H?O0: Holistic Hyper-Parameter Optimization for
Large-Scale Deep Neural Network Training

Ruiwen Wang!-23, Chong Li%, Raja Appuswamy?, Yujie Yuan?®

1Sorbonne University, Paris, France,
2 EURECOM, Biot, France,
3Huawei Technologies France SASU, Paris, France
Email: {wang.ruiwen, ch.l, yuanyujie}@huawei.com, raja.appuswamy@eurecom.fr

1 Introduction and Motivation

Deep neural networks (DNNs) have evolved from research curiosities with mil-
lions of parameters to production systems exceeding hundreds of billions of
parameters. Recently released foundation models—GPT, Llama and DeepSeek
have redefined state-of-the-art performance. Scaling rules predict further accu-
racy gains with even larger models, the bottleneck has shifted from model expres-
siveness to how efficiently accelerator clusters are used during training. Modern
practitioners must jointly choose data-, tensor-, pipeline- and optimizer-sharding
degrees, micro-batch size pu, layer—stage assignment and recomputation strate-
gies. Exhaustive search is infeasible; therefore, current planners limit themselves
to a subset of axes, often leading to suboptimal throughput and memory waste.

This work presents H? O, a two-level hyper-parameter optimizer that explores
the complete cross-axis design space while remaining lightweight enough for ev-
eryday use. Level 1 selects the most cost-effective combination of data (DP),
tensor (TP), pipeline (PP) and optimizer (OP) parallelism degrees together
with the micro-batch size, explicitly balancing predicted execution time against
per-device memory footprint. Level 2 then refines this tuple by jointly deter-
mining the layer stage assignment and the set of layers to be recomputed, to
minimize the overall pipeline time.

Training trillion-parameter networks is infeasible on a single accelerator and
therefore requires combining multiple orthogonal forms of distributed execution.
The community has proposed a sequence of systems that automate different sub-
sets of these techniques. We situate five representative systems within a common
taxonomy of parallelism and run-time optimizations, and contrast these capa-
bilities with the unified framework presented in this paper (Table 1): D-Rec [1]
pioneers operator-level tensor sharding that minimizes cross-device bandwidth,
but it neither pipelines computation nor shards optimizer state. DAPPLE [2]
extends data parallelism with a synchronous pipeline planner. PipeDream [3] au-
tomates layer—device assignment and overlaps forward /backward passes via the
1F1B scheduler; however, parameter versioning inflates memory and micro-batch
tuning remains manual. Alpa [4] unifies DP, TP and PP through a two-level
JAX/XLA search that frequently matches expert-designed plans, albeit at con-
siderable compile—search cost and with limited framework portability. Finally,

2 R. Wang et al.

AdaPipe [5] introduces dynamic programming to trade recomputation for mem-
ory while migrating layers to balance stage latency, but supports only Transformer-
like architectures and omits tensor/optimizer sharding.

The proposed solution H?O extends the design space in two key ways. First,
it simultaneously explores all four parallelism modes (DP, TP, PP, OP), whereas
existing systems cover at most three. Second, it jointly optimizes micro-batch
size, stage assignment, and fine-grained recomputation under a single, ana-
lytic compute-communication—memory model. This holistic treatment enables
near-optimal throughput on models exceeding 100B parameters while maintain-
ing strict memory budgets.

Table 1: Supported dimensions of SOTAs solution

System Parallelism Optimizations
DP|TP|PP|OP|u-batch|Stage assign.|Recompute

D-Rec [1] VIV

DAPPLE [2] |V v v

PipeDream [3]| v/ v v

Alpa [4] VIiv|Y v

AdaPipe [5] v v v

This work VIiVvIVvIVY v v v

2 System Design

Problem Definition For a fixed DNN and accelerator cluster we minimize total
training time by choosing H = {d, m, o, s, u} U{R, A}, subject to memory and
—_———— ——
. . . level 1 level 2
communication constraints.
— Level-1 (parallelism degrees): d data, m tensor, o optimizer, s pipeline stages,
1 micro-batches.
— Level-2 (pipeline balance): R recomputed layers, A layer—stage assignment.
Level-1-search We define input symbolic variables as: V = {(cg, m)}2, U
{Maev, Tiink, @, B, 7}, where ¢;,my are FLOPs and memory per layer, Mgcy,
device memory, Tk link matrix, a compute/communication overlap, B fixed
global batch size and 7 the pipeline schedule.

We define Delta cost model as: each degree z € {d,m,o,s,u} is char-
acterized by ¢(x) = (Ap, Aa, Au, A, Atcomm,Atcomp), capturing its impact
on parameter memory Ap, activation memory Aa, optimizer-state memory Au,
overlap Aa, communication time At.omm and computation time Atcomp.

We evaluate the impact of level-1-search strategy on the execution char-
acteristics of one layer ¢ under one micro-batch on each device. We track six
quantities per layer (pg, ag, Uy, t?"’d, t?‘”d, t;c), representing parameter, acti-
vation, optimizer-state sizes and forward, backward, recompute times. Commu-
nication overlap differs across collectives, so we introduce pattern-specific ratios
Qgrad; Qtp, Qopt € [0,1]. Inter-node bandwidths are encoded by the link ma-
trix i € RE*E. For each pattern ¢ € {grad,tp,opt} we derive an effective

H?O: Holistic HPO for Large-Scale DNNs 3

scalar bandwidth 7. = EﬁBW(c, 7'1ink), which is substituted into the latency
formulae below. Let the per-device micro-batch size after data-parallel splitting
be s(d) = g. Data parallelism degree d. Gradient all-reduce on parame-
ters p, incurs latency (pg /?grad(d))(l — Qigrad). Activations scale linearly with
s(d), as Aae(d) = s(d) ap. Tensor parallelism degree m. Parameter shards
reduce per-device parameter memory to Apg(m) = -, while collective messages
amount to Vi, (m) = pyp pe; the associated latency is (Vip(m)/7ip(m)) (1 — op).
Optimizer parallelism degree o. Sharding reduces optimizer-state memory
toAuy(o) = %, and synchronizing these shards costs Vopi(0) = popt e, giving
latency (Vopt(0)/Topt (0)) (1 — ctopt)-

Level-2-Search We estimate the memory of each stage in pipeline by
given a schedule 7, we define M;(7) = gﬁ({pg, ag(m, R, a4)7u4}[eA71(j)), where

the function g¢.(-) applies the live-activation rules dictated by schedule 7. A
configuration is feasible when M;(7) < Mgey Vj. For each stage j the schedule-
specific operator f(-) aggregates its assigned layers’ forward, backward and re-
computation times, producing a stage’s latency T} (7) = f,,({tg‘”d, t'g‘”d, tf}geA_l(j)> .
With g micro-batches in the pipeline, overall pipeline time is approximated
by Tpipe(T,) &~ pt maxi<j<s 1;(m), the overall duration equals the micro-batch
count p multiplied by the latency of the slowest stage under schedule 7. Dur-
ing tuning, we choose R and A (and, at Level 1, d,m,o,s,u) so that every
M;(m) < Maey while minimizing Tpipe (7,).

We embed the two-level optimization in the pseudo code of Algorithm 1,
which first searches for a best execution time/memory cost parallelism tuple
(d, m,o,s, u) and then refines the pipeline schedule by selecting R and A.

Algorithm 1 Two-level search strategy

Require: symbolic variables V, schedule 7, search budget N
Ensure: best configuration H*

1: Thest +— 00, H* < @

2: for i =1to N do

3: (d,m,o0,s,u) < LEVEL-1-SEARCH(¢)

4: if MEMEXCEEDED(d, m, o, s, i, V) then continue
5: end if

6: (R, A) + LEVEL-2-SEARCH(d, m, 0, S, i1,)

7 T < Tpipe(m,)

8: if MEMEXCEEDED(R, A) then continue

9: end if

10: if T < Thesy then

11: H* « {d,m,o0,s,u, R, A}; Toest < T

12: end if

13: end forreturn H*

LEVEL-1-SEARCH draws candidates by the Delta cost model ¢. MEMEXCEEDED
rejects tuples for which any stage violates the memory constraint M;(mw) <
Mgey. LEVEL-2-SEARCH is a local search that adaptively balances recompu-
tation strategies and layer-stage assignment to achieve the minimum overall
pipeline time.

4 R. Wang et al.

3 Experimental Evaluation

Experimental Setup Experiments are executed on 16x Huawei Atlas Ascend
910 computing nodes with CANN 7.2, MindSpore 2.5. Fach node is equipped
with 8x Ascend-910 NPUs, interconnected via a high-speed HCCS with a band-
width of 392 GB/s per NPU. Multiple nodes are connected via a ring topology
by RoCE network interfaces supporting a unidirectional bandwidth of 25 GB/s.
Baselines and Metrics We compare our H>O planner on a 141-billion-
parameter DeepSeek model, against two widely adopted baselines: a) Baseline-A:
algorithmic D-Rec. A state-of-the-art auto-parallel planner that searches data
and tensor degree. It does not support optimization over pipeline or optimizer,
nor does it explore layer assignment or recomputation. b) Baseline-B: expert
hand-tuned. An expert uses a greedy search to sequentially tune data, tensor,
pipeline, and optimizer degree, as well as micro-batch size and recomputation.
To compare, we report (i) model-flop utilization (MFU) and (ii) iteration time.
Result As summarized in Table 2, H2O achieves the best performance among
all solutions. These results confirm that jointly optimizing parallelism degrees
and pipeline balancing translates directly into higher accelerator throughput.

Table 2: Performance comparison on DeepSeek-141B with 128 Ascend NPUs.
Planner |Iter. Time (s) {|MFU (%) t|Speedup (%)

D-Rec 49.600 26.13 +0.00
Expert-tuned| 44.396 29.34 +17.21
H20 (Ours) 36.278 35.73 +36.72

4 Conclusion

We introduced H?O, a two-level hyper-parameter optimizer that searches data,
tensor, pipeline and optimizer parallelism together with micro-batch size, stage
assignment and adaptive recomputation. On a 128-NPU cluster training a 141-
billion-parameter DeepSeek model, H?O gain a speedup up to 36.72%, outper-
forming both the state-of-the-art auto-parallel planner and expert-tuned.

References

[1] H. Wang et al., “Efficient and Systematic Partitioning of Large and Deep Neural Networks
for Parallelization,” in Lecture Notes in Computer Science, ser. Lecture Notes in Computer
Science, vol. 12820, Lisbon, Portugal: Springer International Publishing, 2021, pp. 201-216.

[2] S. Fan et al., “Dapple: A pipelined data parallel approach for training large models,” in Pro-
ceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’21, Virtual Event, Republic of Korea: Association for Computing
Machinery, 2021, pp. 431-445.

[3] D. Narayanan et al., “Pipedream: Generalized pipeline parallelism for dnn training,” in Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles, ser. SOSP ’19, Huntsville,
Ontario, Canada: Association for Computing Machinery, 2019, pp. 1-15.

[4] L. Zheng et al., “Alpa: Automating inter- and Intra-Operator parallelism for distributed deep
learning,” in 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), Carlsbad, CA: USENIX Association, Jul. 2022, pp. 559-578.

[5] Z. Sun et al., “Adapipe: Optimizing pipeline parallelism with adaptive recomputation and
partitioning,” in Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3, ser. ASPLOS ’24,
La Jolla, CA, USA: Association for Computing Machinery, 2024, pp. 86—-100.

	H2O: Holistic Hyper‑Parameter Optimization for Large‑Scale Deep Neural Network Training

