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Abstract—With the rapid development of low-altitude applica-
tions, ensuring robust control of UAV swarms under uncertain
communication environments has become a critical challenge.
This paper investigates online robust tracking control for a UAV
swarm with one leader and multiple followers communicating
over unreliable multiple-input multiple-output (MIMO) channels.
A dynamic model is constructed to capture uncertainties arising
from both inter-UAV coordination and wireless communication.
The control problem is reformulated as a virtual ergodic optimal
control task for an auxiliary system that explicitly accounts for
these uncertainties, and the optimal solution is shown to guaran-
tee robust stabilization. To address the curse of dimensionality,
we derive a reduced-order formulation and develop an online
learning framework based on stochastic approximation (SA) with
almost sure convergence guarantees. Simulation results verify
that the proposed method significantly enhances tracking stabil-
ity, convergence speed, and computational efficiency compared
with widely used baselines under stochastic channel conditions
and coupled system–communication uncertainties. This work not
only establishes theoretical foundations for robust UAV swarm
control but also provides practical strategies for large-scale
deployment.

Index Terms—Robust tracking control, UAV swarm, MIMO
fading channel, stochastic approximation, online learning.

I. INTRODUCTION

W ITH the rapid rise of the low-altitude economy, UAV
swarms are expected to play a pivotal role in au-

tonomous logistics, urban air mobility, and emergency re-
sponse, where robust and intelligent control strategies are
essential for ensuring safety, efficiency, and scalability. We
consider a representative UAV swarm configuration consisting
of a leader UAV and multiple follower UAVs, as illustrated in
Fig. 1. The leader UAV collects real-time state information
(e.g. positions, velocities, and angular velocities) from the
followers and periodically generates tracking control signals,
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Fig. 1: Example of the UAV swarm tracking control.

which are transmitted to the followers via a wireless com-
munication network. Upon reception, each follower adjusts its
state to maintain predefined trajectories. However, the wireless
channels between the leader and followers are inherently un-
reliable, often subject to fading and additive noise. Moreover,
UAV system dynamics may not be precisely known due to
modeling inaccuracies and system complexity. These uncer-
tainties can degrade tracking performance and compromise
swarm coordination, posing significant challenges for robust
control design.

Extensive research has focused on tracking control of
UAV swarms, often under the assumption of static and re-
liable leader–follower communication [1]–[9]. Early works
rely on frequency-domain analysis with Proportional-Integral-
Derivative (PID) control [1], where empirically tuned parame-
ters generate control signals based on tracking errors. Although
simple to implement, PID controllers lack robustness and per-
form poorly in practice. More advanced approaches, including
Linear-Quadratic-Tracker (LQT) and Model Predictive Control
(MPC), optimize control policies by explicitly modeling UAV
dynamics [2]. However, these methods are generally developed
assuming perfect system knowledge and static communication,



limiting their effectiveness under time-varying wireless chan-
nels and system uncertainties. To examine UAV control under
unreliable communication, robust control under packet loss has
been studied using simplified independent and identically dis-
tributed (i.i.d.) on–off models [3], while more realistic fading
models such as Gaussian, Rayleigh, and Rician have been in-
vestigated in UAV swarm coordination [4] and event-triggered
regulation [5]. However, these approaches often assume per-
fect channel state information (CSI) or system dynamics,
which is rarely attainable in practice. In reality, UAV dynamics
are affected by environmental variability and modeling errors,
while CSI acquisition suffers from estimation inaccuracies,
leading to degraded performance in swarm scenarios with both
system and communication uncertainties. To further handle
system-level uncertainties, disturbance-observer-based control
(DOBC) mitigates external disturbances in adaptive finite-time
control enhances responsiveness under dynamic conditions [6],
and trajectory planning improves coordination in uncertain
environments [7]. However, most existing methods assume
ideal communication and neglect wireless channel impair-
ments. In practice, fading, interference, and CSI estimation
errors are stochastic and time-varying, and cannot be modeled
as simple bounded disturbances. This makes conventional
strategies inadequate for UAV swarms, highlighting the need
for approaches that jointly address both system and channel
uncertainties.

To address these challenges, we address robust tracking
control for UAV swarms operating over general wireless
MIMO fading channels. The key contributions of this work
are summarized as follows: i) Unlike prior studies assuming
perfect dynamics or simplified channels with ideal CSI, we
formulate the UAV swarm control problem under random
fading channels with both system and channel uncertainties,
and recast it as a virtual ergodic optimal tracking problem
enabling efficient closed-form robust controller design; ii)
While robust control can be derived by solving the Bellman
optimality equation [10], this is computationally prohibitive
due to the continuous state spaces of CSI and UAV states. To
address this, we develop a structured reduced-order optimality
equation that enables efficient online learning of the robust
policy. Using Lyapunov analysis [11], we further establish
a sufficient condition guaranteeing robust tracking stability
under both system and channel uncertainties; iii) To handle
time-varying CSI and coupled system–channel uncertainties,
we further develop an online learning algorithm based on the
structured reduced-order optimality equation and stochastic
approximation (SA) [12], with an almost sure convergence
guarantee.

II. SYSTEM MODEL

A. UAV Dynamic Model

A typical UAV swarm consists of a leader UAV and M ∈
Z+ geographically distributed followers, interconnected via an
unreliable wireless network, as illustrated in Fig. 1. The leader
and each follower UAV are equipped with Nt transmit and
Nr receive antennas, respectively. For m ∈ {1, 2, . . . ,M},

the dynamics of the m-th follower UAV are described by the
following first-order coupled equations:

xm(t+ 1) = (Amm +∆mm(t))xm(t) + Bmûm(t) +wm(t)

+
∑
n ̸=m

(Amn +∆mn(t))xn(t), (1)

where xm(t) = [pm,x(t), pm,y(t), pm,z(t), vm,x(t), vm,y(t),
vm,z(t), am,x(t), am,y(t), am,z(t)]

T ∈ R9×1 denotes the state
vector of the m-th follower UAV with initial condition
xm(0) = x0, with pm,n(t), vm,n(t), and am,n(t) representing
the position, velocity, and acceleration along the n-th axis. The
matrices Amm ∈ R9×9 and Bm ∈ R9×Nr denote the internal
transition and actuation matrices of the m-th UAV, while
Amn ∈ R9×9 characterizes the state-transition coupling from
UAV n to UAV m. The uncertainties ∆mm(t) ∈ R9×9 and
∆mn(t) ∈ R9×9 capture deviations in the internal dynamics
of UAV m and the coupling from UAV n, respectively. The
received control input is ûm(t) ∈ RNr×1, and wm(t) ∈ R9×1

denotes additive plant noise with covariance Wm ∈ S9++.
By aggregating the individual UAV dynamics, the swarm

admits the global state-space model

x(t+ 1) = (A+∆(t))x(t) + B̂û(t) + ŵ(t), (2)

where x(t) = [xT
1 (t), . . . ,x

T
M (t)]T ∈ R9M×1 is the global

state vector, and û(t) = [ûT
1 (t), . . . , û

T
M (t)]T ∈ R9Nr×1 is

the global received control input. The global transition matrix

is A =

A11 · · · A1M

...
. . .

...
AM1 · · · AMM

 ∈ R9M×9M , and the global ac-

tuation matrix is B̂ = Diag(B1, . . . ,BM ) ∈ R9M×NrM . The

transition uncertainty is ∆(t) =

∆11(t) · · · ∆1M (t)

...
. . .

...
∆M1(t) · · · ∆MM (t)

 ∈
R9M×9M . The global additive noise is modeled as ŵ(t) ∼
N (09M×1,Diag(W1, . . . ,WM )).

For efficient robust controller design, we make the following
assumption regarding the system uncertainty ∆(t).

Assumption 1 (System Uncertainties): There exist a positive
definite matrix F ∈ S9M+ and a positive constant µ > 0 such
that µ−1E[∆T (t)∆(t)] ≤ F.

Note that µ and F in Assumption 1 are both essential: F
embeds the structural distribution of uncertainties into the per-
stage cost (10), while µ acts as a slack variable decoupling
the bound from F and enabling flexible stability analysis (see
Theorem 2). Together, (µ,F) ensure tractability and stability
guarantees. Unlike many robust control works [13], [14] re-
quiring uniformly bounded uncertainties, our assumption only
requires average boundedness, thus being less restrictive.

B. Wireless Communication Model
The leader UAV observes the follower states x(t) using a

depth-of-field (DOF) camera [15] and generates a tracking
control signal um(t) ∈ RNt×1 for each follower UAV m.
These signals are transmitted over an orthogonal frequency-
division multiple access (OFDMA) MIMO network, where



each follower is allocated a dedicated subcarrier to avoid
interference. The received signal at the m-th follower, denoted
ûm(t) ∈ RNr×1, is given by:

ûm(t) = δm(t)Hm(t)um(t) + vm(t), 1 ≤ m ≤M, (3)

where δm(t) ∈ {0, 1} is an i.i.d. Bernoulli random variable
across UAVs and timeslots with Pr(δm(t) = 1) = p ∈ [0, 1]
representing the probabilistic activation of the communication
link between the leader and the m-th follower. The additive
Gaussian noise is vm(t) ∼ N (0Nr×1, INr ), and the MIMO
fading gain Hm(t) ∼ N (0Nr×Nt

, INr
) models the random

channel coefficients induced by multipath propagation, which
is constant within each timeslot and i.i.d. across UAVs and
timeslots [16].

To capture channel estimation errors, we assume that the
leader UAV has access to an uncertain estimate He

m(t) ∈
RNr×Nt of the true channel gain Hm(t), modeled as [17]

He
m(t) = αHm(t) +

√
1− α2 Em, (4)

where α ∈ [0, 1] is a reliability factor reflecting the quality
of the estimate, and Em ∼ N (0Nr×Nt

, INr
) is an auxiliary

random matrix capturing the estimation uncertainty.

C. Robust Tracking Control Problem Formulation

Let the target state r(t) ∈ R9M×1 evolve as
r(t+ 1) = Gr(t), (5)

with initial condition r(0) = r0, where G ∈ R9M×9M denotes
the target transition matrix. The objective of the leader UAV
is to design a control signal u(t) such that the swarm state
x(t) tracks the target trajectory r(t), as formally stated in
Problem 1.

Problem 1 (Robust Tracking Control Problem): Design
a control sequence π = {u(0),u(1), . . . } such that the
swarm state x(t), evolving according to (2), achieves mean-
square tracking stability, i.e., lim supT→∞

1
T

∑T−1
t=0 E[∥x(t)−

r(t)∥2] < ∞ for all system uncertainties ∆(t) satisfying
Assumption 1 and channel uncertainties modeled in (4).

III. PROBLEM REFORMULATION AND ROBUST TRACKING
CONTROL SOLUTION

A. Reformulation of Robust Tracking Control Problem

Recent studies [13] have shown the effectiveness of optimal
control theory for robust control. Building on this foundation,
we propose a robust tracking strategy that optimizes a con-
trol policy within the nominal plant dynamics, obtained by
integrating the UAV dynamics (2), target dynamics (5), and
wireless communication models (3) and (4), as follows:

x̄(t+ 1) = (Ā+ ∆̄1(t))x̄(t) + (B̄(t) + ∆̄2(t))û(t) + w̄(t),
(6)

where the aggregated state is x̄(t) = [xT (t), rT (t)]T ∈
R18M×1, with transition matrix Ā = Diag(A,G) ∈
R18M×18M and actuation matrix B̄(t) =
[(Ĥe(t))T B̂T ,0MNt×9M ]T ∈ R18M×MNt .

The aggregated CSI is Ĥe(t) =
Diag(δ1(t)H

e
1(t), . . . , δM (t)He

M (t)) ∈ RMNr×MNt . The

transition uncertainty is ∆̄1(t) = Diag(∆(t),09M ) ∈
R18M×18M , while the channel uncertainty is
∆̄2(t) = [Diag((α − 1)He

1(t) +
√
1− α2E1(t), . . . , (α −

1)He
M (t) +

√
1− α2EM (t))T B̂T ,0MNt×9M ]T ∈

R18M×MNt . The aggregated noise is w̄(t) =
[ŵT (t) + [vT

1 (t), . . . ,v
T
M (t)]B̂T ,01×9M ]T ∈ R18M×1.

We apply a pseudoinverse decomposition to split ∆̄1(t)
into a matched component B̄(t)B̄(t)†∆̄1(t) and a mismatched
component (I9M − B̄(t)B̄(t)†)∆̄1(t).
∆̄1(t) = B̄(t)B̄(t)†∆̄1(t) + (I9M − B̄(t)B̄†(t))∆̄1(t), (7)

where (·)† denotes the Moore–Penrose pseudoinverse.
By leveraging the decomposition in (7), we introduce the

following auxiliary system:
x̄(t+ 1) = Āx̄(t) + B̄1(t)ū1(t) + B̄2(t)ū2(t) + w̄(t), (8)

where B̄1(t) = B̄(t) and B̄2(t) = (I9M − B̄(t)B̄†(t)). The
virtual control inputs ūi(t) ∈ RMNt×1, i ∈ {1, 2}, serve dis-
tinct roles: B̄1(t)ū1(t) counteracts the matched uncertainties
B̄(t)B̄(t)†∆̄1(t), while B̄2(t)ū2(t) mitigates the mismatched
uncertainties (I9M − B̄(t)B̄†(t))∆̄1(t).

With the auxiliary system (8), the robust tracking control of
the UAV swarm under the original dynamics (1) is reformu-
lated as a virtual ergodic optimal control problem:

Problem 2 (Robust UAV Swarm Tracking Control via Er-
godic Optimal Control): The robust UAV tracking control
policy π∗ for Problem 1 can be obtained by extracting π̄∗

1 from
the optimal control policy {π̄∗

1 , π̄
∗
2} of the following ergodic

optimal control formulation:

min
{π̄1,π̄2}

lim sup
T→∞

1

T

T−1∑
t=0

E[ξtc(x̄(t), ū1(t), ū2(t))]

s.t. system dynamics given in (8), (9)
where the policies are defined as π̄i = {ūi(0), ūi(1), ...}. The
per-stage cost function is expressed as:

c(x̄(t), ū1(t), ū2(t)) =x̄T (t)Q̄x̄(t) + x̄T (t)(ζ2F̄+ β2Ī)x̄(t)

+ ūT
1 (t)R1ū1(t) + ūT

2 (t)R2ū2(t), (10)

where ζ, β ∈ R are design parameters, and the weighting

matrices are given by Q̄ =

[
Q −Q

−Q Q

]
∈ S18M++ , F̄ =[

F −F

−F F

]
∈ S18M++ , Ī =

[
I9M −I9M

−I9M I9M

]
∈ S18M++ , with

Q ∈ S9M+ , F ∈ S9M+ , and Ri ∈ SMNt
+ . ξ ∈ (0, 1) is a factor

to penalize the open-pole induced by the target dynamics G.
Unlike conventional optimal control formulations, the cost

function c(x̄(t), ū1(t), ū2(t)) in Problem 2 contains additional
penalties x̄T (t)(ζ2F̄+ β2ĪS)x̄(t) and ūT

2 (t)R2ū2(t), explic-
itly introduced to compensate for the time-varying uncertain-
ties ∆̄i(t) in the system dynamics (6).

B. Robust Tracking Control Solution

Solving Problem 2 entails the Bellman optimality equa-
tion [10], formalized below.
ρ+ V (S(t)) = min

ū1(t),ū2(t)
[c(x̄(t), ū1(t), ū2(t))

+ ξE[V (S(t+ 1)) | S(t), ū1(t), ū2(t)]], (11)



where V (S(t)) ∈ R is the value function, and S(t) =
{x̄(t), δ1(t)He

1(t), . . . , δM (t)He
M (t)} denotes the aggregated

system state, incorporating the plant state x(t), target state
r(t), and CSI. The optimal control sequence {ū∗

1(t), ū
∗
2(t)} is

obtained by minimizing the right-hand side (R.H.S.) of (11),
which yields the optimal solution to Problem 2. The parameter
ρ > 0 is a positive constant.

Conventionally, solving Problem 2 requires iterative algo-
rithms such as value iteration or Q-learning [18] to compute
the Bellman equation (11). However, these methods suffer
from the curse of dimensionality due to the continuous state
space S(t). To address this, we exploit the statistical indepen-
dence between the plant state x(t), target state r(t), and CSI
{δi(t)He

i (t)} to derive a structured reduced-order Bellman
equation, formalized in the following theorem.

Theorem 1 (Equivalent Reduced-Order Optimality Equa-
tion): If an optimal solution to Problem 2 exists, it can be
equivalently obtained by solving the reduced-order optimality
equation:

ρ̂+ V̂ (x̄(t)) = EĤe(t)[ min
ū1(t),ū2(t)

[c(x̄(t), ū1(t), ū2(t))

+ ξE
[
V̂ (x̄(t+ 1)) | x̄(t), Ĥe(t), ū1(t), ū2(t)]]], (12)

where V̂ (x̄(t)) = x̄T (t)Px̄(t) is the structured reduced-order
value function with kernel P ∈ S18M++ . The scalar bias ρ̂ = ρ =

Tr(ξP1:9MW + ξB̂TP1:9M B̂). For i ∈ {1, 2}, the optimal
solution to Problem 2 and (12) is ū∗

i (t) = Ki(P, t)x̄(t), where
Ki(P, t) ∈ RMNt×18M is the corresponding feedback gain,
given by
K1(P, t) = −(R1 + ξB̄T

1 (t)PB̄1(t)− ξ2B̄T
1 (t)PB̄2(t)

×N−1
2 (t)B̄T

2 (t)PB̄1(t))
−1(ξB̄T

1 (t)PĀ− ξ2B̄T
1 (t)PB̄2(t)

×N−1
2 (t)B̄T

2 (t)PĀ), (13)

K2(P, t) = −(R2 + ξB̄T
2 (t)PB̄2(t)− ξ2B̄T

2 (t)PB̄1(t)

×N−1
1 (t)B̄T

1 (t)PB̄2(t))
−1(ξB̄T

2 (t)PĀ− ξ2B̄T
2 (t)PB̄1(t)

×N−1
1 (t)PB̄T

1 (t)Ā) (14)
and Ni(t) = Ri + ξB̄T

i (t)PB̄i(t).
Proof: The proof follows a similar approach as in [19],

based on backward induction for the finite-horizon total cost
problem associated with Problem 1, and then taking the limit
to obtain the structured form. Detailed steps are omitted due
to space constraints.

Unlike the Bellman equation (11), which requires estimating
the full value function V (S(t)) over an uncountable state
space, the reduced-order equation (12) involves only the
structured function V̂ (x̄(t)), fully characterized by a single
matrix P. This condensation of learning complexity into one
parameter greatly alleviates the curse of dimensionality and
improves computational efficiency.

C. Robust Stability Analysis

Leveraging Lyapunov stability analysis [11], we establish
sufficient conditions for the robust tracking stability of the
UAV swarm using the optimal solution from Theorem 2, as
stated below.

Theorem 2 (Sufficient Conditions for Robust Tracking
Stability of the UAV Swarm): Denote K∗

i (t) = Ki(P, t). For
i ∈ {1, 2}, if the optimal solution ū∗

i (t) = K∗
i (t)x̄(t) in

Problem 2 exists, then ū∗
1(t) = K∗

1(t)x̄(t) is also a solution
to Problem 1, provided that the following conditions hold:

• Condition on µ:
µ−1I9M −P > 09M . (15)

• Condition on ζ:
ζ >
√
2. (16)

• Condition on β:
E
[
3(Ā+ B̄1(t)K

∗
1(t))

T (P− µI9M )−1(Ā

+ B̄1(t)K
∗
1(t)) + (2− α)(K∗

1(t))
TK∗

1(t)
]

≤ E
[
(Ā+ B̄1(t)K

∗
1(t) + B̄2(t)K

∗
2(t))

TP(Ā

+ B̄1(t)K
∗
1(t) + B̄2(t)K

∗
2(t)) + (K∗

1(t))
TR1K

∗
1(t)

+ (K∗
2(t))

TR2K
∗
2(t)

]
+ Q̄+ β2Ī. (17)

Proof: The proof proceeds by constructing a Lyapunov
function L(x̄(t)) = x̄T (t)Px̄(t) and establishing negative
drift under the stated conditions. Detailed derivations are
omitted due to space constraints.

According to Theorem 2, swarm tracking stability is ensured
by appropriately choosing the parameters {µ, β, ζ}: a small µ
reduces the effect of uncertainties, while sufficiently large β
and ζ enhance the robustness margin.

IV. ONLINE ROBUST TRACKING CONTROLLER DESIGN

Note that Theorem 2 gives a fixed-point equation w.r.t. the
structured kernel P:

x̄T (t)Px̄(t) = x̄T (t)
(
E[g(P, Ĥe(t))]

)
, (18)

where the function g(P, Ĥe(t)) is defined as:
g(P, Ĥe(t)) = Q̄+ ζ2F̄+ β2Ī− ξ2×[
B̄T

1 (t) PĀ

B̄T
2 (t) PĀ

]T [
M11(t) M12(t)

M21(t) M22(t)

][
B̄T

1 (t) PĀ

B̄T
2 (t) PĀ

]
. (19)

The matrices Mij(t) are given by M11(t) = R1 +
ξB̄T

1 (t)PB̄1(t), M12(t) = ξB̄T
1 (t)PB̄2(t), M21(t) =

MT
12(t), and M22(t) = R2 + ξB̄T

2 (t)PB̄2(t).
Since (18) defines a fixed-point equation in the unknown

P, SA theory can be used to iteratively learn P. The learned
kernel then enables efficient evaluation of the reduced-order
value function V̂ (x̄(t)) and the optimal control ū∗

i (t) from
Theorem 2, which are subsequently applied to achieve robust
control of the UAV swarm dynamics (6).

To standardize the formulation, we express (18) as f(P) =
018M , where:

f(P) = E[g(P, Ĥe(t))]−P. (20)
Solving for P in the robust UAV swarm control problem
requires computing the root of f(P). We achieve this via
the SA algorithm outlined in Algorithm 1. Specifically, at the
(t+1)-th timeslot, the learned structured kernel P(t) ∈ S18M++

is updated using:
P(t+ 1) = P(t) + ν(t)

(
g(P(t), Ĥe(t))−P(t)

)
, (21)



where {ν(t)}t∈Z represents the step size sequence satisfy-
ing

∑∞
t=0 ν(t) = ∞ and

∑∞
t=0 ν

2(t) < ∞. The func-
tion g(P(t), Ĥe(t)) serves as an unbiased estimator of
E[g(P(t), Ĥe(t))] in the fixed-point equation (18).

We summarize the convergence results of Algorithm 1 in
the following theorem.
Theorem 3 (Almost Sure Convergence of the Proposed

Online Robust Tracking Control Algorithm for the UAV
Swarm): If the solution to Problem 2 exists, then: the tracking
control solution u(t) in Step 3 of Algorithm 1 converges to
the optimal control solution ū∗

1(t) of Problem 2, as stated in
Theorem 1, almost surely, i.e., Pr(limt→∞ u(t) = ū∗

1(t)) = 1.
Proof: The proof is established by showing the conver-

gence of P(t) in Algorithm 1 to P in Theorem 1, which
amounts to demonstrating that P(t) asymptotically follows
the trajectory of a stable ordinary differential equation (ODE).
Detailed steps are omitted due to space constraints.

Algorithm 1 Online Robust Tracking Control for the UAV
Swarm over MIMO Fading Channels
Initialization: We initialize the UAV state as x0 ∼
N (09M×1, I9M ) and the target state as r0 ∈ R9M×1. The
structured kernel is initialized by P(0) ∈ S18M++ , which yields
the initial reduced-order value function V̂0(x̄) = x̄TP(0)x̄ for
all x̄ ∈ R18M×1. The initial robust control is given by u(0) =
K1(P(0), 0)x̄(0), where K1(P(0), 0) is defined in (13). The
control signal is structured as u(0) = [uT

1 (0), . . . ,u
T
M (0)]T ∈

R18M×1, with each um(0) ∈ RNt×1 corresponding to the
robust control signal for the m-th follower UAV.
For t = 1, 2, . . . :

• Step 1 (Update of the Structured Kernel):
Update the structured kernel according to (21):
P(t)← P(t− 1) + ν(t− 1)

(
g(P(t− 1), Ĥe(t− 1))

−P(t− 1)
)
.

• Step 2 (Update of the Reduced-Order Value Func-
tion):
Update the value function using the current structured
kernel:

V̂t(x̄)← x̄TP(t)x̄, ∀x̄ ∈ R18M×1.

• Step 3 (Update of the Robust Control Solution):
Compute the tracking control solution:

u(t)← K1(P(t), t)x̄(t),

where K1(P(t), t) is given by (13).
End For

V. NUMERICAL RESULTS

A. Experiment Setup

To evaluate the proposed online robust tracking control
scheme for UAV swarms, we compare its performance against
the following baseline methods over random MIMO fading
channels with system and channel uncertainties:

• Baseline 1 (PID-based UAV Swarm Control): The control
input u(t) is generated via PID control with the gain

ing

Fig. 2: Total CPU computational time versus number of
receiving antennas.

matrices pre-tuned offline using pole placement based on
the nominal system parameters {A, B̂}.

• Baseline 2 (Robust Control via Optimal Control Un-
der Matching Condition and Static Channels): u(t) =
Kx̄(t), where the constant gain matrix K ∈ RMNr×18M

is computed by solving an optimal control problem
formulated based on the nominal system parameters.

• Baseline 3 (Robust Control via Optimal Control Under
Mismatching Condition and Static Channels): u(t) =
Kx̄(t), where the constant gain matrix K ∈ RMNt×18M

is obtained by solving an optimal control problem based
on the nominal system parameters.

• Baseline 4 (Robust Control via Brute-Force Value Iter-
ation over Bellman Equation): u(t) = K(t)x̄(t), where
the time-varying gain K(t) ∈ RMNt×18M is computed
by solving Problem 2 through brute-force value iteration
over the Bellman equation (11).

We consider a UAV swarm with M = 6 followers. Each
UAV has an internal transition matrix Amm ∈ R9×9 and
actuation matrix Bm ∈ R9×6, randomly generated from
N (0, 1). The coupling is defined as Amn = 0.1Amm if
n = (m mod M) + 1, and Amn = 09 otherwise. Plant noise
follows wm(t) ∼ N (09, 10

−5I9). Dynamics uncertainties are
modeled as ∆(t) = sin(t+1)Φ(t), where Φ(t) has i.i.d. entries
∼ U [0, 1]. System parameters are Nt = Nr = 6, ξ = 0.8,
and activation probability p = 0.4. Weighting matrices are
Q = I9M , F = 15I9M , R1 = R2 = I6M , with β = 7
and ζ = 4. The target transition matrix is G = 1.02I9M
if t mod 8 < 4, and 0.95I9M otherwise. Initial states are
r0 = 5I9M×1 and x0 ∼ N (09M×1, I9M ). M = 6.

B. Performance Comparison and Analysis

1) CPU Computational Time Analysis: Fig. 2 shows the
CPU computation time over 104 iterations for different num-
bers of receiving antennas Nr. The proposed scheme requires
far less time than Baseline 4, which relies on brute-force
value iteration and suffers from the curse of dimensionality.
In contrast, our method learns only the structured kernel of
the reduced-order value function, greatly improving efficiency.
The computation time is slightly higher than Baselines 1–3,
as those methods adopt simpler strategies that ignore system
or channel uncertainties.



Fig. 3: NMSE between applied and optimal solution versus
timeslot.

Fig. 4: NMSE between real-Time UAV state and target state
versus timeslot.

2) Convergence Analysis: Fig. 3 shows the normalized
mean square error (NMSE) between the applied control input
and the optimal solution to Problem 2. The proposed scheme
steadily converges as its structured kernel approximates the
true reduced-order kernel, whereas the baselines diverge over
time. Baseline 4 suffers from the curse of dimensionality, while
Baselines 1–3 ignore random channel variations and time-
varying uncertainties, leading to suboptimal performance.

3) Tracking Stability Analysis: Fig. 4 shows the NMSE
between the UAV state and the target state over time. The
proposed scheme achieves asymptotic tracking, while the
baselines display growing deviations. This highlights the effec-
tiveness of our method in ensuring robust swarm stabilization
under system and channel uncertainties, whereas the baselines
fail to account for such variations and lead to tracking insta-
bility.

VI. CONCLUSIONS

In this work, we propose an online robust tracking control
framework for UAV swarms operating over MIMO fading
channels subject to both system dynamics and channel uncer-
tainties. The control task is reformulated as a virtual ergodic
optimal control problem, from which we derive reduced-order
optimality equations to mitigate the curse of dimensionality
and facilitate efficient real-time learning of robust control
policies. Theoretical analysis establishes rigorous guarantees,
demonstrating both the robust stability of the closed-loop sys-
tem and the almost sure convergence of the SA-based learning
algorithm. Simulation results further verify the effectiveness of

the proposed approach, showing notable improvements over
baseline methods in terms of stability, convergence speed,
and computational efficiency, thereby offering a practical and
reliable solution for UAV swarm control under uncertain
wireless environments. Beyond its theoretical contributions,
this study offers practical insights for enhancing resilient UAV
swarm coordination in the emerging low-altitude economy,
with promising applications in large-scale Internet of Things
deployments and AI-driven sensor networks.
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