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Abstract. Vessel segmentation is crucial for analyzing brain vasculature
and understanding cerebral functions and disease mechanisms. Current
deep-learning models for segmenting blood vessels within brain images
are supervised and depend on extensive labeled data, which requires ex-
pert annotation and is both time-consuming and resource-intensive. To
address these challenges, we propose Vessel-Dictionary Selection Net (V-
DiSNet), a one-shot active learning (OSAL) framework specifically de-
signed for vessels that can be used to select a small, representative set of
informative and diverse samples for expert annotation and training, given
an unlabeled dataset – in a single iteration. The selection process involves
sampling from a latent space designed by leveraging the recurrent prop-
erties of brain vessel patterns. Specifically, we combine dictionary learn-
ing with k-means clustering to learn a latent representation integrating
fundamental basis elements representing recurrent vessel features such
as shape, connectivity, and structures. We experimentally demonstrate
the effectiveness of our method on three publicly available 3D Magnetic
Resonance Angiography datasets, showing that V-DisNet consistently
outperforms random sampling and other state-of-the-art OSAL methods
in terms of standard vessel segmentation metrics. Our code is available
at github.com/i-vesseg/V-DiSNet.
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1 Introduction

Vessel segmentation is a crucial step in analyzing the brain vasculature and
building a comprehensive vascular tree, which is fundamental for understanding
brain function and the mechanisms underlying neurological disorders [4]. Recent
state-of-the-art methods for brain vessel segmentation [2,6,9,19,22,27] build on
deep learning (DL) architectures capable of capturing complex spatial relation-
ships in volumetric brain scans, leading to highly accurate vessel delineations.
Nevertheless, these models primarily rely on fully labeled datasets. Obtaining
expert-level annotations is resource-intensive and time-consuming, particularly
for intricate vascular structures [18].

https://github.com/i-vesseg/V-DiSNet.git
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Related Work. Several approaches have been proposed to alleviate the bur-
den of exhaustive labeling. For instance, transfer learning [14,24], weakly su-
pervised methods [3], and active learning (AL) strategies [10,16,21] aim to re-
duce the manual annotation effort while preserving segmentation accuracy. In
particular, AL has received significant attention in medical imaging [1,25]. It
reduces manual efforts by iteratively identifying the most informative unlabeled
samples for expert annotation. Despite their success, classical AL frameworks
typically involve several cycles of model re-training and querying an external
oracle, demanding continuous availability of human annotators and incurring
high computational costs [10]. This iterative overhead limits AL’s practicality
in settings where clinical resources and time may be constrained [26]. One-shot
Active Learning (OSAL) addresses this limitation and enables the selection of
a minimal set of informative samples in a single iteration. Unlike iterative AL,
which re-trains models after each labeling round, OSAL automatically identifies
the most informative samples to be annotated in a single pass, thus removing the
need for repeated updates and human involvement. Existing OSAL frameworks
rely on self-supervised learning [10], variational autoencoder [28] and contrastive
learning with data augmentation [12,13] to select a minimal set of samples to
be labeled, that maximize segmentation performances. However, these models
do not provide an explicit mechanism to ensure that the selected set is mean-
ingful. In brain vessel segmentation for example, samples selected using OSAL
may not fully reflect the underlying anatomy of the brain, as they fail to take
into account the recurring tree-like structures of brain vessels. Additionally, the
lack of interpretability of their selection processes, which do not provide insights
into why some data points are prioritized over others, makes it hard to ensure
that the identified samples representative of the full data. This is particularly
concerning since non-representative samples may lead to a lack of generalization
abilities, ultimately leading to suboptimal performance on new unseen data.

Contributions. To address these limitations, we propose Vessel-Dictionary Se-
lection Net (V-DiSNet), a novel OSAL framework tailored to the complex,
tree-like geometry of brain vessels. Our model combines dictionary learning with
k-means clustering to explicitly capture and model the recurrent tubular struc-
tures, or patterns, of brain vessels, and identify a minimal set of groups that are
representative of the full vascular tree. We use these learned groups to guide the
construction of an interpretable and robust sparse latent representation of vascu-
lar patterns – that provides insights into the underlying brain anatomy. We then
design a single-pass querying strategy that leverages the learned latent space to
efficiently select a minimal yet representative and informative set of patches for
external annotation, that can be used to train brain vessel segmentation models.
To the best of our knowledge, V-DisNet is the first OSAL framework designed
specifically to take advantage of the recurring nature of brain vessel patterns.
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Fig. 1: Overview of the V-DiSNet framework: A one-shot active learning pipeline
that leverages dictionary learning to capture intrinsic vessel patterns, constructs
an informative latent space via a Siamese encoder, and applies diversity-based
sampling to select a minimal yet representative set of vessel patches for efficient
brain vessel segmentation.

2 Method

Under the assumption that a brain vessel tree results from a set of hierarchical
tree-like recurring branching patterns [20,23], a vascular tree can be modeled
as a linear combination of dictionary elements, such that Y = Bz, where B is
an over-complete dictionary of image patches of tree-like branching patterns of
vessels, and z ∈ RK is a sparse vector containing the representation coefficients
of the vascular tree image Y. As the dictionary is not directly observed, we aim
to infer its elements, or atoms, from observed annotated data. We propose a
novel framework to (1) learn a reduced dictionary that fully captures the range
of recurring brain vessel patterns, (2) learn an informative latent representation
of brain MRI patches using the previously extracted patterns, and (3) use the
learned latent space to sample a minimal set of patches that offer maximum cov-
erage of vessel patterns, to be manually annotated before training segmentation
models given a new unlabeled dataset. Fig. 1 illustrates our proposed framework.

Identifying recurring vessel patterns We consider a labeled dataset I. Given
an image I and its associated label map L, (I,L) ∈ I, of size H ×W × S, as in
[3], for each slices Xs ∈ I, and Ys ∈ L we consider the partitions into Ps non-
overlapping patches Xs = {Xk}Ps

k=1 and Ys = {Yk}Ps

k=1. We build a set of binary
vessel annotated patches YI , such that YL = {Ys}Ss=1 and YI = {YL}L∈I .
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The dictionary of recurring vessel patterns can then be obtained by solving:

B̂, Ẑ = min
B,Z

∥YI − BZ∥22, (1)

subject to ∥Z∥1 < λ. The columns of Z are formed by the representation co-
efficient vectors ẑi, and λ is a regularization parameter controlling the sparsity
of the representation coefficient vectors. We use the learned iterative shrinkage
thresholding algorithm (LISTA) [7] to solve the optimization problem in Eq. 1.
Annotated patches Yi ∈ YI are first encoded through a linear encoder E1 into
sparse latent vectors ẑi, where each element of a vector corresponds to an atom
that can either be activated or idle (i.e., zero-valued). The representations ẑi are
then passed through a linear decoder R1 to ultimately obtain the reconstructed
ŶI = B̂Ẑ, where the learned latent sparse vectors Ẑ capture the recurrent pat-
terns of vessel trees. Ultimately, we aim to learn the smallest set of patterns that
is representative of the recurrent patterns of vessel trees. We propose to apply k-
means clustering on the sparse latent vectors Ẑ to group the elements, or atoms,
of the obtained dictionary into clusters based on their sparse latent features. A
cluster label ci is assigned to each annotation Yi and corresponding image patch
Xi of the dataset, thus reducing the number of distinct vessel patterns to the
number of distinct clusters ci. Figure 1 illustrates some examples of activated
atoms, highlighted in green, capturing essential vessel features such as shape,
connectivity, and position within the patch.
Latent Space Generation for MRI patches We then use the structural
information extracted from the obtained patterns to train an encoder to generate
an informative latent space of brain patches. In this second stage, pairs of MRI
brain patches Xi, Xj and their corresponding k-means labels ci, cj are fed into a
Siamese encoder network Es, where weight-sharing is implemented between the
encoders to ensure consistent representation learning. For patches with the same
k-means label, ci = cj , Es aims to produce similar latent vector representations.
In contrast, for patches with different k-means labels ci ̸= cj , the encoder seeks to
differentiate their representations. This process ensures that patches with similar
vessel patterns are closely represented in the embedding space, while those with
different structures are more distinctly separated, thereby enriching the latent
space discriminative power.
Diversity Sampling and Segmentation Lastly, we use our framework to
identify a minimal subset of n brain patches for annotation by an external oracle,
which will then be used to train a segmentation model. Given a new dataset of
unlabeled images IU = {Ij}Mj=1 ⊂ RH×W×S , where Ij is the j-th image in
the dataset, without any associated label map. For each slice XU

s , we partition
the image into Ps non-overlapping patches XU

s = {XU
k }Ps

k=1. These patches are
fed into the previously trained Es to generate their corresponding latent vectors
zUk ∈ ZU . The different groups of patterns are then extracted using k-means
to identify regions of varying density and different vessel patterns within the
latent representation of the patches from the new dataset. We use a stratified
version of the farthest point sampling (FPS) algorithm [15] to randomly select
n patches from both densely and sparsely populated regions of the latent space,



One-shot active learning for vessel segmentation 5

thus maximizing coverage. As a result, this subset of n patches is diverse and
representative of the underlying data distribution, leading to a final training set
that includes a broad spectrum of the vessel patterns present in the unlabeled
dataset. Finally, the selected patches are annotated by an external oracle to
obtain a training set that can be used to enhance the robustness and performance
of a subsequent segmentation model Φ.

3 Experiments and Results

Experimental Setup. We use the IXI dataset as I to learn vessel patterns and
train an encoder for clustering structurally similar vessel patches. Specifically, 22
TOF-MRA volumes (median grid: 359× 481× 100, voxel size: 0.47× 0.47× 0.80
mm) were sampled from healthy subjects aged 20–86. Each includes brain masks
(HD-Bet [11]) and expert-annotated vessel masks. We demonstrate our method
on three public 3D-TOF MRA datasets (IU ): OASIS-3, SMILE-UHURA,
and CAS. CAS contains 100 volumes (median grid: 608× 640× 150, voxel size:
1.00×1.00×1.00 mm), split into 85 for training and 15 for testing. OASIS-3 has
49 volumes (median dimension: 576×768×232, voxel size: 0.60×0.30×0.30 mm),
of which 39 are used for training and 10 for testing. SMILE-UHURA includes 14
volumes (median dimension: 480× 640× 163, voxel size: 0.30× 0.30× 0.30 mm),
split per challenge guidelines. All scans are resampled to the median spacing,
skull-stripped, and standardized. Following [3] methodology, we extract 32× 32
patches: 1,000 per subject (500 with vessels centered, 500 with vessels off-center),
plus 500 non-vessel MRI patches from IU , totaling 1,500 patches per subject.
Each patch is normalized by the overall dataset mean and standard deviation.
At inference, overlapping patches (0.5 stride, 0.5 threshold) are used to address
boundary uncertainties, with test patches normalized using training statistics.

Implementation Details. We use a dictionary learning model with LISTA [7]
as a pretext reconstruction task to extract vessel pattern structures in a sparse
latent space. We perform 3 LISTA iterations during training, using a final em-
bedding dimension of 128, an MSE reconstruction loss, and hyper-parameters
from [5]. Peak Signal-to-Noise Ratio (PSNR) is used to quantify reconstruction
quality. For the MRI latent space construction, we use a Siamese network [17]
with shared weights, trained for 200 epochs, with a LR of 5e−4 and early stop-
ping. We adopt a contrastive loss [8], which imposes a margin between dissimilar
pairs based on Euclidean distances in the latent space. We adopt the W-Net from
[3] as our backbone architecture Φ. We train for 15k steps, with a batch size of
128 patches and early stopping. We use the Adam optimizer with a learning rate
(LR) of 1e−4. We use the Dice and clDice metrics to assess segmentation qual-
ity of Φ. While Dice measures spatial overlap between predictions and ground
truth, clDice further accounts for connectivity to preserve tubular structures like
vessels, capturing both region accuracy and structural integrity. All experiments
are implemented in PyTorch 1.19 on a single Nvidia-TITAN Xp GPU.

https://brain-development.org/ixi-dataset/
https://sites.wustl.edu/oasisbrains/home/oasis-3/
https://www.synapse.org/Synapse:syn47164761/wiki/620033
https://codalab.lisn.upsaclay.fr/competitions/9804
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Table 1: Segmentation performance on 15 CAS dataset test patients at various
labeling percentages. Eight experiments with distinct random seeds were run for
each fraction and model to ensure robustness, with results averaged and standard
deviations computed across test patients.
Labeled (a) Dice Score (%) (b) ClDice Score (%)

(%) V-DiSNet R-W RA CA AET V-DiSNet R-W RA CA AET
0.1 59.3±8.2 50.4±5.3 57.6±5.1 55.1±4.8 56.3±4.9 50.8±9.2 41.9±6.6 49.3±5.8 47.5±6.7 48.4±.6.3
1 71.9±2.4 68.9±4.7 70.3±1.7 70.4±2.8 70.3±2.3 68.5±3.9 65.0±5.8 67.0±2.1 67.4±2.7 67.2±2.4
5 77.4±1.4 75.3±1.7 75.8±1.6 77.1±1.8 76.4±1.7 73.6±1.6 71.9±2.2 72.9±1.7 74.0±1.7 73.4±1.7
10 79.8±0.8 78.0±1.0 78.5±1.3 78.8±1.4 78.6±1.4 765±0.5 75.1±0.6 75.4±1.3 75.3±1.6 75.3±1.5
30 81.5±0.7 80.1±0.6 80.4±0.9 81.0±1.0 80.7±0.9 77.9±1.1 77.1±0.8 76.8±0.8 76.9±1.5 76.8±1.1
50 82.0±0.6 80.8±0.8 81.0±0.7 81.8±0.8 81.5±0.7 78.0±0.9 77.4±1.0 77.4±0.7 77.8±0.7 77.8±0.7
75 82.0±0.7 81.9±1.1 81.4±1.0 82.0±0.7 81.7±0.8 78.3±0.7 77.9±1.1 78.0±0.9 78.1±1.1 78.1±1.0

Segmentation Performances. We compare our model against random sam-
pling (R-W) and three OSAL state-of-the-art methods, i.e., RA [28], CA [13],
and AET [12], using 0.1–75% labeled data from the CAS dataset. To ensure the
robustness of our findings, we conducted eight experiments for each fraction and
model, each with a different random seed. The performances (Tab. 1) highlight
how V-DiSNet consistently outperforms competitors across all fractions, partic-
ularly at lower sampling rates (0.1–10%). Crucially, with only 30% labeled data,
V-DiSNet nearly matches the fully annotated dataset. This highlights the effec-
tiveness of our sampling strategy in selecting informative patches and leveraging
a robust latent space to enhance vessel segmentation. Additionally, we evaluate
the robustness of V-DiSNet on OASIS-3 and SMILE-UHURA (Fig. 2), us-
ing different labeled percentages and comparing against random sampling. Our
method consistently outperforms the baseline, especially at lower annotation lev-
els, and achieves, as before, near full-data performance with roughly 30% labels.

Identifying Informative Vessel Patches. To assess our dictionary learning
model’s ability to capture a rich and interpretable latent space, we apply it to
a vessel patch reconstruction pretext task. As shown in Fig. 3, each input patch
is encoded into a sparse latent vector whose active dictionary atoms reconstruct
vessel features with high fidelity (PSNR of 28.89 ± 3.61 and 91 ± 3% sparsity).
As intended, patches share dominant atoms within each cluster – reflecting con-
sistent structural patterns across vessel patches. Fig. 3 also demonstrates how
selectively deactivating or overactivating specific atoms alters vessel shape, size,
or orientation. This suggests that the learned latent representations are mean-
ingful, as specific atoms provide insights into specific structures of vessels –
highlighting the interpretability of our method.

Clustering of Vessel Patches. To examine how well our model groups mor-
phologically similar vessel patches, we applied the Elbow Method and found 50
clusters as the optimal value. Fig. 4 show cluster centroids and representative
patches for a few selected clusters, revealing consistent structures (e.g., curva-
ture, thickness). These clusters underline the model’s ability to detect diverse



One-shot active learning for vessel segmentation 7

Fig. 2: Segmentation results on the OASIS-3 and SMILE-UHURA datasets,
showing Dice scores (left) and ClDice scores (right) for different percentages
of sample and annotated patches.

vessel anatomies and emphasize the need for a balanced sampling strategy that
captures a variety of vessel patterns.

Ablation Study. We evaluated the roles of the sampling technique and the
patch size in our framework. First, we compared our V-DiSNet stratified FPS
sampling technique with stratified random sampling (R-C) and T-SNE-based
FPS (T-FPS). As shown in Fig. 5 (left), V-DiSNet provides broader latent space
coverage and stronger performance, especially under limited data conditions.
Then, we examined the effect of the patch size by testing larger patches (Fig. 5,
right) and found that smaller patches more effectively capture fine-grained vessel
structures and yield higher Dice and clDice scores, offering a favorable solution
in terms of accuracy and computational cost.

4 Conclusion

In this work, we introduced V-DiSNet, a novel OSAL framework tailored for
brain vessel segmentation. By leveraging dictionary learning to construct a sparse
latent space that captures the intrinsic recurring patterns of brain vessels, our
method effectively identifies a minimal yet highly informative subset of patches
for annotation. Experimental evaluations across three public 3D-TOF MRA
datasets demonstrated that V-DiSNet consistently outperforms both random
sampling and established one-shot active learning baselines, particularly under
scenarios with limited labeled data. Notably, our approach nearly achieves the
performance of fully supervised methods with only 30% of the labels, significantly
reducing the annotation burden without compromising segmentation quality.

In addition, the dictionary atoms learned by V-DisNet also provide valuable
and interpretable insights into vascular architecture and branching patterns,
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Fig. 3: Interpretability of V-DiSNet’s sparse latent space. The input patch is en-
coded into a sparse representation using learned dictionary atoms. Deactivating
or over activating specific atoms alters specific vessel components, highlighting
their role in the reconstruction

Fig. 4: Centroid images representing clusters of vessel patches extracted from
3D MRA brain image volumes (left); and examples of clusters of brain patches
characterized by similar vessel features, such as shape, size, or position (right).

which can aid both clinical interpretation and model refinement. Overall, V-
DisNet is an efficient, effective, and interpretable strategy for overcoming the
challenges of limited annotated data in medical imaging. Future work will ex-
plore extending our framework to other vascular imaging modalities, integrat-
ing domain-specific knowledge to further enhance the vessel pattern representa-
tions, and investigating the transferability of learned dictionaries across different
anatomical regions.
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Fig. 5: Ablation study contrasting different sampling strategies in our learned
latent space (left). Evaluation of the impact of the parameter patch size within
our framework (right).
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