
A Reinforcement Learning Approach for Multi-edge

Task Offloading Through Bi-level Optimization

Mohammed Dhyia Eddine Gouaouri∗,

Miloud Bagaa∗,Oussama Bekkouche§, Messaoud Ahmed Ouameur ∗ and Adlen Ksentini¶

∗ Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.

Emails: {mohammed.dhyia.eddine.gouaouri, miloud.bagaa, messaoud.ahmed.ouameur}@uqtr.ca

, §Aalto University, Otakaari 24, 02150 Espoo FINLAND (e-mail: oussama.bekkouche@aalto.fi),
¶EURECOM, Campus SophiaTech, France (e-mail: adlen.ksentini@eurecom.fr)

Abstract—The Internet of Things (IoT) is rapidly expanding
globally, but the limited size of IoT devices restricts their bat-
tery capacity, computational resources, and wireless bandwidth,
making it difficult to handle resource-intensive tasks. Edge Com-
puting addresses these challenges by enabling task offloading to
more capable edge servers. However, optimal task offloading in
Edge-IoT networks is complex due to dynamic conditions, such
as varying server loads and wireless fluctuations. Traditional
and some machine learning-based offloading methods often fall
short in adaptability or efficiency. This paper introduces a bi-
level optimization approach using Deep Reinforcement Learning
(DRL) agents for IoT-level offloading and a priority-aware greedy
heuristic for resource allocation on edge servers. The proposed
method effectively improves QoS by balancing task execution
latency and power consumption, as demonstrated by simulation
results.

Index Terms—Edge-IoT Computing, Task Offloading, Bi-level
Optimization, Reinforcement Learning

I. INTRODUCTION

The rapid proliferation of Internet of Things (IoT) devices

has led to an exponential increase in the generation of data,

presenting both opportunities and challenges for modern com-

puting architectures [1]. Traditional cloud computing, with

its centralized data centers, offers scalable resources and

powerful analytics capabilities, but it is often constrained by

issues such as network latency, bandwidth limitations, and

data privacy concerns. In response to these challenges, the

Cloud-Edge-IoT Continuum has emerged as a comprehensive

framework that integrates cloud computing, edge computing,

and IoT devices into a cohesive and adaptive system.

The Cloud-Edge-IoT Continuum (CEIC) represents a

paradigm shift in the way data is processed, stored, and

analyzed. By distributing computing resources across the

cloud and the edge, and by leveraging the capabilities of IoT

devices, this continuum enables efficient data management

and real-time decision-making. Edge computing, positioned

between the cloud and IoT devices, plays a critical role

in this architecture by bringing processing power closer to

the data source. This proximity reduces latency, minimizes

bandwidth usage, and allows for local processing of critical

data, which is particularly valuable in applications requiring

immediate responses, such as autonomous vehicles, industrial

automation, and healthcare monitoring. The integration of

cloud, edge, and IoT systems also enhances scalability and

flexibility, enabling organizations to dynamically allocate re-

sources based on real-time demands. This distributed approach

not only optimizes the performance of IoT applications but

also addresses the growing concerns around data security and

privacy by processing sensitive information closer to the point

of origin.

However, IoT devices are known to be resource-constrained

systems with limited battery capacity and computational re-

sources, making it impossible to run resource-intensive ap-

plications. By leveraging the capabilities ofeEdge computing

and performing the offloading of tasks to more powerful edge

servers as necessary, QoS requirements such as reduced exe-

cution latency and lower power consumption can be satisfied.

Traditional task-offloading methods are often based on

heuristics or simple rules, which may result in sub-optimal

and less satisfactory solutions, in terms of the cost induced

by the offloading strategy, as they may not adapt well to the

variable conditions of the Edge-IoT networks, such as varying

server loads and fluctuating wireless channel conditions. How-

ever, Deep Reinforcement Learning (DRL) techniques offer a

promising approach to address these challenges.

In this paper, we propose a novel approach for multi-

edge IoT task offloading and resource allocation using bi-

level optimization. A reinforcement learning agent based on

DDPG is employed to determine offloading decisions on

local IoT devices, while a fast heuristic scheduling algorithm

is designed to schedule tasks on remote edge servers and

allocate resources to the offloaded tasks, aiming to reduce

task execution latency and energy consumption.

The remainder of the paper is organized as follows. We

review the task-offloading related work in Section II. The task

offloading problem is formulated in Section III. Meanwhile,

section IV describes the proposed solution. Section V presents

the simulation results and their analysis, and finally, Section

VI concludes the paper.

II. RELATED WORK

Task offloading in wireless networks, especially for

resource-constrained devices, has been extensively studied.

Traditional methods often rely on game theory [2], linear

regression [3], and dynamic programming [4]. While these ap-

proaches can approximate optimal solutions, they are limited

in dynamic task-offloading scenarios due to their reliance on

prior knowledge of the environment. Many prior studies focus

on optimizing either energy consumption or task execution

latency [5], while some address both objectives [6]. Others aim

to optimize additional goals, such as load balancing [7] and

deployment cost [6]. DRL has proven effective for complex

decision-making tasks like task offloading and resource allo-

cation in wireless networks. For instance, [8] formulated task

offloading for mobile users as a single-agent infinite-horizon

Markov Decision Process (MDP) to minimize monetary costs

and energy consumption. In [9], a single-agent ǫ-greedy Q-

learning algorithm was used to achieve a better trade-off

between execution latency and power consumption for both

the end device and the edge server. However, this solution

assumes that only channel conditions, task queue status, and

available computation resources need to be considered for

solving the task offloading problem, neglecting the fact that

power consumption of devices plays an important in the

offloading decision.

Some recent efforts utilize federated learning (FL) and

DRL in wireless networks. For example, [10] proposed a

federated DDPG-based offloading method with power con-

trol in Vehicular Edge Computing (VEC), using DDPG to

handle continuous actions representing transmission power

allocation. Similarly, [11] introduced a federated-DRL (F-

DRL) approach, where base stations collaborate by sharing

model weights to allocate optimal transmit power. In [12], a

federated reinforcement learning approach based on DQN was

proposed for power allocation and task offloading. The method

allocates discrete offloading power to a remote edge server for

incoming tasks and has demonstrated superior performance

compared to central DQN in terms of execution latency and

power consumption.

However, most of these works do not consider the scenario

of resource placement and allocation across multiple edge

servers, where a wide range of tasks must be distributed.

This scenario impacts both latency and energy consumption

for local devices and remote edge servers. In this work, we

propose a novel bi-level optimization approach for multi-edge

task offloading and compute resource allocation in Edge-IoT

environments. The outer-level optimization at the IoT device

level is modeled as a Markov Decision Process (MDP) and

solved using reinforcement learning techniques to manage task

offloading and resource allocation decisions. The inner-level

optimization at the edge server level is handled using a greedy

algorithm to allocate resources efficiently. By integrating both

approaches, we optimize task execution delay and energy

consumption jointly.

III. PROBLEM FORMULATION

A. System model

We consider an Edge-IoT environment as shown in Fig. 1,

where IoT devices connect via a wireless cellular network

to an EC. These devices have limited computation power

and energy, making task offloading to the edge important for

meeting QoS requirements, particularly reducing execution

delay and power consumption. The edge cloud comprises

multiple servers that process offloaded tasks. A task placement

controller assigns tasks to the optimal server and allocates

resources to minimize computation latency and energy con-

sumption.

B. Communication model

In this study, we divide the time horizon into consecutive

epochs of fixed duration, indexed by an integer t, where 0 <

t ≤ T , with T representing the total number of epochs within

the considered time frame.

We assume communication between IoT devices and edge

servers is established via sub-gigahertz radio frequency tech-

nology. This ensures reliable, long-range communication with

Fig. 1: Task offloading system architecture

low power consumption, making it ideal for IoT applications

where devices are typically battery-powered and require ex-

tended operational lifespans. The communication bandwidth

between each IoT device and the edge server is denoted as

Be.

We consider a set of stationary IoT devices, denoted by

D = {d1, d2, ..., du}, each connected to the edge cloud access

point through a wireless communication link with bandwidth

Be. The channel condition between an IoT device and the

edge server varies over time, modeling realistic communi-

cation scenarios. This variation is captured by the channel

gain, denoted Gt, which remains constant throughout a given

offloading epoch. At any time, the channel gain is selected

from a set G = {g1, g2, g3, ..., gn}.
Each IoT device makes autonomous decisions on task

offloading based on multiple factors, including the number of

queued tasks, the current channel gain, the device’s remain-

ing battery power, and its available computational resources.

These decisions involve selecting the appropriate transmission

power or determining the computation percentage allocated to

each task.

C. Task model

We assume that each IoT device di maintains a task

queue Q(i) = {T
(i)
1 , T

(i)
2 , ..., T

(i)
M }, consisting of independent

computational tasks. Each task in the queue requires a number

of CPU cycles to process, depending on its size. At any given

time t, the device receives a set of new user tasks. Each task

T
(i)
j has a size denoted by s

(i)
j ∈ S, measured in bytes, where

S is the set of possible task sizes. Additionally, each task is

assigned a priority value between 0 and 1 denoted by U
(i)
j , as

well as a deadline D
(i)
j . If a task remains in the queue beyond

its specified deadline, it is deemed to have exceeded its time

limit and it is therefore canceled.

D. Computation model

1) Local execution: We consider a heterogeneous IoT

environment where each device has its own computational

capacity denoted by C
(i)
d which measures the number of CPU

cycles to process one byte of a computational task. Each CPU

cycle consumes an amount of power that we denote P
(i)
d . Each

device is attributed a task processing frequency denoted by

F
(i)
d .

The power consumption required to process 1 byte of a task

is given by P
(i)
d · C

(i)
d . Hence, the power consumption for a

task j is:

P
(i,j)
l = P

(i)
d · C

(i)
d · s

(i)
j · r

(i)
j (1)

where r
(i)
j denotes the percentage of compute resources allo-

cated to task T
(i)
j .

The local processing delay of a task T
(i)
j is calculated by:

t
(i,j)
l =

C
(i)
d · s

(i)
j · r

(i)
j

F
(i)
d

. (2)

We define the local processing cost function L
(i,j)
l defined

as:

L
(i,j)
l = (1− α) · P

(i,j)
l + α · t

(i,j)
l (3)

where α ∈ [0, 1] is mixing factor.

2) Offloading and remote execution:: The IoT devices are

assumed to use the time division multiple access (TDMA)

method to send their data to the edge server. This means that

the IoT devices are given specific time slots to transmit data

without the other devices interfering, allowing for efficient use

of the channel and reducing collisions. The transmit power of

the IoT device needed to offload the task to the remote servers

is proportional to its size s
(i)
j . Hence, the resulting achievable

transmission rate, expressed in bytes per second, is indicated

as:

R(i,j)
e = Be · log(1 +

s
(i)
j ·G

σ2
) (4)

Where:

• R
(i,j)
e represents the transmission rate between the end

device and the edge cloud (measured in bytes per sec-

ond).

• Be represents the bandwidth of the channel between the

IoT device and the edge servers (measured in Hertz).

• G represents the channel gain.

• σ2 represents the variance of additive white Gaussian

noise (AWGN).

• s
(i)
j represents the size of task T

(i)
j .

We consider the edge cloud to be constituted of a set

of heterogeneous edge servers E = {e1, e2, ..., eM} which

are designed to handle relatively higher workload than IoT

devices. Each edge server ek has a compute capacity C
(k)
e

which denotes the number of CPU cycles to process one byte

of a task computation. One CPU cycle of a server consumes

P
(k)
e . The compute frequency is denoted by F

(k)
e .

If a task T
(i)
j of size s

(i)
j is assigned to server ek then the

processing time is calculated via the following formulas:

t(i,j,k)r =
C

(k)
e · s

(i)
j · r

(i,k)
j

F
(k)
e

(5)

where r
(i,k)
j is the compute percentage allocated to the task

T
(i)
j by the edge server ek.

The consumed processing power is:

P (i,j,k)
r = P (k)

e · C(k)
e · s

(i)
j · r

(i,k)
j (6)

We denote by t
(i,j)
trans the transmission time when the task

T
(i)
j is offloaded:

t
(i,j)
tran =

s
(i)
j

R
(i,j)
e

(7)

Hence, the remote processing cost is:

L(i,j,k)
r = (1− β) · P (i,j,k)

r + β · (t
(i,j)
trans + t(i,j,k)r) (8)

Where β is a mixing factor.

A task scheduler deployed on the edge cloud makes deci-

sions of placing offloaded tasks onto the proper edge servers.

We define two binary variables x
(i)
j , y(i,j,k):

x
(i)
j =

{

1, if task T
(i)
j is offloaded to the edge

0, otherwise
(9)

y(i,j,k) =

{

1, if task T
(i)
j is placed on edge server ek

0, otherwise

(10)

We define the objective function:
∑

i

∑

j

∑

k

L(i,j,k)
r · y(i,j,k) · x

(i)
j + (1− x

(i)
j) · L

(i,j)
l (11)

The goal is to minimize the objective defined in (11) as

follows:

minimize
∑

i

∑

j

∑

k

[

L
(i,j,k)
r · y(i,j,k) · x

(i)
j + (1− x

(i)
j) · L

(i,j)
l

]

subject to 1) 0 ≤ r
(i)
j ≤ 1, ∀i, j

2) 0 ≤ r
(i,k)
j ≤ 1, ∀k, j

3) x
(i)
j ∈ {0, 1}, ∀i, j

4) y(i,j,k) ∈ {0, 1}, ∀i, j, k

5)
∑

k y
(i,j,k) = x

(i)
j , ∀i, j

6)
∑

j r
(i)
j · (1− x

(i)
j) ≤ 1, ∀i

7)
∑

i

∑

j r
(i,k)
j · y(i,j,k) ≤ 1, ∀k

(12)

The constraints in this optimization problem 12 ensure a

feasible task offloading and resource allocation. The local

computation capacity constraint (1) ensures that the per-

centage of computation resources allocated to each task on

the device is between 0 and 1, representing the fraction of

resources used locally. Similarly, the remote computation

capacity constraint (2) restricts the resource allocation on the

edge server, ensuring that tasks offloaded to a server do not

exceed available resources. The binary variables constraints

(3) and (4) define x
(i)
j as a binary variable indicating whether

a task is offloaded 1 or processed locally 0, and y(i,j,k), also

a binary variable that indicates whether a task is assigned

to a specific edge server. The task assignment constraint

(5) ensures that each task can either be processed locally

or offloaded, but not both, and that the sum of assignments

to edge servers matches the offloading decision. Finally, the

computation capacity constraints (6) and (7) ensure that

the total resources allocated to tasks on both devices and

edge servers do not exceed the available computation capacity,

maintaining an overall balance of resource usage.

We notice that this problem is a mixed integer nonlin-

ear programming (MINLP) problem that involves nonlinear

objective functions and integer variables, making it difficult

or even impossible to solve using conventional optimization

techniques. Furthermore, traditional nonlinear programming

optimization techniques take a considerable amount of time

before giving the optimal solution, making them unfeasible for

real-time, whereby the offloading decisions should be taken

in real-time. Reinforcement Learning (RL) is a promising

approach to tackle this problem, as it provides a framework

for devising optimized decision-making policies adapted to

the dynamic of the environment.

IV. REINFORCEMENT LEARNING FORMULATION AND

METHODOLOGY

In this section, we propose an RL formulation for the task

offloading and resource allocation problem described earlier

and present an algorithm to solve it.

1) Offloading RL Formulation: : The task offloading

problem is first modeled as a Markov Decision Process (MDP)

< S(i), A(i), P (i), R(i), γ(i) > for each agent deployed on the

device di.

a) Elements of the MDP:

• State Space: S(i) = {s
(i)
1 , s

(i)
2 , . . . , s

(i)
n } represents the

set of states for device i. Each state s
(i)
t encapsulates

information regarding the task offloading environment of

device i at time slot t, including:

– Channel gain (G
(i)
t): Reflects the quality of the

communication channel between the device and the

edge servers.

– Task queue (Q
(i)
t): Represents the list of the local

tasks of device i at time slot t, waiting to be

offloaded or processed, characterized by the size and

number of tasks.

– Remaining battery power (B
(i)
t): Indicates the

battery level od device i at time slot t.

– Available computation resources (R
(i)
t): Repre-

sents the remaining CPU or computation resources

on the device i at time slot t.

Thus, the state for agent i at time step t can be defined

as:

s
(i)
t = (G

(i)
t , Q

(i)
t , R

(i)
t , B

(i)
t)

This state space reflects the dynamic environment of

IoT devices, where the channel conditions, task load,

and resource availability fluctuate over time.

• Action Space (A(i)): The action space includes the set

of actions taken by the agent regarding task offloading

and resource allocation. Each action can be represented

as a tuple a
(i)
t = (x

(i)
j , r

(i)
j), where:

– x
(i)
j : A binary variable indicating whether a task is

offloaded or not.

– r
(i)
j : The amount of computation resources allocated

to the task, if executed locally.

– Task T
(i)
j is being treated at time step t.

To reduce the action space complexity, we observe that

x
(i)
j = I[r>0](r

(i)
j) (where I[x>0](x) is the indicator func-

tion), meaning the offloading decision x
(i)
j depends on

whether r
(i)
j is positive. Therefore, the agent’s action is

reduced to deciding the allocated computation resources

a
(i)
t = r

(i)
j .

• Transition Probability (P (i)): The state transition prob-

ability P (i)(s
(i)
t+1, Rt|s

(i)
t , a

(i)
t) represents the probability

distribution over the next state s
(i)
t+1 and the reward Rt

given the current state s
(i)
t and action a

(i)
t taken by

the agent. These transition probabilities are unknown

due to the random dynamics of the environment, which

makes the use dynamic programming infeasible. We use

Reinforcement Learning (RL) to iteratively learn optimal

policies by interacting with the environment, enabling the

agent to discover the transition probabilities and rewards

through experience.

• Reward function (R(i)): The reward function R(i) is

defined to encourage efficient resource allocation and

energy consumption. The reward function is formulated

rigorously in IV-2

• Discount Factor (γ(i)): The discount factor γ(i) de-

termines the importance of future rewards. The higher

the value of γ(i) is, the more important future rewards

are, encouraging long-term planning, while a lower γ(i)

prioritizes immediate gains.

2) Bi-level optimization formulation: At each timestep t,

each agent deployed on the device i takes an action a
(i)
t = r

(i)
t

from a local policy πi. A local reward is received which is

equal to:

R
(i)
t (sit, a

i
t) = −L

(i,j)
l · (1− x

(i)
j) + (D

(i)
j − t) · U

(i)
j

Given that at time step t, task T
(i)
j is being treated.

The offloading decisions are communicated to the edge

task scheduler that reads the placed tasks from the queue and

assigns them to the edge servers using the algorithm described

in IV-3. The scheduler, then, calculates the cost of remote

processing of each task T
(i)
j as

∑

k L
(i,j,k)
r · y(i,j,k). The cost

of remote processing of tasks is used for calculating the global

reward as follows:

Rt(st, at, λ
∗
t (st, at)) =

∑

i

R
(i)
t +

∑

i

∑

j

∑

k

−L(i,j,k)
r ·y(i,j,k)

Where:

• st = (s
(1)
t , s

(2)
t , ..., s

(i)
t , ..., s

(n)
t): The joint state of the

multi-agent system.

• at = (a
(1)
t , a

(2)
t , ..., a

(i)
t , ..., a

(n)
t): The joint action of the

multi-agent system.

• λt is the remote task placement decision on the edge

server at time step t and λ∗
t is the optimal remote

placement.

The global reward is then returned to the devices’ agents

to perform the Bellman update. Hence, we can formulate this

joint problem as a bi-level optimization problem as follows:

max
πi

E
a
(i)
t ∼πi(·|st)

[

T
∑

t=0

γtRt(st, at, λ
∗
t (st, at))

]

subject to λ∗
t (st, at) = argmax

λt

Rt(st, at, λt(st, at))

(13)

The equation above aims to maximize the expected dis-

counted cumulative reward for each IoT agent i (the outer

level objective), taking into account an optimal placement

and resource allocation on the edge servers (the inner level

objective).

We employ Deep Deterministic Policy Gradient (DDPG)

algorithm [13] to learn the optimal offloading and resource

allocation policy, the choice of DDPG is driven by the fact

that our state and action spaces are continuous which limits the

set of algorithms to be employed. On the other hand, DDPG is

considered a robust learning algorithm and has demonstrated

superiority in various research problems [14], [15]. The DDPG

algorithm that we use leverages two neural networks: an actor

network that outputs the optimal action for a given state and

a critic network that evaluates the quality of the action by

predicting the expected future rewards. By using experience

replay and soft target updates, DDPG effectively stabilizes

training and improves convergence.

3) Remote task placement and resource allocation formu-

lation: : For remote task placement and resource allocation,

we adopt a priority-aware greedy approach that balances

resource usage across edge servers, aiming to minimize la-

tency, reduce energy consumption, and ensure fairness across

tasks of varying sizes and priorities, thus avoiding resource

starvation. Algorithm 1 outlines the proposed method, which

begins by sorting the tasks in the queue in non-increasing

order, prioritizing first high-priority tasks and then those with

larger sizes. This ensures that urgent or resource-intensive

tasks are processed first, enhancing system responsiveness to

critical tasks. For each task, the least loaded server is selected

for task offloading, with ties resolved randomly to avoid

biases. This strategy distributes the load evenly across servers,

reducing the risk of overloading any single server. Once a task

is assigned to a server, a temperature-softmax score is calcu-

lated to estimate resource allocation for the remaining tasks.

The softmax function transforms task sizes into probabilities,

ensuring a smooth resource distribution based on task sizes,

and is applied pessimistically by assuming that all remaining,

smaller tasks will also be assigned to the same server. The

temperature parameter τ controls the balance between fairness

and task size preference, with smaller τ values allocating more

resources to larger tasks and larger τ values ensuring more

equitable resource distribution. Typically, τ is set to the me-

dian task size to strike a balance between allocating resources

to large and small tasks. Finally, the allocated computation

resources are determined by multiplying the softmax score

by the fraction of remaining server resources, ensuring that

no server is over-allocated while efficiently utilizing available

resources. This dynamic resource allocation balances optimal

resource usage, task fairness, and energy efficiency.

Algorithm 1: Greedy Approach for Remote Task

Placement and Resource Allocation

Input: Set of tasks T , Set of servers S
Output: Task placements and allocated resources

1 Sort tasks T in non-increasing order based on priority

and size;

2 Initialize placement array p← [];
3 for each task Tj ∈ T do

// Find the least loaded server

4 yj ← LeastLoaded(S);
// Softmax-based allocation factor

5 fj ←
exp(

sj

τ)
∑

k≥j

exp(sk
τ)

;

// Assign server and resources to

task

6 rj ← fj · RemainingResources(S[yj]);
7 p.append((yj , rj));

8 return p;

As discussed previously After performing the remote task

placement and resource allocation for all of the tasks in the

remote queue, the reward Rt(st, at, λt(st, at)) is calculated

and sent back to the IoT agent to perform their Reinforcement

Learning update.

V. SIMULATION AND RESULTS

We conducted a simulation study to assess the performance

of the proposed RL-based Multi-Edge task offloading solution.

We consider an environment with 8 devices and 4 edge servers

with the parameters shown in Table I. Some parameter values

for simulating sub-gigahertz communication were taken from

the experiments in [12]

The DDPG RL agent are developed using the PyTorch

framework and trained over 1000 episodes, with each episode

comprising 40 epochs (simulation time steps). The task gen-

eration process was modeled stochastically following Poisson

distribution, with an arrival rate of 5 tasks per second. The

initial power of the IoT device was set to the maximum value

of 30 dB.

To evaluate the method, we measured the following key

metrics:

• Running Average Reward: Tracks the agents’ cumula-

tive performance over time, averaged over 100 episodes,

to assess adaptation in task arrival, resource allocation,

and offloading.

• Power Consumed by Devices: Measures IoT device en-

ergy use for local task execution, including computation

and communication costs, to ensure energy efficiency.

• Remote Power Consumed by Edge Servers: Monitors

energy used by edge servers for offloaded tasks, covering

both computation and data transmission, to evaluate

offloading efficiency.

A. Running average of local IoT agents reward

Figure 2 illustrates the moving average reward (The learn-

ing curve) with a window size of 100 for the agents. Ini-

tially, the reward function exhibits significant noise during

the early training stages, indicating the exploration behavior

of the agents. However, after approximately 200 episodes,

the reward function increases more smoothly, reflecting the

agents’ gradual improvement in task offloading and resource

allocation strategies as they learn more efficient policies.

B. Running average of local IoT agents power consumption

Figure 3 illustrates the moving average local power con-

sumption with a window size of 100 for the agents. In

the initial stages of training, the power consumption shows

significant noise, reflecting the exploration process. However,

after around 200 episodes, the power allocation starts to

decrease smoothly, indicating that the agents are learning more

energy-efficient resource allocation strategies over time.

C. Running Average of Remote Edge Servers Power Con-

sumption

We measure the remote power consumption of the edge

servers, as depicted in figure 4. Initially, we observed relatively

high power consumption due to the significant amount of tasks

being offloaded. As the agents’ policies converge to an optimal

strategy, the power consumption stabilizes and the tasks are

distributed more evenly across the edge servers within the

edge-cloud. This reflects improved load balancing and more

efficient resource utilization over time.

597

Parameters Description Value

S Task sizes set [5, 10, 15, ..., 1000] Kbytes
(step 5)

Be Communication
bandwidth

105

σ Variance of
AWGN

−160 + 10 · log10

α, β Mixing factors
for costs

α = 0.8, β = 0.8

G Channel Gain [0.5, 0.6, ..., 2] (step 0.1)

γ Discount factor 0.95

Parameters Description Value

C
(i)
d

Device
processing
capacity

400 cycles/byte

C
(k)
e Server

processing
capacity

4000 cycles/byte

P
(i)
d

Device power
consumption

6× 10−3 W

P
(k)
e Server power

consumption
1× 10−6 W

F
(k)
d

Device frequency 500 MHz

F
(k)
e Server frequency 4 GHz

TABLE I: Simulation Parameters For Multi-Edge Task Offloading

Fig. 2: Running average reward of the previous 100 episodes
Fig. 3: Running average of local power consumption over

the previous 100 episodes

Fig. 4: Running average of remote power consumption over

the previous 100 episodes

D. Analysis summary

The previous analysis confirms that the proposed multi-edge

task offloading and resource allocation strategy is effective and

robust. The DDPG-based reinforcement learning agent, cou-

pled with the greedy allocation strategy, demonstrates signif-

icant improvements in reward, power consumption, and load

balancing. The system’s performance under various synthetic

scenarios indicates its suitability for real-world applications,

with potential for further optimization and refinement.

VI. CONCLUSION

In this paper, we proposed a novel bi-level optimization ap-

proach for multi-edge task offloading and resource allocation

in Edge-IoT environments. The outer-level optimization at the

IoT device level is addressed using a reinforcement learning-

based optimizer, specifically DDPG, chosen for its robustness

and ability to handle the complexity of our environment. The

inner-level optimization at the edge server level is addressed

with a greedy algorithm. The simulation results demonstrated

promising performance, effectively balancing task processing

latency and energy consumption. The greedy allocation algo-

rithm on the remote edge servers also achieved acceptable fair-

ness among tasks, improved load balancing, reduced energy

consumption, and provided faster placement and allocation.

Future work could explore broader problem setups, including

mobile IoT devices, and investigate alternative scheduling

algorithms, such as meta-heuristics, and other reinforcement

learning-based approaches.

REFERENCES

[1] A. Ghasempour, “Internet of things in smart grid: Architecture, appli-
cations, services, key technologies, and challenges,” Inventions, vol. 4,
no. 1, p. 22, 2019.

[2] S. Chen, S. Sun, H. Chen, J. Ruan, and Z. Wang, “A game theoretic
approach to task offloading for multi-data-source tasks in mobile
edge computing,” in 2021 IEEE Intl Conf on Parallel & Distributed

Processing with Applications, Big Data & Cloud Computing, Sustain-

able Computing & Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021, pp. 776–784.

[3] K.-H. Kim, J. Lynskey, S. Kang, and C. S. Hong, “Prediction based sub-
task offloading in mobile edge computing,” in Proceedings of the 2019

International Conference on Information Networking (ICOIN). IEEE,
2019, pp. 448–452.

[4] T. Zhao, S. Zhou, L. Song, Z. Jiang, X. Guo, and Z. Niu, “Energy-
optimal and delay-bounded computation offloading in mobile edge
computing with heterogeneous clouds,” in China Commun, vol. 17,
2020, pp. 191–210.

[5] X. He, H. Xing, Y. Chen, and A. Nallanathan, “Energy-efficient mobile-
edge computation offloading for applications with shared data,” in arXiv

preprint arXiv:1809.00966, 2018.

[6] Y. Nan, W. Li, W. Bao, F. Delicato, P. Pires, Y. Dou, and A. Zomaya,
“Adaptive energy-aware computation offloading for cloud of things
systems,” IEEE Access, vol. 5, pp. 23 947–23 957, 2017.

[7] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou,
“Adaptive resource allocation for computation offloading: A control-
theoretic approach,” ACM Transactions on Internet Technology (TOIT),
vol. 19, no. 2, pp. 1–20, 2019.

[8] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Perfor-
mance optimization in mobile-edge computing via deep reinforcement
learning,” arXiv preprint arXiv:1804.00514, 2018.

[9] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge computing
in iot networks via reinforcement learning,” in ICC 2019-2019 IEEE

International Conference on Communications (ICC), May 2019, pp. 1–
6.

[10] S. Moon and Y. Lim, “Federated deep reinforcement learning based task
offloading with power control in vehicular edge computing,” Sensors

(Basel), vol. 22, no. 24, p. 9595, Dec. 2022.

[11] P. Tehrani, F. Restuccia, and M. Levorato, “Federated deep reinforce-
ment learning for the distributed control of nextg wireless networks,”
in 2021 IEEE International Symposium on Dynamic Spectrum Access

Networks (DySPAN), Dec. 2021, pp. 248–253.

[12] H. Merakchi, M. Bagaa, A. O. Messaoud, A. Ksentini, and A. Sehad,
“Federated deep reinforcement learning-based task offloading system in
edge computing environment,” in GLOBECOM 2023-2023 IEEE Global

Communications Conference. IEEE, 2023, pp. 5580–5586.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
and Y. Tassa, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015. [Online]. Available:
https://arxiv.org/abs/1509.02971

[14] S. Gu, E. Holly, T. P. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous data centers,”
in Robotics: Science and Systems (RSS), 2017. [Online]. Available:
https://arxiv.org/abs/1705.08009

[15] T. Haarnoja, A. Zhou, S. Agarwal, and S. Levine, “Soft actor-
critic: Off-policy actor-critic for continuous control,” in International

Conference on Machine Learning (ICML), 2018. [Online]. Available:
https://arxiv.org/abs/1812.05905

Powered by TCPDF (www.tcpdf.org)

