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Abstract—Cloud-Edge Computing Continuum (CECC) systems
drive digital transformation by linking cloud services to decentral-
ized edge devices, supporting critical applications such as eHealth.
However, trust management in such dynamic and distributed
federated systems remains a challenge. This paper proposes
the Trust Manager, an advanced framework that integrates the
IEEE Federation Hosting Service (FHS) model with blockchain
technology. It enhances trust through comprehensive trust
profiles for infrastructure providers, incorporating performance
metrics, Service Level Agreement (SLA) compliance, and user
feedback, thus improving scalability, performance, and reliability
in federated systems.

I. INTRODUCTION

In the era of digital transformation, Cloud Edge Computing
Continuum (CECC) systems are pivotal to modern applications,
bridging centralized cloud services and decentralized capabili-
ties of edge devices. These systems support mission-critical
applications such as healthcare, and autonomous vehicles,
where reliable and secure communication is indispensable.
However, trust management in distributed (i.e., multiple
resource providers) CECC systems presents a significant
challenge due to their dynamic and heterogeneous nature.

Federated systems, including CECC, enable collaboration
among diverse stakeholders such as infrastructure providers,
application developers, and Cloud Edge Computing Continuum
Manager (CECCM) (i.e., service and resource orchestrators).
The federation of resource providers allows for seamless,
scalable, and efficient resource sharing across different admin-
istrative domains, ensuring optimal performance and reliability
as defined in Service Level Agreements (SLAs). Trust man-
agement plays a crucial role in maintaining consistent Quality
of Service (QoS), Quality of Experience (QoE), and SLA
adherence while ensuring secure and fair resource allocation.
In this context, trust refers to the confidence in stakeholders’
ability to reliably and transparently fulfill their obligations.

Managing trust in federated CECC environments is complex
due to the dynamic roles and objectives of participating
entities. Existing approaches primarily focus on resource
optimization [1] or cost efficiency [2] but often neglect dynamic
trust evaluation and enforcement. Traditional models struggle
with frequent fluctuations in resource availability, leading
to uncertainties in infrastructure reliability and consistent
SLA fulfillment [3], [4]. Xu and Liu [5] emphasized trust
in decentralized systems through reliability/availability models

but overlooked blockchain’s potential for distributed trust.
Similarly, Zhao et al. [6] highlighted reputation-based trust
mechanisms, though their reliance on centralized control makes
them unsuitable for CECC environments.

To address these challenges, we propose a trust manage-
ment framework that integrates the Institute of Electrical
and Electronics Engineers (IEEE) Standard for Intercloud
Interoperability and Federation (SIIF) [7] Federation Hosting
Service (FHS) reference model with blockchain technology.
The FHS model, which extends the National Institute of
Standards and Technology (NIST) Cloud Federation Reference
Architecture (CFRA) [8], provides a standardized framework
for interoperability and collaboration. Blockchain further
enhances transparency and accountability by ensuring a decen-
tralized and tamper-proof trust mechanism [9]. Our approach
establishes detailed trust profiles for infrastructure providers,
incorporating historical SLA compliance, performance metrics,
and user feedback, enabling informed decision-making in
resource allocation and service deployment.

A key innovation of our approach is the integration of a
Trust Manager external to the CECC ecosystem, leveraging
IEEE FHS standards to interface with application developers,
infrastructure providers, and the CECCM via standardized
Application Programming Interfaces (APIs). It dynamically
evaluates trust profiles using an advanced model that considers
infrastructure providers’ Key Performance Indicator (KPI) mon-
itoring, SLA compliance, and application developer feedback
(i.e., QoE KPIs). Blockchain ensures secure and transparent
interactions while enforcing trust across edge devices, cloud
services, and users. Trust scores for all infrastructure and
resource providers are continuously computed and stored in
the Resource Broker. The CECCM utilizes these scores to
make informed decisions on microservice deployment and
migration, ensuring SLA adherence while optimizing both
QoS and QoE for end users.

The remainder of this paper is organized as follows: Section
II presents our proposed solution, including the architecture,
mathematical model, and workflow. Section III evaluates the
performance of the proposed model, showcasing the results.
Finally, Section IV concludes



II. TRUST MANAGEMENT IN CECC

This section is dedicated to the trust overview, model, and
workflow.

A. Trust Architecture

To establish and sustain the reputation of infrastructure
providers, we propose a novel trust architecture, illustrated
in Figure 1, seamlessly integrated into the FHS framework
defined by the IEEE SIIF. This architecture introduces the Trust
Manager, an independent component hosted by the Federation
Manager, responsible for deriving and managing provider
reputations while ensuring interoperability and scalability
within the FHS model.

Figure 1: Trust architecture leveraging the IEEE SIIF FHS
model

The proposed architecture integrates the following modules
within the Trust Manager:

1) KPI Monitoring Module: Collects and aggregates mon-
itoring data on KPIs from key stakeholders, including
the CECCM, infrastructure providers, and application
developers.

2) SLA Management Module: Leverages KPI data to detect
SLA violations and their sources using Smart Contracts
that formalize SLAs and dynamically monitor compliance.
Automated SLA enforcement provides real-time violation
insights, reinforcing trust.

3) Feedbacks Module: Gathers user input (e.g., service
load time) periodically or upon application termination
to evaluate service quality delivered by infrastructure
providers.

4) Trust Management Module: Integrates outputs from the
SLA Management and Feedback Modules to calculate
and update infrastructure providers reputation.

Reputation scores are securely recorded on a blockchain,
ensuring transparency and tamper-proof management. These
scores are available to the Resource Broker, a component of the
CECCM, where they are utilized to make informed decisions
on federated resource and application management (including
microservice deployment and migration). This ensures SLA
adherence while optimizing both QoS and QoE for end users,
enabling resource provider selection based on trustworthiness,
resource availability, and cost.

To ensure interoperability and scalability among stakehold-
ers (i.e., application developers, CECCM, and infrastructure
providers) and the Trust Manager, the latter is integrated into
the FHS framework of the IEEE SIIF through the following
functionalities:

1) Authentication and Security: Member authentication
uses the OpenID protocol, with Authorization (AuthZ)
Endpoints securing access to FHS and the Trust Manager.
Roles and access control are managed via the Roles &
Attributes Catalog.

2) Federation Database: A central repository (Mem-
ber/Service Catalog) that stores federation members and
services, supporting authentication, authorization, and
service details.

3) Open API-Based User Feedbacks and KPI Monitoring:
The Trust Manager consolidates data from the application
developers, CECCM, and infrastructure providers via
the FHS API Server. This data is used to detect SLA
violations and refines providers trustworthiness.

4) Open API-Based Trust Score Provision: The Trust
Manager updates trust scores and informs Resource
Broker decisions through the FHS Operator (FHSOp)
Server API. This ensures trust scores influence resource
selection by balancing performance, cost, and reliability.

Operating within the FHS model, the Trust Manager fa-
cilitates seamless federation-wide communication and robust
trust management, fostering a trustworthy CECC ecosystem.
Adherence to the IEEE SIIF standard ensures compatibility
and scalability. The FHS-based Open API interfaces enable
smooth communication, allowing the Trust Manager to expose
reputation scores and retrieve data for trust computation.

B. Trust Computation Mathematical Model

In this section, we present a mathematical model for calculat-
ing trust scores in CECC, focusing on the relationship between
clients (application developers) Tc and Cloud Edge Continuum
(CEC) infrastructure providers Ti . For simplicity, the CECCM
component is excluded from the equations, as it follows
the same representation as infrastructure KPI monitoring. In
practical deployments, CECCM can be incorporated to enhance
trust score reliability and replication.

The model evaluates the performance of various KPIs over
time. Inspired by the state of the art [10], a simple approach
for trust computation T compares actual performance metrics
to target values defined in the SLA. The outcome is adjusted
based on whether higher or lower values are preferable for
trust, as shown in Equation 1. SLAs specify expected service
levels, while KPIs measure actual performance against these
expectations.

T= 1

n

n∑
i=1

min

(
1,

(
actual
target

)d
)

where


n : is the number of KPIs,

d = 1 in maximization scenarios (e.g., throughput),

d =−1 in minimization scenarios (e.g., latency).

(1)



This method is simple to implement and produces a trust
score between 0 and 1. However, it does not consider the
duration or magnitude of performance deviations, which could
potentially result in misleading trust evaluations.

To address these limitations and ensure robust trust assess-
ment, we introduce an enhanced mathematical model. This
model incorporates the final trust calculation, QoE (client
feedback) and SLA metrics aggregation, KPI normalization,
and trust score adjustments. The final trust score, T (t ), is
computed by averaging the current trust score with the previous
score at t − 1. This approach integrates past and present
performance, stabilizing the trust score. Current performance
is represented by the sum of the Capped Adjustment (CA)
and Aggregated Score (A), each capped at 1 to maintain the
trust score’s upper limit. By averaging, the model ensures
short-term fluctuations—whether positive or negative—do not
disproportionately affect the overall trust score, promoting
stability over time (see Equation 2).

T(t ) = min(1,A+CA)+T(t −1)

2

where

{
C A : accounts for deviations in performance,

A : is Aggregated client/infrastructure trust scores.

(2)

The equation includes complex factors, namely A and CA,
which are broken down into simpler components:

Aggregated Client/Infrastructure Trust Score (A): It
combines the infrastructure-side and client-side trust scores
using weighted contributions. Weights wc and wi , as shown in
Equation 3, represent the importance of client and infrastructure
scores, respectively, in the overall trust computation. Adjusting
these weights allows the system to emphasize either side based
on specific requirements. This aggregate balances infrastructure
metrics, such as server uptime, with client experience metrics,
like response time, providing a comprehensive view of system
performance.

A= wc ·Tc +wi ·Ti

where


wc is the weight for the client trust score,

wi is the weight for the infrastructure trust score,

Tc is the trust score for the client,
Ti is the trust score for the infrastructure.

(3)

The trust scores Tc and Ti can be further refined and
normalized:

Normalized Trust: To enable fair comparisons between
KPIs, normalized trust computation scales metrics to a common
range. Equation 4 evaluates system performance relative
to expectations by dividing actual performance by target
performance. A ratio greater than 1 indicates performance
exceeding expectations, while a ratio less than 1 indicates
underperformance. An exponent d adjusts the ratio to account
for whether higher values (e.g., throughput) or lower values
(e.g., latency) are preferred, ensuring proper interpretation of
all metrics. Normalization is crucial for comparing metrics with
different units and ranges. To avoid over-rewarding systems for
exceeding goals, normalized values are capped at 1. Averaging

across all KPIs ensures the trust score reflects multidimensional
performance rather than relying on a single metric.

Tc/i =
1

n

n∑
i=1

min

(
1,

(
actualc/i
targetc/i

)d
)

(4)

This version of the equation evaluates all n KPIs by
summing their normalized trust values and dividing by n,
ensuring the overall trust score is an average across all metrics.

Capped Adjustment (CA): CA ensures that trust score
adjustments based on performance deviations remain within
acceptable bounds. The variable r determines the type of ad-
justment (robustness or penalization) based on the deviation of
actual performance from the target. This adjustment is averaged
across all KPIs to represent overall system performance.

By capping CA between -1 and 1, large performance
variances do not cause drastic trust score fluctuations. This
stabilizes the score, preventing any single performance issue
from overly affecting it. The capped adjustment ensures
that trust is earned or lost gradually, reflecting consistent
performance rather than sporadic variations (see Equation 5).

CA= max

(
−1,min

(
1, wadj ·

1

n

n∑
i=1

(∣∣∣∣ actualc/i − targetc/i
targetc/i

∣∣∣∣ · r

)))

where


wadj : is a weight | wadj +wc +wi = 1,

r : is the adjustment type variable whether is for
penalization (r =−1) or robustness (r = 1).

(5)

When performance falls short of the target, a negative ad-
justment is applied, accounting for the duration and frequency
of violations (see Equation 6).

CA= max

(
−1,min

(
1, wadj ·

1

2n

n∑
i=1

[∣∣∣∣ actualc/i − targetc/i
targetc/i

∣∣∣∣ · r

−
(
α

durationc/i
total_period

+β numberViolationc/i
total_transactions

)]))

where



α and β : are constants such that α+β= 1,

durationc/i : is the duration of time the actual
value deviates from the target,

total_period : is the total period over which the
performance is measured (t − (t −1)),

numberViolationc/i : number of violations per KPI,

total_transactions : total number of transactions.

(6)

In summary, we adopted this trust calculation approach for
its balanced assessment of system performance, considering
both recent and historical behavior. By averaging the trust score
at time t with the prior value at t−1, the score evolves smoothly,
reducing the impact of short-term volatility. Trust adapts to
changing workloads and performance fluctuations through
capped adjustments, limiting extreme deviations. Normalized
KPIs ensure comparability across metrics with different scales,
while weighted ratings for client and infrastructure trust
prioritize performance aspects based on the environment’s
needs. Positive and negative adjustments reflect the frequency
and duration of performance deviations, ensuring a fair and
adaptive trust evaluation.



C. Trust Computation Workflow

The trust score at time t is calculated using Algorithm 1,
which evaluates KPIs such as throughput and latency. The
algorithm applies weighted aggregations, normalizes metrics,
and adjusts for deviations from targets. Stability is maintained
by averaging current and past trust scores, ensuring a reliable
reflection of system performance and dependability.

Algorithm 1 Calculate trust score

1: Input: T (t −1), actual/target KPI values, KPI types (d),
durations, violations, wc , wi , wadj, α, β

2: Output: Trust score T (t )
3: Step 1: Normalize trust for each KPI
4: Initialize normalized_T as an empty list
5: for each actual/target value and KPI type
6: Set d = 1 if "higher_better", else d =−1
7: Compare actual to the target value
8: Normalize and append result to normalized_T
9: end

10: Step 2: Aggregate Trust Score (A)
11: Compute aggregated trust score by averaging normalized_T

for client and infrastructure
12: Step 3: Calculate Capped Adjustments (CAs)
13: Initialize capped_adjustments as an empty list
14: for each KPI
15: if "higher_better" and actual ≥ target or "lower_better"

and actual ≤ target then
16: r = 1, compute robustness adjustment (Eq. 5)
17: else
18: r =−1, compute penalization adjustment (Eq. 6)
19: Append adjustment to capped_adjustments
20: end
21: Step 4: Combine Capped Adjustment (CA)
22: Compute combined capped adjustment by averaging

capped_adjustments
23: Step 5: Compute Final Trust Score
24: Average combined A, CA, and T (t −1)
25: Return final trust score T (t )

III. PERFORMANCE EVALUATION

This section presents the experimental setup and measure-
ment results used to assess our trust score computation model.

A. Experimental Setup

Figure 2 illustrates the experimental setup, showcasing the
architecture for deploying blockchain-enabled applications.
This setup simulates a federation of resource providers,
demonstrating how blockchain and smart contract technologies
are utilized. Kubernetes pods represent the CEC infrastructure,
with trust scores computed using our model.

The core infrastructure comprises three Kubernetes-managed
servers that orchestrate containerized applications and facil-
itate seamless communication. These servers interact with a

Figure 2: Experimental setup

blockchain node that manages transactions and ensures data
integrity via a Proof of Work (PoW) consensus mechanism.

• Servers (1, 2, 3): Manage containerized applications and
enable network communication, ensuring high availability
and scalability.

• Smart Contract: Automates SLAs by adjusting resource
allocation or initiating tasks on the servers based on real-
time performance metrics like latency and throughput.

• Blockchain Node: Secures and validates transactions
using HyperText Transfer Protocol (HTTP)/2 for efficient
communication.

• Security: Transport Layer Security (TLS)/Secure Sockets
Layer (SSL) encryption secures communication between
servers and the blockchain node.

This architecture, a simplified trust framework, verifies the
proposed algorithm for autonomous SLA enforcement and
trust management in cloud-edge environments. Blockchain and
smart contract integration are key for transaction security, SLA
automation, and performance validation.

B. Results

The performance evaluation focuses on monitoring SLAs,
emphasizing the relationship between trust, latency, and
throughput. This section compares our advanced model (Equa-
tions 2, 3, 4, 5, and 6) with the baseline model (Equation
1). The advanced model uses the following weights: α= 0.9,
β= 0.1, wi = 0.4, wc = 0.4, and wad j = 0.2.

1) KPIs Impacts on the Advanced Trust Model: Figure
3 illustrates the trust value as a function of latency and
throughput, with two subplots: 3a and 3b. Each subplot
examines how trust correlates with a single KPI under varying
network conditions. By isolating the impacts of latency and
throughput, we gain a clearer understanding of how these KPIs
influence trust. For reference, the target values for latency and
throughput are shown in red: 0.2 × 10−2 seconds and 1000
Mbps, respectively.

• Trust vs. Latency: Subplot 3a shows an exponential
decrease in trust as latency increases, consistent with the
defined Algorithm 1 (i.e., line 6 in the case of d =−1).
At very low latency levels (e.g., 0.1 × 10−2 seconds), trust
is near maximum as latency remains close to the target.



However, even small increases in latency result in steep
trust declines, highlighting its sensitivity to this metric.

• Trust vs. Throughput: Subplot 3b depicts an exponential
increase in trust as throughput rises (i.e., d = 1). High
throughput values (e.g., 900–1000 Mbps) yield trust
values close to the maximum, as throughput approaches
the target. Conversely, minor drops in throughput cause
significant trust reductions, emphasizing its critical role
in maintaining trust.
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Figure 3: Trust value analysis for latency and throughput
metrics

In summary, trust is highly sensitive to changes in latency
and throughput. Small increases in latency or decreases in
throughput can sharply reduce trust, highlighting the effective-
ness of our model.

2) Adjustment Impacts on the Advanced Trust Model: Figure
4 illustrates in depth how changes in latency and throughput
during various network events affect trust values. The figure
is divided into two subplots, each focused on a single KPI,
enabling a detailed analysis of the impact of specific network
parameters on overall trust.

• Trust vs. Latency: Subfigure 4a shows the relationship
between latency and trust. The blue curve indicates
an increase in trust as latency decreases (i.e., positive
adjustment), while the red dashed line represents the
target latency threshold, which should ideally not be
exceeded to maintain trust. The penalization curve in
red line highlights how exceeding this threshold leads
to significant trust loss. Even small increases in latency
beyond the target noticeably reduce trust, emphasizing
the importance of stringent adjustment mechanism in
trust management. The steep slope of the trust curve
underscores the critical need to keep latency within
acceptable limits.

• Trust vs. Throughput: Subfigure 4b examines the
relationship between throughput and trust. The blue curve
shows that trust increases with higher throughput (i.e.,
positive adjustment), while the red dashed line represents
the target throughput level. When throughput falls below
this target, trust declines, as depicted by the penalization
curve in red line. This demonstrates the need to maintain
adequate throughput to avoid penalization and thereby
sustain the providers trust.
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Figure 4: Impact of the adjustment on trust value across
different scenarios

In summary, Figure 4 demonstrates that both latency and
throughput are vital for sustaining network performance
confidence. It showcase the impact of the positive adjustment
and penalization on the final trust value.

3) Violation Metrics Impacts on the Advanced Trust Model:
To recall, the violation metrics—number and duration—are
derived from continuous performance monitoring of each
server:

• Number of Violations: This metric tracks instances when
a server’s performance deviates from the required level
(e.g., due to increased latency or decreased throughput).
Violations are recorded over a specified monitoring period
(e.g., hourly or daily) for each server.

• Duration of Violations: This represents the total time
the system operates in penalization mode, calculated
by summing the durations of all individual violations.
It reflects how long the server operated below optimal
performance during the observation period.

Figure 5 illustrates the impact of violation metrics on trust
across the three servers. The orange bars show the normalized
duration of violations, while the blue bars indicate the total
number of violations. The corresponding trust values for each
server are shown as green lines. In the trust calculation model,
we use α = 0.9 and β = 0.1 to emphasize that the duration
of violations affects trust more than their frequency, although
these values can be adjusted as needed.

• Server 1: Despite having the highest number of violations,
Server 1 maintains a high trust value (0.90) due to the
short duration of violations. This demonstrates that trust
is more sensitive to the length of disruptions than their
frequency. Quick recovery helps preserve user trust.

• Server 2: With the fewest violations, Server 2 has the
lowest trust value (0.60) due to prolonged violations. This
highlights that even infrequent but long-lasting issues can
significantly erode trust. Prompt recovery is essential for
maintaining user confidence.

• Server 3: Server 3 exhibits a moderate level of both
violations and their duration, resulting in a moderate
trust value (0.80). This shows that both factors must be
managed to ensure consistent trust.
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In conclusion, Figure 5 shows that the duration of violations
impacts the trust value more than their frequency, based
on the model’s weight, which can be adjusted as needed.
Frequent issues should be resolved promptly to maintain trust,
as prolonged disruptions have a significantly negative effect.

4) Advanced Trust Approach vs. baseline: In this section,
we compare the trust metrics from our advanced approach (i.e.,
Equations 2 to 6) with those from a simple baseline approach
(i.e., Equation 1). The analysis focuses on trust variations with
respect to latency and throughput under both methodologies,
aiming to evaluate how each approach affects the trust value
across different network conditions.

Figure 6 illustrates the trust value comparison between the
advanced and baseline approaches as functions of latency
and throughput. The two subplots (Figure 6a and 6b) directly
compare how each methodology influences trust based on these
performance metrics. Red dashed target values are plotted for
comparison, highlighting how closely each method aligns with
the desired trust outcomes.

• Trust vs. Latency: In subplot 6a, both approaches show
a decline in trust as latency increases. However, our
approach exhibits a steeper drop, indicating a more
sensitive response to increased latency. The red dashed
line marks the target latency, showing how each method
deviates from the ideal trust value as latency rises.

• Trust vs. Throughput: In subplot 6b, both approaches
show an exponential increase in trust with higher through-
put. Our approach, however, displays a more dynamic in-
crease, suggesting a more responsive relationship between
trust and throughput. The target throughput is marked
with a red dashed line, illustrating how each approach
aligns with the desired trust value.

Overall, the advanced approach is more sensitive to vari-
ations in latency and throughput, providing a more realistic
trust computation than the baseline approach. This heightened
sensitivity ensures that trust values more accurately reflect
actual network performance, which is essential for effective
real-time trust management.

IV. CONCLUSION

This paper proposed a trust management framework for
CECC systems by integrating the IEEE SIIF FHS model with
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Figure 6: Trust value analysis: advanced vs baseline for
latency and throughput metrics

blockchain technology to enhance reliability, transparency,
and scalability. The framework demonstrated the potential to
address dynamic trust evaluation in federated environments
by incorporating SLA compliance, performance metrics, and
user feedback into comprehensive trust profiles. Future work
will focus on developing adaptive methods for dynamically
determining the weights of our model, ensuring the trust com-
putation process is better aligned with the unique requirements
of diverse application scenarios, thereby further optimizing
trust evaluation and resource allocation.
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