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Abstract—When derived from the Bethe Free Energy (BFE) of
the Generalized Linear Model (GLM), Approximate Message
Passing (AMP) algorithms combine two asymptotic Large System
Limit (LSL) simplifications which are asymptotic Gaussianity
of extrinsics and large random matrix theory based asymptotic
variance computations. In the provably convergent AMBGAMP
algorithm, a LSL version of the BFE is derived. In Expectation
Propagation (EP) style minimization, the LSL BFE cost function
is augmented with Lagrangian terms for mean and variance
consistency constraints, augmented with a quadratic version of
the mean constraints as in the Method of Multipliers (MM).
The mean Lagrange multipliers then get updated ADMM-style
(Alternating Direction of MM). In this approach, the weights of
the MM terms need to be carefully chosen, which is not part
of the MM philosophy, and the Lagrange multipliers have no
particular meaning. On the other hand, AMP can be derived by
directly introducing LSL simplifications in the Belief Propagtion
(BP) algorithm that minimizes the original GLM BFE. This
allows to relate extrinsic messages to posterior pdfs by first-
order Taylor series expansion based perturbations. We also apply
LSL approximations to the variances of the various Gaussians
involved, which in fact leads to a rederivation of a fundamental
LSL theorem describing the deterministic limit of posterior
variances. We show that this LSL version of BP leads to BFE
modifications that correspond to the augmented Lagrangian of
the LSL BFE, explaining its weights and Lagrange Multipliers.
These insights should facilitate the extension of AMP to more
complex settings such as bilinear models.

I. INTRODUCTION

Sparse signal recovery is a fundamental problem in signal
processing with a wide range of applications. Many of these
problems can be framed as the task of estimating a latent
vector x based on a correlated observation vector y [1]. In
the Bayesian framework, the complexity of Canonical Methods
such as MMSE and MAP experiences exponential growth as
the dimension of the problem grows.
By exploiting the structure of the models, graphical model
based methods prove to be effective. Belief Propagation (BP)
transforms the global inference problem into a local inference
problem as outlined by [2]. Expectation Propagation (EP)
was introduced in [3] and has been shown to share a similar
updating scheme as BP, but for computational efficiency, the
messages in BP are projected into a suitable member of the
family of exponential distributions [3].
In both [1] and [4], the authors unify EP and BP within
the framework of minimizing variational free energy. They
demonstrate the close relationship between the fixed points of
various message-passing algorithms and the stationary points
of Bethe Free Energy (BFE).
EP can serve as an inference method in the generalized linear
model (GLM). However, the computational cost corresponds
to propagating 2MN messages as in Fig. 1 when the data
matrix A is of size M ×N . Generalized Approximate Mes-

sage Passing (GAMP) [5] builds upon EP, but through the
application of large system approximations (LSA), it effec-
tively reduces the number of messages to M + N extrinsics
and (marginal) posteriors, providing a more computationally
efficient approach.
In [6], the authors investigated the fixed points of the Gener-
alized AMP (GAMP) algorithm for GLMs. They discovered
that GAMP shares the same fixed point as the stationary points
of the Large System Limit Bethe Free Energy (LSL BFE).
In [7] we then proposed AMBGAMP which is guaranteed to
converge. Building upon the works of [1], [8], [7], [9], [10],
and [11], we present the contributions described in the abstract.

II. BETHE FREE ENERGY OF THE GENERALIZED LINEAR
MODEL

A. Bethe Free Energy (BFE)

Consider a pdf factorization
p(x,y) ∝

∏
α

fxα(xα), (1)

where xα is a subvector of x. In case of a tree-structured
factor graph, an alternative equivalent form is [2]

p(x|y) =
∏
α p(xα)∏

i p(xi)
Mi−1

, (2)

where Mi is the number of subvectors xα that contain xi. In
(2), the p(xα) and p(xi) are the exact factor (subvector) resp.
variable marginals.
The concept of variational free energy suggests that to infer
the marginals from a tree structured p(x,y) given in (1), we
can use as trial distribution

qx(x) =

∏
α qxα(xα)∏

i qxi(xi)
Mi−1

. (3)

The true marginals can be obtained by [1]

min
qxα (xα),qxi (xi)

F = D[q(x)‖
∏
α

fxα(xα)];

s.t.∀α,∀i ∈ Iα, qxi(xi) =
∫
qxα(xα)dxi,

(4)

where we define the shorthand notation (for arbitrary nonneg-
ative functions q, p) D(q‖p) =

∫
q(x) ln q(x)

p(x)dx (which is the
Kullback-Leibler Divergence (KLD) in case of normalized q,
p) and xi denotes all x except xi. The free energy can be
expanded as
F =

∑
α

D[qxα(xα)‖fxα(xα)]+
∑
i

(Mi−1)H[qxi(xi)], (5)



where H(.) denotes entropy in nats. Note that this represen-
tation only holds for a tree structured distribution. For general
graphs that contain loops, (2) no longer holds. Thus, in cases
with loops, (5) is only an approximation of the variational free
energy. The expression (5) is instead called Bethe free energy.

B. BFE of the GLM for BP

We consider a GLM with
p(x)=

∏N
i=1 p(xi), z=Ax, p(y|z) =

∏M
j=1 p(yj |zj), (6)

where the ratio N/M is a constant for large system con-
siderations. We interpret the linear mixing as a conditional
probability p(z|x) = δ(z−Ax). (7)
From this general linear model, a joint (loopy) factorization
scheme comes up naturally:

p(x, z|y) ∝ p(x,y, z) = p(y|z)δ(z−Ax)p(x). (8)
According to the definition of BFE (5), the associated BFE
based on the joint factorization scheme (8) is calculated [1] as

F = D[qx(x)‖p(x)]+D[qz(z)‖p(y|z)]+
∑
i

H[qxi(xi)]

+D[bx,z(x, z)‖δ(z−Ax)] +
∑
j

H[qzj (zj)],
(9)

where qx, qz, bx,z, qxi and qzj are only approximate posteriors
because of the loops in the factor graph. Since we need
to minimize the BFE given by (9), the distribution function
bx,z(x, z) must be of the form

bx,z(x, z) = bx(x)δ(z−Ax), (10)
to avoid an infinite value of the KLD, leading to
D[bx,z(x, z)‖δ(z − Ax)] = −H[bx]. For BP, the BFE (9)
needs to be minimized w.r.t. marginal consistency constraints
qx(xi) = bx(xi) = qxi(xi), qz(zj) = qzj (zj). Given the
independent priors for x, z, minimization of the BFE leads
to qx(x) =

∏
i qx,i(xi), qz(z) =

∏
j qz,j(zj). Furthermore,

the maximization of H[bx] under marginal constraints leads to
bx(x) =

∏
i bx,i(xi). Together with the marginal constraints,

this leads to the cancellation of the entropy terms in x in the
BFE, which becomes F =∑
i

D[qxi(xi)‖p(xi)]+
∑
j

D[qzj (zj)‖p(yj |zj)]+
∑
j

H[qzj (zj)]

(11)
which needs to be minimized under the constraint z = Ax.

III. GAMP FROM LSL BELIEF PROPAGATION

In reGVAMP [12], [10], extrinsics in the GLM are built from
the equivalent Gaussian linear model, which introduces equiv-
alent Gaussian priors from Gaussian posterior approximations
and Gaussian extrinsics.
GAMP exploits LSL simplifications of reGVAMP for a ran-
dom A with i.i.d. signs which leads to
(i) Gaussianity of extrinsics (also in reGVAMP), and
(ii) independence of marginals (extra w.r.t. reGVAMP).
(ii) leads to the large system simplifications of the variances,
avoiding covariance matrix inverses. But also posterior and
extrinsic estimates x̂, ẑ and r, p that are constructed by
combining decoupled pieces of information. These estimates
are non-linear MMSE and CWCU MMSE estimates in

Fig. 1. Factor Graph for the GLM used by GAMP.

general. Extrinsics are not obtained as linear perturbations
of corresponding MMSE estimates because those are not
necessarily close to each other. Rather the interplay between x
and z is exploited with perturbations due to the small effect of
a single term in A in the LSL. In both reGVAMP and GAMP,
we have:
Gaussian extrinsics: ex(x) = N (x; r, τr), ez(z) =
N (z;p, τp) and
Posterior marginals proportional to: qx(x) ∼ px(x) ex(x),
qz(z) ∼ py|z(y|z) ez(z) with Gaussian approximations
N (x; x̂, τx), N (z; ẑ, τz) resp. (where r, τr, p, τp etc. are
vectors, e.g. N (x; r, τr) is short for N (x; r,Dτr ), and Dτr =
diag(τr)). In [11], it is shown that LSL simplifications of BP
lead to the GAMP algorithm (see e.g. [7]) which computes the
indicated marginal posteriors that minimize the cost function
[8] (to be minimized w.r.t. qx, qz and u later)

D(qx||pxex/Zx) +D(qz||pzez/Zz) . (12)

We get per component

min
qxi

D(qxi ||gxi/Zxi) ⇒ qxi = gxi/Zxi , Zxi=

∫
gxi(xi) dxi ,

− ln gxi(xi) = fxi(xi) +
1

2τri
[(xk − ri)2 − r2i ] .

(13)
The partition function Zxi acts as cumulant generating func-
tion:

τri
∂ lnZxi
∂ri

= E(xi|qxi) = E(xi|ri, τri) = x̂i

τ2ri
∂2 lnZxi
∂rt 2i

= var(xi|ri, τri) = τxi .

(14)

We also get per component

min
qzk

D(qzk ||gzk/Zzk) ⇒ qzk = gzk/Zzk

Zzk =
∫
gzk(zk) dzk , − ln gzk(zk) =

fzk(zk) +
1

2τt−1
pk

[(zk − pk)2 − p2k].
(15)

The partition function Zzk acts again as cumulant generating
function:
−∂ lnZzk

∂sk
= E(zk|qzk) = E(zk|pk, τpk) = ẑk

∂2 lnZzk
∂s2k

= var(zk|pk, τpk) = τzk .
(16)

The LSL BP derivation also leads to the following identities

Zz(p, y, τp) =
∫
py|z(y|z) e

− 1
2τp

(z−p)2
dz

∂ lnZz
∂p =

Z′z
Zz

= s = ẑ−p
τp
, ẑ = 1

Zz

∫
z py|z(y|z) e

− 1
2τp

(z−p)2
dz

∂2 lnZz
∂p2 = −τs = Z′′z

Zz
− (

Z′z
Zz

)2 = −(1− τz/τp)/τp



and updates of the following quantities

p = A x̂− τpk .s , τp − S τx
r = x̂+ τr.A

T s , τr = 1./(ST τs)
(17)

where S = A.A and we use the notations: ‖u‖2τ =
∑
i u

2
i /τi,

element-wise multiplication as in s.τ and element-wise divi-
sion as in 1./τ , and 1 is a vector of ones.

IV. LSL BFE AND EP

After the LSL simplifications [11], the BFE from (11) with
marginal pdf consistency constraints can be seen to become
equivalent to the following LSL-BFE [7], [9] :

min
qx,qz,τp,u

D[qx‖px] +D[qz‖py|z]+
1

2

∑
k

[
var(zk|qz)

τpk
+ln(τpk)

]
s.t. E[z|qz] = Au

E[x|qx] = u
τp = S var(x|qx) .

(18)

We will exploit some useful relations

∀τ , cT var(x|qx) =
∫
‖x− u‖21./τ qx(x)dx∑

k

var(zk|qz)
τpk

=

∫
‖z−Au‖2τpqz(z)dz .

(19)

The Lagrangian of (18) becomes

L = D[qx‖px] +D[qz‖py|z]+
1

2

∑
k

[
var(zk|qz)

τpk
+ln(τpk)

]
+ λTµz

(
Au−

∫
zqz(z)dz

)
+ λTµx

(
u−

∫
xqx(x)dx

)
− 1

2
λTτ (τp − S var(x|qx))

(20)

The derivatives w.r.t. qx, qz, τp, u become
∂L

∂qx
= ln(qx)− ln(px)− λTµxx+

1

2
‖x− u‖21./(STλτ )

∂L

∂qz
= ln(qz)− ln(py|z)− λTµz

z+
1

2
‖z−Au‖2τp

∂L

∂τpk
∝ −var(zk|qz)

τ2pk
+

1

τpk
− λτk

∂L

∂u
= −ATD−1τp (ẑ−Au) +ATλµz + λµx

−DSTλτ (x̂− u),
(21)

where ẑ = E(z|qz) and x̂ = E(x|qx). Zeroing derivatives:

qx(x) ∝ px(x) e
− 1

2‖x−u‖
2

1./(STλτ ) eλ
T
µx
x (22)

qz(z) ∝ py|z(y|z) e
− 1

2‖z−Au‖
2
τp eλ

T
µz

z (23)

λτk =
1

τpk
− τzk
τ2pk

(24)[
ATD−1τpA+DSTλτ

]
u = ATD−1τp ẑ (25)

+DSTλτ x̂−ATλµz − λµx

where τzk = E[(zk − ẑk)
2|qz]. By satisfying the two mean

constraints in (18), the equation (25) becomes

ATλµz = −λµx (26)

A solution can be obtained by solving the system of 7 equa-
tions containing (22), (23), (24), (26) and the three constraint
equations in (18).

V. ITERATIVE SOLUTION LEADING TO GAMP
We ignore pdf normalization for simplicity. Furthermore, we
use red symbols to indicate parameters to be updated.

A. Update of λµz

Consider (23) and the two mean constraints in (18)

E
[
z|py|z(y|z)e

− 1
2‖z−ẑ‖

2
τp eλ

(new)T
µz

z
]

(27)

= E
[
z|py|z(y|z)e

− 1
2‖z−Ax̂‖

2
τp eλ

T
µz

z
]
= ẑ (28)

We first use (28) to obtain ẑ. Then we use this newly obtained
ẑ to update λ(new)

µz , since we need to keep the exponential factor
identical in order not to change the mean, i.e.,

e
− 1

2‖z−ẑ‖
2
τp eλ

(new)T
µz

z = e
− 1

2‖z−Ax̂‖
2
τp eλ

T
µz

z. (29)

If we want to bridge the GAMP from [7] and BFE, we can
denote

p = Ax̂+D(τp)λµz . (30)

With definition (30), the expression (28) can be written as

ẑ = E
[
z|py|z(y|z)e

− 1
2‖z−p‖

2
τp

]
. (31)

Therefore, the updating for λ(new)
µz according to (29) becomes

λ(new)
µz

= D(τ .−1p )(p− ẑ). (32)

It is now clear that we can relate to the LSL BP GAMP above
(or [7]) if we define

s = −λµz . (33)
For further use, we also state the computation of τẑ explicitly:

τẑ = E
[
(z− ẑ).2|py|z(y|z)e

− 1
2‖z−p‖

2
τp

]
(34)

= E
[
(z− ẑ).2|py|z(y|z)e

− 1
2‖z−ẑ‖

2
τp eλ

(new)T
µz

z
]

(35)

where z.2 denotes element-wise square of vector z. (34) and
(35) result in the same solution.

B. Update of λµx
According to (26), we can update λµx by

λµx = −ATλµz . (36)
To show the relation between this paper and [7], we define

τr = 1./(STλτ )

r = x̂old +DτrA
T s

(37)

Then the updated posterior mean and variance becomes

x̂ = E
[
x|px(x) e−

1
2‖x−r‖

2
τr

]
τx̂ = E

[
x− x̂).2|px(x) e−

1
2‖z−r‖

2
τr

]
,

(38)

where we also used the mean constraint for x in (18).



C. The update of λτ and τp
The updates of these two variables are quite straightforward.
They are already explicitly given by (24) and the variance
constraint in (18). To show the relation with GAMP in [7]
explicitly, we can define τs and then get

τs = λτ from which τp = Sτx, τsk =
1

τpk
− τzk
τ2pk

. (39)

VI. ITERATIVE SOLUTION LEADING TO AMBGAMP

GAMP does not use the extra variable u in (18) (hence uses
u = x̂) and as result is an algorithm that does not correspond
to alternating optimization of a BFE, with the resulting con-
vergence issues. For AMBGAMP, we keep variable u, and use
(22)-(26) along with the three constraints in (18) as a system
of 8 equations to be solved.

A. Update of λµz

Consider (23) and the mean constraint in (18)

E
[
z|py|z(y|z)e

− 1
2‖z−ẑ‖

2
τp eλ

(new)T
µz

z
]

(40)

= E
[
z|py|z(y|z)e

− 1
2‖z−Au‖

2
τp eλ

T
µz

z
]
= ẑ (41)

To make the connection with AMBGAMP in [7], we define

p = Au+ τp.λµz (42)

Similar to the previous section, we have the update

λ(new)
µz

= (p− ẑ)./τp . (43)

Substitute (42) into (43), and we have

λ(new)
µz

= λµz + (Au− ẑ)./τp . (44)

If we define s = −λµz , (45)
it then follows

s(new) = s+ (ẑ−Au)./τp . (46)
For the convenience of the further discussion, we write the
update for the posterior mean and variance of z

ẑ = E
[
z|py|z(y|z)e

− 1
2‖z−p‖

2
τp

]
(47)

τẑ = E
[
(z− ẑ).2|py|z(y|z)e

− 1
2‖z−p‖

2
τp

]
. (48)

B. Update of λµx
We can use (26) and (45) to obtain the update

λµx = −ATλµz = AT s (49)

If we define (and note that λτ = τs)
τr = 1./(STλτ ), r = u+τr.λµx = u+τr.(A

T s)λµx , (50)

we have the explicit update for x̂ and τx̂:

x̂ = E
[
x|px(x)e−

1
2‖x−r‖

2
τr

]
τx̂ = E

[
(x− x̂).2|px(x)e−

1
2‖x−r‖

2
τr

]
.

(51)

C. Update of u

By combining (25) and (26), we get the solution

u =
[
ATD−1τpA+D−1τr

]−1
(ATD−1τp ẑ+D−1τr x̂) . (52)

AMBGAMP actually updates u by applying SGD with step-
size by linesearch to the quadratic cost function that (52) is
the solution of. The update of λτ and τp are identical to the
updates in GAMP in (39).

VII. CONCLUDING REMARKS

In this paper, we have shown that it is possible to derive
the convergent AMBGAMP algorithm by analyzing the KKT
conditions for optimizing the LSL BFE. And this while
avoiding the quadratic augmentation terms of the Method
of Moments, which require a very particular choice in their
weights, and circumventing the ADMM-style update of a
Lagrange multiplier. This is thanks to the introduction of the
auxiliary variable u in the mean consistency constraints. This
u is optimized to minimize the BFE equivalent in (12) and
can be interpreted to be a MMSE estimate of an equivalent
underlying Gaussian linear model. On the other hand, another
solution to the LSL BFE, which eliminates u via u = x̂,
leads to GAMP and corresponds to the original LSL BP based
derivation, optimizing BFE with LSL approximations. Hence
we have reconciled these seemingly different approaches.
The variance predictions in (AMB)GAMP are based on a
sign i.i.d. model for A, which leads to decorrelation and
Gaussianity after multiplication of a vector with A or AT ,
similar to spreading and despreading in CDMA. Another
somewhat popular model for A is the Right Rotationally
Invariant class, in which (only) the right singular vectors
of A are modeled as random, and in particular as Haar
distributed. This is the motivation for Vector AMP (VAMP)
[13]. To keep complexity low however, VAMP has to restrict
diagonal covariances to multiples of identity, which e.g. is not
useful for Sparse Bayesian Learning [14]. GAMP-style low
complexity algorithms can be derived also, but they require
some correction terms in the variance predictions, stemming
from the Haar distribution [15], [16].
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