We will derive closed-form expressions for these schedule-dependent

terms below.

2.3.3 Embedding layer.

Memgtat (Embed) = Param(Embed) (ng +Bg£d + 2B§SP) m, 6)
Memgy, (Embed) = PPFactoriSChed Mf;%ﬁnw + CommTransBytes(Embed), 7)
with Transformer-based shapes
Param(Embed) = ho, ActBytes(Embed) = Bgs sbh.
A convenient transient bound consistent with the comm formulas is
CommTransBytes(Embed) = max| commg,, Parir;z}(;::b(]?l;?ed), commy, ng s-b-h 2)7 _sjl) , 8)
DP/OP TP gather

where t=tp, sharde, € {1, dp,dp - tp}, and commgy,, commyp € {0, 1, 2,3} denote mode/masks.

Equation (6) calculates the static memory for the embedding layer. It multiplies the number of embedding parameters
Param(Embed) by (BFPp + BFPgrad + 2BfP 0s) (bytes per parameter + gradient + two optimizer states). This formula
covers storing the embedding weight, its gradient, and two optimizer moments per parameter, consistent with a typical
Adam optimizer memory breakdown [16]. For a Transformer embedding layer of hidden dimension h and vocabulary

size v, Param(Embed) = h - 0.

sched: ActBytes(Embed)
DT s

is the memory used by live embedding activations on stage i, scaled by the pipeline concurrency factor. We divide

Equation (7) gives the dynamic memory of the embedding layer. The first term PPFactor

by tp and sp because if the embedding’s output is partitioned across tp model-parallel ranks or sp sequence-parallel

ranks, each rank holds only a fraction of the activations. We have ActBytes(Embed) = BPact - s - b - h, since the

embedding produces an h-dimensional activation for each of s tokens in each of b micro-batch samples. The second
term CommTransBytes(Embed) accounts for any transient communication buffer needed for the embedding layer (for
example, if using ZeRO partitioning, gathering the embedding weights, or if using model parallelism, all-gathering the
token embeddings).

The expression above for CommTransBytes(Embed) takes the maximum of two possible communication contribu-
tions: (i) a data-parallel or optimizer-partitioning related buffer (labeled "DP/OP"), and (ii) a tensor-parallel all-gather
of activations (labeled "TP gather"). The DP/OP term commdp - I%w

ZeRO-3 partitioning is used for the embedding weight (so each rank initially has only 1/dp of the embedding and must

all-gather it, or similarly must all-reduce the gradients) [16]. The TP term commtp - B*Pact, s, b, h - % represents

model-parallel communication: if the embedding output (of size s - b - h per rank globally) is split across tp ranks,

would be nonzero if, for example,

an all-gather of those activations might be needed so that each rank obtains the full h-dimensional embedding for
each token. The factor (tp — 1)/(tp - sp) indicates that each rank sends (tp — 1)/tp of the activation (and receives an
equivalent amount) across the sp sequence groups (if sp > 1, multiple ranks share each portion). We take the maximum

of these two under the assumption that the largest of these communication buffers will determine the transient memory.
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Here commg,,, comm;, are mode flags: for example, commg, =20r3 might signal ZeRO-3 is in use, requiring gather

and scatter operations, while comm;;, = 1 might signal that model parallel all-gather is needed.

2.3.4 Output / LM head (with optional MTP).

(Param(Output) + nMTpParamMTp) (Bf,P + Bg fa at ZBEISJ )
Memgtat (Output) = op-sp > ©)

4 ActBytes(Output) + nyirp - ActBytesyirp

Memgyy (Output) = PPFactor ?Che + CommTransBytes(Output)

shardgut

+ nprp - CommTransBytesyrp. (10)
with Transformer-based

Param(Output) = h - v + 0, ActBytes(Output) = BFP 5. p (v+h),

act ’
and DP/OP transients
ParamBytes(Output)

CommTransBytes(Output) = commg,, tp-sp
.S

For multi-token prediction (MTP),

Parampip = 2h?+4h+Param(Embed)+Param (Output), ActBytesyrp = ng 3sbh+ActBytes(Embed)+ActBytes(Output),

CommTransBytesy rp = commg,, w, shardout € {1,tp}.

Equation (9) is the static memory for the output layer plus an optional multi-token prediction module. Param(Output) +
nyrpParamyirp represents the total number of parameters in the output softmax/linear layer and the MTP block (if
nMTP > 0 MTP blocks are present). This is multiplied by (BF¥p + BFP grad + 2BFP0s) and divided by op - sp. Here op
(with op < dp) is the number of partitions for optimizer state. Thus, if op > 1, each rank holds only a 1/op fraction
of the output (and MTP) parameters and states. The factor sp in the denominator reflects that if sequence parallelism
is splitting the batch by sequences, the output weights might be further effectively replicated across sp groups. In a
typical Transformer language model head, Param(Output) = & - v + v, the weight matrix of shape h X v plus a bias or
embedding tying vector of length v.

Equation (10) gives the dynamic memory for the output layer (and MTP). The first term scaled by PPFactorSc"ed;,
accounts for live activations in the output and MTP sections, scaled by pipeline concurrency. shardout € 1, tp indicates
whether the output activations are replicated across all ¢p ranks or partitioned (e.g., if the output linear layer is
model-parallel, then each rank only has 1/tp of the output activations and shardout = tp). The remaining terms

CommTransBytes(Output) + nyirpCommTransBytesMTP are the transient communication buffers associated with the
ParamBytes (Output)
tp-sp
data-parallel all-reduce of output gradients (since each rank has only 1/(¢p-sp) of the output parameters if model/context

output and MTP parameters. For instance, CommTransBytes(Output) = commg,, corresponds to the
parallelism is applied, they must be synchronized across dp ranks after backward). Similarly, CommTransBytesyp is
the analogous term for the MTP parameters.

The displayed formulas for the MTP component provide an example of how we compute its parameter and activation
sizes. Considering the MTP’s extra Transformer layer as part of the number of layers L, the formulas only counts the rest
of the component. In a multi-token prediction head that generates, say, k tokens per sequence at once, Paramytp includes

additional linear and normalization operations. The formula Paramyrp = 2h? + 4h + Param(Embed) +Param(Output) is
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a possible configuration counting linear and normalization weight matrices, plus reuse of embedding/output parameters;
ActBytesyrp = 355(33 - b - h) + ActBytes(Embed) + ActBytes(Output) suggests the MTP might produce about 3x the
usual activation volume (for example, if it involves an extra forward pass of similar complexity to the main network)
in addition to reusing embedding/output activations. These specifics depend on the MTP design and are included for
completeness. Their communication transient CommTransBytesypp is defined similarly to the output layer’s. In our
model, we treat ny(rp as the number of extra output layers of this form; if none, nyp = 0 and these terms drop out.
Also note shardoyt € 1, tp indicates that the output of the MTP might or might not be model-parallel sharded (often it is

not, so shardyy,; = 1 for the final logits).
2.3.5 Transformer block (regular / recomputation).

Regular (no recomputation).

Memgtar (NotRecLayer) = ( 4t ZBESP), (11)

Parampyn + Paramyorm Paramgpy ) (BFP +BFP
op - sp ged(n'ex, op - sp) 4 gra

OKV Score Proj
At giin A A n

Memgyy (NotRecLayer) = PPFactor; 1

i

tp - sp (12)
MOE MOE MOE MOE
ACtmul‘er +ACtr0uted + ACtshared + Athoncat ActNorm + CommTransB:
tp - sp tp-sp "

with the transient bound in (4):
CommTransBytes(NotRecLayer) = max(Commpp/op, Commrp, Commgp) + Commgp.

Equation (11) gives the static memory for a standard Transformer layer without recomputation (denoted NotRecLayer).
ParamAttn+ParamNorm
op-sp
stored per rank (since ZeRO optimizer partitioning and context parallelism can shard those parameters across op
ParamFFN
ged(n"*,0p-sp)
in the denominator handles MoE scenarios: if n” ex experts are local to each rank and op - sp shards also partition

Inside the parentheses,

represents the fraction of the attention and normalization parameters

and sp ranks respectively), and represents the per-rank FFN parameter count. The ged(n”ex, 0p - sp)
those experts, the greatest common divisor gives the replication factor of FFN parameters per rank (for example, if
n"ex = 4 and op - sp = 2, each rank holds FFN parameters for 4/gcd(4,2) = 2 experts). This sum is multiplied by
(BFPp + BFP grad + 2BEF) to convert to bytes (one copy each for weight and gradient, two for optimizer states).
Equation (12) gives the dynamic memory for the same layer. The term inside the large parentheses is the total activation
bytes produced by this layer, broken into contributions from different sub-components: (1) the attention mechanism
outputs (queries/keys/values, attention scores, and output projections), (2) the MoE expert outputs (router output, routed
tokens to experts, any shared expert outputs, and the concatenated expert outputs), and (3) the normalization/utility
outputs. Each of these sums is divided by tp - sp because we assume that if tensor or sequence parallelism is used,
each rank only holds a portion of those activations. This total is then multiplied by PPFactorSched; reflecting that fpp
micro-batches worth of these activations can be alive concurrently on stage i. Finally, CommTransB; (a shorthand for
CommTransBytes on that layer at stage i) is added, representing the transient communication buffer for this layer. As
defined by Eq. (4), CommTransBytes(NotRecLayer) takes the maximum of the DP/OP, TP, and SP communication needs
and adds any EP communication. Essentially, for each layer, we budget memory for whichever collective communication
(gradient all-reduce, activation all-gather, etc.) is largest.
Manuscript submitted to ACM
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Selective recomputation (SelRecLayer). Keep (11); in (12) apply a mask Rec(-) € {0, 1} to the activation buckets
to drop kept-not-needed parts; typical recomputable ops include (batch) matmul, dropout, softmax, norm, gather,

activation, and cast.

Full recomputation (FullRecLayer). Static unchanged; dynamic approximated by
FP
Byys-b-h

Memygy, (FullRecLayer) = PPFactorfChed K
shardrec

+ Commpp,op, shardyec € {1,t}.

2.3.6 Attention buckets (Transformer-based). For multi-head, grouped-query, and multi-query attention:

Paramp gy = nfin . %((h2 +h)+(h-dy- nkv+h)), (13)
QKV _ ,FP 1., Att Att 1, Att Att Att
ActSiey = BEE s b (L (ni + iR )+ L+ mARR ) - gy + i - d), (14)
s FP FP
Actyitn = Boofe “Msoft * (5 SFa - b-np) + By Narop - (s - Spa - bnp), (15)
Proj _ pFP 1, Attn , At FP
Actyy = Baep s b-heg(mypf + anast) + Bdrop * Ndrop- (16)

For multi-head latent attention (MLA), with compressed dims d¢,, dCQ and RoPE head dim d;:

Paramam = nﬁﬁl(%(d;((dh o+ 1) + (A5 (- dy 4By i)+ (g dy e d,g))), 17)

ARV _ BEP ¢ p (i(nml + ) (A8 + 2y (dy + ) + () + gy (2 + ) + (ngy - dy + ) + g - dh).
(18)

The above formulas detail the memory contribution of various parts of the attention mechanism. In summary,
Paramagy calculates the total number of attention parameters. For standard multi-head attention, it accounts for the
Q, K, V projection matrices and the output projection matrix (each of dimension approximately h-h or h-dp,). Factors like
% or }1 depict the distribution of the activations across operators nAf", Actgtﬁ/ is the total bytes of the Query, Key, and
Value activations. It scales with s, b (tokens per micro-batch) and includes terms for each: the %(n]“efﬁ’ + At pCast) - h
part corresponds to the Q (and similarly K) matrices, the %(n?/{]f/;’ + pAtin
have dj, - ny, elements per head, and n’éﬁ"M - dj, covers any batched matrix multiply outputs (like QKT products) of

pCast) - dyny, corresponds to K/V which

width dj,. Acticﬁor: ¢ is the bytes of the attention score (softmax) and dropout outputs; it is proportional to s - Spa - b - np,
(the size of the attention score matrix for nj, heads and the chunk of sequence Sr4 (if tiling is applied on attention))

and multiplied by Bf OP} , or Bgfop and the number of such ops (1150 74 Mdrop)- ActP’%J Attn is the bytes of the output of
the attention layer (projected back to hidden size k) plus any dropout applied to it; it scales with s, b, h and includes a

i Attn Attn
proportion of 1/4 of (nj,1' + My Cast

For multi-head latent attention (MLA), which involves compressed key/query representations and possibly Rotary

) for activations.

Positional Embeddings (RoPE) of dimension d7, the formulas adjust accordingly. The parameter count Paramyy;, in

MLA is lower because dj and ch (compressed dimensions) replace h in some weight matrices, and there are additional

terms for RoPE. The activation Actggx similarly becomes more complex, but essentially it shows that when keys/queries
are compressed (smaller d¢, ch) and RoPE is applied, the activation size is reduced (fewer values per token to store) at
the cost of slightly more complicated per-head computations (the formula inside the big parentheses captures that).
While these detailed formulas are used internally for precise accounting, a high-level understanding is that our
model keeps track of each significant intermediate in the attention computation (Q, K, V, attention scores, outputs)
and their contributions to memory. This allows it to adjust memory usage for variations like grouped-query attention
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(where ny, < np), or using FP32 for softmax (Bf;}t) versus FP16 for other parts, etc., and to plug these into both the

memory and communication cost estimates.
2.3.7 Feed-forward and Mistral of Experts (MoE).

Standard FEN (Transformer-based).

MOE _ MOE _ MOE _ routed _ pFP FFn _FFn FFn
Actyguier = Actiyareg = Acteoncar = 0. Actern iy = Buey s+ b hyy (max(nyp nppig) + MpCast 1).

MOE MOE
trouter’ ACtshared’
are all zero. The only activation to consider from the FFN is the output of the hidden layer (which we treat as

FP
act

In a standard dense FFN (with no MoE), there are no MoE-specific activations. Thus Ac and

MOE
Athoncat

routed
ACtexpert

the hy¢-dimensional FFN hidden output for all s - b tokens) times a factor accounting for the operations that produce

this output. The term max(nﬁ: A{\I] , ngfﬁd) corresponds to however many matrix multiplications are used in the FFN
FFN

(e.g., one for a fused FFN or two for separate in/out projections), My Cast

the +1 accounts for the activation function’s output (ReLU, SwiGLU, ...). In simpler terms, we ensure that if the FFN has,

routed

for uniformity of notation). The formula above for ActeXPert

essentially calculates B, - s - b - hyy (bytes for

covers any extra precision cast operations, and

say, two matmuls and one activation function, we count those intermediate outputs appropriately.

Mixture of Experts (MoE) FFN. Let hyr = h%

fr

P — (" s FFn _FFn

aramppy = (Mgy + Ngy) - max(nyp, npying) - (h-hep+hep), (19)
MOE FP

Actrouter = Bacr - s+ b (anx +topg), (20)
MOE FP FF) FF) FF)

ACtshared = Bget Mex b hff ’ (max(an/[, nBI\ZlM) + anrzlist + 1)’ (21)
MOE FP

Acteoncat = Bact *$ - b-h, (22)
MOE FP FFi FFi FF

Actyguied = Bace * topic s - b - hyp - (max(myy, ngyiy) + anr;st +1). (23)

In the MoE version of the FFN, Paramppn multiplies the number of experts per rank (routed plus any shared

experts) by the per-expert parameter count. Each expert is essentially an FFN of size h — hff — h, which has about

FFN nFFN
MM >’ "BMM

whether one or two matrix multiplications define the FFN (similar reasoning as the dense case). Thus, for example, if

(h - hfr+ hgy) parameters (weights plus biases for both layers). We multiply by max(n ) to account for

each expert has two linear layers, this formula yields (ng, + ng,) times two sets of (h - hgy + hyr) parameters.

The MoE activation terms are as follows. Act%ﬁfer is the gating output: for each of the s - b tokens, the router

produces a probability or score for nl, (the number of local experts) and perhaps additional topy signals (like the
indices or probabilities of the top-k selected experts). The factor (2n,. + topy) is a proxy for the size of the router
output per token (commonly, routers output nl, probabilities and we might count the top-2 experts, so 2n}, covers a
one-hot or mask plus maybe two chosen indices).

ActMOE i the activation output of any shared experts on that rank. There are n3, shared experts (which each
shared ex
process all tokens, as opposed to routed experts where each token goes to only one). Each shared expert produces an

FFN _FFN FFN

h p-dimensional output per token. We multiply ng,., s, b, hr¢ by the same factor (max(ny ;' ngy /) + MyCast 1) as

in the dense case to account for intermediate outputs within the shared expert’s computation.

MOE
ACtL‘oncat

is the output of the MoE layer after combining all expert outputs. After each token is processed by either

one of n},, experts or all nj, shared experts, the results are summed/concatenated back into a single h-dimensional

BFP

output per token. Thus we allocate B,

- s - b - h bytes for this combined output.

Manuscript submitted to ACM



PRISM: Profiling-Free Symbolic Memory-Driven Strategy Planner for Large DNN Model Training 11

Actjr‘ggf , is the activation output of the routed experts. Each token that is routed goes to topy. experts (often topy = 1

or 2). Thus we consider topy. - s - b "token-expert" combinations per micro-batch. Each such combination produces an
: : : : : : FFN FFN FFN : >
hf f-dimensional hidden activation (with the same factor max(n; .., npyn,) + 1 oCast T 1 accounting for the expert’s
internal layers). We multiply by BEP, ac¢ to convert to bytes.
2.3.8 Normalization.
0,
Paramnorm = nngrm - 2h, ActNorm = Bnorm nngrm s-b-h.

Normalization layers (e.g., LayerNorm or RMSNorm) have two parameters per instance: a scale and a bias, each of length
h. Thus, if a model has nﬁgrm normalization operations in total (including those in each layer), the total parameters
are 2h per operation times nﬁgrm. The activations from normalization are of the same shape as the input: for each
normalization op, an h-dimensional output is produced for each of the s - b tokens. Therefore ActNorm = nggrm -s-b-h
elements, each stored in BEE. | bytes (which could be FP16 or FP32 depending on implementation). In summary, the
normalization contributions scale linearly with the number of normalization layers and have negligible additional

structure beyond counting the vectors.

2.3.9 Transient byte formulas (consistent with the comm model). Let etp € {1,t} denote expert-model parallel, and
commy, comm;, comme, comm, € {0, 1,2,3} be mode/masks. We use the following byte bounds to instantiate the

subterms in (4):

Data Parallel/Optimizer Parallel:

1 1
spip T p) + ParamFFn(sp'etpep + max(ep,etp)

(Paramapyy, + ParamNorm)( ) , commy = 2,

2 2 1
spip T p) + ParamFFn(sp-etp-ep * max(ep,etp)

Commpp/op = | (Paramayy + ParamNorm)( ), commy =3,

0, otherwise.
Tensor Parallel:
1 % Ngather S * b (h+ hff) . PPFactor?Ched, nh.=1,
CommTp = commy; - — X
D FF Moy Att
7 Ngather * Bact (hff M ep +1gy) +h- nMerl)’ gy > 1.

Expert Parallel:

sched | 2-s-b- h
sp-t

Commgp = comm, - PPFactor;

Sequence Parallel:
FFn) 1

Commcp = commg - S - b (3h nﬁtﬁl + thf n 2

All byte expressions above are linear functions of the same parameter and activation bucket counts defined for
each layer, and they share the same shard divisors (dp, tp, sp, cp, ep) we have been using. Therefore, any change in a
strategy’s hyperparameters (s, b, m) or parallelization choices consistently affects both the dynamic memory usage
and the communication volumes. For example, if we increase the micro-batch size b, then s, b increases linearly, which
in turn linearly scales up both the activation memory in Eq. (3) and the activation-derived communication bytes in

formulas like TTP SP

, etc. Conversely, if we shard a dimension more (say increase tp), then terms like 1 7 in the above
expressions will reduce the memory per rank for that layer’s activations and parameters, while the number of ranks

participating in communications increases (reflected in different comm modes and multiplicities, as we’ll see), which
Manuscript submitted to ACM
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might increase total communication time. This coherence between memory and communication models ensures that our
strategy search (next section) can trade one for the other without inconsistency. Note also that increasing vpp (virtual
pipeline parallelism) does not change the per-micro-batch payloads in any communication term (e.g., the boundary

message size in Eq. (33) remains the same); it only changes how frequently such messages occur.

2.4 Communication cost model

From memory buckets to bytes. For a layer ¢, let the memory buckets from Sec. 2.3 be Param(¢), Grad(?), and Act4(?)
with A € {Attn:QKYV, Attn:Score, Attn:Proj, FFN, MOE:router, MOE:routed, MOE:shared, MOE:concat, Norm/Util}. Their

byte sizes are

ParamBytes(¢) = Param(¢) ng, GradBytes(f) = Param(?¢) ngd, ActBytes, (£) = Acty(f) Bgz.

In other words, we multiply each count by the number of bytes per element of that type (parameters, gradients, or
activations) to get the total bytes. When a model dimension is sharded, the relationship between a local shard and the full
global tensor is captured by explicit divisors (e.g., each rank might hold 1/(tp - sp) of a fully sharded parameter, or 1/sp
of a sequence-split activation). We introduced layer-specific divisors ¢"/°%tp(£) € tp, 1 and y/*"seq(¢) € sp, sp, 1
earlier, which mark whether layer £’s inputs/outputs are in a sharded or global view for tensor or sequence parallelism.
We also have two bucket sets A™M¢ and AUe that enumerate which activation buckets each layer consumes as inputs
and produces as outputs, respectively. We will use these to sum up activation bytes for communication.

Latency bandwidth model. For any collective pattern pat € {allreduce, allgather, reducescatter, alltoall, p2p} over a
group of size g and payload b bytes,

b
Bpat (9) ’ @9
with apat(g) (latency) and Bpat(g) (effective bandwidth) set by topology/algorithm.

Teoll(b; g, pat) = (Zpat(g) +

Per-micro-batch layer costs rtf') (b). We now derive the per-micro-batch communication cost for each layer (or each
parallel dimension) using the above model. All () ¢(b) are per-micro-batch costs (for clarity we omit the dependency on
i or stage in the notation, as each layer ¢ is associated with a specific stage). Importantly, activation-derived bytes scale

with the per-rank micro-batch size b (larger micro-batch means proportionally more activation data to communicate).

Data parallel (classic) and optimizer sharding (OP/ZeRO-3). Let g4,=dp and op < dp be the optimizer partition count.

T?P = TCOH(bZ%y;:;Sm; g =gdp’ pat:allreduce), (25)
7OPAG _ Tcou(bzl%g’s([); g=op, pat =allgather), (26)
TfopRS = Tcoll(b =%; g =op, pat =reducescatter). (27)

Equation (25) is the time to perform an all-reduce on layer £’s gradients across the dp data-parallel ranks (classic
data-parallel gradient synchronization). The payload b is the number of bytes of gradients each rank has for that
layer, which is GradBytes(#) divided by tp - sp (since if tensor or sequence parallelism is applied, each rank only has
1/(tp - sp) of the layer’s gradients). The collective group size is g4, = dp. Equations (26) and (27) are the additional
costs introduced by ZeRO-3 style optimizer partitioning. tOPAGy i the time to all-gather the layer’s parameters (of size
ParamBytes(#) per full model) across op ranks (each rank originally has 1/0p of the parameters if op groups are used).
This occurs at the start of the forward pass for that layer. 797RS¢ is the time to reduce-scatter the layer’s gradients
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across those op ranks after backward (each rank ends up with the 1/0p portion of gradients to update its partition of
the parameters). In many cases op = dp (full partitioning across all data ranks), but we allow op < dp to model partial
ZeRO (in which case dp/op ranks form each partition group). These operations use group size g = op and payloads

similarly divided by tp - sp if model parallelism or sequence parallelism also split the gradients/parameters.

Tensor/model parallel (TP). With indicators )(ti,n_gather, )(;?“t"ed e{0,1},

TB;G(b) = X:,n_gather Tcou(b = W Z ActBytes, (¢); g=tp, pat:allgather), (28)
® AeAin

TZgR(b) = X?“t'red fcou(b = W Z ActBytes, (£); g=tp, patzallreduce), (29)
’ Ae AN

7,7 (b) = 7y 5 (b) + ) g (B). (30)

If a layer ¢ is tensor-parallel sharded (for example, a linear layer whose weight matrix is split across tp GPUs),
then before computing the layer we may need to all-gather the input activations from the ¢p ranks (so that each
rank has the full input). This cost is 77 F £, AG. We determine the payload by summing the sizes of all input activation
buckets A"¢ for that layer (e.g., for a linear layer this might just be the output of the previous layer, whereas for
attention it might include multiple inputs like Q, K, V), then dividing by ¢**tp(¢). If £’s input was originally split
across tp ranks, then ¢ tp(£) = tp and 1/¢"™tp(¢£) gives the fraction of global input that each rank initially had, thus
m Y.Ac aing ActBytesA(£) is the bytes each rank must send (and receive) in the all-gather. If £’s inputs were not
split (¢ tp(#) = 1), then no all-gather is needed (which is also signaled by y#~94therp — ¢ in that case). Similarly,
TP, AR covers a possible all-reduce after the layer. For instance, if layer ¢ produced outputs that were model-parallel
replicated across ranks (like a bias gradient that every rank computed independently and now needs to be summed), we
perform an all-reduce over ¢p ranks on that output. The payload is the sum of the relevant output activation buckets
(divided by ¢°% tp(#) if that output is split among ranks). We gate these costs with y°"t""¢d¢ which would be 1 if,
say, the layer produced some globally shared value (like a fully-connected layer’s bias term’s gradient). In practice,
many layers have either an input gather or an output reduce or both. We sum TP AG and TP AR to get the total
tensor-parallel comm cost 77 Pe.

Sequence (SP). With indicators )(;eq_gather, )(;eq_red

-gaths
‘[?P(b) = X;eq gather Tcou(b = m Z ActBytes, (£); g=sp, patzallgather)
AeAy?

€{0,1},

+ X;eq-red Tcoll(b = % Z ActBytes, (£); g=sp, patzreducescatter). (31)
Ae A

This is analogous to the tensor parallel case but for sequence (or context) parallelism. If layer ¢ has its sequence
input split across sp ranks (e.g., each rank processes only a subset of the sequence positions), then before the layer we
might need to gather the full sequence on each rank. i/"seq(¢) is either sp depending on which parallelism is used
(or their product if both apply), or 1 if the inputs are not sequence-sharded. We sum the input activations and divide
by ¢/i"seq(¢) to get the bytes per rank to all-gather. Similarly, if the outputs were sequence-sharded and need to be
combined (e.g., for a subsequent all-reduce), we include the reduce-scatter term. These communications happen over sp

ranks.
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Expert parallel (EP, MoE). Let ¢route(£) € [0, 1] be the fraction of routed activations that leave the rank (given

(ep, topy, nhy, Ny, Mmoe_cap)).
Tf‘P(b) = Tcou(b = 2 Proute () ActBytesyog.routed (£); 9=€ps pat:alltoall). (32)

This means that for MoE layer ¢, a fraction ¢route of the token activations (those routed to other ranks’ experts) are
sent, and an equal fraction are received (hence 2, ¢route portion of the total bytes of routed activations are exchanged).
The group size is ep (all expert-parallel ranks participate in the all-to-all).

Pipeline boundary (PP). Let U; be the set of point-to-point boundary transfers on stage i. With shard divisor
@tp,sp €{tp, sp, tp - sp, 1} on the boundary tensor,

TPb) = Y b = BB gy o). (33)
uel;

This sums the times for all point-to-point sends from stage i to stage i + 1 for one micro-batch. Each such boundary
message u (e.g., the activations output by a certain layer that gets sent to the next device) has size BoundaryBytes(i —
i+ 1,u) bytes if it were not sharded. We divide by ¢y sp to account for any model or context parallel partitioning of

that message.

2.5 Strategy solving

Decision variables and constraint. A strategy is s = (dp, tp, pp, vpp, sp, ep, op, R, b, sched) with
sched € {1F1B, SeqPipe, DualPipeV}, recomputation policy R, schedule Sched and optimizer partition op < dp. We

jointly choose per-rank micro-batch size b € N and accumulation steps m € N, under the global-batch constraint

G=dp-b-m. (34)

Communication multiplicities. Let p.(m) be how many times a collective appears in one training step:

PTP = PSP = PEP = PPP = POP AG = M, PDP AR = POPRS = 1. (35)

These match the semantics: TP/SP/SP/EP collectives and PP P2P are per micro-batch; classic DP all-reduce and OP

reduce-scatter are once per step

Per-step communication time. Using the per-micro-batch layer costs from Sec. 2.4,

Tsct(e’pmm(s, b,m)=m Z TiPP(b) + Z [m T[TP(b) +m T?P(b) +m rf‘P(b) +m T?P AG r?P RS 4 T?P], (36)
i te Ll
where L is the layer set. Equation (36) is a no-overlap bound; a schedule-aware overlap map can refine it without

changing bytes or multiplicities.

Bubble term. Let © 1, (b) be the per-micro-batch compute time (approximately linear in b from operator enumerations).
Let gsched (PP, vpp, m, Ajmp (s)) be a dimensionless schedule factor (decreasing in m) and A;p, (s) a normalized stage-
imbalance measure. With crecomp(R) the recomputation overhead in micro-batch-equivalents,

B(s,b,m) = Oy, (D) |gsched (PP, vpp, M, Ajmb () + crecomp (R) |- (37)
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Feasibility and objective. We require steady-state schedulability and per-accelerator memory feasibility:
SCHEDULEVALIDWITH(pp, vpp, sched, m), max Peakmem,i(s; b,m) < Mpudgets (38)
1
where Peakpem,; is given by Eq. (2). Since useful compute per step is invariant, we minimize

J(s,b,m) = B(s,b,m) + T;ggim(s, b, m) (39)

subject to (34) and (38).

Solution sketch. Let nj be any residual tiling factor (often n=1). Enumerate structural tuples (pp, dp, tp, ep) such that
pp-dp-tp-ep-n = N.For each, try legal vpp, op | dp, sched, and R. Set Q = G/dp and jointly scan integer pairs
(b, m) with m € Divisors(Q) and b = Q/m. Keep only candidates that satisfy (38); score them by (39) and return the
minimizer (s*,b*, m*). This joint solve captures the couplings: increasing b raises per-call payloads but reduces m
(fewer per-micro-batch collectives and smaller bubble), while vpp reduces gscheq but raises activation liveness already
reflected in Peakmem,; [14].

Consistency check. By construction, all payloads in (36) are linear forms of the same buckets appearing in Sec. 2.3,
with identical shard divisors (dp, tp, sp, ep). Thus any change in (s, b, m) affects memory and communication coherently:
if a modification reduces dynamic memory by sharding a dimension, the corresponding collectives in (36) increase

(more traffic or more calls), and vice versa.

Algorithm: joint memory-feasible, communication-aware search. We turn the formulation in Egs. (34)-(39) into a
concrete search that (1) enumerates structural degrees (dp, tp, pp, ep) and legal vpp, op | dp, schedules and recomputation
policies; (2) jointly scans integer pairs (b, m) that satisfy the global-batch constraint G = dp - b - m; (3) enforces memory

feasibility using the peak estimator in Eq. (2); and (4) scores feasible candidates with the objective in Eq. (39), where the

Tcomm

communication time step

is given by Eq. (36). All byte payloads are linear in the same buckets as the memory model,

and multiplicities follow Eq. (35), ensuring consistency between memory and communication.

3 Experiments

We evaluate PRISM across four widely used dense model families—DeepSeek3, Llama2/3, Mistral, and Multi-modal
model-TextHawk and one sparse architecture, Llama-MoE. This suite allows us to assess PRISM’s scalability and
generality under heterogeneous model architectures.

Hardware setup. Experiments are conducted on a Huawei Ascend-910 (A910) AI cluster, scaling up to a maximum of
1,024 NPUs. Each compute node contains 8x A910-64GB NPUs. Intra-node communication adopts a mesh topology via
HCCL [1], delivering up to 392 GB/s aggregate bandwidth per NPU. For inter-node communication, multiple A910
nodes are connected in a RoCE-based ring, with each interface providing 25 GB/s of unidirectional link bandwidth.

Software setup. We integrate our PRISM into MindSpore [2] and execute deep learning models within this framework.
Using the framework’s profiling utilities and device counters, we report per-run step time (ms/step) and peak HBM
memory usage (GB). Unless otherwise specified, measurements exclude warm-up and are averaged over steady-state

steps.
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Algorithm 1 PRISM-Search

Require: L, Myudgets G, candidate sets for (s = (dp, tp, pp, vpp, sp, ep, op, R, b, sched) 23: end if
Ensure: (s*,b*, m*) minimizing J 24: end for
1 J* « +oo, (s*,b*,m*) « @ 25: end for
2: for all (dp, tp, pp,ep) do 26: end for
3: for all vpp do 27: end for
4 forall op | dp do 28: end for
5 for all sched do 29: end for
6: for all R do 30: return (s*, b*, m*)
7: Q « G/dp
8: for all m € Divisors(Q) do
9 b—Q/m
10: if not SCHEDULEVALIDWITH (pp, upp, sched, m) then
11: continue
12: end if
13: s « (dp, tp, pp, vpp, sp, ep, op, sched, R)
14: PeakMem; « PEAKMEMBYSTAGE( L, s, b, m)
15: if max; PeakMem; > Mpydger then
16: continue
17: end if
18: Ts‘t‘ég‘m «— CommSTEP( L, s,b,m)
19: B « BUBBLE(s, b, m)
20: J = B+Te™
21: if ] < J* or (J =J* and max; PeakMem; smaller) then
22: (s*,b*,m*) « (s,b,m); J* « J

3.1 Evaluation of memory prediction accuracy

We evaluate PRISM’s per-device peak HBM memory prediction against runtime measurements. Accuracy is computed

as

|Pred — Real| )
Real ’
and we also report mean absolute percentage error (MAPE). Tables 2 and 3 list configuration details and the predicted

Acc =100 x (1—

(Pred) versus measured (Real) peaks in MB; for readability, discussion below converts absolute errors to GB.

DeepSeek3 scaling from 64 to 1,024 devices (Table 2). Across the five configurations, mean accuracy is 92.03% (median
91.52%; range 86.11-98.72%); the corresponding MAPE is 7.97%. The mean (median) absolute error is 4.14 GB (5.05 GB);
RMSE is 4.70 GB with a minimum error of 0.46 GB and a maximum of 7.01 GB. The DualPipe case at 128 devices (row 2)
shows the largest deviation (86.11% accuracy), consistent with additional warm-up/flush micro-steps not overfit by our
profiling-free model. Restricting to 1F1B rows (4/5 cases), mean accuracy improves to 93.51% (MAPE 6.49%). At the
largest scale, accuracy remains high: 94.54% at 1,024 devices (row 5).

Cross-model generalization at varied scales (Table 3). Over eight configurations spanning Llama2/3, Mistral, MoE,
and Texthawk, mean accuracy is 95.80% (median 96.42%; range 87.72-99.82%) with MAPE 4.20%. The mean (median)
absolute error is 1.80 GB (1.42 GB); RMSE is 2.41 GB; the smallest error is 0.08 GB (Llama3, 80 layers, 64 devices), and the
largest is 5.03 GB (Llamaz2, 32 layers, 8 devices). Errors are balanced (4 underestimates vs. 4 overestimates). At extreme
scale, Llama-MoE on 1,024 devices retains high accuracy (97.05%).

Discussion. Together, Table 2 (intra-model scaling) and Table 3 (inter-model diversity) show that PRISM achieves robust
peak-memory prediction across schedulers (1F1B, DualPipe), parallelism mixes (DP/TP/PP/EP/OP/SP with/without
VPP), and cluster sizes up to 1,024 devices, all without profiling. The largest deviations occur in schedule variants with
additional warm-up/flush and chunk-boundary effects, whereas mainstream 1F1B settings track closely to measurements.
Despite intentionally excluding communication buffers in our memory model, PRISM’s predictions are sufficiently

accurate to act as a reliable feasibility constraint for strategy planning at scale.
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Num layers Numdevice DP TP PP EP SP OP VPP GBS Sched Pred Real Accuracy(%)

9 64 8 8 1 64 1 8 1 8 1f1b 36032 36498 98.72
16 128 32 2 2 64 1 32 2 1920 dualpipe 44542 51724 86.11
62 256 256 1 1 25 1 256 1 8192 1f1b 43640 48899 89.24
60 512 4 8 16 8 1 4 1 512 1f1b 55765 60931 91.52
62 1024 128 4 2 256 1 8 1 8192 1f1b 60707 57563 94.97

Table 2. Configurations for DeepSeek3. Reported Pred and Real are per-device peak HBM memory in MB

Model Num layers Num device DP TP PP EP SP OP VPP GBS Sched Pred Real Accuracy(%)

Llama2 32 8 1 2 4 1 1 1 1 256 1f1b 47137 41983 87.72
Llama2 80 64 2 4 8 1 1 2 1 256 1fib 55380 54899 99.12
Llama3 80 64 1 8 8 1 1 1 1 256 1f1b 46320 46236 99.82
Llama3 80 128 1 8 8 1 2 1 1 256 1fib 43013 46718 92.07
Mistral 32 16 8 1 2 8 1 8 1 128 1f1b 48420 47956 99.03
Llama-MoE 70 1024 32 2 16 8 1 32 1 1536 1f1b 50150 51675 97.05
Texthawk (6,1,4,4) 8 2 2 2 1 1 2 1 4 1fib 31728 33120 95.80
Texthawk (26, 1, 4, 61) 512 8 4 16 4 1 8 1 128 1f1b 44307 46265 95.77

Table 3. Consolidated configurations across model families. Metrics follow Table 2.

Model Devices  Megatron-LM MFU (%) PRISM MFU (%)  Speedup (X)
DeepSeek3 128 29.40 36.20 1.23%
Llama-MoE 128 13.63 19.50 1.43%
Llama-MoE 256 19.90 25.20 1.27%

Table 4. MFU comparison between the baseline (Megatron-LM) and PRISM across models and scales. Speedup is PRISM / baseline.

3.2 Performance Evaluation

We assess PRISM using Model FLOPs Utilization (MFU, %), a standard proxy for training efficiency. As shown in Table 4,
PRISM consistently improves MFU across models and scales.

On DeepSeek3 with 128 devices, MFU rises from 29.40% to 36.20% with 1.23Xx speedup. For Llama-MoE at 128 devices,
it increases from 13.63% to 19.50% with 1.43X speedup. Even at 256 devices, Llama-MoE improves from 19.90% to 25.20%
with 1.27x speedup. Overall, these results correspond to 1.23X-1.43X speedups.

4 Conclusion

In this paper, we proposed PRISM, the first profiling-free symbolic planner that unifies memory and communication
modeling to automatically select optimal parallelization strategies for large-scale DNN training. PRISM captures the
intrinsic memory behavior of layered architectures through a symbolic grammar and extends it to account for diverse
parallelism and optimization techniques. This enables accurate peak memory prediction and principled exploration of
the trade-off between pipeline bubbles and communication costs. Our results show that PRISM consistently improves
utilization and scalability across different models and device scales. Moving forward, we plan to extend PRISM to a
broader range of model architectures and heterogeneous training environments, and to integrate interactive visualization

to help users better understand how parallel strategies impact memory and performance.
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