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Introduction

Complex systems are often described by multivariate information

Sensors Brain regions

Understanding the relationship among multiple random variables is
crucial to analyse information content and flow in these systems

Pietro Michiardi — EURECOM Global Connect 2024 2 / 21



What do we use to study information?

● Shannon’s Mutual Information (MI): I(X 1;X 2)

● Not interpretable for large systems X = {X 1,⋯,XN}, N > 3

PID

● Requires a partition into
sources and one target

● Not scalable

O-information

● No partition needed

● Scalable

SOTA is limited to discrete or Gaussian distributions

Our methods, MINDE and SΩI, estimate MI and O-information
on arbitrary continuous systems of any number of variables
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Multivariate interactions

Redundancy : The shared
information between variables,
which can be recovered from
variables or subset of variables

Synergy : The information that
arises from jointly observing the
variables but not accessible from
individual variables alone
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O-information: a system-wide global measure

Ω(X ) = T (X ) −D(X ) {
Ω(X ) > 0 Redundancy

Ω(X ) < 0 Synergy

T (X)⇒ Information each variable X i shares with others

D(X)⇒ Additional information the variables X i carry about part of the system, when the remaining part is known

Functions of Mutual Information (or Entropy)

Gradient of Ω(X ) captures individual flow of information

∂iΩ(X ) = Ω(X ) −Ω(X
∖i)

Hard for high dimensional and continuous distributions
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How to estimate MI? GenAI to the rescue!
Consider a joint generative diffusion model for two variables X 1 and X 2:
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MI estimation

So what? We have a way to estimate MI

I(X 1;X 2
) =kl [p(X 1,X 2

) ∥ p(X 1
)p(X 2

)]

=Ep(X 2) [kl [p(X
1
∣ X 2
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)]]

MINDE: mutual information neural diffusion estimation [ICLR 2024]1:

I(X 1,X 2
) = ∫

1

4t2
E∥E[X 1

∣X 1
t ] −E[X

1
∣X 1

t ,X
2
]∥

2
dt

Just compare the denoiser output when the variable X 1 is denoised
alone or conditioned on X 2 !

1We have a discrete version of our MI estimator, preview at Delta Workshop, ICLR 2025
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SΩI: Score-based O-information estimation [ICML 2024]

Rewrite T (X ) and D(X ) in terms of KL divergence, apply previous
results:
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Compare the denoiser output when all the variables are denoised
jointly or conditionally on the remaining clean variables
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Amortized approach using a unique network

Algorithm 1: SΩI O-information estimation
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√
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Applications: Automotive (1)

● Sensors are unreliable: can we exploit
redundancy?

● Objective: cross generation

How? MLD: multivariate generative model [ENTROPY 2024]
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where X 1 and X 2 correspond to two modalities (for simplicity)
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Applications: Automotive (2)
Implementation

● Project inputs to latent
variables

● Learn a joint diffusion
model, use “multiple
arrows of time”

Results

● Dataset: 3 modalities (text,
segmentation map, image)

● Any-to-any generation,
coherence is defined by
the joint score
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Applications: Alignment (1)

● Common alignment issues: Catastrophic neglecting, Incorrect
attribute binding, Incorrect spatial layout
● Existing solutions in the literature:

● Test time: linguistic steering of generative pathways
● Fine-tuning: ask GPT for help

● All methods require auxiliary LLM models
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Applications: Alignment (2)

Our method: MITUNE [ICLR 2025]2

● Self-supervised fine-tuning: all is done with the generative model
● Steps:

● Generate synthetic data using the pre-trained model
● Compute point-wise MI for each prompt-image pair
● Select top-k pairs with the highest MI
● Fine-tune with adapters

2We also have a version for Rectified Flows, preview at Delta Workshop, ICLR 2025.
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Applications: Neuroscience

ChangeNo change

O-information in the mice
brain

SΩI is used to estimate
O-information for each 50ms
bin of spikes recording after the
stimulus flash

6 brain regions

Higher redundant information in the
visual cortex regions is transmitted in
case of a flash with new scene
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Conclusion

● GenAI-based extension to Information Theory!

● New information measures unlock a wide array of applications
● Neuroscience, Cellular development studies
● Learning from unpaired data
● Synthetic data augmentation, compression, ...

● Several fundamental problems related to neural estimation
● Sample efficiency
● Computational scalability
● Interpretability and explainability
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Thank you !

Joint work with Prof. Giulio Franzese (EURECOM)

Published in ICLR 2024, ICML 2024, ENTROPY 2024, ICLR 2025

Supported by the Huawei Labs Paris, MUSE-COM2 CHIST-ERA project
https://musecom2.eu/
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Why we need Mutual Information

Here’s our complex, multivariate system, in abstract terms:

X = {X 1, . . . ,X i−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X<i

,X i ,X i+1, . . . ,XN

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X>i

}, X∖i = {X <i ,X >i}

● Total correlation: T (X ) = ∑I(X i ;X >i)
How much information each variable X i , shares with X >i , which
suggests a redundant scenario

● Dual total correlation: D(X ) = ∑I(X i ;X <i ∣X >i)
How much additional information the variables X i carry about X <i

if X >i is also available which suggests a synergistic scenario
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Technical Details I

● Consider random variable A with probability measure pA(x)dx

● Build a simple SDE in [0,T ] with initial conditions ∼ pA

⎧⎪⎪
⎨
⎪⎪⎩

dXt = −Xtdt +
√
2dWt ,

X0 ∼ p
A

(1)

● This SDE corresponds to a path measure PA

● It is possible to show that two SDEs which differ only by initial
conditions have KL divergence

kl [PA
∥ PB] = EPA [log

dPA

dPB
] = EPA [log

dpA

dpB
] = kl [pA ∥ pB]

(2)
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Technical Details II
Time-reversal X̂t :

● KL between path measures is invariant to time-reversal
kl [PA ∥ PB] = kl [P̂A ∥ P̂B]

● Time reversal of SDE is again an SDE

dX̂t = X̂t + 2∇ log pAT−t(X̂t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
score function!

dt +
√
2dŴt (3)

Girsanov theorem: (informal) exrpess the KL between path measures
corresponding to two SDEs with different drifts.

kl [P̂µA
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] ≃ EPµA

⎡
⎢
⎢
⎢
⎢
⎣

T

∫

0

∥∇ log pAt (Xt) −∇ log pBt (Xt)∥
2
dt

⎤
⎥
⎥
⎥
⎥
⎦

(4)

Combining with kl [PA ∥ PB] = kl [P̂A ∥ P̂B] we can obtain a
KL-estimator!
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Mutual Information Neural Diffusion Estimation

Mutual Information between two random variables A,B (many
equivalent formulations):

I(A,B) = kl [pA,B ∥ pApB] (5)

Idea: estimation using score functions! Two families diffusion processes:
joint (J) and conditional (C)
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