Towards Energy-Efficient Serverless Clouds: A Reinforcement
Learning-Based Scheduling Approach

Praewpiraya Wiwatphonthana!, Miika Komu*, Konstantinos Vandikas*,
Lackis Eleftheriadis*, Oleg Gorbatov*, Selome Tesfatsion*, Xuejun Cai* and Roberto Morabito?
*Ericsson Research, email: firstname.lastname @ericsson.com,
TNo affiliation, email: praewpiwwpt@ gmail.com, {Eurecom, email: roberto.morabito @eurecom.fr

Abstract—The serverless computing paradigm has trans-
formed cloud infrastructure by favoring dynamic resource allo-
cation and automatic scaling, reducing the complexity of infras-
tructure management. However, as workloads with high com-
puting demands and rapid instantiation requirements become
more prevalent, energy efficiency remains a critical challenge.
Inefficient workload scheduling can lead to suboptimal resource
utilization and increased power consumption. In this respect,
traditional scheduling policies often struggle to adapt to the
dynamic and unpredictable nature of serverless workloads, high-
lighting the need for more energy-aware scheduling strategies. In
this work, we propose a Reinforcement Learning (RL)-assisted
scheduling approach to enhance energy efficiency in serverless
cloud computing. We develop a Deep Q-Network (DQN)-based
scheduler that continuously learns workload placement strate-
gies, minimizing cluster-wide power consumption, and consoli-
dating workload across available Nodes. We implement our ap-
proach as a custom scheduling plugin for Kubernetes, ensuring
seamless integration with Knative-based serverless workloads.
We evaluate our approach using live system telemetry and
compare its performance against baseline scheduling techniques.
The results show that our RL-based scheduler outperforms the
default Kubernetes scheduler by 9.5% in the total cluster CPU
consumption, allowing potential energy savings.

Index Terms—Serverless, Scheduler, Energy Awareness, Ku-
bernetes, Knative, Deep Reinforcement Learning

I. INTRODUCTION

Serverless or Function as a Service paradigm provides an
abstraction layer to allow executing workloads dynamically
without requiring fixed resource allocations [[1]-[3]] in order to
reduce operational costs. However, as cloud workloads grow
in complexity, energy efficiency remains a critical challenge,
particularly in large-scale cloud data centers, where power
consumption is a major concern [4]|-[7]. While serverless
platforms inherently introduce energy-saving mechanisms,
such as suspending idle resources and dynamically scaling
functions, workload scheduling remains an open problem for
further improving energy efficiency [8]. Inefficient scheduling
can lead to suboptimal resource utilization, increased power
consumption, and higher operational costs [9].

A key challenge in serverless scheduling is the unpre-
dictability of workloads, which often lack well-defined re-
source requirements, making workload placement strategies
more complex [10]. This unpredictability limits the effec-
tiveness of traditional scheduling strategies, such as Round
Robin or Best-fit CPU allocation, which operate with static

heuristics that fail to adapt to the dynamic nature of serverless
workloads [[11]. These scheduling problems are particularly
relevant in both cloud and edge computing, where resources
may be constrained, requiring more adaptive and energy-
aware workload placement strategies.

To address these challenges, machine learning (ML)-based
scheduling has emerged as a promising approach [12], [13]].
Specifically, reinforcement learning (RL) has been demon-
strated potential in dynamically optimizing scheduling poli-
cies by continuously learning from system feedback. Hence,
we propose a deep Q-Network (DQN)-based scheduling
approach that aims to minimize energy consumption while
maintaining efficient workload execution. Leveraging RL, our
scheduler learns optimal workload placement strategies over
time, dynamically adjusting to varying system conditions and
resource demands. We evaluate the proposed approach using
Knative-based serverless workloads and compare its perfor-
mance against some baseline scheduling techniques, including
Random Scheduling, Round Robin, “Best Fit CPU < 80%”,
and the Default Kubernetes Scheduler. Our results demon-
strate that the RL-based scheduler achieves higher energy
efficiency compared to traditional methods by consolidating
workloads onto fewer active Nodes while maintaining an
acceptable trade-off between performance and energy savings.

Our key contributions are as follows. (1) We propose an
RL-based scheduler that optimizes workload placement for
energy efficiency in serverless cloud environments. (2) We
implemented our solution as a custom Kubernetes schedul-
ing plugin, enabling seamless integration with Knative-based
serverless workloads. To the best of our knowledge, this is
the first work to address energy-aware scheduling for Knative.
(3) We benchmark our approach against multiple scheduling
baselines using live system telemetry, analyzing its impact on
energy consumption, resource utilization, and response time.

The paper is organized as follows. Section II provides
a background on serverless computing, cloud orchestration,
and scheduling approaches. Section III describes the sys-
tem design and architectural components of the proposed
scheduling framework. Section IV details the DRL agent
and the decision-making mechanism. Section V presents the
experimental setup, and Section VI discusses our results and
findings with respect to the baseline comparison. Section VII
highlights related work, positioning our contributions within

the broader research landscape. Finally, we conclude the paper
with a summary of findings and directions for future research.

II. BACKGROUND

Serverless Computing (SC) is a cloud service model that
allows one to build and run applications without managing
underlying servers or infrastructure. In this model, developers
can focus on the code logic, while all the responsibilities
of provisioning, scaling, and maintaining these servers are
handled by the cloud service provider (CSP) [14]. A key
feature of SC services is the use of serverless functions, where
each function only runs for the time necessary to complete
the task; once execution is finished, resources are automat-
ically released. To support serverless computing, serverless
platforms are specifically designed to manage the execution
of serverless functions [10]], [15], [[16]. These platforms
are widely adopted to simplify application development and
their cost-effective pay-as-you-use billing model. Serverless
platforms [17] from leading CSPs and open-source platforms
[18] are available to offer flexibility and control in container-
based environments [[19]].

One of the key concepts of SC is Cloud Orchestration that
allows automating the deployment, management, and scaling
of containerized applications in distributed environments.
One of the most widely adopted platforms is Kubernetes.
Kubernetes supports the declarative configuration that allows
developers to define the deployment based on the controller
design pattern, while the platform automatically maintains
it. Kubernetes consists of several core components that are
divided between the Control Plane and Worker Nodes. The
Control Plane is responsible for managing both the Worker
Nodes and the Pods across the cluster. The Control Plane
manages the overall state of the Kubernetes cluster and
coordinates the scheduling and execution of containers.

Knative is one of the open-source alternatives to support
serverless operations in Kubernetes maintained by CNCFE.
Knative simplifies building, deploying, scaling, upgrading,
and managing serverless applications and event-driven func-
tions. Although Knative has three key components, which
are Function, Serving, and Eventing, Knative’s components
are independent by design [20]. Knative Function is a pro-
gramming model for developing and deploying serverless
functions. Knative Serving manages and controls the deploy-
ment, upgrading, versioning, routing, and scaling of serverless
applications. Knative Eventing is a framework for building
event-driven architectures, allowing services to communicate
asynchronously and respond to specific triggers. Monitoring
tools such as Prometheus and Kubernetes Efficient Power
Level Exporter (Kepler) [21]], which is a Prometheus exporter
have been developed to improve observability in containerized
environments. Prometheus tracks resource usage and per-
formance. Kepler focuses on estimating power consumption
using machine learning models based on CPU performance
and kernel traces.

Kubernetes Scheduler is responsible for distributing work-
loads across Nodes in a cluster and allows one to identify

a feasible Node, which satisfies the specific requirements to
run a newly created or unscheduled Pod. Kubernetes has
kube-scheduler as a default scheduler that runs as part of
the Control Plane. To manage Pod scheduling, the scheduler
works alongside the Kubernetes API Server that acts as a
central communication hub for all Kubernetes components.
When a new Pod is created, the API Server adds it to the
queue [22] and the scheduler then performs filtering and
scoring: In Filtering, Nodes that do not meet the Pod’s
requirements are filtered out and it results in a list of feasible
Nodes. In Scoring, the feasible Nodes are scored based on
criteria such as resource efficiency and affinity rules. The
Node with the highest score is selected for the placement
of the Pod and, finally, the scheduler binds the Pod to the
selected Node and updates the Pod state to indicate on which
Node it will run on [23], [24].

The Scheduling Framework (SF) represents a modular ar-
chitecture integrated within the Kubernetes scheduler, improv-
ing its adaptability and extensibility [25]]. SF provides a set of
plugin APIs that allow most scheduling functionalities to be
implemented as plugins for the core scheduler. The scheduling
can be customized by developing a standalone scheduler or
extending the default kube-scheduler using Scheduler Exten-
der (SE) [26], [27]]. Although SE enables rapid extensions
with minimal setup, it is limited to specific extension points
and relies on HTTP communication, which introduces ad-
ditional overhead. To address these limitations, SF provides
plugin-based extensions [28]]. These are compiled directly into
the scheduler binary, eliminating inter-process communication
overhead and allowing finer control over scheduling phases.

III. SYSTEM DESIGN

Fig. [I] provides an overview of the implementation ar-
chitecture and its components. Kubernetes Control Plane
is a core infrastructure responsible for managing all ma-
jor deployed components, including the Serverless Platform,
Scheduler, Scheduler Controller, and Metrics Collector. We
employ Knative Functions in our system. The API requests
are first queued through the Event Queue and then forwarded
to the Kubernetes API Server by the Dispatcher. Scheduler
Controller, developed here, employs various algorithms to
optimize workload placement decisions. It is capable of
functioning as an RL agent or as a simpler baseline algorithm
(Random, Round Robin, and Best Fit). The controller learns
from historical data to improve placement strategies.

The Data Manager is developed by us; it records the
state of the cluster in the Redis database, including metrics
on resource usage and availability, to support the Scheduler
Controller. The Data Manager scrapes resource usage and
Pod CPU consumption metrics from cAdvisor in 15 second
intervals. Redis is an in-memory data store, and we utilize it
for data sharing between the Scheduler Controller and Data
Manager based on its publish-subscribe mechanism. Metrics
Collector gathers real-time metrics using Prometheus, Kepler,
and cAdvisor. Prometheus aggregates resource usage data

00] 00]

Node 4)) Node p
Execution Environment

Prometheus

Metrics
Collector

&)

Scheduler
Where Controller /

Custom ——> | DRL Agent

Default Scheduler
Scheduler Plugin States _

[

Data
Manager

Kubernetes API Server

T New Pod request
API Event i
[Gateway Queue]—’[Dispatcher]

\ Knative Serverless Platform J

Our Contribution

Kubernetes Control Plane

Incoming

@@ roquest
aa

End users

Fig. 1. System Architecture Implementation Overview

across the cluster, cAdvisor monitors container-level statistics
such as CPU and memory usage, and Kepler provides energy
consumption metrics at the Node level.

In our implementation, we deploy a custom scheduling
plugin as an additional second scheduler alongside the de-
fault Kubernetes scheduler. The default scheduler continues
to manage scheduling of non-serverless Pods. The custom
scheduling plugin is designed specifically to handle server-
less workloads. As shown in Fig. [2 we have modified score
processing stage of the scheduling plugin (highlighted in blue
in the figure) to introduce custom logic for serverless work-
load placement. We have configured the custom scheduler to
be triggered only in the case of Knative workloads, but other
workloads are routed to the default scheduler.

When a new API call to serverless function is invoked,
the Knative system first checks if a serving Pod is already
running. If such a Pod exists, then the call is routed to the
corresponding Pod. Otherwise, Knative requests Kubernetes
to start a new Pod. This, in turn, invokes the custom scheduler
to determine a Node where to start the workloads as shown
in Fig. 2] Our custom plugin receives the invocation and
delegates the Node placement decision to the Data Manager
by sending information about Pods and available Nodes over
gRPC. Next, the Data Manager further requests the Scheduler
Controller (by publishing via a Redis database) to compute
optimal placement for the new Knative serving Pod based
on RL or some other more rudimentary logic. Then, the
Scheduler Controller calculates the placement scores based on
cluster state metrics for all available Nodes in Kubernetes and

Pod Scheduling Context
—— gRPC

[T Modified Plugin

Extensible API

4 ﬁmer stage scoring stage \ 4 N
o
8
New Pods] Bind Pod to Node
g
Sort >
H
3 5 2 i 2
g £ g8l ollzel| 2] |5 5
ju Sll2| |2]/5]|lES||8]|E 823
= i = = o [e3gs3 k) o = = o
'S o w o 12} zwn o o o o o

Q:heduling cycle

Feasible Nodes

Scheduler
[Dala Manager]:e:[cantroller] }7

/ L Binding cycle/

Scored Feasible Nodes

Pod & Node
Information

Redis

Fig. 2. Kubernetes Scheduling Framework Implementation Overview

communicates this information back to the Data Manager that
further delivers them to the custom scheduling plugin. Finally,
the custom scheduler completes the scoring stage, assigning
the serving Pod to the Node with the highest score.

IV. DEEP REINFORCEMENT LEARNING AGENT

RL [29] is a ML approach, where an agent learns to
maximize cumulative rewards through trial and error, guided
by environmental feedback.

Deep Q-Learning (DQN) [30] is a popular algorithm that
overcomes Q-learning’s [31] limitations by using a deep neu-
ral network to estimate Q-values instead of tables, enabling
scalability in large state spaces. DQN is used by the Scheduler
Controller.

DOQN is characterized by three key components: State Space
(St), Action Space (A;), and Reward (R;). In the following,
we describe these in detail:

« State Space: contains 7 state features for each node, thus
resulting in 28 features (4 nodes). These are Node-Level
metrics and Cluster-Level Metrics. Node-Level metrics
are CPU and Memory Usage (%), CPU Availability (%),
Memory Availability (%) and Number of Pods running
on Node. Cluster-level metrics are Total Cluster CPU and
Memory Usage (%). Metrics measured as a percentage
(i.e. CPU/memory usage) are binned into ranges of 0..9.
Then these and all other metrics are normalized between
0..1 via MinMax normalization.

« Action Space: Since we consider 4 Nodes, 4 actions are
possible, indexed as [0, 1, 2, 3] representing the index of
the Node where the serverless workload will be placed.

o Reward Function: There are two main design goals
behind this function: 1) reduce the overall cluster CPU
usage and 2) maximize Node usage. Reward is defined

in [T
R d Node-specific CPU Usage Rate % 0
eward = —
Cluster CPU Usage Rate % P

Where:

— Node-specific CPU Usage Rate (%): refers to the
average utilization rate of the Node chosen by the
agent’s action during the episode.

— Cluster CPU Usage Rate (%): represents the
average utilization rate of all Nodes in the cluster.

— p: Penalty is subtracted to account for any undesir-
able conditions during the episode.

Penalty p discourages under-utilization and prevents
over-saturation of Worker Nodes with serverless work-
loads. Thresholds such as 70% and 80% CPU utilization
are considered based on [32] and [33]. When these
thresholds are crossed, bottlenecks may occur which
can degrade performance. 80% was chosen to maximize
resource allocation 2

_J—a-In(1+ %) x s CPU Usage < 80%
P= CPU Usage > 80%

(@)

a- €B~(CPU Usage—80)

Where:

— « and s: These are scaling factors that control the
severity of the penalty.

— k: A constant used to adjust the penalties growth.

— [B: A constant that controls the growth rate of the
exponential value.

The training process consists of 350 episodes, each with 14
steps, and 40 substeps per step. Episode structure is illustrated
in Fig. [3] In each step a Pod is created for a serverless function
(i.e. fib, Fibonacci calculation). The sequence of functions is
shuffled to ensure diverse task placement. When a step begins,
a request is made to create a Pod and invoke the function. The
Knative platform handles this either by requesting a new Pod
or by routing the request to a Pod that is already running.
Each step is followed by a 15-second delay to ensure that all
changes in the cluster are reflected.

Episode 1 |

/ x R t1
[Slep 1 : Trigger function Pod creation requesl] > ng::‘ 2 5s
L (fib) J L Requestn Iss

15s
Request 1
[Step 2 : Trigger function Pod creation request] >
(matmul) Request 2
|—> Request n

[Step n : Trigger function Pod creation reques

: K (fib) ‘]

Calculate reward
& Update model

Fig. 3. Episode Structure

V. EXPERIMENTAL SETUP

This section details the experimentation setup, including
the cluster configuration and serverless workloads we used.

A. Cluster Setup

We deployed a Kubernetes cluster (v1.29.10) on five virtual
machines (VMs) running in an OpenStack based cloud. Each
VM runs Ubuntu 22.04 LTS (Jammy Jellyfish) as its operating
system. The cluster consisted of one Control Plane Node
and four Worker Nodes, with detailed specifications provided
in Table E} The Knative serverless platform (v1.16.0) was
deployed on the Control Plane Node to manage serverless
workloads. The Control Plane Node orchestrates cluster op-
erations and scheduling, while the Worker Nodes execute the
Knative workloads.

TABLE I
CLUSTER NODE SPECIFICATIONS
Node Type CPU RAM Storage
Control Plane 30 vCPUs 214.8 GB 1000 GB
Worker (x4) 4 vCPUs 16 GB 40 GB

The prototype environment is built using Go for develop-
ing a custom Kubernetes scheduler plugin and Python for
implementing the Scheduler Controller and Data Manager
modules. PyTorch is used for RL model training, while gRPC
and Protocol Buffers facilitate low-latency communication.
Redis provides in-memory caching and real-time pub/sub
messaging, and Asyncio supports asynchronous operations in
the Scheduler Controller and Data Manager modules.

B. Serverless Workloads

The workloads used in this study consist of multiple CPU-
and memory-intensive functions. These workloads are imple-
mented using Knative Functions [34]], which provide templat-
ing for serverless function creation. These templates allow
users to specify the programming language and invocation
format. In this work, Python is chosen as the implementation
language, while HTTP is used as the invocation format.

Our study considers four serverless functions: fib (Fi-
bonacci) recursively computes Fibonacci numbers, matmul
(Matrix Multiplication) generates two matrices and performs
matrix multiplication, mattran (Matrix Transpose) gener-
ates a matrix and transposes it, and f1loat executes a set of
floating-point operations (sin, cos, sqrt).

The resource requirements of each function varies, catego-
rized as low ([+]), medium ([++]), high ([+++]), or negligible
([-]) based on observed resource consumption in our exper-
imental environment. Each function is duplicated multiple
times per episode to simulate serverless execution patterns.
These functions are shuffled in each episode to create diverse
workloads for the scheduler. Table [lIl summarizes the details
of workloads, including data range and increment size. Input
data, provided in JSON format, are shuffled per episode to
introduce variation. Input data are provided in JSON format,
with predefined data ranges shuffled per episode to introduce
variation. To ensure reproducibility and maintain distinct
workload distributions across phases, different random seeds
are used for training and evaluation episodes.

TABLE II
SERVERLESS WORKLOAD DETAILS

Function Res. Req Dups Data Range Incr.
CPU | Mem
fib [+++] | [6 28 to 34 !
matmul [++] [+] 3 1000 to 3000 500
float [+] [++] 3 500000 to 3000000 | 500000
mattrans [++] [+++] 2 6000 to 18000 3000

VI. EVALUATION AND DISCUSSION

In this section, we present an evaluation of our approach
and discuss the results. We first introduce the evaluation cases
and the associated metrics. Then, we demonstrate the ex-
perimental results, including workload placement and system
utilization, energy consumption, and application performance.
Throughout this section, the term evaluation period refers
to the timeframe from the start of the evaluation run to the
completion of all workloads in the final episode.

A. Baselines Comparison and Evaluation Metrics

For each scheduler, the evaluation performed on our testbed
consisted of 20 episodes, each comprising 14 steps, each
step having 40 substeps (number of requests). We compare
the performance of the DQN-based scheduler against four
baseline scheduling strategies commonly used in serverless
and cloud computing environments:

o Random serves as a naive baseline, where workloads
are assigned to a randomly selected Node without con-
sidering system conditions or resource utilization.

« Round Robin follows a cyclic selection process, dis-
tributing workloads sequentially across available Nodes.

e Best Fit CPU < 80% restricts workload placement
to Nodes with CPU utilization below 80%. Among
eligible Nodes, it prioritizes the one with the highest
CPU utilization, with the aim of maximizing resource
utilization while preventing Node overload.

o Kubernetes Default Scheduler follows a two-phase
scheduling process. In the filtering phase, the sched-
uler selects Nodes that meet the workload’s resource
requirements. Then, the scoring phase ranks the feasible
Nodes based on predefined policies, ultimately select-
ing the highest scoring Node for workload placement.
This scheduler policy is widely used in Kubernetes
environments but lacks built-in mechanisms for energy-
aware scheduling, making it an important baseline for
evaluating our RL-based approach.

Using a comparison with these baselines, our aim is to
demonstrate the suitability of our approach in optimizing en-
ergy efficiency, resource utilization, and workload placement.

To assess the performance of the proposed scheduling
strategies, we consider multiple evaluation metrics. These fac-
tors capture different aspects of system performance, includ-
ing workload placement, energy efficiency, and application
responsiveness.

Workload Placement and System Utilization. We track the
placement decision count, which provides insights on the
frequency of workload placement patterns to analyze how
workloads are allocated across cluster Nodes. This metric
helps in understanding how the scheduler distributes work-
loads and utilizes resources across available Nodes.

Energy Consumption Metrics. We monitor cluster CPU
usage rate, which represents the average CPU utilization
across all cluster Nodes on a per-second basis. Based on
our design, this metric is used as a primary indicator of
energy consumption in our system. Kepler cluster power
consumption estimates the total power consumption of the
cluster in watts. Furthermore, we assess Node CPU usage
rate, which measures the per-second average CPU utilization
at the individual Node level over a specified time range.
Application Performance Metrics. We evaluate the impact
of scheduling decisions on application performance with
response time, which is defined as the average time required
to complete a serverless task.

B. Empirical Results

Placement Decision Count. We evaluated each scheduler
over 20 episodes, during which Kubernetes made a total
of 280 scheduling decisions per case. The Node placement
decisions for each scheduling strategy is illustrated in Fig.

Random Scheduler Round Robin Scheduler Best Fit CPU < 80 Scheduler

0 0
Nodel Node2 Node3 Noded
Selected Placement Node

Nodel Node2 Node3 Noded
Selected Placement Node

Nodel Node2 Node3 Noded
Selected Placement Node

DQN-based Scheduler K8s Default Scheduler
280

Count
3
Count
s

0 0
Nodel Node2 Node3 Noded
Selected Placement Node

Nodel Node2 Node3 Noded
Selected Placement Node

Fig. 4. Workload Placement Decision across Episodes

The Random Scheduler placements are relatively uniformly
distributed across the Nodes with minor variations reflecting
the inherent randomness. The Round Robin Scheduler follows
a uniform distribution as the algorithm cycles sequentially
through the Nodes. In contrast, the Best Fit CPU < 80%
Scheduler utilized only two Nodes, as it prioritized placing
workloads on the most utilized Node while maintaining CPU
usage below 80%. The DQN-based Scheduler concentrated all
placement decisions on a single node. This indicates that the
trained model optimized for specific metrics, such as overall
cluster CPU utilization, by consolidating workloads onto
fewer Nodes. Meanwhile, the Kubernetes Default Scheduler
showed some placement variability, with a bias toward certain

Nodes influenced by resource availability and scheduling
policies.

Cluster CPU Usage Rate. Cluster energy efficiency is an-
alyzed through CPU utilization in different scheduling strate-
gies, sampled at 30-second intervals from Prometheus. The
Random Scheduler demonstrated the highest cuamulative CPU
usage, possibly because it does not account for any resource
availability or workload conditions. Similarly, the Round
Robin Scheduler, which distributes workloads sequentially
without considering any resource constraints, also exhibited
high Cluster CPU usage. The Default Kubernetes Scheduler
followed a similar pattern, with identical CPU usage to
the Round Robin Scheduler, indicating that its placement
decisions did not significantly improve CPU efficiency.

In contrast, the Best Fit CPU < 80% Scheduler reduced
CPU usage by 4.41% compared to the Random Scheduler by
consolidating workloads while maintaining the threshold. The
DQN-based Scheduler achieved the lowest CPU usage, reduc-
ing utilization by 9.71% compared to the Random Scheduler
and 9.42% compared to the Default Kubernetes Schedule,
showcasing its capability to optimize workload placement and
reduce overall cluster CPU utilization. We also compared
CPU utilization with power consumption estimations from
Kepler and both showed similar trends and aligned well
with each other. However, Kepler does not yet measure
CPU frequency scaling well [35], so we did not base our
measurements on it.

Node CPU Usage Rate. We also analyzed Node-specific
CPU usage patterns. The Random Scheduler and Round
Robin Scheduler distributed CPU usage relatively evenly
across all Nodes. In contrast, the Best Fit CPU < 80%
Scheduler consolidated workloads, leading to the highest CPU
utilization on Node 1, moderate activity on Node 2, and
minimal usage on other Nodes due to the policy of the
best-fit scheduler. The DQN-based Scheduler consolidates
the workload even further, with Node 1 dominating CPU
usage while other Nodes remain nearly idle. Meanwhile, the
Kubernetes Default Scheduler displayed varied CPU usage
patterns, with specific Nodes (e.g., Node 2) being preferred
over others.

Response Time. Fig. Jillustrates the average response time
of serverless functions across various scheduling strategies.
The fluctuation in response time observed across different
tasks reflects the varying computational intensity of serverless
functions, where more resource-intensive tasks naturally result
in higher average response times. Most strategies achieve
comparable response times, except the DQN-based scheduler,
which has slightly higher response times. This increase could
be attributed to the additional time required for decision com-
putation using the DQN model or CPU saturation caused by
consolidating workloads onto a single Node, which increased
the likelihood of resource contention.

C. Discussion

The empirical results highlight the advantages of RL in
optimizing workload placement for energy efficiency. The

Random Scheduler K8s Default Scheduler

7.616:95 @ 6.94

a
€125 €125

PR F O P DD P OFPTEF LD
R E O F S £ @@ P
FEEEEFFE O L,Q"L' 8 FEEEEFFE S

Functions
Best Fit CPU < 80 Scheduler

Functions
Round Robin Scheduler

Average Response Time

PRI LPF L DY D > I A B R S I P I 4 D
PEIPEEE F LSS & FEICEOEF S LSS &L
& £ T FF ' FEE &S
F& £ F& L
FEF &S FFE S
& &
&L &S

Functions
DQN-based Scheduler

Functions

Functions

Fig. 5. Serverless Workload Function Response Time

DQN-based Scheduler demonstrates a clear preference for
workload consolidation, efficiently allocating tasks to a single
Node. This strategy minimizes overall cluster CPU usage and
aligns with Kepler’s power consumption estimates, suggesting
significant energy savings.

Compared to other scheduling strategies, Best Fit CPU <
80% also consolidates workloads but follows a predefined
CPU threshold, leading to a more efficient Node utilization.
The Random and Round Robin Schedulers, on the other hand,
distribute workloads evenly across Nodes, which results in
higher CPU usage but prevents localized resource contention.
The Kubernetes Default Scheduler exhibits variability in
Node selection, reflecting its two-phase scheduling policy that
factors in resource availability and predefined scoring criteria.

One trade-off observed with the DQN-based approach is
the higher response time variability, particularly for computa-
tionally intensive functions (Fig. [5). This can be attributed to
CPU saturation on the selected Node, which may introduce
resource contention under high workload intensity. In this
context, performance stability refers to maintaining consistent
response times across varying workloads without excessive
fluctuation. Although this impact is moderate, it highlights
the need for adaptive mechanisms that balance workload
consolidation with stability. Future work could explore hybrid
RL-based strategies that dynamically adjust scheduling deci-
sions based on workload conditions. While not empirically
evaluated in this study, such strategies could mitigate potential
latency increases by introducing dynamic CPU thresholds

or adaptive load redistribution, preserving energy efficiency
while improving response time consistency.

Overall, this empirical analysis strengthens the potential
of RL-based scheduling in serverless cloud environments,
particularly for applications prioritizing energy savings. Ad-
ditionally, through the integration of dynamic adaptation
mechanisms, future RL-based approaches can further enhance
scheduling efficiency while minimizing trade-offs.

Other types of RL algorithms can be considered in
the scope of this work such as Policy Gradient Methods
(PGM) [36]] and Actor-Critic [37]. They optimize directly the
policy by mapping states to actions as opposed to DQN which
estimated the expected reward using the Q-Function. As such,
PGM can be a better fit for continuous action spaces. In the
scope of this work, the action space has been discretized in the
range of [0..4] for simplicity. However, if we consider a much
large set of possible Nodes to deploy the serverless workload,
then a continuous action space might be more preferable. The
actor critic is an alternative approach that makes use of an
actor or a module that makes a decision based on a policy
and the critic which evaluates that decision. From this point,
actor-critic can be seen as an improvement to Policy gradient
and as such it is also suitable for continuous action spaces.

VII. RELATED WORK

Scheduling plays a pivotal role in serverless resource man-
agement, determining where and how functions are placed
within the cloud infrastructure to meet criteria such as
Quality of Service (QoS), resource utilization, and energy
efficiency [38]].

Adeppady et al. [39] proposed a scheduling framework
which utilizes a threshold-based queueing mechanism to
manage the cold, warm, and running states of containers, aim-
ing to reduce server energy consumption while maintaining
QoS targets. Additionally, Aslanpour et al. [40] developed
Faashouse, an energy-aware resource scheduling algorithm
that minimizes consumption by using computation offloading
to manage energy imbalances across nodes. Arys and Carlier
et al. [41] developed an energy-aware scheduling method
using affinity models based on offline profiling of server-
less functions. Rastegar et al. [42] created an energy-aware
scheduler employing linear programming to minimize energy
consumption while meeting deadlines.

Multiple literature surveys have explored the application of
ML for resource scheduling in cloud computing environments.
These works highlight how ML techniques can dynamically
adapt to workload fluctuations, optimize resource utilization,
and enhance energy efficiency [12f], [[13]], [43], [44].

Particularly, some ML-based scheduling works for improv-
ing energy saving in Kubernetes are also proposed. Roth-
man and Chamanara [45] developed RLKube, a Kubernetes
scheduling plugin leveraging Double DQN (DDQN) with
Prioritized Experience Replay (PER) to optimize resource
utilization, Pod throughput, and energy efficiency. Ryuki
Douhara et al. [46] developed the Workload Allocation Opti-
mizer (WAO), integrating a scheduler and load balancer with

neural network models to optimize power consumption and
response time, achieving an 8% reduction in power consump-
tion compared to the default Kubernetes scheduler. Chiorescu
et al. [47] have integrated a random forest classifier-based
model into the Kubernetes scheduler, which is evaluated in
an OpenFaaS-based environment.

However, integrating RL for energy-aware scheduling in
serverless environments remains relatively unexplored. Our
proposed approach addresses this gap by leveraging RL-based
methods to optimize energy efficiency while maintaining
workload performance in serverless systems.

VIII. CONCLUSIONS

In this paper, we proposed an RL-assisted scheduling ap-
proach to enhance energy efficiency in serverless cloud envi-
ronments. Addressing the limitations of traditional scheduling
strategies, our approach leverages DQN-based learning to
dynamically optimize workload placement. Unlike heuristic-
based methods that rely on predefined rules, our scheduler
adapts to real system conditions, improving resource utiliza-
tion while minimizing overall cluster power consumption.

To validate our approach, we implemented it as a custom
Kubernetes scheduling plugin, ensuring seamless integration
with Knative-based serverless workloads. In our extensive
empirical evaluation in a Kubernetes cluster, the DQN-based
scheduler is compared against four baseline scheduling strate-
gies. Our results demonstrate that the DQN-based scheduler
achieves the lowest cluster-level CPU usage. Our scheduler
uses 9.5% less CPU than the Default Kubernetes Scheduler
when the total CPU consumption of the cluster was measured.
It highlights its potential to improve energy efficiency. The
findings also reveal a trade-off in response time, where
workload consolidation on a single Node may lead to resource
contention, underscoring the need for adaptive mechanisms
that balance energy savings with performance stability.

We believe that our work contributes to the growing area
of intelligent scheduling for serverless and edge computing
environments. Integrating RL into workload orchestration
represents a step toward more autonomous and resource-
efficient cloud infrastructures.

In future work, we aim to measure power draw at the
hardware level to obtain more accurate insights into energy
consumption. However, a lower power draw does not always
imply lower total energy use, since reduced power may
prolong task execution. We will also investigate whether
the higher response time observed with the DQN scheduler
arises from this effect. As DQN is relatively heavy-weight
for small clusters, we should examine its scalability on larger
clusters and more complex scenarios with mixed workloads
(serverless and non-serverless) possibly including I/O bound
workloads. It would be useful to evaluate alternative RL al-
gorithms with additional metrics and benchmark their energy
consumption.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

REFERENCES

Y. Li, Y. Lin, Y. Wang, K. Ye, and C. Xu, “Serverless Computing:
State-of-the-Art, Challenges and Opportunities,” IEEE Transactions on
Services Computing, vol. 16, no. 2, pp. 1522-1539, 2022.

H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on Serverless
Computing,” Journal of Cloud Computing, vol. 10, pp. 1-29, 2021.
G. Adzic and R. Chatley, “Serverless Computing: Economic and
Architectural Impact,” in Proceedings of the 2017 11th joint meeting
on foundations of software engineering, 2017, pp. 884-889.

IEA, “Executive Summary—Electricity2024 Analysis,” https://www.
iea.org/reports/electricity-2024/executive-summary/, accessed: 2024-
19-11.

——, “Digitalization and Energy — Analysis.” https://www.iea.org/
reports/digitalisation-and-energy/, accessed: 2024-19-11.

A. Alhindi, K. Djemame, and F. B. Heravan, “On the Power Con-
sumption of Serverless Functions: An Evaluation of OpenFaaS,” in
2022 IEEE/ACM 15th International Conference on Utility and Cloud
Computing (UCC). 1EEE, 2022, pp. 366-371.

P. Patros, J. Spillner, A. V. Papadopoulos, B. Varghese, O. Rana, and
S. Dustdar, “Toward Sustainable Serverless Computing,” IEEE Internet
Computing, vol. 25, no. 6, pp. 42-50, 2021.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless Computing: An Investigation of Factors Influencing Mi-
croservice Performance,” in 2018 IEEE international conference on
cloud engineering (IC2E). 1IEEE, 2018, pp. 159-169.

M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive
survey for scheduling techniques in cloud computing,” Journal of
Network and Computer Applications, vol. 143, pp. 1-33, 2019.

I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
Computing: Current Trends and Open Problems,” Research advances
in cloud computing, pp. 1-20, 2017.

M. R. Garey and D. S. Johnson, ““ Strong ~” NP-Completeness Results:
Motivation, Examples, and Implications,” Journal of the ACM (JACM),
vol. 25, no. 3, pp. 499-508, 1978.

G. U. Srikanth and R. Geetha, “Effectiveness review of the machine
learning algorithms for scheduling in cloud environment,” Archives of
Computational Methods in Engineering, vol. 30, no. 6, pp. 3769-3789,
2023.

W. Khallouli and J. Huang, “Cluster resource scheduling in cloud
computing: literature review and research challenges,” The Journal of
supercomputing, vol. 78, no. 5, pp. 6898-6943, 2022.

G. Cloud, “What is serverless computing,” https://cloud.google.com/
discover/what-is-serverless-computing?hl=en, accessed: 2024-08-10.
M. Bensalem, F. Carpio, and A. Jukan, “Towards Optimal Serverless
Function Scaling in Edge Computing Network,” in ICC 2023-IEEE
International Conference on Communications, 2023, pp. 828-833.

A. Mampage, S. Karunasekera, and R. Buyya, “A Holistic View on
Resource Management in Serverless Computing Environments: Taxon-
omy and Future Directions,” ACM Computing Surveys (CSUR), vol. 54,
no. 11s, pp. 1-36, 2022.

AWS Lambda: https://aws.amazon.com/lambda/, Google Cloud Func-
tions: |https://cloud.google.com/functions/, Azure Functions: https://
azure.microsoft.com/en-gb/products/functions/, IBM Cloud Code En-
gine: https://www.ibm.com/products/code-engine,

OpenFaaS: https://www.openfaas.com/, OpenWhisk: https://openwhisk.
apache.org/, Fission: https:/fission.io/, Kubeless: https://github.com/
vmware-archive/kubeless, Knative: https://knative.dev/docs/.

A. Palade, A. Kazmi, and S. Clarke, “An Evaluation of Open Source
Serverless Computing Frameworks Support at the Edge,” in 2019 IEEE
World Congress on Services (SERVICES), vol. 2642. 1EEE, 2019, pp.
206-211.

J. Chester, Knative in Action. Simon and Schuster, 2021.
Kubernetes efficient power level exporter (kepler). Accessed: 2024-15-
09. [Online]. Available: https://sustainable-computing.io/
Kubernetes Community, “Scheduler
https://github.com/kubernetes/community/blob/
103b6d5692bd979107dd472e7b6836b2dad0fd9b/contributors/devel/
sig-scheduling/scheduler_queues.md, accessed: 2024-11-08.
Kubernetes. [Online]. Available: https://kubernetes.io/docs/

C. Carrién, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Computing Surveys, vol. 55, no. 7, pp. 1-37, 2022.

queues,”

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Kubernetes, “Scheduling framework,” |https://kubernetes.io/docs/
concepts/scheduling-eviction/scheduling-framework/, accessed: 2024-
08-13.

Kubernetes Scheduler Extender. Accessed: 2024-08-09. [Online].
Available: https://github.com/kubernetes/design-proposals-archive/
blob/main/scheduling/scheduler_extender.md

Kubernetes scheduler plugins. Accessed: 2024-10-09. [Online].
Available: https://github.com/kubernetes-sigs/scheduler-plugins

The Linux Foundation, “Customizing k8s scheduler,” https://cnct.io/
blog/2022/04/19/customizing-k8s-scheduler/, accessed: 2024-11-09.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of artificial intelligence research, vol. 4,
pp. 237-285, 1996.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
pp. 279-292, 1992.

O. Ibidunmoye, F. Herndndez-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, pp. 1-35, 2015.

M. Gusey, S. Ristov, M. Simjanoska, and G. Velkoski, “Cpu utilization
while scaling resources in the cloud,” Cloud Computing, pp. 131-137,
2013.

Knative platform. [Online]. Available: https://knative.dev/docs/

Kepler metrics. [Online]. Available: https://sustainable-computing.io/
design/metrics/

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. Pmlr, 2014, pp. 387-395.

V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: a
survey of opportunities, challenges, and applications,” ACM Computing
Surveys, vol. 54, no. 11s, pp. 1-32, 2022.

M. Adeppady, A. Conte, H. Karl, P. Giaccone, and C. F. Chiasserini,
“Energy-aware Provisioning of Microservices for Serverless Edge Com-
puting,” in GLOBECOM 2023 - 2023 IEEE Global Communications
Conference, 2023, pp. 3070-3075.

M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and M. B. Chhetri,
“faasHouse: Sustainable Serverless Edge Computing through Energy-
aware Resource Scheduling,” IEEE Transactions on Services Comput-
ing, 2024.

S. Arys, R. Carlier, and E. Riviere, “Energy-Aware Scheduling of a
Serverless Workload in an ISA-Heterogeneous Cluster,” in Proceedings
of the 10th International Workshop on Serverless Computing, ser.
WoSC10 °24. Association for Computing Machinery, 2024, p. 25-30.
S. H. Rastegar, H. Shafiei, and A. Khonsari, “EneX: An Energy-Aware
Execution Scheduler for Serverless Computing,” IEEE Transactions on
Industrial Informatics, vol. 20, no. 2, pp. 2342-2353, 2024.

R. Yang, X. Ouyang, Y. Chen, P. Townend, and J. Xu, “Intelligent
Resource Scheduling at Scale: A Machine Learning Perspective,”
in 2018 IEEE Symposium on Service-Oriented System Engineering
(SOSE), 2018, pp. 132-141.

E. Hormozi, H. Hormozi, M. K. Akbari, and M. S. Javan, “Using
of Machine Learning into Cloud Environment (A Survey): Managing
and Scheduling of Resources in Cloud Systems,” in 2012 Seventh
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 2012, pp. 363-368.

J. Rothman and J. Chamanara, “An RL-Based Model for Optimized
Kubernetes Scheduling,” in 2023 IEEE 31st International Conference
on Network Protocols (ICNP). 1EEE, 2023, pp. 1-6.

R. Douhara, Y.-F. Hsu, T. Yoshihisa, K. Matsuda, and M. Matsuoka,
“Kubernetes-based workload allocation optimizer for minimizing power
consumption of computing system with neural network,” in 2020
International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, 2020, pp. 1269-1275.

R. Chiorescu and K. Djemame, “Scheduling energy-aware multi-
function serverless workloads in openfaas,” in Economics of Grids,
Clouds, Systems, and Services. Cham: Springer Nature Switzerland,
2025, pp. 137-149.

https://www.iea.org/reports/electricity-2024/executive-summary/
https://www.iea.org/reports/electricity-2024/executive-summary/
https://www.iea.org/reports/digitalisation-and-energy/
https://www.iea.org/reports/digitalisation-and-energy/
https://cloud.google.com/discover/what-is-serverless-computing?hl=en
https://cloud.google.com/discover/what-is-serverless-computing?hl=en
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-gb/products/functions/
https://azure.microsoft.com/en-gb/products/functions/
https://www.ibm.com/products/code-engine
https://www.openfaas.com/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://fission.io/
https://github.com/vmware-archive/kubeless
https://github.com/vmware-archive/kubeless
https://knative.dev/docs/
https://sustainable-computing.io/
https://github.com/kubernetes/community/blob/f03b6d5692bd979f07dd472e7b6836b2dad0fd9b/contributors/devel/sig-scheduling/scheduler_queues.md
https://github.com/kubernetes/community/blob/f03b6d5692bd979f07dd472e7b6836b2dad0fd9b/contributors/devel/sig-scheduling/scheduler_queues.md
https://github.com/kubernetes/community/blob/f03b6d5692bd979f07dd472e7b6836b2dad0fd9b/contributors/devel/sig-scheduling/scheduler_queues.md
https://kubernetes.io/docs/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://github.com/kubernetes-sigs/scheduler-plugins
https://cncf.io/blog/2022/04/19/customizing-k8s-scheduler/
https://cncf.io/blog/2022/04/19/customizing-k8s-scheduler/
https://knative.dev/docs/
https://sustainable-computing.io/design/metrics/
https://sustainable-computing.io/design/metrics/

	Introduction
	Background
	System Design
	Deep Reinforcement Learning Agent
	Experimental Setup
	Cluster Setup
	Serverless Workloads

	Evaluation and Discussion
	Baselines Comparison and Evaluation Metrics
	Empirical Results
	Discussion

	Related work
	Conclusions
	References

