
When SD-WAN meets eBPF
Sofiane Messaoudi∗, Franck Messaoudi∗, Adlen Ksentini∗, Christian Bonnet∗

∗Eurecom
∗Sophia Antipolis, France

Email: ∗name.surname@eurecom.fr

Abstract—eBPF represents a major advancement for SD-WAN
implementations, enabling high-performance, programmable,
and secure network processing capabilities directly within the
Linux kernel. Unlike traditional SD-WAN solutions that rely
on user-space processing—which often introduces latency and
performance bottlenecks—eBPF permits custom packet handling
to operate at near-wire speed within the kernel. This kernel-level
processing allows flexible traffic control and QoS management,
enabling SD-WAN providers to implement custom traffic steering,
load balancing, and QoS policies, optimizing resource allocation
and dynamically prioritizing applications. In this paper, we
introduce HELIOS, the first implementation of SD-WAN edge
nodes powered by eBPF with centralized control facilitated
by advanced applications on an ONOS controller. Extensive
benchmarking showcases the efficiency and responsiveness of
the proposed framework, highlighting eBPF’s potential to deliver
substantial performance improvements in SD-WAN contexts.

I. INTRODUCTION

Cloud Edge Continuum (CEC) is undoubtedly the next
evolution of cloud computing, where workload is executed
over the continuum to gain the low-latency capabilities of
edge and far-edge computing nodes, while centralized cloud
resources handle high-load, and delay-tolerant tasks. The CEC
will build on the advance and democratization of edge comput-
ing, with nodes positioned close to end users and an increasing
array of end-user devices—such as Internet of Things (IoT)
gateways, Unmanned Aerial Vehicles (UAVs), and smart-
phones—capable of running workloads. Meanwhile, the shift
toward microservice-based applications will further drive CEC
adoption, enabling application components to be distributed
across the continuum to meet Service-Level Agreement (SLA)
requirements. However, interconnecting cloud, edge, and far-
edge nodes presents challenges, as multiple providers must
collaborate to build a cohesive continuum and ensure seamless
application deployment per SLA standards. This cooperation
is essential, as edge nodes have limited computing capacity
and require support from cloud and other edge providers to
manage sudden computation demands.

Interconnecting CEC nodes that carry the Data-Plane (DP)
of deployed microservices is essential, requiring (i) pro-
grammability to enable network orchestrators to specify Qual-
ity of Service (QoS) levels and resiliency for each service,
(ii) QoS enforcement to ensure SLAs—such as low latency,
high bandwidth, and minimal packet loss—and (iii) resiliency
by enabling route selection flexibility for services. Two pri-
mary interconnection solutions are considered: relying on the
underlying network (e.g., Segment Routing or Multi-Protocol
Label Switching (MPLS) tunnels) or using overlay networks

over existing Internet links (e.g., Software-defined Wide Area
Network (SD-WAN)). While the first approach efficiently
supports QoS, it assumes that all CEC nodes can control
the underlying network to define QoS levels and paths for
application microservices, a capability that cloud providers
typically possess when connecting their own data centers with
MPLS tunnels. However, this approach is limited since cloud
and edge providers often rely on network links operated by
third-tier Internet Service Providers (ISPs). Additionally, CEC
infrastructures often include edge and far-edge computing
resources connected via standard network connectivity, with
no control over the underlying network.

On the other hand, SD-WAN is a key technology for
interconnecting CEC nodes as it meets the three main require-
ments of programmability [1], QoS, and resiliency. Leverag-
ing Software-Defined Networking (SDN) principles, SD-WAN
simplifies network management by decoupling hardware from
control programs and using software and open APIs to abstract
infrastructure. It creates overlay networks on top of heteroge-
neous underlay networks, including those from different ISPs,
while maintaining consistent addressing. SD-WAN supports
multiple concurrent WAN connections and can interconnect
sites in various topologies, such as mesh, to build a full
overlay where SD-WAN edge nodes manage routing for SLA,
resiliency, and scalability without relying on underlying net-
work resources. However, most current SD-WAN solutions are
proprietary, limiting innovation. This work addresses that gap
by proposing an SD-WAN framework that leverages extended
Berkeley Packet Filter (eBPF) in the Linux kernel to design
SD-WAN edge nodes, enabling overlays between CEC nodes.
These nodes are managed by ONOS controller to ensure QoS
across links that connect microservices across the continuum.

The rest of this paper is organized as follows: Section
II presents the eBPF technologies. Section III details our
solution. Section IV describes the methodology and testbed.
Section V presents the performance evaluation and results.
Finally, Section VI concludes the paper.

II. BACKGROUND

A. (e)BPF

eBPF is a Linux-based Virtual Machine (VM) that runs
sandboxed programs in a privileged mode to safely and effi-
ciently extend the capabilities of the kernel with custom code
that can be injected at run-time without requiring changes in
the kernel source code or load kernel modules. The eBPF is an
event-driven program triggered when the kernel or application

passes a certain hook point. eBPF has some predefined hook
points that include system calls, every kernel function, kernel
trace points, and network events, to name few. If a predefined
hook does not exists for particular need, it is possible to create
one at kernel probe or user probe, almost anywhere.

B. eXpress Data Path (XDP)

Is a network type of eBPF programs, designed for high-
performance packet processing. Identified by its hook point
within Linux kernel’s networking stack, specifically in the
reception chain of the network device driver, prior to Socket
Kernel Buffer (SKB) allocation. The XDP program is triggered
immediately on the ingress path in response to network events,
typically upon packet reception. The hook point varies accord-
ing to how the XDP program is attached. We distinguish the
generic, native, and offloaded XDP. Generic XDP is loaded
into the kernel as part of the regular network path, making it
suitable for testing. Native XDP is loaded within the network
card driver, providing better performance but requiring driver
support. Offloaded XDP runs directly within (smart) embedded
Network Interface Controllers (NICs) and requires specific
device support. Network device drivers may not support XDP
hooks, in which case the generic model is utilized. In Linux
4.18 and later, supported drivers include Veth, Virtio, Tap, Tun,
Lxgbe, I40e, Mlx5, and MLX4, to name few. XDP has become
a popular mechanism for accelerating and offloading packet
processing from user-space applications for high-performance
networking applications.

III. SD-WAN FEATURING EBPF PROPOSAL

A. Holistic Perspective

The High-Efficiency Layered Infrastructure with eBPF for
Optimized SD-WAN (HELIOS) architecture depicted in Fig-
ure 1, was inspired by the Metro Ethernet Forum (MEF)
organization [2]. It is designed to meet the need for scalable
and flexible connectivity across distributed networks by de-
coupling the Control-Plane (CP) from the DP. The architecture
comprises two layer.

a) Control Layer: This layer hosts the central attraction
(i.e., ONOS SDN controller). It acts as a server and a client
for, respectively, the above and below layers. As a server, it re-
ceives requests from the application logic via its North Bound
Interfaces (NBIs), extracts the flow rules and distribute them
among the infrastructure using the Google Remote Procedure
Calls (gRPC) protocol. It aims to dynamically, seamlessly, and
simultaneously create, update, and delete eBPF maps within
Edge-Gateways. As a client, it monitors the network traffic
and devices, gathering the necessary information from the
infrastructure (below) layer to push modifications in real-time
in the event of misbehavior, while also returning statistics and
monitoring data to Verticals.

b) Infrastructure Layer: (Or DP) comprises the net-
work elements such as end-user devices, Edge-Gateways,
MPLS equipments, and Cloud resources. Our focus is on
the Edge-Gateways, which serve as endpoints for SD-WAN
tunnels, where we implement eBPF accelerations. Traditional

SD-WAN transit traffic by user-space, causing overhead and
reducing performance; even optimized solutions like Data
Plane Development Kit (DPDK) dedicate hardware (Central
Processing Unit (CPU) and NICs) exclusively to specific ap-
plications. In contrast, eBPF enables resource sharing, improv-
ing efficiency. Each Edge-Gateway hosts our Low-Latency
Intelligent Network eXecution using eBPF (LINX) prototype
(see Section III-B), which maintains eBPF maps that store
the flow rules. Each LINX XDP Section Program attaches
to one interface of the gateway. We distinguish three types
namely; Generic Routing Encapsulation (GRE) interface(s),
which facilitate(s) communication between sites over WAN
links. Non-GRE interface(s) for Local Area Network (LAN)
communication, for instance between end-user devices, and
the Edge-Gateway. respectively. Beside that a control (gRPC)
interface is used to listen for SDN controller requests.

Internet

SaaS

MPLS

ONOS

client

server

Infrastructure Layer

Control Layer

Headquarter

Site
1

Site
2

Fig. 1: HELIOS Architecture (global view)

B. Detailed View

Now, we focus on the eBPF-based DP architecture. Modern
SD-WAN supports two deployment approaches: Datacenter-to-
Datacenter (DC-to-DC) or End-User-to-Datacenter (End-User-
to-DC). Our solution supports both, managing traffic from
End-User and/or DCs. To meet these requirements, and in line
with the SD-WAN purposes (including, efficiently forwarding
and load-balancing traffic across DCs), we have designed the
LINX architecture (Figure 2) as follows:

a) Management Layer: Operates at the user space. This
layer functions as a core library responsible for configuring
both user Data-Path and the edge itself. It includes the
following components: (i) - Yet Another Markup Language
(YAML) Config Validator, which applies configuration settings
for specific Data-Path aspects, defining CP and DP inter-
faces, ports, and supporting eBPF acceleration. (ii) - gRPC
Server enables interaction with the SDN controller via Remote
Procedure Callss (RPCs), handling control messages on the
default port 50051 for creating, updating, and deleting GRE
overlays. (iii) - GRE Overlay Manager oversees GRE tunnels,
it receives packet processing rules from the gRPC server,
and coordinates tasks like prioritizing Packet Detection Rules
(PDRs) and managing Forwarding Action Rules (FARs) and

Load Balancing Rules (LBRs). (iv) - eBPF Program Manager
manages the lifecycle of eBPF programs within the device
driver, enabling real-time configuration changes on the flow
rules via on-the-fly generated eBPF skeleton APIs.

b) Data-Path Layer: Responsible for processing End-
User/DC traffic, implementing a pipeline where decisions are
made about the fate of each packet—whether it is passed,
dropped, or redirected. The pipeline is divided into four key
components as follow: (1) - Traffic Parser is considered as
the entry-point to the Data-Path; it parses incoming traffic and
matches fields in PDRs. (2) - Traffic Classifier categorizes
traffic by uplink (e.g., GRE) and downlink (e.g., NON-GRE)
flows, as well as other criteria such as Classes of Traffics
(CoTs) and protocols, using PDRs and matching Packet De-
tection Information (PDI). (3) - Traffic Forwarder, following
classification, it directs traffic to its destination: either to
the LAN (i.e., End-User) by removing GRE headers or to
the WAN (i.e., DC) with appropriate GRE encapsulation, in
alignment with the FARs. Finally, (4) - Traffic Load Balancer,
ensures traffic adheres to predefined LBRs updates, regarding
GRE overlay selection, monitoring and dynamically adjusting
flows to optimize network Key Performance Indicators (KPIs)
and enhance resource efficiency.

C. Control Signaling

In this paper, we define the following key concepts and
terms to better understand our data model in Schema 1:
- Flow Rule: A set of instructions dictating how traffic is
handled within SDN architectures. They are crucial for effi-
cient secure traffic management, as they define specific criteria
and attributes (such as source and destination IP addresses,
protocols, and ports) against which traffic is evaluated for
redirection, modification, or dropping.
- Match Field: An attribute within the PDR that is used to
identify and categorize incoming packets based on predefined
criteria. It plays a crucial role in determining how packets are
processed by the network, serving as basis element of a flow
rule. In addition to the standard criteria, match field can also
include a Virtual Local Area Network (VLAN) tag, an MPLS
Label, or any other header field such as Type of Service (ToS).
- Information Element (IE): A structured data field used to
convey specific types of information within control gRPC
signaling. Each IE encapsulates essential data required for the
management and control of packet flows, represented as a tuple
(type, length, value), where type denotes the information kind
(e.g., IP address or protocol), length specifies the data size,
and value contains the actual content.
- PDR: A set of rules or criteria used to identify and handle
packets in a specific manner within the Data-Path. Each PDR
defines conditions (i.e., Match Fields) and actions (ie., FAR
and LBR) for packet processing.
- FAR: Defines the actions to be taken on packets matching a
PDR, such as forwarding, buffering, or duplicating packets.
- LBR: A rule designed to distribute network traffic across mul-
tiple paths or endpoints efficiently, often for load balancing,
redundancy, or failover purposes.

LINX Application: Load Balancing use case
Management Layer

gRPC Server

GRE Overlay Manager

eBPF Program Manager

eBPF SkeletonsYA
M

L
C

on
fig

Va
lid

at
or

Toolchain

Network Stack

Main Memory

NIC Driver

Data-Path Layer

Traffic Parser

Data-Path
Entry-Point:

Parsing traffic
based on IP

addresses

X
D

P
PA

SS

X
D

P
D

R
O

P

Traffic Classifier

Classifying
traffic into GRE

and NON
GRE according

to ToS and
protocol

PDR

PDR

PDR

PDR

...X
D

P
D

R
O

P

X
D

P
PA

SS

bpf tail call

Traffic Forwarder

Apply the
rules in the

matching FAR

FAR

FAR

FAR

FAR

...

X
D

P
D

R
O

P

X
D

P
PA

SS

bpf tail call

Traffic Load Balancer

Load balance
traffic based

on LBRs

LBR

LBR

LBR

LBR

...

X
D

P
D

R
O

P

X
D

P
PA

SS

X
D

P
R

E
D

IR
E

C
T

bpf tail call

M
ai

n
M

em
or

y

eBPF Maps

session mappings stats arp tables edge interfaces

gre teid pdrs fars lbrs

NIC Hardware

D
ev

ic
e

Rx Queue Tx Queue

U
ser

Space
K

ernel
Space

Fig. 2: LINX Architecture Details

Schema 1 Flow Rules’ Data-Model/Grammar
1: request: operand rules

2: operand: create | update | delete

3: rules: rule [,rules]

4: rule: PDR | FAR | LBR | [IEs]

5: IEs: IE [,IEs]

6: IE: (type, length, value)

7: length: u8 | u16 | u32 | u64

8: value: CONST (decimal)

9: typ: IP address | MAC address | protocol |

ToS | action | interface | interface index

10: PDR: (IP address, u32, src_ip), (IP

address, u32, dst_ip), (protocol, u8,

TCP|UDP), (ToS, u8, CONST)

11: FAR: (action, u8, REDIRECT|PASS|DROP),

(interface, u32, GRE-WAN1|GRE-WAN2|..|

GRE-WANi|NON-GRE), (ifIndex,u32, 1|2|..|i+1)

12: LBR: FAR, (ToS, u8, CONST)

D. Data-Path Traffic Processing

The in-kernel packet processing journey begins at the NIC
Receiver (Rx) queue where the NIC’s Direct Memory Ac-
cess (DMA) triggers a Hardware Interrupt Request (IRQ)
(HardIRQ), invoking the NIC Driver’s IRQ handler. This
handler then initiates the New API (NAPI) subsystem via
a Software IRQ (SoftIRQ), starting packet processing via
the driver’s registered poll function, which implements the
XDP hook for eBPF XDP program. To ensure uninterrupted
processing, the NIC driver disables further IRQs. The eBPF
XDP program, executed by the XDP hook, marks the entry-

point for the created XDP pipline. Starting execution, the
XDP program accesses a context object metadata, encapsu-
lated within the optimized xdp md struct [3]. Following data
parsing, control may transfer to other XDP programs via
bpf tail call function [4]. After parsing, metadata fields can
be read from the context object, which also allows attachment
of custom metadata [5]. In this regard, XDP programs access
persistent data structures (eBPF maps) via functions such as
bpf map lookup elem or bpf map update elem [6], [7]. A
final verdict is issued, determining packet handling, such as
dropping, re-transmission, kernel processing, or redirection.
Once packet processing is completed, the NAPI subsystem is
deactivated, and IRQs from the NIC device are re-enabled.
This treatment is summarized in Algorithm 1

Algorithm 1 Data-Path Packet Processing
1: Receive Packet on Rx queue

2: DMA Triggers HardIRQ

3: Invoke NIC Driver’s IRQ Handler

4: Initiate NAPI Subsystem (SoftIRQ)

5: Start Packet Processing via Driver Poll

6: Trigger XDP pipeline

7: Packet enters XDP_Parser

8: bfp_tail_call XDP_Classifier

9: bfp_tail_call XDP_Forwarder

10: bfp_tail_call XDP_Load_Balancer

11: Redirect packet to TX queue

IV. METHODOLOGY AND TESTBED

A. Experimental Setup

We are interested into subjecting our solution to rigorous
stress testing to measure its resilience, using RFC 2544-like
tests [8]. These tests are designed to evaluate the throughput,
latency, and overall performance of the solution under vari-
ous conditions. The System Under Test (SUT) consists of a
loopback between two devices: one hosting a traffic generator
such as TRex, and the other, the Device Under Test (DUT),
hosting the solution to test, in our case LINX. TRex [9] is an
open-source realistic traffic generator powered by DPDK, used
to measure the maximum sustainable throughput of a DUT.

B. Experimental Platform

To evaluate the performance of the HELIOS framework we
utilized two identical hosts for the testing environment. One
host was configured with TRex traffic generator, while the
LINX solution was deployed on the second host. On both
devices, we have installed an Ubuntu 22.04 operating system,
with kernel version 5.15 to ensure optimal compatibility with
eBPF and DPDK. Each device is powered with the 12th

Generation of the Intel i7 embedding 12 Cores, clocking at
4.9 GHz, and using 25 MiB of L3 cache memory. Regarding
the network interfaces, both hosts were outfitted with Dual-
port Intel Ethernet X550T adapters, supporting 10 Gbps on
each port, ensuring reliable high-speed data transmission.

C. Test Cases

We scripted Python test cases to mimic data traffic on both
uplink and downlink scenarios, leveraging TRex APIs [10].

• Uplink: We generate UDP/TCP traffic in TRex, simulat-
ing a client sending data via one of the dual-port X550T
adapters to the DUT. The LINX gateway, acting as the
edge node, processes the traffic, encapsulates it in a
GRE header, and forwards it to the appropriate WAN
interface, as determined by the load balancer based on
SDN controller rules. The traffic is looped back over the
GRE overlay to TRex on the second port, simulating a
remote-region node.

• Downlink: In the downlink scenario, the simulated
remote-region node, represented by TRex, generates
UDP/TCP traffic that is encapsulated in a GRE tunnel
and sent to the DUT (i.e., LINX gateway) via the WAN
interface. The DUT decapsulates the traffic and forwards
the resulting packets to the end-user (i.e., TRex) over the
LAN through the other port on the Intel X550T adapter,
completing the End-to-End (E2E) delivery process.

• Control Signaling: The ONOS SDN Controller commu-
nicates with LINX gateways to dynamically manage and
distribute the flow rules. We simulate situations where the
SDN needs to update the flow rules within the remote
regions, and estimate the delay.

V. PERFORMANCE

Now, we present the results of our measurement cam-
paign regarding throughput, CPU usage, Packet Loss Rate
(PLR), and control signaling latency. Across all tests, we
analyze the effect of packet injection rate (fi), packet size
(sp) ({100, . . . , 1400} ∪ {50, 1450}), and the number of Rx
queues (cj), where (i, j, p) ∈ {1, 2, . . . , 10}×{1, 2, . . . , 12}×
{1, 2, . . . , 16}. We used the ‘irqbalance’ service to distribute
incoming traffic evenly across the active Rx Queues, with
each Rx Queue pinned to a single CPU core to optimize
performance. Each test configuration was repeated 50× to
ensure accuracy and consistency.

a) Throughput: Figure 3 shows the peak throughput (in
MPackets/s) obtained for downlink (Figure 3a) and uplink
(Figure 3b) scenarios (see Section IV-C) function of sp and
cj . All curves exhibit a similar pattern, decreasing smoothly
from 10MPackets/s and converging toward 1MPackets/s. This
trend resembles an exponential decay function, with through-
put gradually declining and approaching an asymptote. The
similarity between the uplink and downlink curves suggests
that direction has minimal impact on throughput behavior;
however, packet size sp and, to a lesser extent, the number of
Rx Queues cj , appear to influence the results. Indeed, the more
sp increases, the more throughput decreases, which is intuitive
given that throughput is measured in MPackets/s. With a fixed
10Gbps bandwidth, the maximum achievable throughput is ap-
proximately 10MPackets/s (according to TRex performance)
for 50-Byte packets; as packet size grows, the packet rate
declines, even though the bandwidth remains fully utilized.

The impact of cj appears minimal with the current SUT, but
we anticipate that with a more powerful SUT, this impact will
become evident. Transmitting hundreds of millions of packets
would more clearly demonstrate the importance of multiple
Rx Queues in handling high packet volumes efficiently.

b) CPU Load: Table I displays the average CPU usage in
percentage as a function of fi and cj . The results reveal a trend
where, the higher fi, the greater CPU load will be across all
configurations. At higher packet rates, particularly beyond f4
(4MPackets/s), CPU usage nears saturation with a single Rx
Queue (i.e., c1), indicating inefficiency under high packet rates.
In contrast, increasing the cj value significantly improves CPU
efficiency. For example, in configuration (f4, c1), CPU load
is 99.23%, reaching 100% in (f7, c1) and higher. However,
this load drops to 19.19% with only two Rx Queues. With
cj ≥ 6, CPU load remains below 30% and increases more
slowly with further packet injections, showing better efficiency
and reduced risk of saturation. Configurations c8 to c12 exhibit
the lowest CPU usage, with c8 at 20.06% and c12 at 7.84%
for 10MPackets/s, highlighting the effectiveness of multiple
Rx Queues in reducing CPU load even at high packet rates.

TABLE I: CPU Load Function of Packet Rates and Rx
Queues

Injections
[MPackets/s]

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

c1 7.92 10.79 31.41 99.23 99.33 99.73 100 100 100 100
c2 2.88 5.56 9.35 19.19 65.15 68.34 98.41 98.87 98.95 99.98
c3 1.86 3.52 5.74 10.63 15.21 23.22 68.38 76.85 93.11 93.29
c4 1.82 2.75 5.67 7.47 9.39 12.29 23.45 30.76 83.85 84.49
c5 1.46 2.48 4.98 4.39 7.78 15.67 24.30 27.51 45.09 45.67
c6 1.19 2.36 3.44 3.62 6.34 6.35 17.51 18.32 29.56 29.86
c7 1.12 1.48 2.84 4.68 4.69 5.65 16.14 17.10 24.88 25.17
c8 1.01 1.84 3.18 3.46 5.38 5.80 15.43 16.88 19.78 20.06
c9 1.09 1.46 2.45 3.18 3.59 4.07 9.48 10.01 15.98 16.69
c10 1.01 1.28 2.45 3.35 3.64 4.28 8.32 9.62 11.34 11.69
c11 1.20 1.24 2.33 3.16 3.23 5.34 5.98 6.57 8.7 8.9
c12 1.10 1.18 2.12 2.91 3.11 3.27 3.89 4.48 7.28 7.84

c) Control Signaling Latency: Figure 4 depicts the Cu-
mulative Distribution Function (CDF) obtained for the control
signaling scenario, derived from a dataset of 1, 000 values
representing the delay ratio achieved in less than xms. The
results show a low-latency distribution characterized by min-
imal variation with the following statistical measures: a mean
of 0.8155ms, variance of 0.3539ms2, standard deviation of
0.5949ms, and a coefficient of variation of 0.7295. We find
that approximately 50% of CP operations complete within
0.7ms, illustrating that half of all operations complete un-
der 1ms, while the 10th percentile is as low as 0.146ms,
indicating that a significant portion of operations are nearly
instantaneous. The curve progresses smoothly, with 90% of
operations achieving latency below 1.6ms. The upper tail of
the CDF reaches 2.6ms, indicating the maximum observed la-
tency, which likely represents rare worst-case delays. Overall,
these results indicate reliable low-latency performance ideal
for real-time applications requiring immediate rerouting or
policy adjustments.

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (ms)

C
D

F

Fig. 4: Control Signaling Latency

d) Packet Loss Rate: Figure 5 presents the PLR (in
percentage) plotted against packet size (sp) and Rx Queue
count (cj) for the uplink scenario, where we fully utilize the
system’s available bandwidth (i.e., 10Gbps). For each sp, we
have represented 12 PLR average values corresponding to the
values of cj , we thus obtained sp-dependent cj-dependent
global measures. We have made several observations from the
graph: (i) - The observed PLR trend resembles an exponential
decay function, where the rate of decrease is rapid for smaller
packet sizes and gradually levels off for larger packet sizes,
approaching an asymptote rather than continuing to decrease
linearly. (ii) - The cj-dependent PLR values generally converge
except for c1 and c2. In these cases, the high traffic volume-
approximately 10 and 8MPackets/s, for packet sizes of 50
and 100Bytes, respectively- overwhelms a single Rx Queue,
resulting in increased PLR. (iii) - With a sufficient number
of Rx queues (cj ≥ 3), the PLR remains consistently below
0.15% and eventually stabilizes around 0.03%. This value is
negligible in comparison to the total number of transmitted
packets, indicating highly efficient packet delivery. (iv) - The
PLR is impacted by the packet volume, not size. For instance,
with 50-Byte packets, we can generate in practice around
10,MPackets/s (based on TRex experience). In contrast, larger
packets like 1450Bytes result in fewer packets per second,
reducing the load on each RX queue, since this later can only
handle a certain packet rate before overflow.

50 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1450
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Packet Size [Bytes]

Pa
ck

et
L

os
s

R
at

e
[%

]

(∏12
j=1 cj, s1

) (∏12
j=1 cj, s2

) (∏12
j=1 cj, s3

) (∏12
j=1 cj, s4

)
(∏12

j=1 cj, s5

) (∏12
j=1 cj, s6

) (∏12
j=1 cj, s7

) (∏12
j=1 cj, s8

)
(∏12

j=1 cj, s9

) (∏12
j=1 cj, s10

) (∏12
j=1 cj, s11

) (∏12
j=1 cj, s12

)
(∏12

j=1 cj, s13

) (∏12
j=1 cj, s14

) (∏12
j=1 cj, s15

) (∏12
j=1 cj, s16

)

Fig. 5: PLR per Packet Size and Number of Rx Queues

To sum up our findings in this paper; we first found that
eBPF XDP-based solutions are primarily influenced by the

50 200 400 600 800 1,000 1,200 1,400

1

2

3

4

5

6

7

8

9

10

Packet Size [Bytes]

T
hr

ou
gh

pu
t

[M
Pa

ck
et

s/
s

]
c1
c2
c3
c4

50 200 400 600 800 1,000 1,200 1,400

1

2

3

4

5

6

7

8

9

10

Packet Size [Bytes]

c5
c6
c7
c8

(a) Downlink (GRE Headers Decapsulation)

50 200 400 600 800 1,000 1,200 1,400

1

2

3

4

5

6

7

8

9

10

Packet Size [Bytes]

c9
c10
c11
c12

50 200 400 600 800 1,000 1,200 1,400

1

2

3

4

5

6

7

8

9

10

Packet Size [Bytes]

T
hr

ou
gh

pu
t

[M
Pa

ck
et

s/
s

]

c1
c2
c3
c4

50 200 400 600 800 1,000 1,200 1,400

1

2

3

4

5

6

7

8

9

10

Packet Size [Bytes]

c5
c6
c7
c8

(b) Uplink (GRE Headers Encapsulation)

50 200 400 600 800 1,000 1,200 1,400

1

2

3

4

5

6

7

8

9

10

Packet Size [Bytes]

c9
c10
c11
c12

Fig. 3: Throughput Obtained on the Downlink and Uplink per Packet Size and Number of Rx Queues

volume of injected traffic and the number of Rx Queues, while
packet size affects throughput only at the injection phase.

VI. CONCLUSION

In this paper, we introduced the HELIOS architecture, an
eBPF-based SD-WAN solution tailored for high-performance
applications within CEC networks. We detailed the design
of the LINX framework, which implements essential func-
tionalities such as load balancing and firewalling on Edge
Gateways. This solution effectively enables load balancing,
protocol/ToS-aware traffic redirection across multiple GRE
overlays, and early-stage filtering and dropping of packets.
Our experimental results emphasize the need to reconsider
both SD-WAN solutions and other DP components, like the
5G User Plane Function (UPF). The findings show significant
improvements in throughput, PLR, and resource utilization,
underscoring the potential of our solution to enhance network
efficiency and performance.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon Europe Research and Innovation program AC3

project under grant agreement No 101093129.

REFERENCES

[1] A. Mokhtari and A. Ksentini, “Sd-wan for cloud edge computing
continuum interconnection,” in Proceedings of IEEE Globecom 2024,
Cap Town, South Africa, 2024.

[2] H. S. D. Y. E. Standardization and W. D. S.-W. M. Growth, “Mef leads
sd-wan service standardization & certification.”

[3] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacı́fico, E. R. da Silva San-
tos, E. P. M. C. Júnior, and L. F. M. Vieira, “Fast packet processing
with ebpf and XDP: concepts, code, challenges, and applications,” ACM
Comput. Surv., vol. 53, no. 1, pp. 16:1–16:36, 2021.

[4] eBPF, “bpf tail call,” [online] available at:
https://docs.ebpf.io/linux/helper-function/bpf tail call/ (last checked:
Oct. 2024).

[5] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller, “The express data path: fast programmable
packet processing in the operating system kernel,” in Proceedings of
the 14th International Conference on emerging Networking EXperiments
and Technologies, CoNEXT 2018, Heraklion, Greece, December 04-07,
2018, X. A. Dimitropoulos, A. Dainotti, L. Vanbever, and T. Benson,
Eds. ACM, 2018, pp. 54–66.

[6] eBPF, “bpf map lookup elem,” [online] available at:
https://docs.ebpf.io/linux/helper-function/bpf map lookup elem/ (last
checked: Oct. 2024).

[7] ——, “bpf map update elem,” [online] available at:
https://docs.ebpf.io/linux/helper-function/bpf map update elem/ (last
checked: Oct. 2024).

[8] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network
Interconnect Devices,” RFC 7560, 1999.

[9] Cisco, “TRex Stateless API Reference,” 2024, [online] available at:
https://trex-tgn.cisco.com/ (last checked: Mai 2024).

[10] ——, “TRex Stateless API Reference,” 2015, [online] available
at: https://trex-tgn.cisco.com/trex/doc/cp stl docs/api/index.html (last
checked: Mai 2024).

	Introduction
	Background
	(e)BPF
	XDP

	SD-WAN Featuring eBPF Proposal
	Holistic Perspective
	Detailed View
	Control Signaling
	Data-Path Traffic Processing

	METHODOLOGY AND TESTBED
	Experimental Setup
	Experimental Platform
	Test Cases

	Performance
	Conclusion
	References

