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ABSTRACT
This paper addresses decentralized stochastic gradient descent (D-
SGD) over resource-constrained networks by introducing node-
based and link-based scheduling strategies to enhance communica-
tion efficiency. In each iteration of the D-SGD algorithm, only a
few disjoint subsets of nodes or links are probabilistically activated,
subject to a given communication cost constraint. We propose a
novel importance metric based on information entropy to determine
node and link scheduling probabilities. We validate the effective-
ness of our approach through extensive simulations, comparing it
against state-of-the-art methods, including betweenness centrality
(BC) for node scheduling and MATCHA for link scheduling. The
results show that our method consistently outperforms the BC-based
method in node scheduling, achieving faster convergence with up
to 60% lower communication budgets. At higher communication
budgets (above 60%), our method maintains comparable or superior
performance. In link scheduling, our method delivers results that are
either superior or on par with those of MATCHA.

Index Terms— Decentralized machine learning, information
entropy, importance metric, communication network, scheduling.

1. INTRODUCTION

Collaborative training of a machine learning (ML) model with de-
centralized data and model aggregation offers benefits over central-
ized learning such as lower communication costs, enhanced privacy,
increased scalability, and greater robustness against single point of
failure [1, 2]. In such setups, nodes train a shared ML model on
their local datasets beyond sharing it with other network nodes (see
Fig. 1), thus preserving user privacy [3]. Then, each node shares its
locally trained model with the rest of the network nodes by peer-to-
peer communication among neighboring nodes, known as decentral-
ized learning.

Decentralized stochastic gradient descent (D-SGD) is a highly
used optimization approach for decentralized learning [4]. In ev-
ery iteration of D-SGD, the nodes compute their stochastic gradi-
ent, fuse it with the updates received from the neighbors, and then
share their updated model with their neighbors. However, this fre-
quent exchange of model updates results in huge communication
overheads, thus making the communication cost a bottleneck. Previ-
ously, the convergence speed of D-SGD was analyzed in terms of the
decrease in error per iteration [5, 6], neglecting the communication
cost of each iteration. However, communication topology signifi-
cantly affects the convergence speed of D-SGD [7], since the choice
of channel access scheme governs the communication cost per itera-
tion. Based on this observation, some works, e.g., [8, 9], used graph

sparsification to enhance convergence speed by reducing communi-
cation frequency. Recent works, such as [10], [11], also advocated
the use of graph sparsification for communication-efficient decen-
tralized learning as ”not all links are equally important in a graph”.
This means that the most important links activate more often than
the least important links to achieve faster convergence. In addition,
a node can transmit model updates to all its neighbors in a single
transmission slot by exploiting the broadcast nature of communica-
tion networks. A more recent work in [12] considers the fact that
”not all nodes are equally important in a graph”; thus, more critical
nodes should communicate more frequently than trivial nodes.

In light of the existing literature, a challenging question is how
to measure the importance of links and nodes in the network. In
communication networks, each link impacts connectivity differently,
having little impact or being crucial. The crucial links for connec-
tivity help to fast error convergence, whereas trivial links can help
to reduce communication delays, improving the efficiency of D-
SGD [11]. However, the importance of a node in a network reflects
its role and impact on the structure and dynamics of the network.
Furthermore, computing the importance of the node helps in assess-
ing the vulnerability of the network to node failure and the influence
of a node on the flow of information in the network [13]. Addition-
ally, key nodes can affect the convergence speed of decentralized
learning algorithms, making it essential to compute link and node
importance to estimate their scheduling probabilities for transmit-
ting model updates, thus facilitating fast convergence of the D-SGD
algorithm. Although several methods exist for computing link/node
importance in a graph, e.g., [14], [15], the work presented in [16]
considers the betweenness centrality (BC) method as it renders more
accurate node’s ranking in terms of importance than other centrality
measures for estimating node activation probabilities. However, the
BC method is less effective in identifying critical nodes in large and
densely connected topologies [12]. While it offers a global, strate-
gic perspective on key control points within the network, this comes
at the expense of high computational complexity and sensitivity to
structural changes. Moreover, BC is unsuitable for irregular topolo-
gies, as nodes with a degree of one always receive a BC value of
zero, regardless of their potential significance.

This paper builds upon the work presented in [16], which em-
ploys a BC-based scheduling approach for decentralized learning
under partial communication. In contrast, we introduce a novel in-
formation entropy (IE)-based metric for assessing the importance of
both links and nodes. This metric more accurately identifies critical
components of the network than existing centrality measures. By
quantifying the information richness and diversity of a node’s local
connections, our approach directly captures the structural complex-
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Fig. 1: Distributed machine learning scenario.

ity and the influence of a node’s immediate environment. As a result,
node importance is evaluated in a manner that is faster, more robust,
and more representative of real-world influence, particularly in large,
complex, and densely connected networks where local structure is
more relevant than global shortest paths. Consequently, the proposed
method overcomes the key limitations of traditional centrality-based
approaches, enabling efficient and scalable computation of node and
link importance in both sparse and dense, irregular topologies. In ad-
dition, the proposed approach avoids monotonic importance ranking,
enabling more accurate learning with fewer transmission slots. Ex-
perimental results show that the proposed IE-based link importance
metric consistently performs as well as or better than the optimized
MATCHA framework. Furthermore, the IE-based node importance
metric significantly outperforms the BC-based approach, achieving
higher test accuracy and lower training loss for the D-SGD algo-
rithm while using fewer communication rounds. Simulation studies
demonstrate performance improvements of up to 35%, particularly
when up to 60% of the node subsets are activated, across the network
topologies evaluated in this work.

Notation: We consider a connected network consisting of N
nodes, represented by an undirected graph G = (V,E), referred to
as the base topology. The node set is denoted by V = {1, . . . , N},
and the edge set E ⊆ {(i, j) ∈ V × V |i ̸= j} specifies which pair
of nodes can directly communicate. For each node i ∈ V , its set
of neighbors is defined as Ni = {j|(i, j) ∈ E}, and its degree is
given by di = |Ni|. The topology of the graph G can be described
by its adjacency matrix A ∈ RN×N , where Aij = 1 if (i, j) ∈ E,
and Aij = 0 otherwise. The Laplacian matrix L associated with the
graph is defined as L := D−A, where D is a diagonal matrix with
entries Dii = di, representing the degree of node i.

2. DECENTRALIZED MACHINE LEARNING

Consider a network consisting of N nodes, where each node i ∈ V
has access to a local training dataset Di. The primary objective is
for all nodes to collaboratively train an ML model by sharing model
parameters with their immediate neighbors. Specifically, each node
aims to estimate a common parameter vector x ∈ Rd that minimizes
the following global objective function: F (x) := 1

N

∑N
i=1 Fi(x),

where Fi(x) denotes the local objective function at node i, defined
as Fi(x) := 1

|Di|
∑

s∈Di
ℓ(x; s), and ℓ(x; s) is the loss function

evaluated at sample s from the local dataset Di.
We adopt a consensus-based D-SGD algorithm for collaborative

model training, where each node i computes local gradients using
its own dataset Di, and performs consensus-based model averaging

with its neighbors [15]. Specifically, each iteration of the algorithm
consists of the following steps:

• Stochastic gradient computation: At iteration k, node i

computes a stochastic gradient vector g(k)
i = 1

|ζ|
∑

s∈ζ ∇ℓ(xi
(k); s),

where ζ ⊆ Di is a randomly sampled mini-batch from
the local dataset Di. The node then performs a local up-
date of its model parameters using the stochastic gradient:

x
(k+ 1

2 )
i = x

(k)
i − γg

(k)
i , where γ is the learning rate.

• Communication with neighbors: Each node exchanges
model parameters with its immediate neighbors to facilitate
consensus. Specifically, node i first transmits its updated

model parameters x(
k+ 1

2 )
i to its neighbors, and then receives

the corresponding model parameters from them, denoted as
Ni. As a result, node i obtains both its own and its neighbors’
intermediate model parameters for the current iteration.

• Consensus-based model averaging: Each node i updates its
model parameters by averaging its own and its neighbors’

intermediate updates using x
(k+1)
i =

∑N
j=1 W

(k)
ij x

(k+ 1
2 )

j ,

where W
(k)
ij denotes the weight assigned by node i to the

model parameters received from node j during iteration k.
These weights can be collectively written in the form of a
weight or a mixing matrix W(k) ∈ RN×N . Note that Wij ̸=
0 only if (i, j) ∈ E, i.e., if node j is a neighbor of node i.

2.1. Mixing Matrix Properties and Design

According to [17], the convergence of the D-SGD algorithm is guar-
anteed under the following sufficient conditions:

• the mixing matrix W is symmetric and doubly stochastic;

• the spectral gap of W is strictly positive.

In addition to the aforementioned conditions on W, the con-
vergence of the D-SGD algorithm also requires that the variances
of the stochastic gradients gi are bounded and that the local objec-
tive functions Fi(x) are differentiable with Lipschitz gradients [12].
A common and effective design for the mixing matrix is based on
the graph Laplacian matrix [11], and is given by W := I − αL,
where I is the identity matrix, α > 0 is a tunable parameter, and L
is the Laplacian matrix of the communication graph. The parameter
α > 0 should be chosen to ensure that the spectral radius satisfies:
ρ(W − J) < 1, where ρ(·) denotes the spectral radius of a matrix,
J = 1

N
11T, and 1 is the all-ones column vector. Furthermore, for

faster convergence, α should be selected to minimize ρ(W − J).

3. COMMUNICATION-EFFICIENT DECENTRALIZED
LEARNING UNDER PARTIAL COMMUNICATION

In this section, we describe the communication model, introduce
the proposed scheduling schemes based on node importance met-
rics, and explore strategies for optimizing the mixing matrices. To
ensure convergence in distributed learning, nodes must exchange
model parameters with their neighbors based on the communica-
tion model. Due to the broadcast nature of wireless channels, a
node can share its updated model with all neighbors in a single time
slot. However, to prevent interference and packet collisions from
simultaneous transmissions, nodes must coordinate their commu-
nication schedules with neighboring nodes, ensuring reliable com-
munication and algorithmic convergence. The most effective way
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Fig. 2: Partitioning (a) Undirected base topology into (b)
Collision-free Subsets and (c) Matchings.

to ensure collision-free communication is by allocating orthogonal
communication resources, such as distinct time slots, to each broad-
casting node. In this scheme, every node is assigned a dedicated
time slot during which it can broadcast its model parameters to its
neighbors without interference. Consequently, a complete commu-
nication round, in which all nodes exchange updates, requires a total
of N time slots to ensure full information fusion across the network.
Therefore, under a full communication scenario, executing K iter-
ations of the consensus algorithm necessitates a total of NK time
slots.

3.1. Communication Model

We consider two types of communication scenarios: (1) peer-to-peer
communication with link-based scheduling, and (2) broadcast trans-
mission with node-based scheduling. In the first scenario, links are
activated randomly, and each information exchange over a link re-
quires two transmission slots. In the second, nodes are activated
randomly, and each broadcast allows a node’s model update to reach
multiple neighbors simultaneously. In both cases, we assume that
simultaneous transmissions adhere to collision-free conditions.

3.1.1. Link Scheduling with Peer-to-Peer Transmission

A matching is a subgraph of G where each node is connected to
at most one edge. The base topology is decomposed into M dis-
joint matching subgraphs {Gj(V,Ej)}Mj=1, where E =

⋃M
j=1 Ej

and Ei ∩ Ej = ∅, ∀i ̸= j. Fig. 2(c) shows the matching decom-
position of a base topology using the edge-coloring algorithm [18],
where edges with the same color form a matching. Note that in each
communication round, only a subset of these matchings is activated
according to the scheduling policy. This scheduling is guided by
the principle that links critical for maintaining network connectivity
should be activated more frequently than less essential ones.

3.1.2. Node Scheduling with Broadcast

A collision-free subset is a group of nodes where no two nodes share
a common neighbor, enabling them to transmit model updates simul-
taneously without the risk of collisions. The base topology is parti-
tioned into a finite number of such collision-free subsets, denoted by
q. Fig. 2(b) illustrates the partitioning of the base topology, where
nodes with the same color form a collision-free subset that requires
only a single transmission slot. Each communication round of the
D-SGD algorithm is further divided into multiple transmission time
slots. For a given node pair (i, j), node j can successfully receive in-
formation from node i only if neither node j nor any of its neighbors
are transmitting during that slot.

An undirected graph G = (V,E) can be represented by a di-
rected graph Gd =

(
V,Ed), where each undirected edge is re-

placed by a pair of bidirectional directed links connecting each pair

of nodes. Due to the broadcast nature of communication channels,
each node transmits its information to all of its neighbors via di-
rected links, resulting in a local star topology. To enable collision-
free concurrent transmissions, the base topology is partitioned into
disjoint subsets of nodes {Vr}r∈[q], where q ≤ N . Each subset Vr

contains nodes that do not share any common neighbors, allowing
them to broadcast simultaneously without interference, i, j ∈ Vr if
Ni ∩ Nj = ∅. These subsets form a complete partition of the node
set, satisfying

⋃q
r=1 Vr = V , Vr ∩ Vl = ∅, ∀r ̸= l.

We employed a greedy vertex-coloring algorithm [19] to par-
tition the base topology by assigning different colors to connected
nodes. To enforce the constraint that no two nodes sharing a com-
mon neighbor can broadcast concurrently, even if they belong to the
same subset, we construct an auxiliary graph Ga = (V,Ea), where
Ea includes all original edges from E along with additional edges
connecting every pair of nodes that share at least one common neigh-
bor. This ensures that nodes with the same color, and thus in the
same subset, form a collision-free set. The total number of such sub-
sets, denoted by q, corresponds to the number of colors assigned by
the coloring algorithm.

Furthermore, this work considers a partial communication pol-
icy aimed at reducing the number of transmission slots per iter-
ation and minimizing the overall communication cost required to
achieve consensus in a distributed learning algorithm. Under par-
tial communication, only a subset of network links and nodes are
activated for information exchange in each round (see, e.g., [16]),
implying that communication should not be uniformly distributed
across all links and nodes. Instead, the frequency of communication
should be guided by the relative importance of individual links and
nodes within the graph. To this end, this paper employs an informa-
tion entropy-based approach to quantify the importance of links and
nodes, as detailed in Section 3.2.

3.2. Node Importance Vector

In what follows, we describe the IE-based node importance ap-
proach, which leverages node degree to compute the self-information
(SI) [20] of an edge connecting two adjacent nodes [21]. Specifi-
cally, the method quantifies the informational contribution of a link
(i, j) ∈ E, using the degrees of the two nodes it connects, di and
dj . The probability associated with the existence of link (i, j) is
defined as P (i, j) = 1

didj
. Consequently, the self-information of

the link, interpreted as its weight, is computed as:

SI(i, j) = − log2 P (i, j) = log2(didj).

For undirected links, the value of SI(i, j) = SI(j, i). We now
define two notations S(i) and S+(i), which are important to cal-
culate the node importance score. S(i) denotes the sum of SI val-
ues of all links connected to node i and is calculated by S(i) =∑

j∈Ni
SI(i, j). S+(i) captures the combined structural impor-

tance of links incident to node i and its neighbors, defined as the
sum of SI of links that node i and its neighbors are one endpoint
of these links, i.e., S+(i) =

∑
j∈Ni∪{i} S(j). Note that S(i) ac-

counts for the influence of links directly connected to node i, while
S+(i) reflects a broader view by incorporating the link contributions
of node i and its neighbors. The probability assigned to any node
j ∈ Ni ∪ {i}, denoted by P (j), can be defined as

P (j) :=
S(j)

S+(i)
, (1)

such that the sum of all the probabilities is equal to 1, i.e.,



∑
j∈Ni∪{i}

S(j)

S+(i)
= 1, and the IE of node i is calculated as

E(i) = −
∑

j∈Ni∪{i} P (j) log2 P (j).

The amount of information a node possesses is influenced by
the number and strength of its connections within the graph. To
quantify this, we compute the expected entropy of node i, denoted
by E(i), which incorporates the IE of neighboring nodes, weighted
by link importance as a measure of relevance. Nodes are then ranked
based on their expected entropy values: a higher E(i) indicates a
more important node. In cases where multiple nodes share the same
expected entropy, they are assigned the same rank. For example, in a
network of six nodes, if nodes 1 and 2 have equal expected entropy,
and nodes 4 and 5 share another common value, the ranking would
be: E(1) = E(2) > E(3) > E(4) = E(5) > E(6). To assess the
importance of links within the graph, we transform the original graph
into its corresponding line graph, where each node in the line graph
represents an edge from the original graph [22]. We then apply the
IE-based method to this line graph. The resulting node importance
vector in the line graph directly corresponds to the link importance
in the original graph.

3.3. Probabilistic Scheduling Design

Similar to [11, 12], we consider a probabilistic scheduling method,
where an arbitrary number of collision-free subsets are activated in
each communication round. The activation decision of a matching in
each communication round of D-SGD algorithm is an independent
Bernoulli random variable Zj , which is equal to 1 with probability
pj and 0 otherwise, for each matching Gj , ∀j ∈ {1, ...,M}. Here,
pj represents the expected activation probability of the jth matching.

Further, for node-based scheduling, each collision-free subset
has a certain scheduling probability. Let the scheduling decision
of collision-free subset Sr in k-th communication round be si(k),
where si = 1 if Sr is activated, and 0 otherwise. The graph of the
communication topology activated in communication round k is rep-
resented as G(k) = {V (k), E(k)}, where G(k) =

⋃q
i=1 si(k)Si.

Note that G(k) = Gd when all the collision-free subsets are ac-
tivated in communication round k. Note that the sum of the ac-
tivation probabilities of all matchings (for link-based scheduling)
and collision-free subsets (for node-based scheduling) should be less
than or equal to the communication budget, denoted by B.

3.4. Optimizing Scheduling Probabilities and Mixing Matrix

We can get the topology of the scheduled broadcasting nodes by
sampling the corresponding columns of the adjacency matrix of the
base topology, leaving the columns unchanged, and masking the
remaining columns as zero. The obtained matrix will represent a
directed graph with edges connecting activated nodes (columns) to
their neighbors. A network with bidirectional links can be obtained
by sampling the columns and rows with the same indices (i.e., i-th
column and row) from the adjacency matrix. The resultant adjacency
and Laplacian matrices will be symmetric, and as a result, the mixing
matrix of the scheduled broadcasting nodes will also be symmetric.

Mathematically, a symmetric adjacency matrix Â can be ob-
tained by sampling the columns and rows of A, as Â(k) =
Q(k)AQ(k), where Q(k) = diag(ni(k), . . . , nN (k)), with
ni(k) = 1 if node i is activated in k-th iteration. It is cardinal to
note that scheduling decisions are made only on collision-free sub-
sets, not on individual nodes, and multiple collision-free subsets can
be scheduled in each communication round. The Laplacian matrix
for the scheduled communication topology in k-th communication

round is L̂(k) = diag(Â(k)1)− Â(k), where the resulting Lapla-
cian matrix L̂(k) is symmetric, and the sum of each row/column
is zero. Thus, the resultant mixing matrix for k-th communication
round is also symmetric, defined as W(k) = I − αL̂(k), where α
is a constant independent of k.

The scheduling probability of a networked node depends on its
importance in the network topology, where an important node would
be scheduled more often as compared to a trivial networked node. In
every communication round, a subset Sr is scheduled with probabil-
ity pSr , for r ∈ {1, . . . , q}, thus E[Q(k)] = diag(pi, ..., pN ). Note
that a node’s activation probability is equal to the scheduling prob-
ability of the subset to which it belongs, i.e., pi = pSr if i ∈ Vr .
As a result, the number of subsets scheduled in a communication
round is an arbitrary number such that the average required count of
transmission slots per communication round is

∑q
l=1 pSl .

The subset scheduling probabilities had been optimized in [16]
to accelerate per-round convergence under constrained communica-
tion as follows:

min
pS1

,...,pSq

||E(W2(t)− J)||2,

s.t.
q∑

l=1

pSl = B and 0 ≤ pSl ≤ 1, ∀l.
(2)

In (2), B denotes the average count of transmission slots per com-
munication round. For a detailed explanation of the optimization
problem (2), the interested reader is referred to [16]. In this work,
we use the IE-based approach to rank networked nodes and com-
pute their activation probabilities. Here, the activation probability of
node i is represented by bi such that

∑N
i=1 bi = 1, and the schedul-

ing probability of a subset j is given by bSj =
∑N

i=1 bi1{i∈Vj
},

where the value of 1{i∈Vj
} is equal to one if i ∈ Vj , and zero other-

wise. We also choose pSj = min{1, γbSj}, where the value of γ is
computed such that

∑q
i=1 pSi = B.

For every communication round, it is pivotal to design the mix-
ing matrix as W(k) = I−αL̂(k) to enhance the convergence speed
of the D-SGD. Moreover, the mixing matrix can be optimized by
solving (2) considering α as an optimization parameter. The solu-
tion to this convex problem is provided in [16] and is reproduced
here for the sake of completeness as follows:

min
s,α,β

s,

s.t. α2 − β ≤ 0,

I− 2αE
[
L̂(k)

]
+ β

(
E
[
L̂T (k)L̂(k)

])
− J ≤ sI.

(3)

where s and β are auxiliary variables.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the IE-based
link/node importance metric in terms of test accuracy and train-
ing loss within the D-SGD framework, following the experimental
setup described in [16]. We report results for three different net-
work topologies comprising N = {15, 20, 30} nodes, as shown in
Fig. 3. As illustrated in Fig. 3, we compare the performance of
IE-based and BC-based node importance metrics in three different
network topologies. The percentage shown in each figure indicates
the average fraction of activated subsets per iteration. While we ex-
perimented with various activation percentages across all topologies,



Fig. 3: Performance comparison between IE and BC-based link/node importance methods.

we report results only for lower activation levels due to space limi-
tations. The IE-based node importance metric consistently achieves
higher test accuracy in fewer transmission slots than the BC-based
method when up to 60% of subsets are activated in all three network
topologies. For instance, in Fig. 3(b), with 25% subset activation in
the 2-star topology, the IE-based approach reaches 70% test accu-
racy in approximately 200 transmission slots, whereas the BC-based
method fails to achieve 70% accuracy even after 400 slots. A similar
pattern is observed in the 3-star topology at 35% subset activation:
the IE-based approach achieves 70% accuracy in roughly 500 slots,
while the BC method remains below this threshold even after 800
slots, as shown in Fig. 3(e). We observe similar trends for ran-
dom topologies. At 35% activation, the IE-based method reaches
90% test accuracy in around 400 transmission slots, whereas the
BC-based approach requires nearly 600 slots to attain the same ac-
curacy, as illustrated in Fig. 3(h). Furthermore, the IE-based link
importance metric achieves target accuracy using fewer or equal
transmission slots compared to the optimized MATCHA approach,
as demonstrated in Figs. 3(b), (e), and (h). For example, in the
3-star topology with 23% activated matchings, the IE-based method

attains 60% test accuracy in roughly 650 transmission slots, while
optimized MATCHA requires approximately 770 slots. Conversely,
both methods reach about 90% test accuracy at nearly 800 slots
(Fig. 3(e)). Importantly, the training loss associated with the IE-
based method remains consistently lower than that of both the BC
approach and optimized MATCHA, apart from some initial fluctu-
ations, as shown in Figs. 3(c), (f), and (i). Overall, the proposed
IE-based method outperforms the BC approach in large, dense, and
sparse networks. Its advantage lies in capturing the richness of local
information and the structural complexity of the network, enabling
the identification of influential nodes based on their diverse neigh-
borhood structures. This leads to significantly higher test accuracy
with fewer transmission slots compared to the BC-based method.

5. CONCLUSION

In this work, we proposed an IE-based link and node importance
metric to compute the scheduling probabilities of disjoint subsets
of links or nodes, aiming to accelerate decentralized learning un-
der partial communication constraints. The key novelty of the IE-
based approach lies in its dual use of self-information-weighted links



and neighborhood entropy to quantify node importance, embedding
structural complexity into the ranking process. This makes the ap-
proach scalable and robust, thus outperforming traditional path- and
degree-based metrics. Simulation results demonstrate that the IE-
based approach outperforms the BC method, achieving faster con-
vergence with fewer transmission slots under lower communication
budgets (up to 60%) across various network topologies, including
dense random graphs and sparse, irregular structures. At higher
communication budgets (above 60%), the IE-based method deliv-
ers performance that is comparable to or better than the BC method
across all tested topologies. Additionally, for link-based scheduling
scenarios, the proposed method achieves performance that is either
superior to or on par with MATCHA. A promising direction for future
research involves developing node scheduling strategies that jointly
consider both the volume of data at each node and the distributions
of local datasets.

6. REFERENCES

[1] Shuyan Hu, Xiaojing Chen, Wei Ni, Ekram Hossain, and Xin
Wang, “Distributed machine learning for wireless communi-
cation networks: Techniques, architectures, and applications,”
IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp.
1458–1493, 2021.

[2] Enrique Tomás Martı́nez Beltrán, Mario Quiles Pérez, Pe-
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