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Abstract—The rapid adoption of cloud-native architectures
and telecommunications frameworks has intensified the need
for efficient resource management and network performance
monitoring. Time series data plays a critical role in these settings
by capturing sequential changes in metrics, enabling advanced
analytics and machine learning models for anomaly detection,
predictive maintenance, and resource allocation optimization.
However, existing public datasets lack the granularity or breadth
of metrics required for in-depth research, often omitting critical
computing and network performance indicators, particularly
within cloud-native environments for telecommunications work-
loads. TimeTrack addresses this gap by offering a comprehensive
time series dataset collected from an OpenAirInterface (OAI)
Continuous Integration/Continuous Deployment (CI/CD) cluster.
The dataset contains monitoring data on both computing and
network resources used by the CI/CD of OAI components
(gNodeB, User Equipments and Core Network), providing a
unique perspective on the demands of cloud-native telecommu-
nications systems. The primary objective of TimeTrack is to
support research in resource management, anomaly detection,
and network optimization in similar environments.

Index Terms—Time Series, Dataset, Monitoring, Computing
resources, Network Resources

I. INTRODUCTION

The rapid adoption of cloud-native architectures and
telecommunications frameworks has intensified the need for
efficient resource management and network performance mon-
itoring [1]. Time series data, in particular, plays a critical
role in such settings by capturing sequential changes in
metrics, enabling the development of advanced analytics and
machine learning models for anomaly detection, predictive
maintenance, and resource allocation optimization. Existing
public datasets often fall short in this regard, lacking the
granularity or breadth of metrics required for in-depth re-
search. They frequently omit either computing resources (e.g.,
CPU, memory, disk bandwidth) or network performance in-
dicators (e.g., latency, jitter, packet loss) within cloud-native
environments, especially in the context of telecommunications
workloads. This gap limits researchers from training and
validating machine learning models that rely on a holistic
view of system performance, making it challenging to create

algorithms capable of accurate forecasting and anomaly de-
tection in dynamic, real-world settings. To address this need,
we present TimeTrack, a comprehensive time series dataset
collected from one of the OAI [2] test clusters generally used
to run CI/CD workloads [3]. TimeTrack provides continuous
monitoring of both computing and network resources, offering
a unique perspective on the fluctuating demands of cloud-
native telecommunications systems. The primary objective of
this dataset is to support research in resource management,
machine learning-based anomaly detection, and network op-
timization in similar environments We have made TimeTrack
publicly available at [4]. The contributions of this work are:

• Comprehensive Dataset: TimeTrack captures essential
infrastructure metrics across both computing and network
domains, facilitating nuanced analyses for a diverse range
of performance optimization and predictive modeling
applications.

• Support for Machine Learning and Advanced An-
alytics: The dataset’s high granularity makes it highly
effective for use in machine learning pipelines, where it
supports the training of models for anomaly detection,
forecasting, and predictive maintenance.

• Real-world Applicability: Collected from an opera-
tional environment, TimeTrack offers data that accurately
represents real-world workloads, making it an ideal re-
source for benchmarking models and testing algorithms
in both cloud and telecommunications research.

In the following sections, we review related work, outline the
data collection process, and provide an overview of the dataset
structure. We then analyze the collected data, discussing
potential applications and limitations, and demonstrate Time-
Track’s value for training machine learning models. Finally,
we conclude with a summary of our findings and explore the
dataset’s broader implications.

II. RELATED WORK

Several publicly accessible datasets exist, such as Google
Cluster Data 2011 [5], Alibaba Microservices Traces 2022
[6], Grid Workloads Archive GWA-T-13-Materna [7], and



Azure public traces v1 [8] and v2 [9], which offer valuable
insights into resource utilization in distributed computing
environments. However, these datasets have limitations that
may reduce their effectiveness for certain research purposes.
First, these datasets either span only a few days, limiting their
ability to reveal long-term trends and patterns in resource
utilization, or they focus solely on computing metrics, neglect-
ing other important aspects such as network performance or
storage metrics, which are crucial for comprehensive analysis.
Additionally, some datasets, particularly those from older
grid computing systems, may not align well with current
cloud computing environments, making them less relevant for
contemporary research. Furthermore, these datasets frequently
lack detailed information about the workloads running on
the machines, such as specific objectives, constraints, or task
nature. This missing context is important for analyses like
workload characterization or the development of predictive
models. Another notable limitation is that the data is often
recorded at relatively coarse intervals, such as every 5 minutes.
While this frequency might suffice for general monitoring, it
poses challenges for applications such as time series forecast-
ing, which require finer-grained data to build accurate models.
The 5-minute interval is particularly inadequate for capturing
rapid fluctuations in resource usage or for training models that
depend on high-frequency data for precise predictions.

Moreover, most related works rely on data collected in
virtualized environments, where resource usage metrics can be
impacted by virtualization overhead and may not fully reflect
actual hardware performance. In contrast, TimeTrack was
collected on physical machines, eliminating virtualization arti-
facts and providing a more accurate representation of resource
utilization, network performance, and system behavior. This
setup allows TimeTrack to capture real-world performance
metrics and transient behaviors that are especially impor-
tant for high-precision applications such as machine learning
model training and anomaly detection, where exact resource
usage patterns are crucial for building effective predictive
models. Finally, while some of these datasets provide only
general resource usage information, TimeTrack delivers highly
detailed metrics across computing and networking domains.
This detailed structure will be presented in the next section,
and Table II offers a comparison between TimeTrack and the
related works discussed in this section.

III. TIMETRACK

A. Environment, Data Collection and Data Structure

Our data was collected at 45-second intervals over a period
of one month from an OAI testing cluster, which is primarily
used for running CI/CD pipelines for the development of
various OAI 5G network components, such as gNB, UE, and
CN. The cluster consists of seven machines with a total of
437.5 GB of RAM, 236 CPU cores, approximately 1800 GB of
SSD storage, and 38 physical network interfaces, this number
represents maximum number of network interfaces present in
the cluster (Ethernet/Fiber), however, only 3 are used for each
machine (2 Ethernet and 1 fiber interfaces). The data was

collected using Prometheus as the primary metric source, with
the Prometheus plugin serving as an intermediary between
Prometheus and the collector component. The distribution of
resources across the machines is detailed in Table I.

TABLE I
RESOURCE DISTRIBUTION ACROSS MACHINES

Machine (No) Cores RAM(GB) Disk(GB) Physical(No)
1 36 62.5 278.37 4
2 48 62.5 222.5 6
3 36 62.5 278.37 6
4 36 62.5 278.37 4
5 24 62.5 222.5 6
6 36 62.5 278.37 6
7 20 62.5 222.5 6

The dataset contains four essential traces:
1) Compute Metrics: This trace includes the available

and used memory amounts at both the cluster level
and across individual machines. It also records the
average CPU availability and consumption across all
machines, along with the used and remaining disk space
at both the cluster and machine levels. Additionally,
this trace captures the read/write disk throughputs for
each machine. Given the large number of CPU cores,
the detailed utilization and availability of each core are
provided in a separate trace.

2) CPU Core Utilization: This separate trace provides
detailed information on the utilization and availability
of each individual CPU core, effectively addressing the
complexity arising from the large number of cores in the
cluster.

3) Network Latency Metrics: This trace measures the
minimum, maximum, average, and mean deviation
(mdev) of round-trip time (RTT) and jitter between the
OAI setup and Google’s DNS server (8.8.8.8).

4) Network Interface Metrics: The final trace captures
the percentage of dropped and error network packets,
along with the transmitted and received throughputs for
the physical network interfaces.

B. Analysis

Figure 1 presents the correlation matrix for the compute
metrics across the cluster, where ”CU” represents CPU usage,
”UM” represents memory usage, ”DRT” denotes disk read
throughput, ”DWT” stands for disk write throughput, and
”UD” indicates disk usage.

As illustrated, there is a strong positive correlation between
the cluster’s overall memory usage and the memory usage on
individual machines. This correlation is expected because the
cluster’s memory usage is essentially the sum of the memory
consumed by all the machines. As each machine increases
its memory consumption, the cluster’s total memory usage
correspondingly rises, resulting in this high positive corre-
lation. Furthermore, the correlation matrix reveals a notable
positive correlation between the percentage of CPU usage and
the amount of memory used on several machines, specifically



TABLE II
COMPARISON OF TIMETRACK WITH RELATED DATASETS

Dataset Number Of machines Collection time Interval Duration Setup Detail Level Collected metrics
[5] 12500 5 min 29 days Virtual medium Compute
[6] 10000 5 min 13 days Physical low Compute
[7] 1594 5 min 3 months Virtual medium Compute & Network & Storage
[8] 2,013,767 5 min 30 days Virtual low Compute
[9] 2,695,548 5 min 30 days Virtual medium Compute

TimeTrack 7 45 sec 30 Days Physical high Compute & Network & Storage

Fig. 1. Correlation matrix of compute metrics across the cluster. The matrix shows the relationships between CPU usage (CU), memory usage (UM), disk
read throughput (DRT), disk write throughput (DWT), and disk usage (UD) at both the cluster and individual machine levels.

0.53 for machine 01, 0.65 for machine 03, 0.74 for machine
04, and 0.7 for machine 07. This pattern suggests that as
CPU usage increases, there is often a corresponding rise
in memory consumption, which could indicate that many
of the workloads running on these machines are both CPU
and memory-intensive. However, this relationship can vary
depending on the nature of the workloads. Figure 1 also shows
that some machines, specifically machine 06 and machine 07,
exhibit a strong correlation between memory usage and disk
usage. One potential reason for this correlation is related to the
nature of the workloads running on these machines. In many
cases, applications that handle large datasets or perform inten-
sive data processing operations may load significant amounts
of data into memory for faster access. However, to ensure
data persistence, these applications might simultaneously write
large volumes of data to disk, particularly if the data needs to
be saved or logged frequently.

Furthermore, applications that use memory-mapped
files—where the contents of files on disk are mapped directly
into the address space of a process—could also explain this
correlation. In such scenarios, as memory usage increases due
to the mapping of more file data into memory, there could
be a corresponding increase in disk activity, leading to the
observed correlation between memory and disk usage.

Other metrics, such as disk write throughput (DWT) and
disk read throughput (DRT), show no significant correlation
with each other or with other metrics, as seen in Figure 1.
However, a particularly notable observation is that the overall
disk usage at the cluster level does not exhibit a strong
correlation with the disk usage on individual machines. This
prompted us to further investigate by plotting the disk usage
values for both the entire cluster and the individual computing
nodes, as shown in Figure 2.

Upon examining these plots, it became evident that many
machines follow a routine of deleting data at varying intervals.
This behavior is expected, as the cluster is primarily used for
running CI/CD pipelines, which can generate a substantial
amount of temporary data, such as unnecessary software
builds. These builds are often removed after their utility has
passed, explaining the lack of correlation between the cluster’s
overall disk usage and the disk usage on individual machines.

Figure 3 shows the average CPU usage (CU), memory usage
(MU), and disk usage (DU) per machine. Except for machine
06, resource utilization is generally consistent across the
machines, indicating effective load distribution and balanced
computing resource sharing across the cluster.

Figure 4 displays two time series plots. The top plot rep-
resents the average RTT to Google DNS (8.8.8.8) throughout



Fig. 2. disk usage plots for the entire cluster and individual nodes

Fig. 3. Average CPU usage (CU), memory usage (MU), and disk usage (DU) per machine in the cluster.

the monitoring period, measured in milliseconds. The bottom
plot shows the jitter values for the same connection, also
in milliseconds. We observe significant fluctuations in RTT
over time, with peaks surpassing 80 ms. These spikes may be
indicative of network congestion or changes in the network
path between the OAI setup and Google DNS. However,
most RTT values remain within the 0-10 ms range, which
suggests generally stable connectivity during the majority of
the monitoring period.

The jitter plot reveals variability in packet delay, an essential
metric for assessing network performance, especially in real-
time applications. Similar to RTT, jitter exhibits considerable
spikes, with some values reaching up to 50 ms. Such high
jitter can lead to inconsistencies in network performance,
particularly for services that require stable and consistent
timing. A notable observation is the correlation between the
two plots; spikes in RTT often coincide with increases in jitter.
This suggests that the same underlying factors contributing to
higher RTT, such as network congestion or path variations, are
also causing increased jitter, highlighting the interconnected
nature of these network performance metrics.

Figure 5 illustrates the memory utilization across the cluster
over a week, highlighting distinct patterns between weekend
and weekday usage. During the weekend (first two plots),
memory usage remains low and stable, likely due to minimal
active workloads, reflecting an idle or background operational
state. In contrast, on weekdays (last five plots), memory
utilization rises significantly during working hours, suggesting
high demand from active workloads before dropping to a
stable baseline after hours. This regular daily cycle indicates
predictable demand patterns, which can support efficient re-
source management strategies. Similar trends observed in CPU
and disk usage further reinforce this consistency, enabling
the potential for dynamic scaling and optimized resource
allocation based on these workload cycles.

IV. EVALUATION

A. Experiments

To assess the quality of our dataset compared to other states
of the datasets, we used our data and the GWA Materna [7]
traces to train models aimed at forecasting CPU consumption.
We chose CPU consumption as the key metric because it



Fig. 4. Time series plots showing network performance metrics between the
OAI setup and Google DNS (8.8.8.8)

directly impacts workload management and system stability
in distributed environments, which makes it a critical factor in
performance forecasting. For the models, we selected widely-
used architectures in time series forecasting—LSTM, RNN,
GRU, and CNN—as they capture temporal patterns effectively.
LSTMs, RNNs, and GRUs are well-suited for sequential data
due to their recurrent structures, while CNNs can capture
local patterns efficiently, adding diversity to the comparison.
We varied the time window—a parameter that determines the
number of past time steps each model observes at each training
instance—from 1 to 20. This allowed us to understand how
each dataset performed under different forecasting ranges. We
specifically selected the GWA Materna traces from other state-
of-the-art datasets due to its structured, machine-level data
organization. The traces offer convenient data access, with
around 8000 time series values for each machine, making
it ideal for controlled experiments. For this experiment, we
randomly selected a file from the GWA Materna traces rep-
resenting the metrics of one virtual machine and extracted
the first 8000 CPU time series values. Similarly, we used
the first 8000 CPU values from our dataset’s “machine 01”
in the Timetrack trace. Finally, to evaluate these models, we
used real-time data from a local bare-metal Kubernetes cluster,
provisioned specifically for experimental purposes. The test
values were fed in 30-second intervals, allowing us to test the
models against live CPU consumption patterns.

B. Results

To evaluate the results obtained from training on our dataset
versus the GWA Materna traces, we focused on key time
series model metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE). These metrics are crucial in time series forecasting
as they provide insight into the accuracy and stability of model
predictions. MSE penalizes larger errors more heavily, making
it ideal for highlighting significant prediction deviations. MAE,
on the other hand, gives a straightforward average error value,
while MAPE provides a percentage-based error measure, mak-
ing it easier to interpret across different scales.

Figure 6 presents plots of key metrics—MSE, MAE, and
MAPE—across different model types (LSTM, RNN, GRU,
CNN) as a function of time window size. The results display
a consistent trend in which models trained on the Timetrack
dataset (in blue) generally outperform those trained on the
GWA Materna data (in red). This performance difference sug-
gests that models trained on the Timetrack dataset demonstrate
better generalization and more stable predictions, indicating a
higher data quality for predictive tasks. A primary reason for
this disparity is that the Timetrack dataset was collected in
real-world environments, yielding data that captures natural
fluctuations in resource consumption more effectively. Addi-
tionally, the Timetrack data was collected at relatively short
intervals (45 seconds), allowing models to capture transient
spikes and dips in CPU usage with greater accuracy. In con-
trast, the GWA Materna data, sampled at 5-minute intervals,
likely misses these short-term variations in CPU consumption.
This limitation can result in less consistent model performance
on GWA data, as it lacks the fine-grained insights necessary
to respond accurately to rapid changes in the time series data.

V. CONCLUSION

The TimeTrack dataset offers an extensive collection of
time series data from a real-world cloud-native environment,
with a focus on both computing and network metrics. Experi-
mental results demonstrate that models trained on TimeTrack
yield more accurate and stable predictions compared to those
trained on similar datasets, such as the GWA Materna traces,
especially in scenarios requiring high-frequency data. This
advantage arises from TimeTrack’s fine-grained collection
intervals, which enable models to capture transient fluctuations
in resource usage, making it ideal for predictive maintenance
and resource allocation tasks. The dataset addresses a critical
gap for researchers working on real-time, high-precision ap-
plications, enabling a comprehensive approach to performance
monitoring and optimization in cloud-native environments.
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Fig. 5. Memory utilization across the cluster over a week. showing low and stable usage during the weekend (first two plots) and increased activity during
weekday working hours (last five plots).

Fig. 6. Comparison of forecasting performance metrics (MSE, MAE, MAPE) across models (LSTM, GRU, RNN, CNN) trained on the Timetrack dataset
(blue) and the GWA Materna traces (red) with varying time window sizes.
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