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ABSTRACT The advent of 6G networks heralds a transformative shift in communication technology,
with Artificial Intelligence (AI) and Machine Learning (ML) forming the backbone of its architecture and
operations. However, the dynamic nature of 6G environments renders thesemodels vulnerable to performance
degradation due to model drift. Existing drift detection approaches, despite advancements, often fail to
address the diverse and complex types of drift encountered in telecommunications, particularly in time-
series data. To bridge this gap, we propose, for the first time, a novel drift detection framework featuring
a Dual Self-Attention AutoEncoder (DSA-AE) designed to handle all major manifestations of drift in 6G
networks, including data, label, and concept drift. This architectural design leverages the autoencoder’s
reconstruction capabilities to monitor both input features and target variables, effectively detecting data and
label drift. Additionally, its dual self-attention mechanisms comprising feature and temporal attention blocks
capture spatiotemporal fluctuations, addressing concept drift. Extensive evaluations across three diverse
telecommunications datasets (two time-series and one non-time-series) demonstrate that our framework
achieves substantial advancements over state-of-the-art methods, delivering over a 13.6% improvement in
drift detection accuracy and a remarkable 94.7% reduction in detection latency. By balancing higher accuracy
with lower latency, this approach offers a robust and efficient solution for model drift detection in the dynamic
and complex landscape of 6G networks.

INDEX TERMS Artificial intelligence, machine learning, model drift detection, data drift, concept drift,
self-attention mechanisms, autoencoders, 6G networks, telecommunications.

I. INTRODUCTION

THE 6G revolution is rapidly gaining momentum. Once
confined to the realm of theoretical speculation, the

development of sixth-generation wireless networks has made
significant strides [1]. Driven by relentless innovation and
research, the vision of 6G is transforming from a dis-
tant aspiration into a tangible reality [2]. In this regard,
several European projects (6G-INTENSE,1 SUNRISE-6G,2

etc.) have been devoted towards the embodiment of the 6G
vision contributing to a plethora of universal standardiza-
tion organizations including the 3rd Generation Partnership
Project (3GPP) and European Telecommunications Standards
Institute (ETSI) [3]. The common denominator in all these

1https://6g-intense.eu/
2https://sunrise6g.eu/

6G-related standards and projects is the fact that Artificial
Intelligence (AI) and Machine Learning (ML) serve as cat-
alysts for driving innovation and paving the way toward
achieving Zero Touch Service Management (ZSM) in future
networks [4].

The dynamic nature of 6G networks, with constantly
evolving data patterns, user behaviors, and environmental
factors, poses significant challenges for embedded AI/ML
systems [4]. As conditions shift rapidly, a common chal-
lenge known as ‘‘Model Drift’’ [6], [7] arises, threatening the
stability and accuracy of AI-driven applications. As shown
in Figure 1, model drift can manifest in several forms: For
instance, drift may appear within data through shifts in a
single feature (univariate drift) or across multiple features
(multivariate drift) [8]. Another form, called label drift,
occurs when changes appear in the target variable (i.e.,
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predictions) [9]. The most challenging type to detect is con-
cept drift, which involves subtle shifts in the underlying
relationships between features and target variables, rather
than observable changes in data distributions [6], [9]. This
makes concept drift much harder to identify compared to data
drift, which is often apparent through visible alterations in
input data patterns.

A. MOTIVATION & RESEARCH GAP
A thorough examination of drift detection literature reveals
that existing solutions are predominantly designed for super-
vised settings, relying on ground truth labels to identify
model drift [6], [7], [12]. However, this reliance becomes
impractical in dynamic environments where labels are scarce
or unavailable. Unsupervised approaches, which monitor
statistical changes in input data, provide label-independent
alternatives but often struggle with concept drift and exhibit
high False Positive Rates (FPR) [10], [11]. Recent advance-
ments in Explainable AI (XAI) techniques, such as SHapley
Additive exPlanations (SHAP) [16] and Layer-wise Rel-
evance Propagation (LRP) [17], have improved detection
accuracy by leveraging feature importance scores [13], [18],
[19], [20]. Despite this progress, these methods face signif-
icant limitations: their high computational overhead makes
them unsuitable for real-time applications, and they perform
poorly on time series data, failing to capture univariate tempo-
ral dependencies and leading to high false-negative rates [15].

B. NOVELTY
The aforementioned gaps highlight a critical need, particu-
larly for future networks and complex systems. To address
this, we propose a novel framework capable of detecting
multiple drift types, including univariate andmultivariate data
drift, label drift, and concept drift. To this end, we intro-
duce a dual self-attention-based autoencoder that utilizes
reconstruction error to identify both data and label drifts.
Whereas for concept drift, our model incorporates a novel
dual self-attention mechanism that fuses feature-based and
temporal self-attention blocks, effectively capturing both
temporal dependencies and relationships between features
and predictions through attention scores. A key innovation
of our approach is the use of a single autoencoder for detect-
ing both data and label drift, rather than deploying separate
models. This is based on the observation that both types
of drift involve similar reconstruction tasks. By seamlessly
integrating labels as additional inputs alongside features,
we avoid the need for a dedicated label drift autoencoder.
This design choice simplifies the architecture, reduces com-
putational overhead, and preserves high detection accuracy.
Another key contribution of our work is the introduction
of dual self-attention mechanisms tailored for concept drift
detection in telecommunications data, with a particular focus
on time-series scenarios. Experiments on three open-source
telecom datasets, encompassing both time-series and non-
time-series formats, demonstrate the effectiveness of our

FIGURE 1. Taxonomy of AI/ML model drift forms.

approach, achieving higher detection accuracy while signifi-
cantly reducing latency compared to existing state-of-the-art
methods.

The main contributions of this paper can be summarized as
follows:

• We provide an in-depth study of drift detection state-of-
the-art, examining a broad spectrum of techniques, tools,
standards, and methodologies developed over the past
decade to give readers a thorough understanding of the
drift detection field’s evolution.

• We introduce, for the first time, a novel Dual
Self-Attention Autoencoder (DSA-AE)model, designed
to enhance drift detection in AI/ML systems.

• Specifically, the model leverages the autoencoder’s
capability to effectively identify various types of data
and label drift, while utilizing inter-feature and temporal
self-attention scores to detect the complex spatiotem-
poral fluctuations that are often the primary drivers of
concept drift. This dual approach enables DSA-AE to
capture subtle shifts across both data patterns and time
dependencies, providing a comprehensive solution for
robust drift detection.

• To the best of our knowledge, this work represents one of
the initial efforts to adopt a dual self-attention strategy,
enabling the detection of subtle, dynamic shifts across
both data distribution and temporal dependencies, and
offering a more comprehensive and resilient solution for
drift detection.

• Wevalidate the effectiveness of our proposed framework
using three publicly available real-world telecommu-
nications datasets (two time-series and one non-time-
series), thereby ensuring a comprehensive evaluation
across diverse data types and practical use cases.

• Empirical evaluation results vividly demonstrate that
DSA-AE significantly outperforms existing drift detec-
tion methods, achieving up to 94.7% reduction in drift
detection latency and over 13.6% improvement in detec-
tion accuracy.

C. PAPER ORGANIZATION
The rest of the paper is structured as follows: Section II
delves into the latest advancements in drift detection lit-
erature, highlighting existing research gaps. In Section III,
we introduce our DSA-AE drift detection framework design,
systemmodeling aswell as the algorithmic details. Section IV
outlines the experimental setup, including the datasets, use
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cases, and performance metrics employed for the experi-
ments. Section V then details the results obtained from these
experiments. Finally, Section VI wraps up the paper with
conclusions and suggestions for future research.

II. LITERATURE REVIEW ANALYSIS
Over the last decade, a wide range of drift detection methods
has been developed across numerous fields, such as data
mining [23], healthcare [24], cybersecurity [25], and net-
working [4], [5]. These methods can be broadly categorized
based on the availability of ground truth labels during infer-
ence: (i) supervised and (ii) unsupervised solutions. In this
work, we have categorized recent solutions that leverage the
field of XAI into a separate category, which can be classified
as unsupervised, for the sake of clarity.

A. SUPERVISED SOLUTIONS
The majority of the existing drift detection solutions in
the literature are supervised, as extensively documented in
numerous studies [12], [27], [28], [29], [30]. These methods
primarily rely on metrics derived from model accuracies or
utilize ensemble models to detect performance degradation
over time, typically indicated by a decrease in prediction
accuracy. The core assumption behind these techniques is that
true labels for incoming data are accessible, either imme-
diately or shortly after the data is received. This reliance
on labeled data significantly limits the scalability and appli-
cability of supervised drift detection methods, particularly
in dynamic environments where labels are sparse, delayed,
or expensive to obtain. Consequently, while these methods
are effective under ideal conditions, their dependence on
the immediate availability of true labels renders them less
practical for many real-world scenarios, where the timely and
economical acquisition of labels cannot be guaranteed.

B. UNSUPERVISED SOLUTIONS
Unsupervised techniques, which operate without the need for
true labels, are a vital component of the drift detection land-
scape [33], [36], [37]. Among the primary methods employed
are statistical-based approaches, which utilize statistical tests
or divergence metrics to compare two distributions, typically
a reference against a new window [12], [31], [32], [34], [35].
A notable example is the work in [12], where the authors
propose a drift detection and adaptation method based on
adaptive and sliding window techniques for the Internet of
Things field. Overall, these methods are highly versatile,
model-agnostic, and require no external resources, leveraging
every sample to calculate distances. Despite their advantages,
statistical-based methods often struggle to detect true concept
drift, particularly in scenarios involving spatiotemporal vari-
ations. Such complexities typically fall outside the detection
capabilities of traditional sliding window methods, which
often suffer from high false-negative rates.

It is also important to highlight a recurring ambiguity in
the literature regarding the distinction between concept drift
and data drift. In many works, including the aforementioned,

techniques designed to detect data drift are labeled as con-
cept drift detection methods. This interchangeable use of
terminology, especially in the absence of clear conventions
or standards, complicates the classification of drift detection
approaches. To uphold scientific integrity, we adopted the
original terminology used in the cited works, ensuring con-
sistency with the authors’ intent. This approach allowed us
to fairly organize and classify the methods, as presented in
Table 1.

C. EXPLAINABLE AI-BASED SOLUTIONS
In addition to traditional drift tracking methods, research
on XAI-based drift detection methods provides evidence
that drifts can be monitored through XAI methods like
SHAP. Several studies [18], [19] revealed that drift detection
could be explained by tracking features that cause signifi-
cant changes in the distance between distributions. In [18],
the authors use SHAP-based XAI along with a drift sus-
picion metric to enhance the reliability of drift detection
in cybersecurity. Similarly, Koebler et al. [21] propose an
explainability-based approach for performance monitoring,
using optimal transport to detect distribution shifts and the
Shapley method to identify key features. In [22], the authors
introduce an application of XAI for diagnosing performance
degradation in ML models that continuously learn from user
engagement data.

While XAI-based solutions have succeeded in offering
transparency into the features driving drift, they face a major
limitation that hinders their practical use for drift detection,
which is the high computational cost and time needed to
compute SHAP values for all features [26]. This issue is
compounded in scenarios involving high-dimensional input
features and complex Deep Learning (DL) models, due to the
exponential complexity of SHAP. As a result, these solutions
are less viable for continuous monitoring in dynamic, fast-
paced environments like 6G networks. Furthermore, recent
studies have highlighted the limitations of XAI-based meth-
ods when applied to time series data, particularly in capturing
univariate temporal dependencies [15]. These techniques
often fail to uncover hidden causes of model errors specific
to the model’s internal logic or those that emerge uniquely
during training on the same observed input. This restricts
their effectiveness in providing insights into errors rooted in
temporal patterns and dependencies, which are critical for
accurate drift detection in time-sensitive applications [14].

D. DRIFT DETECTION TOOLS
Some of the state-of-the-art drift detection tools have made
significant strides in addressing the challenges posed by
model drift. For instance, Evidently AI3 is known for its
general data drift detection capabilities, while NannyML4

excels at pinpointing the precise timing of shifts and evaluat-
ing their consequent effects on predictive accuracy. A notable

3https://www.evidentlyai.com/
4https://www.nannyml.com/
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TABLE 1. Comparison of drift detection methods between relevant related works and our solution.

solution from NannyML proposes a concept drift detection
method that continuously trains models on incoming serving
data and compares the concepts they learn with those of
the production model. If a significant difference is detected
between the learned concepts, it indicates a potential concept
shift. However, this approach has several key limitations.
First, it assumes the availability of target labels for the serving
data, which is often not the case in many real-world appli-
cations. Second, it is not designed to handle the complex
intricacies of time-series data, which can limit its applica-
bility in certain domains (e.g., telecommunications). Third,
the solution is not open-source and is only available through
the paid tier. Another noteworthy tool is Alibi-Detect,5 an
open-source Python library that provides various techniques
for drift detection in data. It includes methods such as clus-
tering, classification-based approaches, and statistical tests to
identify changes in data distributions.

Overall, while existing tools have made significant
progress in detecting data drift, they still fall short when
it comes to identifying concept drift. To the best of our
knowledge, there is no mature or widely adopted solution
that effectively detects concept drift, especially in the context
of complex spatiotemporal fluctuations, which are often the
primary drivers of such drift.

E. DRIFT DETECTION IN TELECOMMUNICATIONS
STANDARDS
In the evolving landscape of Beyond 5G networks (referred
to as 5G-Advanced6 in 3GPP), ensuring the reliability of AI

5https://docs.seldon.io/projects/alibi-detect/en/latest/
6https://www.3gpp.org/technologies/ran1-rel18

and ML systems is paramount [47]. Standardization efforts
have begun to address this need, with organizations such
as ETSI taking significant steps to define and classify drift
types. For example, ETSI’s technical specifications in the
context of Traceability for Trustworthy AI [43] provide
high-level definitions of various drift types, their causes,
and detection methods, with a particular focus on adapta-
tion techniques like transfer and ensemble learning. ETSI
TR (i.e., technical report) 104 proposes several performance
metrics, including drift detection delay, which we have uti-
lized in our performance evaluations in section V. Previous
ETSI ZSM releases [44] partially addressed drift detection,
focusing predominantly on data drift without fully detailing
methodologies for concept drift. Additionally, current stan-
dards frequently oversimplify the drift detection phase by
assuming the availability of labels and offeringminimal detail
on detection methods for such scenarios.

F. SUMMARY
Table 1 presents a summary of existing drift detection
methods. It is important to highlight that, despite ongoing
confusion in the literature regarding the distinction between
concept drift and data drift, we have opted to retain the
terminology used in the referenced works for the sake of sci-
entific honesty. While recent research has made considerable
progress in identifying specific types of drift individually,
nonetheless, the approaches cited in the table exhibit at least
one of these notable limitations: (i) they fail to address all
forms of drift within a unified solution, (ii) they lack adapt-
ability to real-time online production systems, and (iii) they
are not equipped to handle the specific constraints associated
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with time-series data in networking contexts. These con-
straints include the unique challenges posed by time-series
data in networking applications, including the need to cap-
ture long-range temporal dependencies, handle high-volume
real-time data streams, and maintain robustness under highly
dynamic traffic patterns. Telecom data often arrives contin-
uously and at scale, imposing strict requirements on latency
and processing efficiency. Moreover, meaningful behavioral
patterns such as anomalies or concept shifts frequently
span extended time intervals, requiring models capable of
capturing complex temporal dynamics. The data is also non-
stationary, influenced by evolving user behavior, protocol
changes, and shifting threat landscapes. Many existing meth-
ods are not well-suited to these conditions, as they are
typically developed for general-purpose or static datasets.
They often rely on batch retraining, fixed thresholds, or adap-
tive windowing, which can fail to effectively model the
nuanced and persistent temporal characteristics of real-world
networking environments.

This paper jointly tackles these challenges through the
proposed DSA-AE framework, which serves as the center-
piece of our work. In particular, our dual attention-based drift
detection method is designed to explicitly model both short
and long-term dependencies in time-series data, enabling it
to more effectively detect concept drift driven by complex
temporal dynamics. Indeed, our method represents an impor-
tant step forward, offering a novel approach that could inspire
further research and refinement in model drift detection,
particularly in data-rich, dynamic domains like networking,
where traditional methods fall short.

III. PROPOSED METHODOLOGY
In this section, we introduce the proposed dual self-attention-
based drift detection framework. We begin by exploring the
underlying intuitions and insights that shaped our design,
followed by a detailed exposition of the technical workflow,
system modeling, algorithmic reasoning, as well as the com-
ponents involved.

A. OVERALL FRAMEWORK WORKFLOW
The overall framework of the proposed DSA-AE drift detec-
tionmethod is illustrated in Figure 2. This framework consists
of two main stages: Offline training and Online inference
monitoring.

1) OFFLINE TRAINING
During the offline training phase, we begin by collecting
a comprehensive dataset from various 6G network sources,
including the RAN, Core, and Edge (based on the use case).
This raw data undergoes rigorous preprocessing, involving
normalization and feature selection, to ensure it is clean,
consistent, and tailored to the specific use case and architec-
tural model. Following preprocessing, the prepared dataset
is utilized to train the ML model, laying the foundation for
robust performance in subsequent stages. A pivotal aspect
of this stage is the validation phase, where model predic-

FIGURE 2. The Proposed DSA-AE based Drift Detection
Framework. The DSA-AE framework comprises two phases:
(i) an Offline Training phase, where input feature and target
variable pairs are collected, and the DSE-AE model is trained on
the knowledge base data to learn its spatiotemporal properties;
and (ii) an Online Inference phase, where the drift detection
model DSA-AE will be deployed to detect all forms of drift (data,
label, and concept drift) within the new inference data.

tions are meticulously mapped to the input features at each
timestep. This mapping facilitates the creation of a com-
prehensive knowledge base, allowing for detailed tracking
of both input features and the corresponding ML model
predictions. Such a tracking mechanism is indispensable for
effectively monitoring data drift (variations in input features)
and label drift (shifts in predictions) as they evolve over
time.

Next, we use the data collected in the knowledge base to
train our DSA-AE model, incorporating both predictions and
features. This model is designed to reconstruct the input data,
including both features and predictions, while minimizing
reconstruction error. The DSA-AE model learns to identify
deviations from the norm by comparing reconstructed data
to the original, leveraging reconstruction error with Maha-
lanobis Distance (MD) [39], calculating a drift score. This
score provides a measure of the deviation between the pre-
dicted and actual data later in the Online phase. Additionally,
during the validation process, baseline self-attention scores
are recorded. These scores act as a reference point for detect-
ing concept drift. By calculating the cosine distance [38]
between the baseline attention scores and those observed
during inference, the system can pinpoint significant shifts
in the data’s underlying patterns, signaling potential concept
drift.
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2) ONLINE MONITORING
In the online inference monitoring phase, after deploying
the ML model, incoming inference data undergoes the same
preprocessing steps as those applied during training. This
includes normalization and feature selection, ensuring consis-
tency in data preparation between the training and inference
stages. The preprocessed data is then fed into the deployed
ML model to generate predictions. Simultaneously, we cap-
ture the mapping between the inference input data and cor-
responding model outputs to create an inference knowledge
base. This knowledge base is then processed by the DSA-AE
drift detection model, which attempts to reconstruct the data.

To monitor data and label drift, we compute the MD of the
reconstruction error produced by the DSA-AE model. This
approach is effective because the MD measures the distance
of a point from a multivariate distribution, accounting for
correlations between features. If theMD exceeds a predefined
threshold, denoted as σ2, it signals a deviation in the data
and/or labels. This prompts the system to flag potential drift
and identify the source of the issue.

In addition to data and label drift, the DSA-AE model also
tracks concept drift in the online phase. The current weighted
attention scores from both self-attention blocks (feature and
temporal self-attention) are captured during inference. These
scores reflect the relationships between features and tem-
poral patterns within the data. We then compute the cosine
distance between these current attention scores and the base-
line attention scores established during the validation phase.
Cosine distance provides a robust metric for detecting con-
cept drift [40]. If the computed cosine distance (a value close
to 1 indicates high similarity and vice-versa with the value -
1) falls below a predefined threshold σ1 the system flags the
presence of concept drift.

It is important to note that the thresholds σ1 and σ2 may
vary across different use cases. These values depend on
parameters such as the specific ML model architecture, the
nature of the data, and the deployment environment, hence
they should be fine-tuned accordingly to optimize drift detec-
tion.

B. DSA-AE MODEL ARCHITECTURE
1) AUTOENCODER
Autoencoders have garnered significant attention in the ML
landscape for their capacity to learn efficient, compressed
representations of data in an unsupervisedmanner [45]. These
neural networks consist of an encoder, which compresses
input data into a latent space, and a decoder, which attempts
to reconstruct the original input from this compressed rep-
resentation. Autoencoders have been successfully applied
across a range of applications, including image denoising,
data compression, and anomaly detection [39], [46].

2) SELF-ATTENTION MECHANISM
On the other hand, the self-attention mechanism, introduced
in Transformer architectures [48], has proven to be excep-

tionally powerful for handling temporal dependencies and
long-range interactions within data sequences. Unlike tradi-
tional recurrent or convolutional layers, self-attention allows
the model to weigh each part of a sequence relative to every
other part, regardless of the distance between them. This
is particularly beneficial for tasks involving sequential or
temporal data, such as time series analysis [41]. By assigning
attention weights dynamically, the mechanism enables the
model to capture dependencies over long sequences without
the limitations of vanishing gradients or limited receptive
fields faced by previous architectures.

3) DUAL SELF-ATTENTION AUTOENCODER
Attention-based autoencoders have shown success across
various applications in the anomaly detection field, such as
monitoring air quality sensors [45] and industrial pump per-
formance [46]. These approaches use self-attention primarily
to model temporal dependencies and leverage reconstruction
error solely as an anomaly metric. However, the proposed
DSA-AE framework goes a step further by utilizing two spe-
cialized attention blocks to distinctly capture spatial and tem-
poral patterns within the data. Together, these self-attention
blocks provide a comprehensive spatiotemporal perspective
on the data as it flows through the autoencoder, effectively
capturing the evolving patterns of the monitored time series.

As Figure 3 depicts, the core of our approach lies in
leveraging two complementary self-attention blocks, one tai-
lored to decipher the inter-feature spatial dependencies, and
another dedicated to capturing the temporal patterns inher-
ent in the data. By computing a weighted attention score
that captures both spatial and temporal dependencies, our
model establishes a nuanced indicator of concept drift using
cosine distance. Furthermore, reconstruction error, assessed
via MD, serves as a comprehensive measure for detecting
both data and label drift. This integrated approach, combining
spatiotemporal pattern recognition with unsupervised drift
detection, enables our DSA-AE model to monitor complex
drift patterns with precision, making it highly effective for
adaptive detection in dynamic data environments like 6G
networks.

C. SYSTEM MODEL
In this subsection, we provide an in-depth exploration of the
system modeling details for the proposed DSA-AE frame-
work introduced earlier. We begin by detailing the design
of the autoencoder and the dual self-attention mechanism,
highlighting their role in the system architecture. Addition-
ally, we present the mathematical foundations of the distance
metrics employed, specifically the MD with the reconstruc-
tion error and cosine similarity with the self-attention scores,
which are integral to the drift detection process.

1) INPUT DATA MODELING
The proposed DSA-AE framework is designed to be highly
adaptable to various types of input data. In this paper,
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FIGURE 3. High-level architecture of the proposed dual self-attention autoencoder model.

we illustrate its application using time series input, which is
particularly relevant given that most 5G/6G use cases rely on
time-dependent data. Hence, in our modeling, the time series
input is represented as a sequence of feature values across
multiple time steps, pairedwith the corresponding predictions
from the monitored model. For an input with n features, m
target variables, and a total of T time steps, we define the
input matrix X and prediction matrix Ŷ as:

X =


x11 x12 . . . x1T
x21 x22 . . . x2T
...

...
. . .

...

xn1 xn2 . . . xnT

 ∈ Rn×T

Ŷ =


ŷ11 ŷ12 . . . ŷ1T
ŷ21 ŷ22 . . . ŷ2T
...

...
. . .

...

ŷm1 ŷm2 . . . ŷmT

 ∈ Rm×T

where each xij is the value of the i-th feature at time step
t = j, and each ŷkt is the prediction for the k-th target
variable at time step t . By combining X and Ŷ as [X , Ŷ ],
we aim to capture both feature and label dynamics over time,
making the model sensitive to changes in both the input
data and predictions. This combined approach enables the
model to simultaneously monitor both data drift and label
drift over time. Notably, since all features are passed through
the DSA-AE framework and the autoencoder reconstructs the
entire input space, the drift detection criteria remain uniform
across feature dimensions. As a result, the proposed method
can effectively capture both univariate and multivariate data
drift, whether the deviation impacts a single feature or multi-
ple features concurrently, by identifying significant changes
in the reconstruction error.

2) ENCODING PHASE
In the encoding phase, the autoencoder transforms the com-
bined input matrix [X , Ŷ ] ∈ R(n+m)×T into a compressed
latent representation Z through a series of nonlinear transfor-
mations [45], [46]. This encoding process is parameterized by
the encoder function fencoder, which reduces the dimension-
ality of the data while preserving its essential patterns [45],
[46]:

Z = fencoder([X , Ŷ ]; θ ) ∈ Rd (1)

where θ represents the encoder’s parameters, and d is the
dimension of the latent space, with d ≪ (n + m) × T . The
latent representation Z serves as a compressed summary of
the original time series data and model predictions, capturing
both temporal and inter-feature relationships.

3) DECODING PHASE
After passing through the self-attention blocks (described in
detail in the subsequent section), the enhanced latent rep-
resentation Z ′ is obtained. The decoder then utilizes Z ′ to
reconstruct the original input data [X , Ŷ ]. This decoding step
is represented as:

[X̂ , Ŷreconstructed] = fdecoder(Z ′
; φ) (2)

where fdecoder is the decoding function parameterized by φ,
and X̂ ∈ Rn×T and Ŷreconstructed ∈ Rm×T are the recon-
structed versions of the input features and monitored model’s
predictions, respectively [45].

4) RECONSTRUCTION ERROR AND LOSS FUNCTION
To evaluate the performance of the autoencoder and identify
potential data and/or label drifts, we compute the reconstruc-
tion error between the original inputs and the reconstructed
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outputs. For each feature value xij in X and each prediction
ŷkt in Ŷ , we calculate the reconstruction error as follows:

• Input Reconstruction Error: The reconstruction error
for each feature at each time step is given by:

EX ,ij = |xij − x̂ij| (3)

• Prediction Reconstruction Error: The error between
each original prediction ŷkt and its reconstruction
ŷreconstructed,kt is calculated as:

EŶ ,kt = |ŷkt − ŷreconstructed,kt | (4)

The total reconstruction loss serves as a key indicator of
model performance and is subsequently used, in conjunction
with the MD, to detect data and label drift. This reconstruc-
tion error is computed by aggregating the absolute differences
between the original and reconstructed values across all fea-
tures and time steps:

Lreconstruction =

n∑
i=1

T∑
j=1

EX ,ij +

m∑
k=1

T∑
t=1

EŶ ,kt

=

n∑
i=1

T∑
j=1

|xij − x̂ij|

+

m∑
k=1

T∑
t=1

|ŷkt − ŷreconstructed,kt | (5)

Overall, the reconstruction error provides the foundation
for identifying data and label drift even in the time series data,
enabling us to monitor changes in data patterns and model
behavior robustly [39], [44], [46].

5) MAHALANOBIS DISTANCE (MD) FOR DATA/LABEL
DRIFT DETECTION
In the proposed DSA-AE approach, we leverage the MD [39]
to capture correlations between features and the covariance
structure of the input data, specifically both features and
labels. TheMD is particularly suitable because it accounts for
correlations and variable scales in multivariate data, address-
ing limitations of simpler metrics like Euclidean distance,
which assumes independent features and equal variance [42].
This property makes it an invaluable tool in scenarios involv-
ing multivariate data and correlated errors. We employMD as
a baseline threshold to detect both data and label drift. After
the autoencoder is fully trained during the offline training
phase, its reconstruction error serves as an indicator of poten-
tial drift during inference. Any significant deviation from
the expected reconstruction error, as measured by the MD,
signals a change in the data distribution or label relationships.
This approach effectively identifies distributional changes
without requiring a temporal comparison of learned represen-
tations, unlike the method used for concept drift detection.

The MD equation can be defined as [39], [42]:

MD(Lt , µL, 6L) =

√
(Lt − µL)T6−1

L (Lt − µL), (6)

where:
• Lt represents the reconstruction errors for input features
X and predictions Ŷ at instance t:

Lt =

[
EX ,ij
EŶ ,kt

]
=

[
|xij − x̂ij|

|ŷkt − ŷreconstructed,kt |

]
.

• µL and 6L are the mean vector and covariance matrix
of the reconstruction errors, respectively, estimated from
the baseline dataset in the validation phase (as illustrated
in Figure 2).

Algorithm 1 provides an overview of the data/label drift
detection algorithm, summarizing the previous steps. A drift
is flagged when this distance exceeds a predefined threshold,
σ2, signaling a potential shift in data or label distribution.

Algorithm 1 Data and Label Drift Detection

1: Input: X ∈ RN×d , N is the sequence length and d is the
number of features.

2: Initialize the autoencoder fenc and fdec.
3: Encoding

Z = fenc(X )

4: Decoding
X̂ = fdec(Z )

5: Reconstruction Error Calculation

Lreconstruction =

n∑
i=1

T∑
j=1

|xij − x̂ij|

+

m∑
k=1

T∑
t=1

|ŷkt − ŷreconstructed,kt |

6: Mahalanobis Distance Calculation

MD(Lt , µL, 6L) =

√
(Lt − µL)T6−1

L (Lt − µL)

7: Drift Detection
8: If MD(Lt , µL, 6L) > σ2, flag data or label drift.

D. DUAL SELF-ATTENTION MODELING
In the latent space, we employ two distinct self-attention
blocks: Feature Self-Attention and Temporal Self-
Attention as illustrated in Figure 3 and detailed in Figure 4.
The feature self-attention block focuses on identifying depen-
dencies between different features at each time step, enabling
the model to capture correlations and interactions across
features. Mathematically, feature self-attention is computed
over the latent vectors for each time step, producing feature
attention scores that weigh the importance of each feature
with respect to others in the latent space. On the other
hand, the temporal self-attention block captures dependencies
across time steps for each feature, allowing the model to
recognize patterns and shifts over time. This is critical for
modeling time series data, as it enables the model to capture
long-term temporal dependencies and detect subtle changes
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in data trends. As showcased in Figure 4, the attention scores
from these blocks are averaged to provide an indicator for
concept drift.

1) TEMPORAL SELF-ATTENTION BLOCK
The Temporal Self-Attention Block is designed to capture the
dependencies over time in the latent space. We define the
latent space embedding matrix Z ∈ RN×d , where N is the
sequence length and d is the feature dimension.

a: LINEAR TRANSFORMATIONS FOR QUERIES, KEYS,
AND VALUES
First, we apply linear transformations to the latent matrix Z to
generate theQueries (Qt ), Keys (Kt ), andValues (Vt ) matrices
for the temporal attention mechanism [48]:

Qt = ZWQ
t , Kt = ZWK

t , Vt = ZWV
t

where WQ
t ,WK

t ,WV
t ∈ Rd×dk are learned weight matrices,

and dk is the dimensionality of the queries and keys.

b: SCALED DOT-PRODUCT ATTENTION
Next, we compute the attention scores by taking the dot
product between Qt and the transpose of Kt , and then scaling
by the square root of dk [46], [48]:

Attention scorest =
QtK⊤

t
√
dk

(7)

This scaling step is necessary to prevent the dot product val-
ues from growing too large as the dimensionality dk increases.
By normalizing the dot product with

√
dk , we ensure more

stable and effective learning [40], [46].
Next, we apply the softmax function to normalize these

attention scores [48]:

αt = softmax
(
QtK⊤

t
√
dk

)
(8)

The temporal attention output At is obtained by multiply-
ing the attention weights αt with the value matrix Vt :

At = αtVt (9)

c: MULTI-HEAD ATTENTION
As we use multi-head attention, we split Qt , Kt , and Vt into
multiple heads, compute the attention for each head indepen-
dently, concatenate the heads, and apply a linear projection to
combine the outputs [48]:

At = concat(head1, . . . , headh)WO
t (10)

whereWO
t ∈ Rdh×d is a learned projection matrix.

2) FEATURE SELF-ATTENTION BLOCK
The second component, named the Feature Self-Attention
Block, captures the dependencies across features in the latent
space. Similar to the temporal block, we first apply linear
transformations to Z to generate queries (Qf ), keys (Kf ),
and values (Vf ) matrices for feature attention. After that,

we compute the attention scores for features by taking the
scaled dot product of Qf and the transpose of Kf , finishing
with the softmax and concatenation of the different heads (eq.
10). Notably, the feature self-attention scores are calculated
as:

αf = softmax

(
Qf K⊤

f
√
dk

)
(11)

Af = αf Vf (12)

3) COMBINING TEMPORAL AND FEATURE ATTENTION
OUTPUTS
The resulting attention scores, At for temporal and Af for
feature attention, represent each block’s focus on different
data aspects. These scores are then combined into a unified
attention score (AttScore) through a weighted sum, which
allows the model to balance the importance of temporal and
feature dependencies:

AttScore = (1 − α)Af + αAt (13)

For instance, if wewish to givemoreweight to the temporal
attention (At ) compared to the feature attention (Af ), we can
set α to a value in the range 0.5 < α < 1.0; the other way
around applies if we set α to a value in the range 0 < α < 0.5.

4) COSINE SIMILARITY FOR CONCEPT DRIFT
DETECTION
For concept drift detection, we leverage DSA-AE’s weighted
self-attention scores with cosine similarity distance [38] to
construct an accurate concept drift metric. The latter allows
for a more meaningful comparison of attention weights by
focusing on the relative importance of different features.
This helps the model focus on the most relevant features or
time steps without being influenced by their absolute scale,
making it a robust metric for assessing the significance of
various parts of the input during attention-based tasks [40].
Let Abaseline,t represent the attention scores for the model

after the offline training phase (as depicted in Figure 2),
which we refer to as the baseline model. This model is
trained on the available data and is used as a reference for
drift detection. On the other hand, Ainference,t represents the
attention scores for the same DSA-AEmodel after it has been
deployed for inference, which we refer to as the inference
model. Essentially, both terms refer to the same model, but
at different stages, before (baseline) and after (inference)
deployment. These attention scores are obtained from both
the temporal and feature self-attention blocks. To track the
directional changes in feature dependencies, we compute the
cosine similarity between Abaseline,t and Ainference,t .

The cosine similarity distance is defined as [38]:

DCosine =
A⊤

baseline,tAinference,t

∥Abaseline,t∥∥Ainference,t∥
(14)
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FIGURE 4. The Proposed Dual Self-Attention Mechanism Architecture. The DSA mechanism comprises two self-attention blocks: one
focuses on capturing temporal fluctuations in the data, while the other is tailored to learn the spatial dependencies between input
and target features.

Expanding the norms, this can also be expressed as [38],
[40]:

DCosine =
A⊤

baseline,tAinference,t√
A⊤

baseline,tAbaseline,t ·

√
A⊤

inference,tAinference,t

(15)

This measure quantifies the angle between the two vectors,
capturing shifts in the focus of the attention mechanism.
A small cosine similarity value (Dcosine) indicates a signif-
icant change in the model’s attention patterns, suggesting a
potential shift in feature relationships, also known as concept
drift.

To this end, Algorithm 2 summarizes the concept drift
detection process. To identify concept drift, the current
attention score Ainference,t is compared with a baseline atten-
tion score Abaseline,t , recorded during the model’s validation
phase, using the cosine similarity (eq. 15). This similarity
measure is particularly sensitive to directional changes in
the attention vectors, making it ideal for detecting shifts in
inter-feature dependencies without sensitivity to magnitude.
If the cosine similarity between the current and baseline
attention scores falls below a specified threshold σ1, a con-
cept drift is flagged. This method ensures that the model
remains responsive to subtle shifts in feature relationships,
thus maintaining robustness in dynamic environments where
spatiotemporal patterns may evolve.

E. COMPLEXITY & THRESHOLDS ANALYSIS
Overall, the proposed algorithms do not involve iterative
optimization during inference and therefore do not raise con-
vergence issues at detection time. Algorithm 1 performs data
and label drift detection by executing a forward propagation

through the encoder-decoder architecture to obtain recon-
struction errors, followed by MD evaluation. Algorithm 2
uses temporal and feature self-attention to extract spatiotem-
poral patterns, with concept drift detected through cosine
similarity against baseline attention scores. The computa-
tional complexity of our approach is near-optimal for the
tasks involved. Reconstruction and Mahalanobis computa-
tions scale withO(Nd + d2), offering efficiency with respect
to both data dimensionality and sample size. Attention-based
operations scale withO(N 2d), consistent with the theoretical
lower bounds of attention mechanisms. The model is trained
offline, and inference is lightweight, involving a single for-
ward pass per input window. This design ensures reliable
and scalable drift detection with minimal runtime overhead.
Further complexity optimization remains an avenue for future
work.

The thresholds for detecting drift in the proposed model
are dynamically determined during the offline training phase
based on the type of drift being monitored. For data and label
drift, the threshold σ2 is determined using the reconstruction
error, which is calculated by comparing the original and
reconstructed data. The MD is then used to assess the devi-
ation from the expected model behavior, with the threshold
adjusted to balance false positives and false negatives. For
concept drift, the threshold is determined using the cosine
similarity between the baseline and current attention scores,
derived from the Temporal and Feature Self-Attention mech-
anisms. If the cosine similarity falls below a predefined
threshold σ1, concept drift is flagged. This threshold is influ-
enced by the variability in attention scores over time, and it is
calibrated to minimize the risk of detecting spurious concept
drift while maintaining sensitivity to actual changes in the
underlying data distribution. The thresholds for all types of
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Algorithm 2 Concept Drift Detection Using DSA Mecha-
nism

1: Input: X ∈ RN×d , baseline attention scores αbaseline,t
from validation.

2: Apply encoding transformations to obtain latent repre-
sentation Z :

Z = fenc(X )

3: Compute Temporal Self-Attention queries, keys, and
values:

Qt = ZWQ
t , Kt = ZWK

t , Vt = ZWV
t

4: Compute temporal attention output:

αt = softmax
(
QtK⊤

t
√
dk

)
, At = αtVt

5: Compute Feature Self-Attention queries, keys, and val-
ues:

Qf = ZWQ
f , Kf = ZWK

f , Vf = ZWV
f

6: Compute feature attention output:

αf = softmax

(
Qf K⊤

f
√
dk

)
, Af = αf Vf

7: Compute the weighted attention score:

AttScoret = αAt + (1 − α)Af

8: Compute the cosine similarity baseline and current
attention scores:

DCosine =
A⊤

base,tAinf,t√
A⊤

base,tAbase,t
√
A⊤

inf,tAinf,t

9: Drift Detection
10: If Dcosine < σ1, flag concept drift.

drift are sensitive to factors such as window size, training
data characteristics, and the trade-off between detection accu-
racy and computational efficiency. In our approach, threshold
selection follows an expert-driven and systematic process,
determined through careful evaluation of drift detection per-
formance with a particular focus on optimizing the F1 score
to balance precision and sensitivity. This tuning process also
considers the specific requirements of the use case and the
characteristics of the dataset, enabling a practical trade-off
between detecting true drifts and minimizing false positives.
As a result, the selected thresholds are well-aligned with the
operational goals and constraints of the application.

IV. EXPERIMENTS EVALUATION
This section presents a comprehensive overview of our exper-
imental evaluation. We start by describing datasets used in
the study, followed by a summary of the ML/DL models

employed to assess the effectiveness of our drift detection
scheme. Finally, we outline the experimental setup and the
evaluation metrics applied in the analysis.

A. DATASETS
To carry out our experiments and enhance their realism
and applicability to real-world production environments,
we utilize three distinct, publicly available datasets from
the telecommunications landscape. For diversity, two of the
datasets are time series data. The datasets used in our study
are as follows:

• Milano Dataset [49]: Collected by Telecom Italia over
the span of a year, this dataset contains information on
user connectivity events. Our experiments focused on
the volume of data exchanged with users. We included
the weekday to account for traffic variability across
different days, and the hour to capture the differences
between daytime and nighttime traffic. The internet data
metric is proportional to the traffic volume, enabling
realistic analysis while concealing actual traffic values.

• IrelandDataset [50]: This realistic 5G trace dataset was
collected from a major Irish mobile operator spanning
several days in 2019 and 2020. It includes two mobility
patterns (static and car) for three application traces,
including file download and two streaming applica-
tions, Amazon Prime and Netflix. The dataset comprises
client-side cellular Key Performance Indicators (KPIs),
which include channel-related metrics, context-related
metrics, cell-related metrics, and throughput informa-
tion. For our experiments, we preprocessed the dataset to
focus on throughput-related KPI features in both static
and drive modes, with timesteps recorded by day, hour,
and minute, and additional features such as Longitude,
Latitude, Speed, CellID, NetworkMode, RSRP (Refer-
ence Signal Received Power), RSRQ (Reference Signal
Received Quality), SNR (Signal-to-Noise Ratio), CQI
(Channel Quality Indicator), RSSI (Received Signal
Strength Indicator), DL_bitrate, UL_bitrate, and State.

• EURECOM Dataset [51]: This dataset, obtained from
EURECOM’s 5G facility, utilizes the OpenAirInterface
(OAI)7 Core network to monitor the performance of
the Access and Mobility Management Function (AMF),
a pivotal control plane component. The AMF manages
essential functions including registration, connection,
mobility management, and access authentication and
authorization. This dataset evaluates AMF resource
usage by measuring CPU and RAM usage, registration
times, and the allocation of resources per request.

The three datasets are divided chronologically into training
and test sets, as shown in Table 2. The training set comprises
80% of the data, while the remaining 20% is reserved for
testing. Finally, the latter also displays the drift percentage
for each dataset utilized to conduct the trials.

7https://openairinterface.org/oai-5g-core-network-project/
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TABLE 2. Summary of datasets characteristics, including
training and test set sizes, feature dimensions, and drift
percentage.

B. AI/ML USE CASES
To assess the effectiveness of our proposed DSA-AE drift
detection framework, we conducted an extensive series of
experiments across three use cases, carefully selecting bench-
marks appropriate to the nature of each dataset. Specifically,
we employed Long Short-Term Memory (LSTM) models for
the time-series use cases (i.e., Milano and Ireland datasets),
and a Feedforward Neural Network (FNN) model for the
non-time-series use case (i.e., EURECOM dataset). This dis-
tinction between LSTM and FNN benchmarks reflects our
intent to evaluate the framework comprehensively across both
temporal and non-temporal data scenarios, ensuring a fair and
representative comparison. The use cases explored in these
trials include:

• Traffic Forecasting: We trained an LSTMmodel for the
Milano dataset to forecast traffic volume, using weekday
and hour information to account for temporal traffic
variations.

• Throughput Forecasting: Similarly, we used an LSTM
model on the Ireland dataset to predict download and
upload bitrates across static and mobile states.

• Core Network Resource Usage Prediction: For
EURECOM dataset, we trained a FNN model to predict
CPU and RAM usage for the AMF in the core network,
ensuring efficient handling of UE registration requests
without breaching SLAs.

C. EXPERIMENT SETUP & EVALUATION METRICS
In our experimental setup, we implemented the DSA-AE
model using PyTorch 2.0.1. The DSA-AE architecture con-
sists of an encoder, a dual self-attention mechanism, and a
decoder. We set the input dimension to match the number of
features in the training data, with hidden and latent dimen-
sions of 64 and 32, respectively. The model was trained using
mean squared error loss and optimized with the Adam opti-
mizer at a learning rate of 0.001. The training process spanned
50 epochs, with the model showing progressive improvement
in minimizing the loss across training batches. This setup
ensures robust and efficient drift detection in dynamic envi-
ronments. The experiments were conducted on a machine
equipped with an AMD 8-Core 3.2 GHz CPU, 16 GB of
RAM, and an NVIDIA GeForce RTX 3050 Ti GPU. The
AI/ML models (two LSTMs and a FNN) were implemented
using TensorFlow 2.17.0 in a Python 3.9.7 environment with
CUDA support for GPU acceleration. Lastly, we leveraged
a mixture of conventional drift detection metrics, including

FIGURE 5. Internet traffic patterns in milano dataset - time series.

FPR, recall, precision, and F1 scores [28], [52], along with
standardized metrics (e.g., drift detection delay in ETSI [53]),
for a more comprehensive and diverse evaluation.

V. EXPERIMENTAL RESULTS
In this section, we present the results of three experiments.
We begin by analyzing the data patterns across the three
datasets. Following that, we extensively test the proposed
DSA-AE drift detection method across all drift forms, includ-
ing data, label, and concept drift, with varying parameters.
We then provide a comparative analysis of our DSA-AE
method with three existing state-of-the-art drift detection
methods. Finally, we conclude with a discussion of the find-
ings, giving insights into key lessons learned.

A. ANALYSIS OF TEMPORAL PATTERNS
The temporal analysis of our datasets reveals distinct behav-
ioral patterns across different network scenarios. The Milano
dataset (illustrated in Figure 5) exhibits clear temporal depen-
dencies, characterized by recurring patterns and systematic
variations over time, particularly evident in feature distri-
butions across different time periods. Similarly, the Ireland
dataset demonstrates strong temporal correlations across all
three applications as showcased in Figure 6, with distinc-
tive cyclic patterns and time-based dependencies in network
usage metrics. In contrast, the AMF dataset depicted in
Figure 7 shows notably different characteristics, lacking sig-
nificant temporal dependencies where the data points appear
more stochastic and event-driven rather than time-dependent.
This diversity in temporal characteristics across our exper-
imental datasets provides an ideal testing ground for our
proposed DSA-AE drift detection method.

B. AI MODELS VALIDATION
Figure 8 presents the predictive performance of the AImodels
using the different datasets for each use case. In Figure 8a,
we can observe the actual versus predicted internet usage
values for the Milano dataset, which is time series data.
The predicted values closely follow the actual values over
time, demonstrating the LSTMmodel’s accuracy in capturing
the temporal dependencies inherent in internet usage data.
Similarly, Figure 8b shows that the LSTM model accurately
predicts the download bitrate for the Ireland dataset. Where
the model’s predictions align closely with the actual data
points, indicating that the LSTM effectively captures patterns
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FIGURE 6. Throughput patterns of three applications of ireland
dataset - time series.

in the time-dependent features of network throughput. On the
other hand, Figure 8c displays the results of the FNN model
predicting CPU usage in the EURECOM dataset, which is
non-time-series data. The FNN model successfully tracks
CPU usage trends, aligning well with actual values and fur-
ther demonstrating its suitability for structured, non-temporal
data.

C. LIMITATION OF XAI-BASED CONCEPT DRIFT
DETECTORS WITH TIME SERIES DATA
To further investigate the claims in section II-C regarding the
limitations of XAI drift detection for time series data, we con-
ducted a series of experiments using two widely adopted
XAI-based methods: SHAP and LRP.

Figure 9 illustrates a bar chart of SHAP values over differ-
ent time steps in the Milano time series data prediction. The
key observation is the progressive increase in SHAP values
towards the prediction point, starting low and peaking at the
most recent time step. Moreover, Figure 10 depicts SHAP
scores for a sequence of time steps in the Ireland dataset,
highlighting each step’s contribution to model predictions.
Time steps 0 to 7 show low SHAP values, indicating minimal
impact, while time steps 8 to 11 (i.e., latest timesteps) have

FIGURE 7. AMF resource usage of EURECOM dataset.

increasingly negative values, with the most significant impact
at step 11, emphasizing the latter part of the sequence.

To explore whether the SHAP findings can be generalized,
we extended our evaluation to another XAI method (i.e.,
LRP) and tested our time series models using this tech-
nique. Figures 11 and 12 illustrate the LRP relevance scores
of LSTM model use cases across two time series datasets
(Milano and Ireland). As can be clearly observed, the rele-
vance scores exhibit similar patterns to SHAP when dealing
with time series data, where the XAI method focuses most
often on the last part of the sequence as an indicator of the next
timestep. The LRP results confirm the results of SHAPwhere
ML Model tends always in each sequence to focus on the
last timesteps to predict the next value at t+1. The extensive
results we got from SHAP and LRP experiments can be jus-
tified by the fact that XAI-based methods were not originally
designed to detect drifts and were primarily designed for NLP
and text data, rather than time series data [14], [15].

D. THE PROPOSED DSA-AE DRIFT DETECTION
VALIDATION
In this subsection, we evaluate the effectiveness of our
DSA-AE model in detecting various types of drift. First,
we assess the model’s capability to detect data and label drift.
Finally, we examine the model’s ability to identify concept
drift, utilizing the dual self-attention mechanism.

1) DATA DRIFT DETECTION
In this experiment, we aim to test the effectiveness of the
proposed DSA-AE method for detecting data drift, using a
traffic forecasting use case with the Milano dataset. During
inference, we introduced a simulated drift (23.4% as illus-
trated in Table 2) by exposing the LSTM model to abnormal
internet traffic patterns and evaluated whether the DSA-AE
drift detector could successfully identify this drift.

Notably, Figure 13 demonstrates the DSA-AE’s perfor-
mance in data drift detection across three subplots. The top
subplot shows the original and drifted data distributions used
to generate a drift event, with the original traffic patterns
(blue) displaying relatively stable behavior and the drifted
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FIGURE 8. LSTM and FNN model validation results across different datasets and use cases.

FIGURE 9. Average SHAP importance scores of LSTM model
with Milano time series dataset.

FIGURE 10. Heatmap of SHAP values of one Sequence from
throughput predictions use case of ireland dataset.

FIGURE 11. LRP Relevance Scores of one sequence using traffic
forecasting use case with Milano dataset.

FIGURE 12. LRP Relevance Scores of one sequence using
Bitrate predictions use case with Ireland dataset.

data (red) exhibiting significant deviations, clearly indicat-
ing abnormal traffic behavior. The middle subplot shows
the DSA-AE model’s detection response using MD. A drift

FIGURE 13. DSA-AE Data Drift Detection Harnessing the
reconstruction error.

FIGURE 14. True Positive, False Positive, False Negative based
on the change of the reconstruction error.

threshold at σ2 separates normal from anomalous behav-
ior. This threshold is not fixed but varies depending on the
characteristics of the dataset (i.e., use case), as the reconstruc-
tion error is directly calculated by comparing the input data
with the reconstructed output. Consequently, the threshold
is inherently dependent on the training data used in each
case, adapting to the underlying distribution and variabil-
ity of that data. For the traffic forecasting use case with
the Milano dataset, the reconstruction error remains con-
sistently below the threshold prior to the drift event (t <
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2000), indicating system stability. As drift occurs, the error
surpasses the threshold, effectively signaling the onset of
the drift. The lower subplot further illustrates this behavior
through box plots, capturing the distribution of reconstruc-
tion errors over time and highlighting the shift in data
characteristics. Pre-drift, the error distribution is tight with
low variance, reflecting normalcy. Post-drift, the distribution
widens, median values rise, and outliers increase, indicating
a shift in error characteristics. These results demonstrate the
DSA-AE’s effectiveness in detecting data drift, highlighting
its sensitivity and robustness.

To gain deeper insights into the accuracy of the proposed
reconstruction errormetric within our framework, we conduct
further analysis. Hence, Figure 14 shows the boxplot distribu-
tion of reconstruction error across four detection types: True
Negative (TN), False Negative (FN), False Positive (FP), and
True Positive (TP). In this plot, we observe that TN and FN
instances have significantly lower reconstruction errors, with
their interquartile ranges concentrated around lower values.
This suggests that the DSA-AE model reconstructs these
cases with relatively high accuracy.

2) LABEL DRIFT DETECTION
In this experiment, we study the effectiveness of the proposed
DSA-AE drift detection method for identifying label drift.
As detailed previously, our framework captures the predic-
tions of the monitored model alongside the input features
and stores them in the knowledge base. This architectural
design enables comprehensive monitoring of both data and
label drift through attention-based reconstruction error anal-
ysis. To evaluate the method’s capability in detecting label
drift, we simulated drift conditions in one of the prediction
sequences of the LSTM traffic forecasting model. Figure 15
presents a heatmap visualization of the reconstruction error
intensity over time, providing insights into the temporal
dynamics of label drift detection. The heatmap reveals
distinct patterns of reconstruction error intensities across dif-
ferent time steps. A pronounced band of high-intensity errors
(deep red) at time steps 5-7, with values exceeding 22.5,
indicates significant label drift. Indeed, the DSA-AE model
effectively detects label drift through these reconstruction
error intensities.

3) CONCEPT DRIFT DETECTION
One of the major contributions of this paper is address-
ing the limitations of XAI-based concept drift detection
methods. To manage the complex spatiotemporal depen-
dencies commonly found in network data, we harnessed a
dual self-attention mechanism specifically to deal with this,
as detailed in section III-D.4. In this regard, to assess the
effectiveness of the proposed DSA-AE model for concept
drift detection in a time series context, we conducted an
experiment where we exposed the throughput prediction
LSTM model to concept drift with complex spatiotemporal
properties.

FIGURE 15. DSA-AE Reconstruction error Heatmap after Label
Drift.

FIGURE 16. Concept Drift Detection using attention scores of the
proposed DSA-AE framework.

FIGURE 17. Comparison of Temporal Attention and Feature
Attention weight distributions of the Ireland dataset (time
series).

To achieve this, we leveraged the diversity of the Irish
Mobile Operator dataset. In the offline training phase,
we trained the LSTM model on data from a streaming appli-
cation (Netflix) that exhibits specific temporal properties,
namely (i) a 2-second interval between observations after
preprocessing and normalization process as well as (ii) a
static mobility pattern. In the online inference phase, we then
introduced data from a different application, a download
service, which has similar feature dimensions but different
temporal and mobility characteristics. This dataset featured a
longer observation interval of 30 seconds and a shift in mobil-
ity patterns from static to driving mode, introducing novel
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FIGURE 18. Temporal Attention Heatmap of different features
(Ireland dataset).

FIGURE 19. Inter-Feature Attention Heatmap of different features
(Ireland dataset).

spatiotemporal properties that the model had not encountered
during training. This type of complex concept drift is par-
ticularly challenging to detect. Because the input data and
predictions remain within similar distributions, as a result,
traditional data and label drift detectors fail to flag it.

Figure 16 illustrates the weighted attention scores over
time. When the concept drift described above is introduced to
the proposed DSA-AE model, the latter effectively responds
by adjusting the attention score values, indicating the pres-
ence of a concept drift even if the data distribution is
not changing. This variation in attention scores highlights
the effectiveness of our dual self-attention mechanism in
detecting hidden spatiotemporal drifts, often overlooked by
traditional drift detectors.

To gain more details into the inner workings of the pro-
posed dual self-attention, Figure 17 presents feature and
temporal attention scores over time, illustrating the model’s
sensitivity to spatiotemporal variations in the Ireland dataset.
Key observations include notable fluctuations in temporal
attention scores, indicating the model’s responsiveness to
shifts in temporal patterns and its capacity to capture these

dependencies effectively.Meanwhile, feature attention scores
remain relatively stable, suggesting that the model’s attention
mechanism is less impacted by changes in the feature space,
indicating consistent feature stability despite concept drift.
Both Figure 16 and Figure 17 illustrate the effectiveness of
the DSA-AE model in detecting complex drifts, leveraging
its attention mechanism.

The heatmaps in Figure 18 and Figure 19 highlight
the model’s attention mechanisms. The temporal heatmap
(Figure 18) shows how the model assigns varying atten-
tion to features like NetworkMode, CQI, DL_bitrate, and
UL_bitrate over time, with the Prediction feature consis-
tently receiving attention. This enables the model to capture
long-term dependencies, helping detect temporal drifts and
complex patterns. The inter-feature heatmap (Figure 19)
reveals strong dependencies between the Prediction fea-
ture and key network metrics such as RSSI, RSRQ, SNR,
DL_bitrate, and UL_bitrate, highlighting their importance in
accurate throughput prediction.

E. IMPACT OF ATTENTION WEIGHT α ON DRIFT
DETECTION PERFORMANCE
To investigate the influence of the attention weight α (eq. 13)
on drift detection performance, we varied α from 0 to 1 and
evaluated the F1-based drift detection accuracy across both
time-series (Milano, Ireland) and non–time-series (EURE-
COM) datasets. As illustrated in Figure 20, the time-series
datasets exhibit improved performance when more weight is
allocated to the temporal self-attention component (typically
around α ≈ 0.6–0.7), reflecting the importance of captur-
ing temporal dependencies. In contrast, the non–time-series
dataset benefits from lower values of α (around 0.3–0.4),
indicating that feature-level attention plays a more critical
role when temporal patterns are less pronounced.

It is also noteworthy that assigning all or nearly all of the
attention weight to one component (i.e., α near 0.0 or 1.0)
leads to a drop in overall accuracy, underscoring the need
for a balanced allocation. Thus, the choice of α should be
guided by the nature of the dataset: time-series tasks typically
require stronger temporal attention, while non–time-series
problems can rely more heavily on feature-level attention.
Consequently, tuning α within a moderate range (e.g. per-
forming grid search optimization) is generally advisable to
avoid the performance degradation observed at extreme val-
ues.

F. COMPARATIVE ANALYSIS
To comprehensively validate the performance of DSA-AE
drift detection, we conducted an extensive comparative
analysis with several widely used drift detectors, includ-
ing Adaptive Sliding Window (ADWIN) [28], Early Drift
Detection Method (EDDM) [52], and an XAI-based Drift
Detector [18]. This evaluation examined drift detection accu-
racy metrics such as FPR, recall, and precision, as well
as an important standardized metric termed drift detection
latency (drift detection delay as acknowledged in ETSI
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TABLE 3. Comparative analysis of drift detection methods across various datasets, window sizes, and metrics.

specification [53]). We performed a grid search optimization
(as detailed in sectionV-E) to identify the optimal α values for
each use case. Additionally, we varied the drift window size to
gain deeper insights into its effect on detection performance.
To simulate real-world conditions where multiple forms of
drift (data, label, and concept drift) can occur unpredictably,
we introduced random drift across the data, predictions, and
spatiotemporal dependencies to better reflect real-world sce-
narios. We also varied the types of drift, including seasonal,
recurring, and gradual drifts, to comprehensively assess the

methods’ performance while ensuring common experiment
parameters (window size, drift form, dataset, etc.) for fair-
ness.

The comparative analysis of the DSA-AE method against
state-of-the-art drift detection techniques is presented in
Table 3. The results clearly indicate that the proposed
DSA-AE significantly outperforms alternative methods, such
as ADWIN, EDDM, and XAI-based approaches, across all
major drift detection metrics. Notably, DSA-AE achieves
the highest levels of precision, recall, and F1 scores across
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FIGURE 20. Drift Detection Accuracy for the different Datasets
across varying Attention Weight α values.

various window sizes (up to 93.5%), demonstrating superior
capability in identifying true drift occurrences with minimal
FPRs. This performance advantage is particularly significant
in time-series datasets (Milano and Ireland), where traditional
methods struggle with the univariate nature of the data, lead-
ing to lower recall, precision, and F1 scores (around 77%) due
to the higher number of false negatives.

Although ADWIN excels in minimal detection delays
due to its simple calculation-based approach, this simplicity
reduces its accuracy in detecting drift, particularly in larger
windows, making it less effective in critical scenarios requir-
ing high reliability. Similarly, EDDM offers slightly better
accuracy but still struggles with concept drift, especially in
temporally dependent data. In contrast, DSA-AE provides a
balanced trade-off, achieving high detection accuracy while
maintaining low latency, and prioritizing quality of detection
as the primary metric.

While the XAI-based drift detection method is effective
with non-time-series datasets (e.g., EURECOM), it exhibits
limitations when applied to time-series data such as Milano
and Ireland. In these datasets, XAI-based approaches demon-
strate higher FPR, as their reliance on feature importance
fails to adequately capture univariate dependencies. Con-
versely, DSA-AE leverages its dual self-attention structure
to effectively address these limitations, capturing the intri-
cate patterns in time-series data and delivering consistently
high accuracy. Moreover, one notable observation is that
XAI-based drift detectors tend to have significant delays in
detection. These delays (in hours, sometimes even days) can
be evenmore pronouncedwhen themodel is more complex or
the window size is larger. The exponential latency is primarily
due to the computationally intensive nature of XAI methods,
which require considerable time to determine feature impor-
tance, a key indicator of model drift.

Besides that, our analysis highlights a trade-off between
drift detection latency and accuracy based on window size
in the DSA-AE model. Smaller windows, such as 32, allow
for faster drift detection but with lower accuracy, as they
are limited in capturing long-term dependencies. Conversely,
larger windows, like 128, improve drift detection accuracy by
capturing extended temporal patterns (gradual drift), though

they increase detection latency. Selecting the optimal window
size is critical and depends not only on acceptable detec-
tion latency, model size, and data’s temporal characteristics
but also on the type of drift expected. For gradual drift,
larger windows are preferable as they better capture subtle,
long-term changes, whereas smaller windows may be more
effective for detecting sudden shifts. Tailoring the window
size based on these factors enables a more balanced and
effective approach to drift detection in each use case.

From the results presented in Table 3, we derive the
reported improvements of over 13% in drift detection accu-
racy and 94% in detection latency reduction by comparing
the performance of the proposed DSA-AE model to the aver-
age results of the benchmarked state-of-the-art methods. For
accuracy, we use the F1 score, calculated from precision and
recall, acrossmultiple window sizes (32, 64, and 128). In each
case, we compute the percentage improvement of DSA-AE
over the average performance of the baseline methods. The
observed gains in accuracy range from 10.56% to 15.02%,
with an average improvement of 13.6%. A similar approach
is applied to detection latency, where the reduction ranges
from 90.84% to 97.59%, yielding an average improvement
of 94.7%. These values form the basis of the performance
claims discussed in the comparative analysis.

G. DISCUSSION & LEARNED LESSONS
The extensive analysis and evaluation of our proposed
DSA-AE model underscore several important aspects of
model performance, architecture design, and the broader
implications for drift detection in dynamic environments.
Results across three realistic datasets provide several valuable
lessons, which we can summarize as follows:

• Lesson 1: Combining Self-Attention with Autoen-
coders for Diverse Drift Types. The numerical
results have demonstrated that the synergy between
self-attention and autoencoders is highly effective in
addressing various types of drift, including data drift,
label drift, and concept drift.

• Lesson 2: Separating Feature and Temporal
Self-Attention for Enhanced Spatiotemporal Anal-
ysis. By separating feature-specific and temporal self-
attention blocks, ourmodel achieves amore nuanced and
accurate handling of spatiotemporal dependencies. This
separation allows the model to differentiate between
sudden changes in specific features and longer-term
trends, refining its ability to identify the underlying
factors behind data shifts.

• Lesson 3: Limitations of XAI Methods in Captur-
ing Temporal Dependencies. Our experiments with
XAI methods highlighted a notable limitation in their
effectiveness for univariate time-series data, confirming
insights from recent works [15]. In our case, XAI-
based drift detection methods struggled to identify drift
accurately, as they rely primarily on feature importance
metrics. This approach is insufficient for capturing the
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sequential nature of time-series data, thereby reinforcing
the limitations cited in recent studies.

• Lesson 4: Impact of Drift Window Size on Detec-
tion Accuracy and Latency. The analysis shows that
drift window size significantly impacts detection accu-
racy and latency. Selecting the optimal size depends on
factors such as tolerance for detection delays, model
complexity, data’s temporal characteristics, and the
expected drift type (gradual or sudden). Balancing these
factors is crucial for effective drift detection, especially
in dynamic 6G network environments.

VI. CONCLUSION
In this study, we introduced a novel Dual Self-Attention
Autoencoder drift detection method. Our approach leverages
the power of autoencoder reconstruction error with MD to
detect data and label drift, and dual self-attention scores
with cosine distance to detect concept drift. Our method
surpasses the current state-of-the-art and distinguishes itself
by addressing the complexities of spatiotemporal time-series
data and detecting data, label, and concept drift within the
same model. Extensive experiments conducted across three
realistic telecommunication datasets, two of which are time
series, demonstrate the effectiveness of DSA-AE, outper-
forming benchmark methods by up to 94% in drift latency
and improving drift detection accuracy by over 13%. These
results highlight the substantial potential of our proposed
model in real-world applications. For future work, we will
turn our attention to the challenge of drift adaptation within
the continuous learning landscape of 6G networks. This rep-
resents a critical next step in advancing the state-of-the-art in
this domain.
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