
Computer Networks 33 (2000) 747–765
www.elsevier.com/locate/comnet

Millau: an encoding format for efficient representation and exchange of
XML over the Web

Marc Girardot a,Ł,1, Neel Sundaresan b,2

a Institut Eurécom, Sophia Antipolis, France
b IBM Almaden Research Center, San Jose, CA, USA

Abstract

XML is poised to take the World Wide Web to the next level of innovation. XML data, large or small, with or without
associated schema, will be exchanged between increasing number of applications running on diverse devices. Efficient
storage and transportation of such data is an important issue. We have designed a system called Millau for efficient
encoding and streaming of XML structures. In this paper we describe the Millau algorithms for compression of XML
structures and data. Millau compression algorithms, in addition to separating structure and text for compression, take
advantage of the associated schema (if available) in compressing the structure. Millau also defines a programming model
corresponding to XML DOM and SAX for XML APIs for Millau streams of XML documents. Our experiments have
shown significant performance gains of our algorithms and APIs. We describe some of these results in this paper. We also
describe some applications of XML-based remote procedure calls and client-server applications based on Millau that take
advantage of the compression and streaming technology defined by the system. 2000 Published by Elsevier Science
B.V. All rights reserved.

Keywords: Binary XML; Compression; Tokenization; Streaming; Proxy server; RPC

1. Introduction

As the World Wide Web transitions from just
being a medium for browsing to a medium for com-
merce, XML (eXtensible Markup Language) [7] has
emerged as the standard language for markup. Busi-
ness to business applications over the Internet are
increasingly adopting XML as the de facto standard
for expressing messages, schema, and data. Conse-
quently, XML is being increasingly used for Web
based applications as an exchange wire format. On

Ł Corresponding author.
1 girardot@eurecom.fr
2 neel@almaden.ibm.com

the other hand, with the popularity of the World
Wide Web and increasing dependency on it to find
information and to conduct business, the network
bandwidth is being tested to its limit. One approach
to address this bandwidth problem is to compress
data on the network. Traditional data compression
algorithms (e.g. Huffman coding [11] or LZ77 [25])
can achieve good compression rates on large text
files but are less effective towards small sized files
like the ones that may be typical in many eBusiness
applications. Moreover, they cannot always treat data
as a continuous stream. To be really efficient, they
need to work on the entire file of a Web object.
This is incompatible with the real time constraints
of the Web. Finally, these compression systems do

1389-1286/00/$ – see front matter 2000 Published by Elsevier Science B.V. All rights reserved.
PII: S 1 3 8 9 - 1 2 8 6 (0 0) 0 0 0 5 1 - 7

748 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

not retain this structural information in the data they
exchange. Thus there is a need for compression and
streaming system that works in the Internet context
with structured data. These requirements motivate
our design for Millau.

The Wireless Application Protocol (WAP) [19]
defines a format to reduce the transmission size of
XML documents with no loss of functionality or
semantic information. For example, it preserves the
element structure of XML, allowing a browser to
skip unknown elements or attributes. Millau extends
this format to adapt it to business to business appli-
cations while improving on the compression algo-
rithm itself. It separates structure compression from
text compression. Further, it takes advantage of the
schema and data types to enable better compression.
To be compliant with the XML standards, it defines
a parsing model based on both DOM and SAX at the
same time taking advantage of the compression of
the document.

This paper is organized as follows. In Section 2,
we present the work related to compression and
more precisely to XML compression. In Section 3
we describe the Millau compression algorithm. We
discuss the DOM and SAX support in Millau in
Section 4. In Section 5 we study performance of the
Millau system and discuss experimental results. In
Section 6 we briefly discuss some applications of our
system. We describe a compression=decompression
proxy server system for efficient data exchange and
an XML remote procuedure call (RPC) engine which
takes advantage of the Millau compression model. In
Section 7 we draw conclusions on our work so far
and describe work in progress and future research.

2. Related work

A lot of work has already been done on lossless
data compression [15]. Researchers have developed
fast and powerful algorithms for data compression.
Their principles are mostly based on Claude Shan-
non’s Information Theory. A consequence of this
theory is that a symbol that has a high probability
has a low information content and will need fewer
bits to encode. In order to compress data well, you
need to select models that predict symbols with high
probabilities. Huffman coding [11] achieves the min-

imum amount of redundancy possible in a fixed set
of variable-length codes. It provides the best approx-
imation for coding symbols when using fixed-width
codes. Huffman coding uses a statistical modeling
because it reads and encodes a single symbol at a
time using the probability of that character’s appear-
ance. A dictionary-based compression scheme uses
a different concept. It reads in input data and looks
for groups of symbols that appear in a dictionary.
If a string match is found, a pointer or index into
the dictionary can be output instead of the code for
the symbol. The longer the match, the better the
compression ratio. In LZ77 compression [25], for
example, the dictionary consists of all the strings
in a window into the previously read input stream.
The deflate algorithm [4] uses a combination of the
LZ77 compression and the Huffman coding. It is
used in popular compression programs like GZIP [5]
or ZLIB [3].

One drawback of these text compression algo-
rithms is that they perform compression at the char-
acter level. If the algorithm is adaptive (as, for
example, with LZ77), the algorithm slowly learns
correlations between adjacent pairs of characters,
then triples, quadruples and so on. The algorithm
rarely has a chance to take advantage of longer range
correlations before either the end of input is reached
or the tables maintained by the algorithms are filled
to capacity, specially with small files. To address
this problem, Horspool and Cormack explore the
use of words as basic units of the algorithm [10].
In most implementations of dictionary-based com-
pression, the encoder operates on-line, incrementally
inferring its dictionary of available phrases from pre-
vious parts of the message. An alternative approach
proposed by Larsson and Moffat [13] is to infer a
complete dictionary off-line to optimize the choice of
phrases so as to maximize compression performance.

The Wireless Application Protocol Forum [19]
has proposed an encoding format for XML based on
a table (the code space) that matches tokens to XML
tags and attribute names [22]. It takes advantage both
of the off-line approach (the code space can be built
off-line) and of the word-based compression (tags
and attribute names are usually the most frequent
words in an XML document). Moreover, unlike the
previous compression algorithms, it retains the struc-
ture of XML documents. But it does not compress at

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 749

all the character data content nor the attribute values
which are not defined in the DTD. Moreover, it does
not suggest any strategy to build the code space in an
efficient way. The Millau encoding format addresses
both of these drawbacks: it is designed to compress
character data and defines a strategy to build code
space.

3. The Millau compression model

The Millau encoding format is an extension of the
WAP binary XML format. The WBXML (Wireless
Application Protocol Binary XML) content format
specification [22] defines a compact binary represen-
tation of XML. This format is designed to reduce the
transmission size of XML documents with no loss of
functionality or semantic information. For example,
WBXML preserves the element structure of XML,
allowing a browser to skip unknown elements or
attributes. More specifically, the WBXML content
encodes the tag names and the attributes names and
values with tokens (a token is a single byte).

In WBXML format, tokens are split into a set of
overlapping ‘code spaces’. The meaning of a par-
ticular token is dependent on the context in which
it is used. There are two classifications of tokens:
global tokens and application tokens. Global tokens
are assigned a fixed set of codes in all contexts
and are unambiguous in all situations. Global codes
are used to encode inline data (e.g., strings, entities,
opaque data, etc.) and to encode a variety of miscel-
laneous control functions. Application tokens have
a context-dependent meaning and are split into two
overlapping ‘code spaces’, the ‘tag code space’ and
the ‘attribute code space’:
ž The tag code space represents specific tag names.

Each tag token is a single-byte code and repre-
sents a specific tag name. Each code space is fur-
ther split into a series of 256 code spaces. Code
pages allow for future expansion of the well-
known codes. A single token (SWITCH_PAGE)
switches between the code pages.
ž The attribute code space is split into two nu-

meric ranges representing attribute prefixes and
attribute values respectively. The Attribute Start
token (with a value less than 128) indicates the
start of an attribute and may optionally specify

the beginning of the attribute value. The Attribute
Value token (with a value of 128 or greater) rep-
resents a well-known string present in an attribute
value. Unknown attribute values are encoded with
string, entity or extension codes. All tokenized
attributes must begin with a single attribute start
token and may be followed by zero or more at-
tribute value, string, entity or extension tokens.
An attribute start token, a LITERAL token or
the END token indicates the end of an attribute
value.
In Millau format, an Attribute Start token is fol-

lowed by a single Attribute Value token, string, entity
or extension token. So there is no need to split the
attribute token numeric range into two ranges (less
than 128 and 128 or greater) because each time
the parser encounters and Attribute Start token fol-
lowed by a non-reserved token, it knows that this
non-reserved token is an Attribute Value token and
that it can be followed only by an END token or
another Attribute Start token. Thus instead two over-
lapping code spaces, we have three overlapping code
spaces:
ž the tag code space as defined in the WAP specifi-

cation,
ž the attribute start code space where each page

contains 256 tokens,
ž the attribute value code space where each page

contains 256 tokens.
Notice that, in WBXML format, character data is

not compressed. It is transmitted as strings inline,
or as a reference in a string table which is trans-
mitted at the beginning of the document. In Millau
encoding format, character data can be transmitted
on a separate stream. This allows to separate the
content from the structure so that a browser can
separately download the structure and the content or
just a part of each. This further allows to compress
the character data using traditional compression al-
gorithms like deflate [4]. In the structure stream,
character data is indicated by a special global token
(STR or STR_ZIP) which indicates to the Millau
parser (see Section 4) that it must switch from the
structure stream to the content stream if the user
is interested in content and whether the content
is compressed (STR) or uncompressed (STR_ZIP).
Optionally, the length of the content is encoded as an
integer in the structure stream right after the global

750 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

token (STR_L or STR_ZIP_L). If the length is not
indicated, the strings contained in the structure must
terminate with a End Of String character or a null
character.

We described how Millau encoding format effi-
ciently represent character data but we must also take
in consideration the fact that, in typical business to
business communications, most of the attribute val-
ues are of primitive type like Boolean, byte, integer
or float. For example, in a set of typical business
to business XML messages provided by the Open
Application Group [16], 70% of the attribute values
are of primitive type. These attribute values should
not be transcoded in strings in a binary represen-
tation of an XML document. So in Millau, we use
the extension codes to prefix primitives types like
bytes, integers or floats. The following table reminds
the meanings given to the global tokens by the
WBXML encoding specification and also precises
the meanings of the extension tokens which have
been redefined for the needs of Millau (these tokens
appear in bold in Table 1).

Table 1
Global WBXML and Millau tokens

Token name Token Description

SWITCH_PAGE 0 Change the code page for the current token state. Followed by a single u_int8 indicating the new code
page number.

END 1 Indicates the end of an attribute list or the end of an element.
ENTITY 2 A character entity. Followed by an integer encoding the character entity number.
STR_I 3 Inline string. Followed by a string.
LITERAL 4 An unknown tag or attribute name. Followed by an integer that encodes an offset into the string table.
FALSE 40 Encodes the Boolean value false.
TRUE 41 Encodes the Boolean value true.
FLOAT 42 Inline float. Token is followed by an integer representing the floating-point argument according to the

IEEE 754 floating-point ‘single precision’ bit layout.
PI 43 Processing instruction.
LITERAL_C 44 Unknown tag, with content.
STR_L 80 Indicates that uncompressed character data has been written to the content stream. Followed by an

integer indicating the number of characters.
STR_ZIP_L 81 Indicates that compressed character data has been written to the content stream. Followed by an integer

indicating the number of characters.
EXT_T_2 82 Inline integer. Token is followed by an integer.
STR_T 83 String table reference. Followed by an integer encoding a byte offset from the beginning of the string

table.
LITERAL_A 84 Unknown tag, with attributes.
STR C0 Indicates that uncompressed character data has been written to the content stream.
STR_ZIP C1 Indicates that compressed character data has been written to the content stream.
BYTE C2 Inline byte. Followed by a single byte.
BINARY C3 Binary data. Followed by an integer indicating the number of bytes of binary data.
LITERAL_AC C4 Unknown tag, with content and attributes.

The following is an example of a simple tokenized
XML document. Here is the source document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Book [
<!ELEMENT Book (Title, Chapter+,

Picture+)>
<!ATTLIST Book
Author CDATA #REQUIRED
Genre (literature|science|history|

cartoons) #REQUIRED >
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Chapter (#PCDATA)>
<!ATTLIST Chapter
id ID #REQUIRED>
<!ELEMENT Picture (#PCDATA)>
<!ATTLIST Picture
Caption CDATA #REQUIRED>

]>

<Book Author="Anonymous"
Genre="literature">

<Title>Sample Book</Title>

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 751

Table 2
Code space example

Tag code space Attribute name code space Attribute value code space

Tag name Token Attribute name Token Attribute value Token

Book 5 Author 5 Literature 5
Title 6 Genre 6 Science 6
Chapter 7 Number 7 History 7
Picture 8 Caption 8 Cartoons 8

<Chapter Number="1">
This is chapter 1. It is not very

long or interesting.
</Chapter>
<Chapter Number="2">
This is chapter 2. Although it is

longer than chapter 1, it is not
any more interesting.

</Chapter>
<Picture Caption="Nice picture">
[base 64 encoded binary data]
</Picture>
</Book>

Tokens for the tag code space, the attribute names
code space, and the attribute value code space are
defined in Table 2.

Tokenized form (numbers in hexadecimal) fol-
lows:

01 01 6A 00 C5 05 03 "Anonymous" 06 05
01 46 C1 C7 07 C2 01 01 C1 01 C7 07
C2 02 01

C1 01 C8 08 03 "Nice picture" 01 C3 ...
01 01

4. Millau API: specification and implementation

The Millau format is designed to represent XML
documents in a compact way using tokens to repre-
sent tags and attributes instead of strings. We built
parsers for documents encoded using this format
implementing the two standard APIs DOM [6] and
SAX [17]. DOM is the tree model API used to rep-
resent and process parsed XML document trees. The
SAX API has an event-based streaming model typi-
cally used to process large XML documents without
actually building a parse tree.

We provide two variants of SAX parsers. The first
one produces traditional SAX events, as defined by
the SAX API. This means that each time it encoun-
ters a tag token, it generates a startElement event
passing the name of the tag. The name matching
the tag token is found in the code spaces. We will
describe later how the code spaces are built in our
implementation. The second SAX parser, which we
call the Millau BSAX (Binary SAX) parser, extends
the SAX API by providing events which pass tokens
instead of strings. This parser has been designed for
applications that are able to handle tokens instead of
strings. We show later how applications using tokens
perform better than those using strings only.

We also provide two DOM-based parsers. The
first one creates a conventional DOM tree from a
Millau stream. The second one creates what we call
a BDOM tree (Binary DOM tree). A BDOM tree is
like a DOM tree but instead of storing node names
it stores, for each node, a pair (page number, token)
which uniquely identifies the node. Here follows a
description of how each parser works.

4.1. The Millau SAX parser

A conventional SAX parser parses an XML stream
and throws SAX events (e.g. characters, startElement,
endElement) that can be handled by a specific handler.
Parameters can be passed through these events (e.g.
the element name is passed through the startElement
and endElement events). These events and their asso-
ciated parameters are defined by the SAX API [17].
The Millau SAX parser has been designed to parse
a Millau stream. It implements the SAX API. In the
following paragraphs, we describe how it works.

Before reading tokens from the binary input
stream, the Millau SAX parser creates a LIFO (last
in, first out) stack in which it puts the names of the

752 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

Table 3
Millau element tokens decision table

Token Action taken

Switch page Read the next token which gives the current code page.
String inline Read the inline string that follows and throw a character event.
Extension Read the following content according to its type, translates it into a string and throw a character event.
End token Remove the last element of the tag names stack and throw an endElement event with the tag name which has

been removed from the stack.
Not a reserved token If the token is not a reserved token, then it is a tag token, so the parser looks for the corresponding tag name in

the element code space (if not found, an exception is raised). It then calls a method which returns an attributes
list. Eventually, it throws a startElement event with the tag name and its corresponding attribute list (if the
element has attributes).

element that are opened and not yet closed. This is so
that it can get the name of an element when it ends and
send it to the handler. Then it reads tokens from the in-
put stream until the stack is empty. When the stack is
empty, it means that the root element has been closed.
Table 3 specifies the action taken for each token type.

The getAttribute method tests the most significant
bit of the tag token to know if this element has
attribute. If the bit is 0, the element has no attribute
and the method returns an empty list. If the bit is 1,
the element has attributes and the method reads the
attribute tokens from the input stream.

While the most significant bit of the next read
tokens is 0, the parser knows that these tokens are
not attribute value token. The tokens are processed,
based upon their types, as described in Table 4.

The attribute value can be encoded as a token
value, as an inline string (compressed or not) or as a
primitive type like byte, integer, float, or Boolean.

4.2. The Millau binary SAX parser

It is expected that parsing a compressed Millau
stream using our SAX parser is faster than decom-
pressing a compressed XML stream and then pars-
ing it with a conventional SAX parser. But it could

Table 4
Millau attribute tokens decision table

Token Action taken

Switch page Read the next token which gives the current code page.
Not a reserved token If it is not a reserved token, then it is an attribute name token. So the parser looks for the corresponding name in

the attribute name code space (if not found, an exception is raised). It then reads the attribute value.
End token End of the attribute list identified; return the attributes list.

take more time than parsing a non compressed XML
stream with a conventional SAX parser. We observed
that the part of the processing which takes the most
time with Millau SAX parser is the translation of the
tokens in elements and attributes names. The reason
for this it that, for each received token, the parser must
search the code spaces for the corresponding strings.
For example, if it receives an element token, it must
search the corresponding element name in the element
code space and this can take a lot of time, especially
if there are many elements in the element code space.
Skipping this translation step could make the encoded
XML parsing faster. These tokens do not really need
to be translated into strings at all. In fact, they can
be directly processed by appropriate handlers which
recognize the tokens. The design of such handlers and
the efficiency aspects will be discussed later.

A Millau binary SAX parser is like a SAX parser
but instead of studying character based XML streams
it operates on the binary encoded XML. Instead of
passing tag names and attribute names and values to
the handler, it passes encoding tokens without trans-
lating them into strings. More precisely, each time it
throws a startElement event or an endElement event,
it passes a pair (code page, element token) which
uniquely identifies the element (see WBXML encod-

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 753

Table 5
Comparison between Millau conventional and binary SAX parsers

Interface Millau conventional SAX parser Millau binary SAX parser

Handler startElement(String name, AttributeList) startElement(int token, BAttributeList)
AttributeList getName(int i) returns the name getNameToken(int i) returns a token
AttributeList getValue(int i) returns the value getValueToken(int i) returns a token

getValue(int i) returns an Object

ing specification [22] or Section 2). For a startEle-
ment event, it also passes a Millau binary attribute
list which is a variant of the XML SAX attribute
list implementation. A Millau attribute list, instead
of containing triples (attribute name, attribute type,
attribute value) contains triples (attribute name uid,
attribute type, attribute value uid) if the type of the
attribute is ‘enumerated’ or triples (attribute name
uid, attribute type, attribute value) if the type of
the attribute is ‘CDATA’. A ‘uid’ (unique identifier)
is a pair (code page, token). It can uniquely iden-
tify an attribute name or an attribute value. Table 5
illustrates the differences between the two parsers.

A Millau SAX handler must be able to recog-
nize (code page, token) to trigger special processing
adapted to the element or the attribute. It is faster
than a conventional handler because, instead of com-
paring two strings (a time consuming operation), it
just has to compare two pairs of bytes.

4.3. The Millau DOM parser

The DOM parser is able to build a DOM tree dy-
namically from a binary XML stream. The top-level
architecture of the DOM parser is almost the same

Table 6
Millau DOM parser decision table for element tokens

Token Action taken

Switch page Read the next token which gives the current code page.
String inline Reads the inline string that follows and creates a text node and appends this text node to the last opened element

(the first element of the LIFO stack).
Extension Read the content following the content according to its type, translates it into a string, creates a text node and

appends it to the last opened element.
End token Just remove the last element of the tag names stack.
Not a reserved token If this is not a reserved token, then it is a tag token, so looks for the corresponding tag name in the element code

space (if not found, an exception is raised). It then creates an element node. If the stack is empty, it means that
this element is the root of the document, so it is appended to the document node. If the stack is not empty, the
element is appended to the last opened element (the first in the LIFO stack). Eventually, the parser tests the last
bit of the token, if it is 1, it invokes a method which gets the attributes for this element.

as the architecture of the SAX parser. Like the SAX
parser, the DOM parser creates a LIFO stack to store
the names of the opened elements. Then it reads to-
kens from the input stream until the stack is empty. It
differs from the SAX parser in the processing which is
done for each type of token. Table 6 gives the details.

The getAttributes method reads the attribute to-
kens from the binary XML stream. While the most
significant bit of the next read tokens is 0, the parser
knows that these tokens are not attribute value to-
kens. Table 7 describes the action taken on different
kinds of tokens.

The attribute value can be encoded as a token
value or as an inline string (compressed or not).

4.4. The Millau binary DOM parser

The Millau binary DOM parser uses the binary
DOM (BDOM) API. Table 8 describes the action
taken by the parser on different types of tokens.

4.5. The Millau binary DOM API

The binary DOM API implements all the inter-
faces of the DOM API as defined by the World Wide

754 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

Table 7
Millau DOM parser decision table for attribute tokens

Token Action taken

Switch page It reads the next token which gives the current code page.
End token This is the end of the attribute list. The method exits.
Not a reserved token If it is not a reserved token, then it is an attribute name token. So the parser looks for the corresponding name in

the attribute name code space (if not found, an exception is raised). It then reads the attribute value. Eventually,
it adds this attribute to the current element.

Web Consortium [6]. The main advantage of a bi-
nary DOM tree is that the tag and attribute names are
stored not as strings but as tokens and is space-effi-
cient. The correspondence between names and pairs
(code page, token) is stored in the code spaces so that
names can be normally retrieved for every element
or attribute nodes. Attribute values can be stored
as tokens, if available, as strings, or as primitive
types. The primitive types currently supported by the
BDOM API are Boolean, byte, integer (4 bytes), and
float. Element contents can also be stored as prim-
itive types. For element contents, we have defined
one more binary node, the binary data node, which
stores binary data without base 64 encoding, thus
avoiding the 33% overload of the base 64 encoding.
This is useful for binary files like images embedded
in an XML document.

In addition to the methods of the DOM API, the
BDOM API also provides methods for creating or
retrieving elements or attributes by tokens instead of
strings. This is useful for applications which have
been designed to work with Millau format (see Sec-
tion 6). For example the class BElement (for Binary
Element) which implements the DOM interface Ele-

Table 8
Millau binary DOM parser decision table

Token Action taken

Switch page No change
String inline No change
Extension The BDOM parser can create a primitive type node (Boolean, byte, integer, float, binary data) defined by the BDOM

API by invoking the methods createBooleanNode, createByteNode, createIntegerNode, createFloatNode or
createBinaryData of the class BDocument. This node is then appended to the last opened element by invocation of the
method appendChild.

End token No change
Tag token The BDOM parser creates a BElement node by invoking the method createElement of the class BDocument with a short

as parameter. The first byte (most significant) of this short is the code page of the tag and the second byte is the tag
token.

ment has also a method getTagToken() which returns
a short where the first byte is the code page and
the second page is the tag token. For convenience,
the class BDocument which implements the DOM
interface Document provides a method writeBina-
ryXML(OutputStream) which write the BDOM tree
in Millau format to the OutputStream.

4.6. The Millau code spaces

The choice of the data structure to represent the
code spaces is also important for good performance
of the system. The translation time is mostly in-
fluenced by the time it takes to look up in the code
spaces for a token or for its corresponding string. De-
pending of what the program needs to do, translating
strings into tokens or tokens into strings, different
data structure may be used. For example, to convert
strings into tokens quickly, strings must be found
quickly in a table. For this, it is better to use a
hash table where the keys are the strings and the
values are the corresponding tokens. But, if given a
page number and an index in a code page the corre-
sponding string must be found quickly, the best data

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 755

structure is a two dimensional array indexed by page
numbers and indexes in pages. If we need to be able
to find a string from a token quickly or a token from
a string, then we need to sort the table and then do
a binary search to find a string corresponding to a
token.

Next we describe the method to fill in the hash
table for element code space. First, the page number
variable is set to 0 and the index variable to 5 (the
first four indexes are reserved for global tokens).
For each element declaration, the system gets the
element name, adds it in the hash table with the
element name as the key and (56 ð pageNumber
C index) as the value. The system increments the
index by 1. The size of a page for elements is 64
because the last two bits of the index are reserved
so when the index reaches the value 64, the system
increments the page number by 1 and resets the index
to 5. When the page number reaches its maximum
value 255, an exception is raised.

For each element declared, the system gets the
corresponding attribute declaration from the previ-
ously built DOM tree. It adds the attribute name in
the hash table with the attribute name as the key and
(256 ð pageNumber C index) as the value. If the
attribute type is enumerated (enumerated attribute
types are NOTATION or NAME_TOKEN_GROUP),
then the system looks for the values of this enumer-
ated attribute. For each value, it adds the attribute
value in the hash table with the attribute value as the
key and (256 ð pageNumber C index) as the value.
The system increments the index for the value by
1. The size of a page for attribute value is 128 so
when the index reaches the value 128, the system in-
crements the page number by 1 and resets the index
to 5. When the page number reaches its maximum
value 255, an exception is raised. If there are no
values or when the values have been successfully
added to the attribute value code space, the system
increments the index for the name by 1. The size of
a page for attribute name is 128 so when the index
reaches the value 128, the system increments the
page number by 1 and resets the index to 5. When
the page number reaches its maximum value 255, an
exception is raised.

Next, the method to fill in the 2-dimensional
array for element code space is described. First, we
set the page number variable to 0 and the index

variable to 5 (the first four indexes are reserved
for global tokens). For each element declaration, the
system gets the element name, adds it in the elements
array at position (page number, index). The system
increments the index by 1. The size of a page for
elements is 64 because the last two bits of the index
are reserved so when the index reaches the value 64,
the system increments the page number by 1 and
resets the index to 5. When the page number reaches
its maximum value 255, an exception is raised.

The attribute names code space and the attribute
values code space can be merged into one so that
each pair (attribute name, attribute value) is a single
token instead of two tokens (name and value). The
code space is filled as follows. For each element
declared, the system gets the corresponding attribute
declaration from the previously built DOM structure.
If the attribute type is not enumerated (no specific
value is declared for this attribute), then the system
adds the attribute name in the attribute code space
(hash table for the server, array for the client). If
the attribute type is enumerated, then the system
looks for the values of this enumerated attribute. For
each value, it adds the pair (attribute name, attribute
value) with a specific token in the attribute code
space. When the server comes across an attribute
with a value, it looks in the attribute code space
for the couple (attribute name, attribute value). If
it can find it, it sends this token. If it cannot find
it, it looks for the attribute name in the attribute
code space. If the name is found, the server sends
the corresponding token for this name followed by
a string inline token followed by the attribute value
encoded in the charset specified at the beginning of
the binary XML stream. If the name is not found, an
exception is raised.

Attributes may be mandatory (#REQUIRED),
optional (#IMPLIED), or can have fixed values
(#FIXED). For mandatory or fixed attributes, it is
not necessary to transmit tokens. To achieve this op-
timization the system can store in the element code
space the names of the required or fixed attributes
with the element name. For example, if attributes
Author and Genre are required for element Book, the
element code space stores the triplet (Book, Author,
Genre) at the entry Book. This element code space
is filled as follows. For each element declaration,
the system gets the element name and the required

756 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

and fixed attributes. It adds the element names and
the required and fixed attribute names to the element
code space. For the fixed attributes, it also adds their
value. In the attribute code space, only the implied
attributes will be stored with their corresponding
values (if defined).

Notice that for applications which can work with
tokens without translating them into strings, there is
no need for code spaces. This saves memory and
CPU. However, to facilitate the task of the developer
of the application, the tokens can be stored as static
variables with explicit names.

5. Experimental results

In this section we study the performance of the
Millau system.

5.1. Theoretical compression rate

First we compute the theoretical size of Millau
streams. Suppose:
ž there is a total of N occurrences of elements of

which M have empty contents and K are elements
with attributes,
ž there are a total of T text elements,
ž there are a total of A attribute occurrences,
ž S is the total size of the text elements in bytes,
ž H is the size of the header and,
ž P is the number of page switches.

The size W of the token encoded document can
be computed as:

W D 2N � M C 2A C K C T C S C 2P C H:

The following explains the origin of each term in
the above formula:
ž 2N : each element is represented by an element

token plus and end token (2 bytes);
ž M : empty elements do not need an end token;
ž 2A: each attribute is represented by a name token

and either an attribute token, a string inline token
plus a string or an extension token plus a primitive
type (at least 2 bytes per attribute);
ž K : every attribute list ends with an end token;
ž T : each text element is introduced by a string

inline token;
ž S: size of all the text which has no correspond-

ing token (it can be text elements or unknown
attribute values);
ž 2P: each page switch means one switch token

plus one byte for the new page number;
ž H : the header is composed of a version number

(one byte), a document public identifier (1 to 4
bytes or one byte plus a string), a character set
(1 to 4 bytes), a string table (1 to 4 bytes plus
possibly the strings).
The first five parameters N , M , A, K , and T

depend only on the document so we cannot change
these parameters for a given document. The size of
the text can be a large parameter. First of all, the
number of unknown attribute values must be mini-
mized. This can be done by encoding the attribute
values given by the DTD for the attribute of the type
enumerated. Another improvement is to pre-parse
the document and look for the attribute values which
are not in the DTD and appear more than once in the
document. These attribute values can be put in the
string table so that they will appear only one time in
the binary XML stream.

The best solution to text compression is to sepa-
rate the text from the document structure and com-
press it with an algorithm like GZIP [5]. The same
can also be done for the unknown attribute values
but it can cost in terms of processing time to have
to switch to another stream for each attribute value.
The size of the header depends mainly of the use
of a string table: a string table contains the most
frequently used strings in the document. They are
then referenced in the document by an offset in the
string table. The experiments show that the number
of page switches can constitute a large overhead
(a page switch is two bytes). This number can be
further reduced by putting sibling elements on the
same page. The DTD can be used to perform this
optimization. (The number of page switches cannot
be larger than 2.N C 2A/ because there cannot be
more page switches than the number of elements and
attributes names and values.)

The following formula now gives a good estimate
of the size X of the XML stream:

X D .2N � M/n C A.a C v/C S

where n is the mean length of an element name, a
is the mean length of an attribute name, and v is the
mean length of an attribute value.

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 757

The theoretical estimated compression rate is thus
given by this formula:

C D W

X
D 2N � M C 2A C K C T C S C 2P C H

.2N � M/n C A.a C v/C S

We can compute a better estimate by using the
exact size X of the XML stream if it is known.
Usually, it is not an unknown parameter. We will
use this value in the experimental computations.
We observe that C is a function of the size of the
markup. If elements and attributes are given long and
explicit names in the original XML document, the
compression rate can be very good.

5.2. Experimental compression rate

To measure the performance of our compression
system, we have built a test package which considers
the following parameters:
ž number of elements;
ž number of empty elements;
ž number of attributes;
ž number of elements with attributes;
ž number of text elements (also termed PCDATA

elements);
ž number of page switches;
ž compression rate for the structure stream encoded

in Millau format;
ž compression rate for the data stream compressed

with GZIP algorithm;
ž compression rate for the whole document pro-

cessed by our compression system;
ž compression rate for the whole document com-

pressed with GZIP;
ž compression rate for the structure stream com-

pressed with GZIP;
ž time to parse an uncompressed XML stream;
ž time to parse an XML streamed compressed with

GZIP;
ž time to parse a Millau stream;
ž time to parse a Millau stream without decoding

the name and value tokens.
We ran our experiments with XML documents of

varying sizes. We first discuss a typical set of results
obtained with a 3 MB technical manual marked up
in XML. This document is a valid XML document
which means that it comes with a DTD which can

Table 9
Size of the markup for a technical documentation

Size of the document (in bytes) 3 093 194
Size of the markup (in bytes) 2 038 952
Size of the character data (in bytes) 1 052 242
Number of elements 73 591
Number of empty elements 9 485
Number of attributes 25 611
Number of elements with attributes 22 529
Number of PCDATA elements 64 588

be used to efficiently build the code spaces. Table 9
presents the results.

From the above table, we can compute a lower
bound for the theoretical compression rate for the
markup (PCDATA excluded) as defined previously.
This is a lower bound and not an exact value because
the number of page switches is not known a priori.
Moreover, we assume that there are no attribute
values encoded as strings (which is usually not true).
In other words, we assume that every attribute value
has a corresponding token. The lower bound of the
size of the markup encoded in Millau format is thus
given by: 2ð73 591�9485C2ð25 611C22 529C
64 588 D 276 036 bytes. Subsequently, the lower
bound of the theoretical compression rate for the
markup is given by: 276 036=2 038 952 D 13:5%.

Notice that the number of page switches cannot
be larger than: 2 Ł .73 591 C 2 Ł 25 611/ D 249 626
bytes. So the upper bound for the Millau size is
(if there are no attribute values encoded as strings):
276 036 C 249 626 D 525 662 bytes. Subsequently,
the higher bound of the theoretical compression rate
for the markup is: 525 662=2 038 952 D 25:7%. This
seems reasonably good for a worst case measure.

Table 10 shows the experimental compression rate
achieved by Millau algorithm and GZIP algorithm
(sizes are given in bytes).

The figures compared are the compression rate of
the markup using Millau encoding and using GZIP
encoding (figures in bold in the chart). It can be
seen that the compression rate achieved by Millau
encoding is reasonable (18.0% is usually considered
as a good compression rate for text). But we can
also notice that the compression rate achieved by
the GZIP algorithm for the same markup is very
good (8.6%). Actually, this is not very surprising
because the GZIP algorithm takes advantage of the

758 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

Table 10
Comparison of the compression rates achieved by Millau and GZIP algorithms

Initial document size Millau document size Millau compression GZIP document size GZIP compression
(%) (%)

Whole document 3 093 194 593 795 19.2 401 518 13.0
Markup only 2 038 952 367 321 18.0 175 044 8.6
Data only 1 052 242 226 474 21.5 226 474 21.5

redundancy of a document to compress it and the
XML markup is highly redundant. There are a few
tags which are repeated a large number of times in
this large document. This is why the compression
rate for GZIP outperforms the compression rate for
Millau. But at the same time, GZIP does not retain
structure of the document which is a disadvantage
for fast documents processing.

To improve the compression rate of Millau, we
can limit this number of page switches (about
30 000) by reordering the code spaces so that open-
ing tags which are close to each other in the docu-
ment appear on the same code space page. We do not
care about the closing tags because there are encoded
with the reserved token END in Millau format. The
code space optimization can be done from the DTD
or from the XML document itself. To formalize the
problem of optimizing from the XML document it-
self, we consider an ordered set T of n possible tags
where n is bigger than the size p of a code space
page. The document can be represented as a series of
tags (t i) where each t i is element of T . We want to
find a permutation of T that minimizes the number
of page switches inside of this document. The first
approach is to find the most frequent pair (t i; t j) (a
pair is two different tags that appear next to each
other in the XML document) and put them in the
same page. A better approach consists in computing

Table 11
UTF-8 byte sequences

Token length Byte sequence

1 byte 0xxxxxxx
2 bytes 110xxxxx 10xxxxxx
3 bytes 1110xxxx 10xxxxxx 10xxxxxx
4 bytes 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
5 bytes 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
6 bytes 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

the mean distance between two tags for each pair
(t i; t j) and then grouping tags in fixed-size clus-
ters using a clustering algorithm. Each cluster here
represents a code space page.

We are currently working on optimizing the code
spaces from the DTD. From the DTD, we can esti-
mate the probability that a tag follows another tag.
The next step is to compute the probability that two
tags will follow each other in less than p hops (where
p is a page size). From these probabilities, we can
compute mean distances between tags in order to
apply a clustering algorithm as we do with the XML
document itself.

An alternative to the code spaces approach is to
encode the tags with variable length tokens. One or
several bytes encode a tag according to its occur-
rence frequency. The 128 most frequent tags will be
encoded with a single byte. The formats of these
bytes is similar to the byte format of UTF-8 [24].
Table 11 shows the byte sequences:

5.3. Influence of the document size

In the previous section we computed the com-
pression rate for a big XML document. This exper-
iment has shown that, for this big document, GZIP
was more efficient than Millau as regards the com-
pression rate because GZIP takes advantage of the

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 759

redundancy induced by the XML markup. It has also
highlighted some theoretical problems that will need
to be solved in further investigation. In this section
we run experiments on a set of small XML files
like the ones exchanged in business transactions and
see if Millau can be more efficient with this kind
of files than traditional compression algorithms like
GZIP.

We have tested Millau compression algorithm on
a set of 118 XML reference files from the Open Ap-
plications Group [16]. These sample files represent
the typical files which are used in business transac-
tions (e.g. sales orders, bills, payments). There sizes
range from 1 KB to 14 KB. They all come with a
specific DTD. We compressed them, first using GZIP
algorithm [5] with a buffer size of 512 bytes, then
using Millau on the XML stream. The Millau code
spaces have been built from the DTDs provided with
the XML sample files. On the diagram of Fig. 1,
we represented the size of the compressed files with
respect to the initial size. The red points are for GZIP
while the blue ones are for Millau.

First, we observe that the size of the Millau com-
pressed file grows linearly with the file of the un-
compressed file (the correlation coefficient between
the Millau compressed size and the initial size is
0.9918 which is very close to 1). This means that

Fig. 1. Size in KB of the compressed file (ð D GZIP, C D Millau) versus the initial size.

the compression ratio is roughly constant (¾20%)
with respect to the document size. On the other hand,
the compression rate of GZIP grows with the size
of the initial document. This is because GZIP (like
other lossless traditional compression algorithms) is
designed to take advantage of the redundancy of
character strings inside of a document. That is also
why the compression of GZIP does not grow lin-
early (the correlation coefficient between the GZIP
compressed size and the initial size is only 0.8995
to compare to 0.9918). Although it is true that the
redundancy is high on large XML documents be-
cause of the limited number of allowed tags, it is
also found that the occurrence frequency of repeated
characters in a small XML document (like a sales
order) might not be very high (because of the lim-
ited size of the document). So one can think that
it is beneficial to map XML tags to tokens and
that this mapping must be done off-line from the
DTD. The experience proves that this is beneficial
for small documents (typically documents which size
ranges from 0 to 5 KB — according to the cross-
ing point between the two regressions lines — this
is the case of most of the documents exchanged
in business transactions — here, only 20 of the
118 documents of our eBusiness test set are bigger
than 5 KB).

760 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

5.4. Processing times

The third experiment measures the time to parse
an XML stream (with and without compression) and
compares that time to the time needed to parse a
Millau stream. For the XML stream, we have used
the SAX driver of the IBM XML parser [12]. For the
Millau stream, we have obtained measurements with
two kinds of parsers:
ž a Millau SAX parser,
ž a Millau BSAX parser.

As a reminder, the Millau SAX parser implements
the Parser interface defined by SAX so it must
translate every token to its corresponding string. On
the other hand, the Millau BSAX parser generates
events with tokens instead of strings so it does not
make any translation (see Section 4).

For the measurements, the XML stream is created
from a 3 MB technical manual marked up in XML
and served of a local disk. It is better to use a large
file for timing experiments because the experiments
have shown that the method currentTimeMillis of
the Java class System was not able to measure time
differences smaller than 10 ms. SAX events are
handled by basic handlers which do no processing at
all. We measured the time to parse the stream from
the creation of the stream to the endDocument event.
Table 12 summarizes the results.

First, this indicates that the difference between
parsing a compressed or uncompressed stream is
negligible. Secondly, parsing a Millau stream is at
least five times faster than parsing an ASCII XML
stream. This result was initially somewhat surprising.
However, this result can be explained by the fact that
the operations performed during the parsing of a
token stream are easier and less time consuming

Table 12
Parsing time comparison using IBM SAX parser and Millau
SAX parser

Time to parse the uncompressed XML stream 40 seconds
Time to parse the XML stream compressed

with GZIP 40 seconds
Time to parse the Millau stream using

a Millau SAX parser 8 seconds
Time to parse the Millau stream using

a Millau BSAX parser 5 seconds

than the operations needed to parse a text XML
stream: the parsing of a text stream involves string
comparisons, a time consuming operations while the
parsing of binary stream involves bytes comparison.
Moreover, the fact that the content stream (which
does not need any parsing) is separated from the
structure stream makes the parsing more efficient.
The processing speed is one of the greatest strengths
of Millau and is the main reason why this model is
particularly well adapted for business applications as
well as streaming applications.

We can also observe that the time needed to
translate tokens into strings by performing a look-up
in the code space (3 s to compare with 5 s to parse
the stream) is not a large overhead. This can be done
if the application has not been designed to work with
tokens. But for efficiency purposes it is preferable
to work with tokens instead of strings as the time
needed by the handler to compare two strings can be
much larger than the time needed to compare two
tokens.

6. Applications using Millau streams

We have built two applications using the Millau
APIs. The first application is a Millau compression
proxy server and its companion Millau decompres-
sion proxy server. The second application is an im-
plementation of the XML-RPC using Millau as an
exchange data format. For these two applications, we
discuss the implementation design and why these are
good applications of Millau encoding format.

6.1. Millau compression proxy server

Studies have been made in prior research work
in using HTTP proxy servers to compress data on
the network [2,14,20]. These demonstrate that about
33% of the bandwidth can be saved easily by com-
pressing the data exchanged on the network. In these
studies, they have used conventional compression al-
gorithms like ZLIB and GZIP to compress the text
data. The fact that a significant portion of the Web
objects electronic commerce have a small size makes
these compression algorithms not efficient for this
purpose. So it has been suggested that compression
proxy server uses a static table that maps the fre-

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 761

quently used HTML strings into tokens. However,
they do not have a systematic scheme like ours to
compress any XML document. Here, we investigate
the architecture and the performances of an HTTP
proxy server based on Millau binary XML.

The system is composed of two proxy servers: a
client proxy server and a server proxy server. The
client proxy server is located ‘close’ to the client,
and the server proxy server is located ‘close’ to the
server. In an extreme situation the client proxy server
may be merged with the client, and the server proxy
server with the server. Also if there is seamless XML
data flow between two locations in both directions
there may be possibly more than one compression
proxy server and decompression proxy server. We
built our proxy servers using the WBI (Web Intelli-
gence) proxy architecture system [1].

Before describing the architecture with more de-
tails, we introduce the architecture of WBI. WBI
is a programmable HTTP request and HTTP re-
sponse processor. WBI’s data model is based on
the request=response structure of HTTP version 1.0.
Each request and each response consist of a struc-
tured part and a stream part. The structured part
corresponds to the header and the stream part cor-

Fig. 2. Workflow path of a Web request and its response in the Millau compression–decompression WBI proxy environment.

responds to the body. Millau mainly works on the
stream part which is here supposed to be XML con-
tent. Notice that HTML content can be converted
to XML thanks to an already existing WBI plug-in
so that Millau can then process this stream. WBI
receives an HTTP request from a client, such as a
Web browser, and produces an HTTP response that
is returned to the client. The processing that hap-
pens in between is controlled by the modules pro-
grammed into WBI. A typical WBI transaction flow
goes through three basic stages: request editors (RE),
generators (G), and editors (E). A request editor re-
ceives a request and has the freedom to modify the
request before passing it along. A generator receives
a request and produces a corresponding response
(i.e. a document). An editor receives a response and
has the freedom to modify the response before pass-
ing it along. When all the steps are completed, the
response is sent to the originating client.

The diagram of Fig. 2 shows the architec-
ture of the Millau compression–decompression
client proxy server and its associated compression–
decompression server proxy server.

Here, we describe the flow for a request–response
transaction between a client and a server. The client

762 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

Table 13
Millau compression–decompression time compared to transmission time on a 56 Kbits=s modem line

Document type Mean size Transmission time Compression–decompression
(bytes) (ms) (ms)

Uncompressed small document 3 647 521 N=A
Compressed small document 886 126 98
Uncompressed large document 213 160 30 451 N=A
Compressed large document 148 269 21 181 1554

The compression–decompression and transmission of a Millau stream is faster than the transmission of an uncompressed stream.

generates an XML request and expect an XML re-
sponse from the server. In the client proxy, the
Request Editor (RE) compress the XML body of
the HTTP request into a Millau stream using a Mil-
lau XML Tokenizer. The request is then handled by
the Generator (G) which forward the request, now
in Millau format, to the server proxy. In the server
proxy, the Millau request is received by the request
editor which decompresses the Millau stream using
a Millau SAX parser. The request, now in XML
format, is handled by the generator which forwards
the request to the server. The server produces a re-
sponse which is received by the Editor (E) of the
server proxy. The editor compresses the response in
Millau format using an XML tokenizer and send this
encoded response to the originated client (the client
proxy). The editor of the client proxy decodes the
response using a Millau SAX parser and send it to
the client.

Notice that the client proxy is actually a sim-
ple WBI plug-in that can be embedded in a LAN
proxy cache machine or that can also be running di-
rectly on the client machine. An important issue is
that the client proxy is ‘close’ to the client machine.
By ‘close’ we mean that the connection between the
client machine and the client proxy machine is fast
compared to the connection between the client and
the server (typically an Internet connection). For ex-
ample, the client proxy machine must be on the same
LAN than the client machine. In the same way, the
server proxy must be ‘close’ to the server machine.

To test the efficiency of this architecture, we
compare the compression–decompression overhead
with the download time saving that Millau com-
pression realizes. We measured this compression–
decompression overhead on a large set of small
and big XML documents. The results show that

the compression–decompression overhead is small
compared to the download time that can be saved,
specially on a low bandwidth connection like a mo-
dem connection. In the following table, we present
mean results for small eBusiness documents and for
large text documents (Shakespeare’s plays encoded
in XML by John Bosak [18]). The transmission time
was computed for a 56 Kbits=s modem line. Table 13
shows the results.

A typical eBusiness transaction is composed of
a short request followed by a short answer. With-
out Millau, the transmission takes 1042 ms. With
Millau, it takes 368 ms including the compression–
decompression overhead giving a saving of 65% of
the time. This can account for a significant portion
on a large number of transactions. Note that the
compression–decompression system has been imple-
mented in Java. With an algorithm like GZIP which
current implementation is in C, the compression–
decompression time is smaller. We are working on
a C implementation of the Millau compression–
decompression algorithms which would allow a
faster processing.

6.2. Millau XML remote procedure call

XML-RPC [23] is a very simple protocol for per-
forming remote procedure calls over HTTP. It was
designed by Userland Software, working with Mi-
crosoft. An XML-RPC message is an HTTP-POST
request. The body of the request is in XML. A pro-
cedure executes on the server and the value it returns
is also formatted in XML. Procedure parameters can
be scalars, numbers, strings, dates, etc., and can also
be complex record and list structures. In our im-
plementation, the body of the request is in Millau
binary XML.

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 763

The Millau encoding format appears to be par-
ticularly well adapted to the XML-RPC because the
exchanged messages are usually very short and may
not contain redundant tags. So, as demonstrated in
the previous section, the traditional compression al-
gorithms have usually poor performances in term of
compression rate with these kind of messages. On the
other hand, XML-RPC uses a limited set of tags (20
different tags) and no attributes. All the tags can hold
on one code page so there is no switch page. Actually,
because Millau RPC has been designed to work with
tokens, it is not necessary to store the code page in
memory. Moreover, most of the content is of primitive
type and Millau RPC can thus take advantage of the
possibility of transmitting primitive types without text
encoding. All these features make that the processing
of XML-RPC requests and answers is efficient.

The Millau XML-RPC system is composed of
a client which generates Millau requests and gets
the answers in Millau format from the XML-RPC
server and of a server which gets the requests for the
clients, invokes the corresponding method (if found)
and sends the response in Millau format or an error
message (for example if the method is not found).
The HTTP requests are first handled by a Java Servlet
which passes the Millau body to the server.

The init method of the servlet creates the server
which does all the work. It also registers the handler
object which methods can be called from the client
side. The server provides a register method to regis-
ter handler object with a specific name and a remove
method to remove a specific handler object from its
name. References to the handlers are stored in a
hash table on the server side. Each time the servlet
receives a request, it passes the input stream to the
server. The server parses the request encoded in Mil-
lau binary XML-RPC format using a Millau BDOM
parser. We are currently working on a version using a
Millau BSAX parser instead of BDOM for improved
efficiency. The server tries to find the handler object
and the method corresponding to the method name
of the request. If it finds it, it calls this method and
encodes the response in Millau binary XML-RPC
format using the previously described Millau BDOM
API. It then calls the method writeBinaryXML of this
API which generates a Millau stream that can be sent
as the body of the response.

To create a Millau XML-RPC client, the user

Table 14
Performance comparison between Millau XML-RPC and Helma
XML-RPC

XML-RPC platform Mean number of calls per second

Millau binary XML-RPC 27
Helma XML-RPC 12

passes the URL of a valid Millau XML-RPC server.
Then the client can open a persistent connection
with the server. The user can then call the invoke
method of the client, passing the name of the method
as ‘handler.method’ and a vector of the parameters.
Details on the type mapping between XML-RPC and
Java can be found in [21]. From the method name
and the parameters, the client will generate a Millau
XML-RPC request using the Millau BDOM API.
Then, it invokes the writeBinaryXML method on the
BDOM tree to generate a Millau stream that can
be sent to the Millau XML-RPC server through the
previously opened socket. The client listens on the
socket port to receive the response from the server.
If it is a valid Millau XML-RPC response message,
it is parsed and the result sent to the user; if it is
an error message, the error is reported to the user.
Notice that the error messages are also encoded in
Millau XML-RPC format.

To evaluate the performance of this implementa-
tion, we made a benchmark which sends an array of
100 integers as a parameter and receives the same ar-
ray as a return value. We compared the performances
of our implementation with the Helma XML-RPC
system [21]. The performance measure is given in
Table 14.

Notice that HTTP may not be the best proto-
col to implement RPC because of the HTTP header
which can be big compared to the binary XML pay-
load, specially if there are few parameters in the
request. In case of very small requests, the perfor-
mance improvement will not be significant because
of the HTTP header overhead. A solution is to use
persistent HTTP connections.

7. Conclusion

As large number of XML documents are ex-
changed and streamed over the Internet medium,

764 M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765

techniques for compact and efficient representation
and exchange for this data become essential. In this
paper, we describe a system called Millau for ef-
ficient encoding and streaming of XML structures.
While traditional data compression algorithms lose
the structure of the documents, Millau keeps the
XML hierarchical structure. Moreover, Millau en-
ables the separation of the content from the structure
in order to be able to compress the text or multi-
media data separately from the XML structure. This
allows achieving better compression rates. This fur-
ther allows an application to do some processing on
the structure without having to download large vol-
ume of data. Moreover, our experiments show that,
though traditional data compression algorithms are
able to perform high compression rate on large XML
files, they are much less effective towards small sized
XML documents like the ones exchanged in eCom-
merce transactions. Millau achieves better compres-
sion rates for such documents.

To allow manipulation of Millau encoded XML
documents at a layer transparent from the applica-
tion, we provide both a SAX API and a DOM API
conform to the standards of the Web. Additionally,
we provide for both APIs methods for allowing ap-
plications to work directly with tokens instead of
processing strings. Our experiments have shown that
the processing of Millau tokens where up to five
times faster than the processing of XML tags. We
also developed data structures to efficiently map tags
to tokens and to store the tokens. We provide algo-
rithms to build the code spaces from the associated
XML DTDs in an efficient way. We are currently
working on taking better advantage of the document
structure to limit the number of page switches inside
of a document and so to improve the compression
rate.

To demonstrate the advantages of Millau encod-
ing format, we built two applications on top of the
previously mentioned APIs. The first one is a com-
pression-decompression proxy server which takes
advantage of the compact representation of XML
that Millau provides to save Internet network band-
width and also of the ease of processing. The second
one, the Millau XML-RPC uses the methods which
return token instead of strings for faster processing of
parameters marshaled in XML. Moreover, it allows
saving network bandwidth because of the compact

format. These applications must be seen as a first
step toward eBusiness transaction on the Internet.

Because it retains the structure of XML docu-
ments and because it is designed to be processed
as a continuous stream, Millau encoding format can
also be used for efficiently streaming structured mul-
timedia content. For example, we built a solution
for fragmenting a Millau document, associating a
priority to each fragment, streaming each fragment
independently, and rebuilding the whole document
or parts of the document according to the user’s pref-
erences or the browser capabilities. We applied this
solution to the streaming of structured multimedia
documents. We also designed a simple tool for the
browsing and searching of XML structure and re-
trieval of multimedia content. This subject has been
discussed in [8,9].

Acknowledgements

The authors would like to express their gratitude
to Prof. Bernard Mérialdo for his help during the
prior work done in [8]. We would also like to thank
Anita Huang and Sami Rollins who reviewed this
paper and helped improve the final version.

References

[1] R. Barrett, P. Maglio, J. Meyer, S. Ihde and S. Farrell,
WBI development kit, http://www.alphaworks.ibm.com/tec
h/wbidk

[2] C.-H. Chi, J. Deng and Y.-H. Lim, Compression proxy
server: design and implementation, in: 2nd USENIX Symp.
on Internet Technologies and Systems.

[3] P. Deutsch and J. Gailly, ZLIB Compressed Data Format
Specification Version 3.3, RFC 1950, May 1996, http://ww
w.ietf.org/rfc/rfc1950.txt

[4] P. Deutsch, DEFLATE Compressed Data Format Specifi-
cation version 1.3, RFC 1951, Aladdin Enterprises, May
1996, http://www.ietf.org/rfc/rfc1951.txt

[5] P. Deutsch, GZIP file format specification version 4.3, RFC
1952, Aladdin Enterprises, May 1996, http://www.ietf.org/r
fc/rfc1952.txt

[6] Document Object Model (DOM) Level 1 Specification Ver-
sion 1.0, W3C Recommendation 1 October, 1998, http://w
ww.w3.org/TR/REC-DOM-Level-1/

[7] Extensible Markup Language (XML) 1.0, W3C Recom-
mendation 10 February 1998, http://www.w3.org/TR/REC
-xml

M. Girardot, N. Sundaresan / Computer Networks 33 (2000) 747–765 765

[8] M. Girardot, Efficient representation, streaming and ex-
change of XML content over the Internet medium, Master
Thesis, Eurecom Institute, September 1999.

[9] M. Girardot and N. Sundaresan, Efficient representation and
streaming of XML content over the Internet medium, in:
IEEE Int. Conf. on Multimedia and Expo 2000, December
1999.

[10] R.N. Horspool and G.V. Cormack, Constructing word-
based text compression algorithms, IEEE Trans. Inf. Theory
(1992).

[11] D.A. Huffman, A method for the construction of mini-
mum-redundancy codes, Proc. IRE 40 (9) (1952) 1098–
1101.

[12] IBM XML Parser for Java, http://www.alphaworks.ibm.co
m/tech/xml4j

[13] N.J. Larsson and A. Moffat, Offline dictionary-based com-
pression, IEEE Trans. Inf. Theory (1999).

[14] J.C. Mogul, F. Douglis, A. Feldmann and B. Krishna-
murthy, Potential benefits of delta-encoding and data com-
pression for HTTP, in: Proc. ACM SIGCOMM ’97 Conf.,
September 1997.

[15] M. Nelson, The Data Compression Book, M and T Books,
1992.

[16] Open Applications Group, http://www.openapplications.
org/

[17] SAX 1.0: The Simple API for XML, http://www.megginso
n.com/SAX/

[18] Shakespeare’s plays encoded in XML by J. Bosak from
Sun Microsystems, http://metalab.unc.edu/bosak/xml/eg/sha
ks200.zip

[19] The Wireless Application Protocol (WAP) Forum, http://w
ww.wapforum.org/

[20] J.R. Velasco, L.A. Velasco Luciañez, Benefits of compres-
sion in HTTP applied to caching architectures, in: Proc. 3rd
Int. WWW Caching Workshop, 1998, http://wwwcache.ja.n
et/events/workshop/32/manchester.html

[21] H. Wallnöfer, XML-RPC Library for Java, http://helma.at/h
annes/xmlrpc/

[22] WAP Binary XML Content Format, W3C NOTE 24 June
1999, http://www.w3.org/TR/wbxml/

[23] XML-RPC Home Page: http://www.xml-rpc.com/
[24] F. Yergeau, UTF-8, a transformation format of ISO 10646,

RFC 2279, Alis Technologies, January 1998, http://www.ie
tf.org/rfc/rfc2279.txt

[25] J. Ziv and A. Lempel, A universal algorithm for sequential
data compression, IEEE Trans. Inf. Theory 23 (3) (1997)
337–343.

Marc Girardot is a research intern
at the IBM Almaden Research Cen-
ter, California, USA. He holds a
D.E.A. honors degree in Networking
and Distributed Applications from
the University of Nice, France and a
telecommunications engineering de-
gree (major: Multimedia Communi-
cations) from the Ecole Nationale
Supérieure des Télécommunications,
Paris, France. His areas of research
interests and expertise include multi-

media, virtual reality, information theory, and Internet technolo-
gies with focus on XML.

Neel Sundaresan is a research man-
ager of the eMerging Internet Tech-
nologies department at the IBM Al-
maden Research Center. He has been
with IBM since December 1995 and
has pioneered several XML and In-
ternet related research projects. He
was one of the chief architects of
the Grand Central Station project at
IBM Research for building XML-
based search engines. He received
his Ph.D. in CS in 1995. He has

done research and advanced technology work in the area of
compilers and programming languages, parallel and distributed
systems and algorithms, information theory, data mining and
semi-structured data, speech synthesis, agent systems, and inter-
net tools and technologies. He has over 30 research publications
and has given several invited and refereed talks and tutorials at
national and international conferences. He has been a member of
the W3C standards effort.

