
1

SFedXL: Semi-synchronous Federated Learning
with Cross-Sharpness and Layer-Freezing

Mingxiong Zhao, IEEE Member, Shihao Zhao, Chenyuan Feng, IEEE Member, Howard H. Yang, IEEE Member,
Dusit Niyato, IEEE Fellow, and Tony Q. S. Quek, IEEE Fellow

Abstract—Federated learning (FL) emerges as a potential
solution for enabling multiple terminal devices to collaboratively
accomplish computational tasks within a Unmanned Aerial Vehi-
cle (UAV) swarm. However, traditional FL approaches, predicated
on synchronous data aggregation, are not feasible for a UAV
swarm owing to the inherently variable and dynamic nature of
their communication networks compared with terrestrial systems.
Furthermore, the data procured by UAVs is often highly hetero-
geneous, attributable to disparities in deployment environments
and device attributes. Considering the distinct flight paths and
unique operational conditions encountered by different UAVs,
a considerable amount of data remains unlabeled. To tackle
the challenges associated with asynchronous operations and the
prevalence of unlabeled data, we introduce a novel framework
termed Semi-synchronous FL with Cross-Sharpness and Layer-
Freezing (SFedXL), tailored for a UAV swarm. In particular,
we devise a cross-sharpness model training strategy aimed at
optimizing the utilization of both labeled and unlabeled datasets.
Additionally, we propose an innovative semi-synchronous model
aggregation protocol, complemented by client-specific layer-
freezing and client cluster scheduling, designed to expedite
the training process. Our simulation results indicate that the
proposed algorithm surpasses current FL methods in terms of
object recognition accuracy and communication efficiency, albeit
with a trade-off of increased local computation latency.

Index Terms—Semi-supervised federated learning, semi-
synchronous federated learning, data heterogeneity, device asyn-
chrony, lightweight model training.

I. INTRODUCTION

The advent of agile Unmanned Aerial Vehicles (UAVs) has
broadened their application in dynamic and distributed set-
tings, notably in aerial data acquisition for Internet of Things
(IoT) and smart city initiatives [2]–[4]. Given their onboard
processing prowess, UAVs can locally process collected data
and train machine learning (ML) models, which is invaluable
for real-time decision-making scenarios such as disaster man-
agement and urban surveillance [5], [6]. Meanwihle, Federated

M. Zhao, and S. Zhao are with the Engineering Research Center of
Cyberspace, National Pilot School of Software, Yunnan University, Kunming,
China. (E-mail: jimmyzmx@gmail.com; shihaozhao@mail.ynu.edu.cn).

C. Feng is with EURECOM, Sophia Antipolis 06410, France (E-mail:
Chenyuan.Feng@eurecom.fr).

H. H. Yang is with Zhejiang University/University of Illinois Urbana-
Champaign Institute, Zhejiang University, Haining 314400, China (E-mail:
haoyang@intl.zju.edu.cn).

D. Niyato is with School of Computer Science and Engineering, Nanyang
Technological University, Singapore (E-mail: dniyato@ntu.edu.sg)

T. Q. S. Quek is with the Information Systems Technology and Design
Pillar, Singapore University of Technology and Design, 487372, Singapore
(E-mail: tonyquek@sutd.edu.sg).

Part of the work was presented at 2024 IEEE 24th International Conference
on Communication Technology [1].

Corresponding author: Chenyuan Feng.

learning (FL) stands as a pioneering paradigm for distributed
ML that maintains data privacy across local devices, unifying
them under a globally shared statistical model coordinated by a
central server. This approach adeptly mitigates concerns over
centralized data management, especially where data privacy
and security are paramount [7]–[9]. Within the FL ecosystem,
a diverse array of client devices pools their resources to
collaboratively refine ML models, with the central server
orchestrating the training while upholding data privacy [10],
[11]. This framework capitalizes on the collective intelligence
and capabilities of decentralized devices. Consequently, FL
is particularly well-suited for deployment in a UAV swarm.
Numerous studies are currently pivoting towards integrating
FL within UAV operations [12].

However, the integration of FL within a UAV swarm
grapples with substantial challenges, given the decentralized
essence of an FL manner and the distinctive traits and limi-
tations of aerial networks. These include unpredictable trans-
mission links and heterogeneous data patterns among UAVs
[13]–[16]. While FL provides a cost-effective framework for
distributed model training without raw data sharing, its adap-
tation to a UAV swarm is intricate. Factors such as the abun-
dance of unlabeled data, scarce communication bandwidth,
and the finite computational resources on UAVs complicate
the scenario [17]–[19]. UAVs are often deployed in applica-
tions such as environmental monitoring and disaster response,
necessitating rapid decision-making based on collected data.
However, the prevalence of unlabeled data complicates model
training, necessitating manual labeling or the incorporation of
unsupervised or semi-supervised techniques into FL. UAVs
operate in dynamic environments where communication links
are sporadic, bandwidth-restricted, or disrupted by mobility or
interference. These challenges hinder frequent model updates
between UAVs and a central server without incurring latency
or energy drain. Moreover, onboard computational resources of
each UAV are often limited, requiring resource-efficient algo-
rithms and model compression to align with their operational
demands.

A. Related Work

Several investigations have delved into the incorporation of
FL within a UAV swarm, with a primary focus on overcoming
the data and resource constraints of UAVs and enhancing
learning efficacy.

1) FL with Unlabeled Data: To surmount the FL challenge
with unlabeled data, several innovative methods have emerged.

2

One approach is to apply semi-supervised learning techniques,
which could harness a modest subset of labeled data to shep-
herd the learning process for an expansive corpus of unlabeled
data. Within an FL framework, this methodology could entail
the amalgamation of labeled data from a cohort of clients with
unlabeled data contributed by others. An alternative prevalent
strategy is the utilization of pseudo-labeling, also known as
self-training. This technique involves an initialization of a
model with labeled data, which then proceeds to generate
pseudo-labels upon the unlabeled data. Thereafter, this model
can be subjected to iterative refinement as an increasing
volume of pseudo-labeled data accrues, progressively enhanc-
ing the model’s predictive acumen. For instance, FedMatch
[20] harnesses a federated semi-supervised learning approach,
capitalizing on disjoint learning and inter-client consistency.
Alongside this, FedCD [21], a class-aware balanced dual
teacher model, ensures the efficient exploitation of unlabeled
data in federated semi-supervised learning. SemiPFL [22] pro-
poses a personalized semi-supervised FL framework, tailored
for edge intelligence, to optimize learning in environments
with scarce labeled data. However, these methods often over-
look the statistical variance between clients’ unlabeled and
labeled datasets when formulating the loss function during op-
timization. Recent centralized learning advancements suggest
that semi-supervised learning can significantly benefit from
sharpness-aware optimization techniques.

2) FL with Constrained Resources: Due to the limited
computational power and wireless communication resources,
some clients, often referred to as stragglers, experience consid-
erable delays when engaging in FL. These delays can severely
impair the efficacy of traditional synchronous FL models [23].
To alleviate the impact of stragglers and diminish commu-
nication costs, various solutions have been proposed. Model
compression techniques, including model pruning [24], spar-
sification [25], and quantization [26], are extensively utilized
to alleviate communication overhead. Polaris [27] accelerates
asynchronous FL by employing an adaptive client selection
strategy, while SITUA-CQ [26] improves FL convergence
speed and efficiency by incorporating client-specific criteria
in a situation-aware clustering and quantization level selection
technique. Despite these methods to reduce communication
overhead, model quantization necessitates additional support
in the deployment environment, and model pruning and
sparsification often require specialized model architectures,
complicating their deployment in resource-limited settings.
To overcome these limitations, ALF [28], an automatic layer
freezing approach, was introduced to enhance communication
efficiency in cross-device FL. However, a reliable method for
determining which layers to freeze is yet to be established.

Despite these advancements, a substantial gap remains in
addressing the combined challenges of managing large vol-
umes of unlabeled data, ensuring robust communication under
network constraints, and efficiently utilizing computational
resources within a UAV swarm. Our work aims to bridge these
gaps by proposing a framework that integrates semi-supervised
learning techniques into FL, optimizing both communication
and computational efficiency within UAV swarms.

B. Contributions

In this study, we introduce a novel framework called Semi-
synchronous Federated Learning with Cross-Sharpness and
Layer-Freezing (SFedXL), tailored for a UAV swarm. We
design the framework to optimize data utilization, expedite
the training process, and ultimately enhance model accuracy.
Our main contributions are summarized as follows:

• To effectively harness unlabeled data amassed by each
UAV, we devise a novel semi-supervised FL method
based on cross-sharpness learning (XSL) scheme [29].
While semi-supervised FL is adept at leveraging a com-
bination of extensive unlabeled datasets alongside limited
labeled data, it is heavily contingent on the similarity
and transferability between these datasets, which can lead
to suboptimal local minima detrimental to the unlabeled
data. Our method maintains consistent learning perfor-
mance across both datasets by diminishing the cross-
sharpness in predictive functions, thereby amplifying the
efficacy.

• To counter the straggler issue stemming from asyn-
chronous UAV operations, we developed a theoretical
model to assess the influence of dropouts or stragglers
on training latency in FL. Based on our analysis, we
propose a Client Clustering Selection (CCS) algorithm.
We design the algorithm to reduce latency and verify its
effectiveness theoretically.

• To address the limitations imposed by limited resources,
we devise a Client-wise Layer Freezing (CWLF) scheme.
This scheme is adept at reducing communication over-
head while also mitigating the impact of training noise
and data heterogeneity across various client UAVs.

• Extensive simulation results demonstrate that our pro-
posed SFedXL method surpasses classical FL methods in
terms of object recognition accuracy and communication
cost. These findings underscore the significant practical
benefits and potential of our framework in enhancing
UAV swarm operations within an FL context.

The rest of the paper is organized as follows: Section II
delineates the system model and underscores the primary chal-
lenges encountered. Section III presents a detailed description
of the proposed algorithms. Section IV showcases the simu-
lation outcomes and offers an in-depth analysis. Ultimately,
Section V concludes this work.

II. SYSTEM MODEL & PROBLEM FORMULATION

As depicted in Fig. 1, we aim to implement an FL manner
in a UAV swarm comprising C + 1 devices, which includes
one server UAV and C client UAVs, denoted by the set C ≜
{0, 1, 2, · · · , C}. Within this configuration, each client UAV is
equipped for data acquisition and computational tasks, while
the server UAV is regarded as a central server, responsible
for orchestrating the collaborative efforts of the entire swarm.
Throughout their operation, the client UAVs are tasked with
gathering substantial volumes of unlabeled data alongside a
limited set of labeled data. We define the unlabeled and labeled
datasets on the c-th client UAV as Dc,u = {zci}

Nc,u

i=1 and
Dc,l = {(xcj , ycj)}

Nc,l

j=1 , respectively. Here, zci signifies the

3

Client Side

Unlabeled
Dataset 1

...

Client 1

Client 2

Client C

Unlabeled
Dataset 2

Unlabeled
Dataset C

Local Update

Server SideTransmission

...

Dropoff Client

Successfully Received
Client 1' s Update

Straggler
Client

Client 1

0

...

Client 2

Client C

...

Global Update

Model Aggregation

Challenge 1
Utilization of

Unlabeled Data

Challenge 2
Communication

Overhead and Straggler
Problem

Semi-synchronous
Communication

Protocol

 Server UAV

Fig. 1: Overall semi-synchronous FL framework for a UAV
swarm and the main challenges.

i-th unlabeled sample, xcj represents the j-th data feature
within the input space X , and ycj corresponds to its label
within the label space Y . Nc,u and Nc,l represent the sizes
of the unlabeled and labeled datasets, respectively, with the
understanding that Nc,u ≫ Nc,l. Furthermore, we denote the
aggregate of all labeled datasets from the client UAVs as
Dl =

⋃C
c=1 Dc,l, which constitutes the global labeled dataset.

Similarly, Du =
⋃C

c=1 Dc,u aggregates the unlabeled datasets
from all client UAVs, forming the global unlabeled dataset.

A. Traditional FL with Labeled Data

In traditional FL, the objective function for local training at
the c-th UAV over its own labeled dataset, is formulated as
follows:

min
Mc

J(fMc , Dc,l): =
1

Nc,l

∑Nc,l

i=1
ℓ(fMc(xci), yci), (1)

where fMc : X → Y is an r-layer neural network (NN) model,
parameterized by Mc, at the c-th UAV, and ℓ (fMc(xci), yci)
denotes the loss function to measure the discrepancy between
the predictions of the local model fMc

and the actual labels yci
for the training instance xci . For assessing the local model’s
accuracy, we employ the cross-entropy loss, a prevalent choice
for evaluating the divergence between the model’s predictions
and the true dataset labels. For assessing the local model’s
accuracy, we employ the cross-entropy loss, a prevalent choice
for evaluating the divergence between the model’s predictions
and the true dataset labels. Under the orchestration of the
server UAV, which facilitates collaboration among all client
UAVs, the collective ambition of the FL system is to converge
towards a global model fM . This model aims to minimize the
global loss function J(fM , Dl) across the entire aggregated
dataset Dl. The global loss function is formulated as follows:

min
M

J(fM , Dl) :=

C∑
c=1

1

Nc,l

Nc,l∑
i=1

ℓ(fM (xci), yci), (2)

where M denotes the global model parameters.
A conventional approach entails iterative communication

between several client UAVs, denoted as Uc, and the server
UAV, denoted as Us, complemented by gradient descent tech-
niques to update the global model. For the sake of clarity

and without loss of generality, we concentrate on the t-th
communication round. At the beginning of the t-th round, the
server UAV selects a portion of client UAVs from entire UAV
swarm for participation in the training process, denoted by Γt.
Let K denote the size of Γt. Subsequently, the server UAV
distributes the global model fMt to all selected client UAVs.
On the client-side, each participant engages in El epochs of
local model enhancement, where El ≥ 1. Let e denote the
index of local updates. For each client UAV c ∈ Γt and for
e = 0, · · · , El − 1, the evolution of local model parameters
during the t-th round at the c-th UAV is given as follows:

M t
c,0 ←M t,

M t
c,e+1 ←M t

c,e − η∇Mt
c,e
J(fMt

c,e
, Dc,l),

M t+1
c ←M t

c,El
,

(3)

where M t represents the global model parameters downloaded
during the t-th round, M t+1

c denotes the local model parame-
ters updated by the c-th UAV updated local model parameters
during the t-th round, M t

c,e denotes the local model parameters
updated by the c-th UAV at the e-th epoch of local training
during the t-th round, and η represents the learning rate.

Let Γ
′

t epresent the set of client UAVs whose model updates
are successfully received by the server UAV. Due to unreliable
transmissions, we have Γ

′

t ⊆ Γt. Let n denote the number
of client UAVs the server UAV expects to receive updates
from successfully, with n ≤ K. In this work, we adopt
a semi-synchronous communication protocol to coordinate
the FL training process [27]. Specifically, the server UAV
will stop waiting and update the global model when either
of the following conditions is met: receiving model updates
from n client UAVs or reaching the timeout threshold T̃t. In
accordance with the FedAvg framework [7], the global model
parameters at the t-th round evolve as follows:

M t+1 =

∑
c∈Γ

′
t
Nc,lMc

t+1∑
c∈Γ

′
t
Nc,l

. (4)

B. Unlabeled and Heterogeneous Data Issue

In real-world scenarios, each UAV often collects a sub-
stantial amount of unlabeled data, particularly in unfamiliar
environments [30], [31]. To effectively utilize this unlabeled
data, semi-supervised learning has emerged as a promising
approach [32]. The core idea of semi-supervised learning is to
leverage a pre-trained model with sufficient classification capa-
bilities to generate surrogate labels for the unlabeled data. The
aim of semi-supervised learning with FL is to train a shared
model that performs well on a global dataset. To integrate
both labeled and unlabeled data, the global loss function of
semi-supervised FL can be reformulated as follows:

min
M

JSSFL =min
M

(Jl(M,Dl) + Ju(M,Du))

=min
M

C∑
c=1

Nc,l∑
i=0

(
1

Nc,l
ℓ (fM (xci), yci)

+

C∑
c=1

Nc,u∑
j=0

I
Nc,u

ℓ
(
fM

(
A
(
zcj

))
, ŷcj

))
,

(5)

4

where Jl(M,Dl) represents the loss function for supervised
learning over the labeled dataset Dl, Ju(M,Du) denotes the
semi-supervised regularization term for the unlabeled dataset
Du; A(·) is a data augmentation function that transforms a
raw unlabeled data point zcj into an augmented variant, from
which a pseudo-label ŷcj is obtained; I is a boolean variable
that selects high-confidence pseudo-labels; I = 1 if ŷcj >
τ , and I = 0 otherwise, where τ is a predefined confidence
threshold.

Recent studies have shown that training exclusively on
labeled data and using augmentation techniques to generate
pseudo-labels for unlabeled data can lead to significant gener-
alization mismatches. However, introducing a cross-sharpness
term can mitigate this issue [29]. In Fig. 2, we plot the loss
landscapes of a model trained solely on labeled data and a
model trained with both labeled and unlabeled data, incorpo-
rating a cross-sharpness term. The results demonstrate that the
loss landscape becomes smoother, with the model achieving
lower losses and higher accuracy. The contour values for
labeled and unlabeled data in the first row are lower than those
in the second row, indicating that training techniques based on
minimizing cross-sharpness may converge to a better model
with a lower training loss. Focusing on the two subplots in
the third column, we observe that the accuracy curves for both
labeled and unlabeled data follow a consistent trend in semi-
supervised learning with cross-sharpness, whereas a noticeable
mismatch appears in the purely supervised learning scenario.
Despite its great potential, few studies have extended this
method to the FL context, particularly in addressing challenges
such asdevice’s asynchronous operation characteristics and
limited resources. To ensure consistency between labeled and
unlabeled data learning in a UAV swarm, we propose a novel
cross-sharpness regularization-based FL algorithm in Section
III-A.

C. Limited Resources Issue

For ML, the parameters of models, particularly deep neural
networks (DNNs), are conventionally refined in a sequential,
layer-wise manner. Within the context of FL paradigm, recent
studies have highlighted that it is not imperative to update all
DNN layers with each training iteration. By pinpointing the
layers that exhibit minimal parameter fluctuations during the
training phase and subsequently “freezing” their parameters,
the redundancy of updates and the associated data trans-
missions can be reduced, thereby alleviating the challenges
posed by limited resources [28]. The main idea of the layer-
freezing methodology lies in an optimal selection of which
layers to render static, that is, which parameters to omit from
transmitting.

1) Communication Overhead: Let a boolean variable It,cl to
indicate the layer-freezing decision. If the parameters of layer
l are updated and transmitted during round t on client c, then
Itl = 1; otherwise, Itl = 0. The communication overhead for
client UAV c to transmit model parameters to the server UAV
is expressed as:

Ct,c
s =

L∑
l=1

It,cl Plb, (6)

where Pl denotes the number of parameters in the l-th layer,
and b is the number of bits used to quantify each parameter.

The cumulative communication overhead for the subset of
|Γt| client UAVs in downloading the global model parameters
from the server UAV (denoted as Ct

dl), and in uploading
their updated local model parameters (denoted as Ct

ul) can
be articulated as follows:

Ct
dl =

∑
c∈Γt

L∑
l=1

Plb,

Ct
ul =

∑
c∈Γt

Ct,c
s .

(7)

2) Learning Latency: Within this framework, the learning
latency per round is constituted by two primary components: i)
on the client side, there is client model training and client-side
uploading latency; ii) on the server side, there are the latencies
associated with global model aggregation, client selection, and
global model distribution. Among these factors, the former
is dominant and will be analyzed in greater detail in the
forthcoming sections.

a) Client UAV Updating Latency: Due to device hetero-
geneity, different client UAVs will experience divergent levels
of computation and communication latency. The communica-
tion latency for the c-th client UAV is characterized by:

T cm
c,t =

Ct,c
s

B log2

(
1 +

Pc,txhc

N0

) , (8)

with

hc = 10−
PL(dc)

10 , PL(dc) = PL0 + 10γ log10

(
dc
d0

)
, (9)

where B denotes the bandwidth allocated to each UAV, Pc,tx

denotes the transmission power of the c-th UAV, hc and N0

denote the channel gain and noise power between the server
UAV and the c-th client UAV, respectively, PL(dc) denotes
the path loss for the c-th client UAV, located at a distance dc
from the server UAV, PL0 represents the reference path loss
at a predefined reference distance d0 = 1 meter, γ is the path
loss exponent, and dc denotes the separation between the c-th
client UAV and the server UAV.

Similar to [33], the computation latency for the c-th client
UAV with layer-freezing strategy can be expressed as

T cp
c,t =

Nc,l(1− γt
c)σc

φc
, with γt

c =

L∑
l=1

It,cl , (10)

where T cp
c,t is the local training latency of the c-th UAV during

round t, γt
c is the percentage of frozen parameters, Nc,l is the

size of the local labeled dataset on the c-th UAV, σc and φc

correspond to the total clock cycles expended on local training
and the CPU frequency of the c-th UAV, respectively.

Considering the dynamic nature of real-world environments
where communication links may falter, UAVs could potentially
disconnect. In such instances, the update latency for the c-th
client UAV is characterized as follows:

Tc,t =

+∞, if the c-th UAV is dropping out,

T tr
c,t = T cm

c,t + T cp
c,t, otherwise.

(11)

5

1.0 0.5 0.0 0.5 1.01.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 2D contours of labeled data

0.8

1.0
1.2

1.4

1.4

1.6

1.6

1.8

1.8

1.8

2.02.2

2.4

2.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.4

1.0 0.5 0.0 0.5 1.01.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 2D contours of unlabeled data

1.3

1.5

1.7

1.9

1.9

2.1

2.1

2.1

2.3 2.3

2.3

2.3

2.5
2.5

2.5

2.7

2.7

2.7

2.9

2.9

2.9

3.1

3.1

3.3

3.3

3.5

3.53.73.94.14.34.54.74.95.15.35.55.75.96.16.36.56.76.9

1.0 0.5 0.0 0.5 1.0
X-axis

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

1D loss curves
Labeled data loss
Unlabeled data loss

0

20

40

60

80

100

Ac
cu

ra
cy

Labeled data accuracy
Unlabeled data accuracy

(a) loss landscapes of FedXSL (with cross-sharpness)

1.0 0.5 0.0 0.5 1.01.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.9
2.1

2.3 2.5
2.7
2.9

3.1
3.3
3.5

3.7

3.7

3.9

3.9

4.
1

4.1

4.1

4.
3

4.3

4.3

4.
5

4.5

4.5

4.7

4.7

4.7

4.7

4.9

4.9

4.9

4.9

5.1

5.1

5.1

5.1

5.3

5.3

5.3

5.3

5.5

5.5

5.5 5.5

5.7

5.7

5.7 5.7

5.9

5.9

5.9 5.9

6.1

6.1

6.1 6.1

6.3

6.3 6.36.5 6.5

6.7 6.7

6.9

6.9

7.1

7.1

7.3

7.37.5

7.5

1.0 0.5 0.0 0.5 1.01.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.9

2.1
2.3 2.5

2.72.9

2.9

3.1

3.1

3.3

3.3

3.
5

3.5

3.5

3.
7

3.7

3.7

3.
9

3.9

3.9

4.
1

4.1

4.1

4.
3

4.3

4.3

4.
5

4.5

4.5

4.
7

4.7

4.7

4.
9

4.9

4.9

5.1

5.1

5.1

5.1

5.3
5.3

5.3

5.3

5.5
5.5

5.5

5.5

5.7

5.7

5.7

5.9

5.9

5.9

6.1

6.1

6.1

6.3

6.3

6.3

6.5

6.5

6.5

6.7

6.
7

6.7

6.9

6.
9

6.9

7.1

7.
1

7.1

7.

7.37.5

7.5

1.0 0.5 0.0 0.5 1.0
X-axis

2

3

4

5

6

Lo
ss

Labeled data loss
Unlabeled data loss

0

20

40

60

80

100

Ac
cu

ra
cy

Labeled data accuracy
Unlabeled data accuracy

(b) loss landscapes with FedAvg (without cross-sharpness)

Fig. 2: The loss landscapes for both labeled and unlabeled data, derived from training on a single UAV utilizing the SAT6 dataset
with an allocation of 100 labels per category. (i) The first and the second rows correspond to the outcomes post the 60th epoch
of localized stochastic gradient descent (SGD) training, with and without the incorporation of cross-sharpness, respectively.
(ii) The first two columns show the two-dimensional loss contours for the labeled and unlabeled datasets, respectively, while
the third column illustrates the one-dimensional loss curves.

b) Server UAV Updating Latency: Considering the poor
communication conditions and inadequate computation capa-
bility of certain client UAVs, the server UAV may suffer
from the straggler problem. To prevent the server UAV from
indefinitely postponing the aggregation of the global model
waiting for a disconnected participant, we adopt a semi-
synchronous FL approach in this study. Specifically, the server
UAV will wait for at most T̃t time period before generating an
aggregated global model, anticipating at least n local model
updates from K selected client UAVs [34]. The server UAV
waiting latency during round t and its expectation duration are
given as:

T sw
t = min

{
max
ci∈Γ′

t

{T tr
ci,t}, T̃t

}
,

E {T sw
t } = (1− Pstp) max

ci∈Γ′
t

{T tr
ci}+ PstpT̃t,

(12)

where ρc denotes the dropout probability for the c-th client
UAV at each round, and Pstp signifies the likelihood of the
straggler issue arising.

c) Straggle Problem: Let Cm denote the set of straggler
UAVs whose update latency, even with reliable transmission,
exceeds the maximum server UAV waiting time, defined as
Cm = {c|T tr

c ≥ T̃t and c ∈ C}. In this work, the straggler
problem is defined as the event T sw

t = T̃t, which arises under

two specific conditions: 1) the dropout of at least (K − n)
UAVs within a single training round, signified by the event
Adrop ; 2) the selection of at least one straggler UAV from Cm,
indicated by the event Alast. Given that events Alast and Adrop
are independent of each other, the probability of the server
UAV having to wait for the duration of T̃t before performing
model aggregation is formulated as follows:

Pstp = P (T sw
t = T̃t) = P (Adrop ∪Alast)

= P (Adrop) + P (Alast)− P (Adrop)P (Alast),
(13)

which is monotonically increasing with respect to P (Alast)
and P (Adrop), P (Adrop) is determined by the transmission
circumstance, and P (Alast) is determined by user selection
strategy. Our objective is to minimize the expected server
waiting latency by refining the client scheduling process,
which will be described in Section III-C.

III. ALGORITHM DESCRIPTION AND ANALYSIS

A. Cross-Sharpness Learning (XSL) on the User Side

To harmonize the learning performance between labeled
and unlabeled data, a pioneering approach centered on cross-
sharpness minimization has been introduced in a centralized
learning context [29]. The essence of this technique is twofold:
First, adversarial perturbations are imposed on the parameters

6

of the model trained with labeled data to pinpoint the worst-
case model. Second, the worst-case model is realigned with
the original model by diminishing their predictive dispari-
ties—referred to as cross-sharpness—on the unlabeled data.
Consequently, the abundant reservoir of unlabeled data is opti-
mally leveraged to refine the learning direction by minimizing
the cross-sharpness. In the context of FL, to efficiently utilize
unlabeled samples, each UAV integrates a cross-sharpness
regularization as an additional penalty within its local loss
function. This adaptation enables a better utilization of the
available data, enhancing the overall learning efficacy.

In the proposed Cross-Sharpness Learning (XSL) manner,
the local loss function of the c-th client UAV is formulated as

min
Mc

Jc,SSFL = min
Mc

(Jc,l + Jc,XS), (14)

where Jc,XS is the cross-sharpness regularization of the c-th
client UAV, its minimization can be expressed as

min
Mc

Jc,XS := min
Mc

∑
zci∈Dc,u

ℓ
(
f
M̃c

(zci), fMc
(zci)

)
,

M̃c = Mc + ϵ∗c ,

(15)

where M̃c denotes the worst-case model over the c-th client
UAV’s labeled data, and ϵ∗c denotes the optimal model param-
eter perturbation at the c-th UAV. Similar to [35], the optimal
model parameter perturbation can be expressed as

ϵ∗c = arg max
∥ϵc∥2≤β

ℓ(fMc+ϵc(xcj), ycj)

≈ β
∇Mc

ℓ
(
fMc

(xcj), ycj
)

∥∇Mc
ℓ
(
fMc

(xcj), ycj
)
∥2

,
(16)

where β > 0 is a constant to limit the magnitude of perturba-
tion over ϵc inside a l2-sphere1.

For e = 0, ..., El−1, the local update of the c-th client UAV
at the e-th epoch during the t-th round is given as:

M t
c,0 ←M t,

M t
c,e+1 ←Mc,e − η∇Mc,e

Jc,SSFL,

M t+1
c ←M t

c,El
.

(17)

The details of XSL algorithm are listed in Algorithm 1.

B. Client-Wise Layer Freezing (CWLF) on the User Side

To improve resource utilization efficiency, we design a
Client-Wise Layer Freezing (CWLF) mechanism that dynam-
ically freezes a certain percentage of client model parameters
during the local training. A substantial body of literature has
demonstrated that a significant portion of model parameters
often reach a stable state well before full convergence, with
the stable parameter count increasing progressively over the
training duration [28].Thus, it is unnecessary to keep updating
and sending these parameters once they have reached their

1The approximation is derived using a first-order Taylor expansion and the
properties of dual norms [29], [35]. Its accuracy depends on the smoothness
of the loss function and the validity of the Taylor expansion. When the
loss function exhibits high nonlinearity, the approximation may become less
precise. However, in many practical applications, particularly in deep learning,
this approach has been shown to be effective, as gradient information generally
provides sufficient directional guidance for optimization.

Algorithm 1 Cross-Sharpness Learning (XSL) Function

Require: Dc,l, Dc,u,Mt, β, El

Ensure: Mc
t+1

1: Initialize the local model parameters Mc
0 ←M t

2: for e = 0 to El − 1 do
3: Calculate local labeled loss Jc,l according to (1)
4: Calculate optimal model parameter perturbation ϵ∗c ac-

cording to (16)
5: Calculate worst-case model M̃c and cross-sharpness

regularization Jc,XS according to (15)
6: Update local model parameters according to (17)
7: end for
8: Return Mc

t+1

best values, as doing so only wastes extra computing power
and bandwidth without improving performance. Therefore, it
is prudent to freeze these stable parameters, exempting them
from further updates and uploads, thereby incurring savings
in terms of resources.

The CWLF scheme necessitates users to monitor and re-
view the model’s historical parameter updates for each layer.
Given the non-independent and identically distributed (non-
IID) nature of user data in FL and the potential for training
noise, it is expected that gradient changes will not only be non-
zero but also exhibit fluctuations. To address these issues, we
adopt a moving average strategy, which helps to smooth out
fluctuations and provides a more stable basis for assessment.
Furthermore, recognizing the substantial variation in gradient
update magnitudes across the different layers of the client
model, we implement a normalization strategy to facilitate a
unified freezing threshold τ . It is worth mentioning that we
assume that all layers are involved in training in the first round,
that is, all of them are unfrozen layers.

For round t ≥ 1, the Euclidean norm of the discrepancy
between the local model parameters M t

c,l of client c and
the global model parameters, M t serves as a metric for
measuring the extent of parameter updates at layer l. This
can be expressed as:

Dc,l[t] = ∥M t
l: −M t

c,l:∥, (18)

where Dc,l and Dc,l[t] denote the list containing all nw

magnitudes of historical parameter updates for layer l at client
UAV c and its t-th element, respectively; M t

l: and M t
c,l: the

parameters of the l-th layer of the local model of client UAV
c and the global model, respectively. The normalized moving
average of updates for layer l at client UAV c is expressed as

D̄c,l[t] =
1

2

t+1∑
i=t

Dc,l[i]−min{Dc,l[t]}
max{Dc,l} −min{Dc,l}

. (19)

Let nw denote the length of historical update to be assessed.
Then, the gradient of parameter updates can be calculated as

βc,l =
nw

∑nw

i=1 iDc,l[i]−
∑nw

i=1 i
∑nw

i=1Dc,l[i]

nw

∑nw

i=1 i
2 − (

∑nw

i=1 i)
2 . (20)

Let τ denote a predefined threshold for freezing, the l-th layer
will be designated as frozen if βc,l < τ . Upon completion of

7

local training, client UAV c will transmit to the server UAV
only the parameters of unfrozen layers. In this work, we use
M t

c,LF to denote the updated local model trained with the
CWLF algorithm by client UAV c during round t. The detailed
CWLF scheme is outlined in Algorithm 2.

Algorithm 2 Client-Wise Layer Freezing (CWLF) Function

Require: L, nw,M
t,M t

c , Dc,l, t
Ensure: M t

c,LF

1: for each layer l =1,...,L do
2: Initialize Dc,l = {},∀c
3: if t = 1 then
4: Dc,l ← Dc,l ∪ {∥M t

l:∥}
5: else if t > 1 then
6: Dc,l ← Dc,l ∪

{
∥M t

l: −M t
c,l:∥

}
7: end if
8: if |Dc,l| = nw then
9: Obtain βl,c based on (19) and (20)

10: end if
11: if βc,l < τ then
12: Freeze the parameters of layer l in M t+1

c,LF

13: else
14: Update the parameters of layer l in M t+1

c,LF

15: end if
16: end for
17: Return M t+1

c,LF

C. Client Clustering Selection (CCS) on the Server Side

To minimize server waiting latency, we design a Client
Clustering Selection (CCS) scheme. Initially, the server UAV
calculates the utility of each client UAV, arranging them in
descending order of utility to establish a sequence that reflects
their utility. Subsequently, the server UAV divides all client
UAVs into G clusters, with each cluster’s size being equal
to K. For the t-th round, the server randomly selects a
cluster from the set of available client clusters, denoted as
G = {g1, . . . , gG}. In this framework, the utility function is
defined as uc =

1
E{T tr

c }
, where uc signifies the utility of the c-

th client UAV. Considering that C is not necessarily an integer
multiple of K, meaning the number of client UAVs in the G-
th cluster may be less than K. In such cases, we designate
the G-th cluster as consisting of K client UAVs with the
lowest utility. The details of the CCS scheme are presented
in Algorithm 3.

To evaluate the efficacy of our CCS algorithm, we provide
the following theorem:

Theorem 1: In the context of semi-synchronous FL, let
C denote the complete set of client UAVs, and Cm denote the
subset of straggler client UAVs. Denote the cardinality of C
by C and that of Cm by m. The probabilities PRS(Alast) and
PCCS(Alast) represent the likelihood of selecting at least one
straggler client from Cm when the server randomly selects K
clients for each round under a standard random scheduling
strategy and our proposed CCS algorithm, respectively. Then,

Algorithm 3 Client Clustering Selection (CCS) Function

Require: C, C,K
Ensure: Γt

1: Calculate the utility of all clients, U = {u1, u2, . . . , uc}
2: Re-arrange the utility in descending order as Ũ
3: if C mod K = 0 then
4: Arrange all client UAVs into G clusters based on Ũ, and

obtain the sets of client clusters G = {g1, . . . , gG}, G =
⌈CK ⌉

5: else
6: Arrange all clients into G clusters based on Ũ, desig-

nate the G-th cluster as consisting of K client UAVs
with the lowest utility, and obtain the sets of client
clusters G = {g1, . . . , gG}, G = ⌈CK ⌉

7: end if
8: Randomly select one client cluster and assign it to Γt

9: Return Γt

we have

PRS(Alast) = 1−
(
C−m
K

)(
C
K

)
PCCS(Alast) =

a

⌈CK ⌉
≤ aK

C
,

PCCS(Alast) ≤ PRS(Alast),∀C,K,m ≥ 1,

(21)

where a denotes the number of client UAV clusters that contain
at least one straggler client UAV.

Proof: Please refer to Appendix A.
Theorem 1 posits that the proposed CCS method effectively

reduces the probability of selecting at least one straggler UAV
from the set of straggler client UAVs, thereby leading to a
reduction in server waiting latency within the framework of
semi-synchronous FL scenarios.

D. Overall Algorithm

The overall design of the proposed the Semi-synchronous
Federated Learning with Cross-Sharpness and Layer-Freezing
(SFedXL) algorithm is illustrated in Algorithm 4.

Computational Complexity Analysis: The computational
complexity of XSL is determined by three key steps. i)
Adversarial Perturbation Generation: This involves computing
the gradient of the loss function w.r.t. model parameters, whose
computational complexity is O(Nc,l|Mc|), with Nc,l and |Mc|
denoting the number of labeled data points and the amount
of model parameters at the c-th client UAV, respectively; ii)
Cross-Sharpness Regularization: This requires forward prop-
agation on unlabeled data, whose computational complexity
is O(Nc,u|Mc|), with Nc,u denoting the number of unlabeled
data points at the c-th client UAV. iii) Local Model Updates:
This involve gradient computation and parameter updates,
whose computational complexity is O(Nc,l|Mc|).The compu-
tational complexity of CWLF is determined by four key steps.
i) Historical Parameter Update Monitoring: This involves com-
puting the Euclidean norm for each layer’s parameter updates,
whose complexity is O(L|Mc,l|), with L denoting the total

8

Algorithm 4 Semi-synchronous Federated Leaning with
Cross-Sharpness and Layer-Freezing (SFedXL) Algorithm

Require: C, Dc,l,∀c,Dc,u, ∀c, C,K, n, T, τ,M0

Ensure: MT

1: for t = 0 to T − 1 do
2: Server UAV calls CCS Function to select the client set Γt;
3: Server UAV sends M t to all selected clients in Γt

4: Server UAV set the maximum waiting time T̃t

5: for client UAV c ∈ Γt in parallel do
6: Call XSL Function to perform local training
7: Call CWLF Function to freezing layers
8: Upload M t

c,LF to the server UAV
9: end for

10: while Γ′
t < n OR Tt < T̃t do

11: Server UAV records client’s latency
12: Server UAV calculates client’s utility
13: end while
14: Server UAV updates the global model based on (4)
15: end for
16: Return MT

number of layers and |Mc,l| denoting the amount of parameters
in the l-th layer at the c-th client UAV. ii) Normalized Moving
Average Calculation: This smooths fluctuations in historical
updates over a window of length nw, whose complexity is
O(Lnw). iii) Gradient Calculation and Freezing Decision:
This involves computing the gradient of historical updates
over the moving window nw, whose complexity is O(Lnw).
iv) Parameter Upload: Only unfrozen layers’ parameters are
uploaded. The complexity is O((1− τ)|Mc,l|), where τ is the
freezing threshold. The computation complexity of the CCS
strategy is extremely low, e.g., O(C), where C is the number
of client UAVs. Therefore, the total complexity of SFedXL is
O(TN |M | + TLnw + CT)), where N =

∑C
c=1 Nc,u +Nc,l

denoting the total data points, and |M | denotes the amount of
model parameters.

Resource Efficiency Analysis: As for computational effi-
ciency, while XSL introduces additional computational over-
head by utilizing unlabeled data to optimize model perfor-
mance, the CWLF mechanism effectively minimizes unnec-
essary parameter updates, thereby reducing overall compu-
tational requirements. As for communication Efficiency, the
CWLF mechanism reduces communication overhead by lim-
iting the number of parameters that need to be uploaded. In FL
environments, where communication overhead often becomes
a bottleneck, the CWLF mechanism mitigates this issue by
dynamically freezing parameters. As for storage efficiency, the
CWLF mechanism retains only the update history of unfrozen
layers, thus reducing storage requirements and enhancing
storage efficiency. The computation overhead of the CCS strat-
egy is extremely low and does not consume communication
or storage resources. In summary, the integration of XSL,
CWLF and CCS mechanisms significantly optimizes resource
utilization across computation, communication, and storage.
This advantage is especially pronounced in scenarios involving
large-scale datasets and complex models.

IV. SIMULATION RESULTS

In this work, we focus on the image classification task for a
fleet of UAVs and utilize two prominent open-source datasets:
SAT6 [36] and FLAME [37]. We consider 1 server UAV and
10 client UAVs for data collection and participation in the
training process, spanning a total of 100 global training rounds.
The number of client UAVs selected per round is fixed at 50%
of the total client population, denoted as K = 0.5 × C. The
CPU frequency ϕc of each client UAV is distributed according
to a Gaussian distribution with a mean of 2.5 GHz and a
standard deviation of 0.25 GHz.

All UAVs follow a random waypoint model [38] with a
speed of 10 m/s and pause times uniformly distributed between
0 and 10 seconds, effectively simulating dynamic trajectories
and fluctuating communication distances. Each client UAV
is allocated a bandwidth B of 50 MHz for communication.
The channel is allocated to each user by Time Division
Multiple Access (TDMA). The transmission power Pc, tx of
the users is modeled by a normal distribution N (0.1, 0.01).
The dropout probability ρc for each client UAV adheres to a
uniform distribution U(0, 0.5). In our experiments, the path
loss exponent γ is configured to be 2.5.

The hyperparameters β, η, and τ are crucial in determining
the performance of SFedXL. Their effects can be summarized
as follows: i) Robustness control parameter β: Regulates the
stability of the worst-case model. A smaller β enhances sta-
bility, while a larger β improves robustness but may introduce
instability; ii) Learning rate η: Balances convergence speed
and stability. A smaller η ensures steady convergence, whereas
a larger η accelerates training but increases the risk of diver-
gence; iii) Layer freezing threshold τ : Determines the extent of
layer freezing. A smaller τ conserves resources but may lead to
premature freezing, while a larger τ ensures thorough training
at the expense of higher resource consumption. By carefully
tuning these hyper-parameters, we achieve an optimal balance
between model performance and resource efficiency, enabling
effective and scalable FL. Specifically, β, η, and τ are set as
0.01, 0.001 and 0.1, respectively.

A. Experiment Setup

1) Dataset: The SAT6 dataset comprises 405,000 satellite
imagery samples spanning six distinct categories—barren land,
trees, grassland, roads, buildings, and water bodies—which
are prevalent in remote sensing and classification tasks. These
28x28 pixel images, inclusive of RGB and infrared channels,
serve as a robust platform for evaluating FL algorithms,
particularly those grappling with challenges such as scarce
labeling and data imbalance. The FLAME dataset, developed
to assess FL algorithms under adversarial conditions, encom-
passes labeled data suitable for both binary and multi-class
classification tasks. It is a crucial benchmark for assessing
model resilience in environments characterized by data het-
erogeneity.

2) Data Split: We randomly and uniformly select ρ percent
of the entire labeled dataset as labeled data. In this study, we
set ρ = 5%, 10%, 100%. To model data heterogeneity, we use
the commonly-adopted Dirichlet distribution. The variable ϵq,c

9

represents the proportion of data instances with the label q at
the c-th client UAV, relative to the total number of instances
labeled q. The probability vector ϵq = (ϵq,1, ϵq,2, . . . , ϵq,C)
follows a Dirichlet distribution, i.e., ϵq ∼ DirC(α), where
DirC(α) denotes the Dirichlet distribution across C client
UAVs, and α is the concentration parameter. A smaller α
reflects higher data heterogeneity, while α = ∞ represents a
scenario with homogeneous data. In this study, we set α = 0.1
for all q ∈ {1, . . . , Q}, where Q is the total number of label
types.

3) Performance Metrics: The final l earning accuracy, total
learning latency, and total communication cost are used as
performance metrics. Among these, the final learning accuracy
is defined as:

Acc =
Ntp +Ntn

Ntp +Ntn +Nfp +Nfn
, (22)

where Ntp, Ntn, Nfp, and Nfn represent the number of true
positives, true negatives, false positives, and false negatives,
respectively.

4) Comparison Algorithms: All experiments were imple-
mented using PyTorch, and each result is reported as the
average and standard deviation of five simulations. To evaluate
the effectiveness of the proposed solution, we compare it with
the following methods:

• FedAvg [7]: Serving as a baseline, the server UAV
randomly selects different client UAVs at each round for
model updates.

• FedProx [16]: A personalized variant of FedAvg, Fed-
Prox introduces a regularization term to control the
deviation between local updates and the global model.

• FedMatch [20]: This method combines inter-client con-
sistency with disjoint learning schemes. The former en-
ables each client to focus on the unique features of its
local data, avoiding a uniform feature set, while the latter
ensures alignment in model updates across clients.

• Polaris [27]: This approach allows clients to update
their local models independently and asynchronously,
reducing latency by prioritizing clients with more reliable
communication links.

• ALF [28]: This method optimizes communication effi-
ciency by calculating the stability index of each layer’s
parameters in the DNN model. Layers are frozen when
their stability index falls below a predefined threshold.
Following the settings in [28], the stability threshold for
layer freezing is set at 0.13.

• Independent Training: Each client UAV performs local
training independently using its own labeled data. The
overall learning accuracy is characterized by the average
accuracy across all clients, while the learning latency for
each round is determined by the slowest client.

B. Learning Performance Comparison

Table I and Table II summarize the primary experimental
results on the FLAME and SAT6 datasets, comparing various
FL strategies at different labeled data ratios. The performance
metrics include the final learning accuracy, total learning

latency (in minutes), and total communication cost (in MB),
along with their deviations from the baseline, i.e., the classical
FedAvg algorithm.

1) Learning Accuracy Comparison: At a labeled data ratio
of 5%, the FedAvg baseline achieves an accuracy of 74.97%.
FedProx shows a marginal improvement of 0.14%, while
other algorithms, such as FedMatch, Polaris, and ALF, exhibit
slight decreases in accuracy. In contrast, our proposed SFedXL
algorithm significantly enhances accuracy by 4.91%, a result
of the XSL strategy, which effectively leverages the unlabeled
data. Independent training performs the worst, highlighting
the benefits of FL-based collaboration across devices. Similar
trends are observed for labeled data ratios of 10% and 100%.
Furthermore, as the proportion of labeled data increases, all
algorithms improve in accuracy. However, the performance
gaps between our algorithm and the baseline narrow, indicating
that our XSL strategy excels when a substantial amount of
unlabeled data is available.

2) Training Latency Comparison: In terms of latency,
FedAvg almost always experiences the least total learning
latency due to its simplicity. In contrast, FedProx incurs
additional local training latency due to the computation of a
regularization term to mitigate local-global model divergence.
Similarly, FedMatch incurs extra latency for computing inter-
client consistency. Polaris and ALF calculate the differences
between the updated and previous models, and upload only
the parameters that have changed significantly to reduce
communication overhead. This reduction offsets any additional
computation time, so the overall training delay is essentially
unaffected. In contrast, independent training increases the
total learning latency by approximately 15%-20% compared
to FedAvg, primarily due to the impact of straggler users.
Our approach, which capitalizes on unlabeled data, adds
local computation latency but remains competitive in overall
performance.

3) Communication Costs Comparison: When comparing
communication costs, FedMatch increases costs by 173.76%
over the baseline FedAvg, due to the transmission of additional
auxiliary models. FedProx, Polaris, and ALF have a minimal
impact on communication costs. The first two algorithms were
not designed to reduce communication overhead, while ALF
specifically targets communication efficiency in supervised
learning scenarios. However, our experiments indicate that in
contexts with large volumes of unlabeled and heterogeneous
client data, a certain degree of discrepancy often exists be-
tween a client local model and the newly received global
model. This discrepancy complicates efforts to maintain the
parameter stability index below a predefined stability thresh-
old before the algorithm finally converges. In contrast, our
proposed SFedXL significantly reduces latency. This improve-
ment can be attributed to two key factors. First, our proposed
CWLF strategy effectively decreases both local computation
and communication latencies. Additionally, our time utility-
based client clustering and CCS strategies substantially reduce
waiting times among users within the same communication
round compared to random selection.

Similar trends are observed with the SAT6 dataset, where
our algorithm demonstrates substantial improvements in learn-

10

TABLE I: Performance Comparison on FLAME Dataset under Different Strategies

Strategy Accuracy(%) ∆Accuracy Latency (Mins) ∆Latency Commun. Cost (MB) ∆Commun. Cost

Labeled Data Ratio = 5.0%

FedAvg [7] (baseline) 74.97±0.08 – 72.57±13.88 – 2845.66±0.0 –
FedProx [16] 75.11±0.11 0.14% 98.8±23.02 36.15% 2845.66±0.0 0.0%
FedMatch [20] 74.64±0.11 -0.33% 286.62±63.26 294.96% 7790.34±733.09 173.76%
Polaris [27] 74.72±0.07 -0.25% 73.78±12.44 1.67% 2845.66±0.0 0.0%
ALF [28] 74.13±0.17 -0.84% 74.78±14.05 3.05% 2845.65±0.02 -0.0%
Independent Training 35.96±0.74 -39.01% 82.85±19.24 14.17% – –
SFedXL (ours) 79.88±0.28 4.91% 222.51±63.54 206.62% 1739.43±470.95 -38.87 %

Labeled Data Ratio = 10.0%

FedAvg [7] (baseline) 79.09±0.25 – 126.22±13.02 – 2845.66±0.0 –
FedProx [16] 78.99±0.22 -0.1% 187.97±27.82 48.92% 2845.66±0.0 0.0%
FedMatch [20] 78.47±0.32 -0.62% 573.19±51.11 354.11% 7654.16±849.95 168.98%
Polaris [27] 77.9±0.2 -1.19% 131.4±10.45 4.1% 2845.66±0.0 0.0%
ALF [28] 78.02±0.26 -1.07% 130.5±11.41 3.39% 2845.64±0.02 -0.0%
Independent Training 39.66±0.74 -39.43% 150.56±18.41 19.28% – –
SFedXL (ours) 82.35±0.2 3.26% 403.0±98.07 219.28% 1824.18±511.97 -35.9 %

Labeled Data Ratio = 100.0%

FedAvg [7] (baseline) 82.95±0.33 – 880.54±130.24 – 2845.66±0.0 –
FedProx [16] 83.61±0.7 0.66% 1267.27±161.35 43.92% 2845.66±0.0 0.0%
FedMatch [20] 82.77±0.45 -0.18% 4111.23±380.65 366.9% 7550.85±845.6 165.35%
Polaris [27] 84.12±0.36 1.17% 872.74±90.93 -0.89% 2845.66±0.0 0.0%
ALF [28] 82.87±0.65 -0.08% 884.08±140.69 0.4% 2845.64±0.01 -0.0%
Independent Training 42.99±1.02 -39.96% 1065.61±154.39 21.02% – –
SFedXL (ours) 84.31±0.48 1.36% 2935.77±398.09 233.4% 1964.38±571.47 -30.97 %

TABLE II: Performance Comparison on SAT6 Dataset under Different Strategies

Strategy Accuracy(%) ∆Accuracy Latency (Mins) ∆Latency Commun. Cost(MB) ∆Commun. Cost

Labeled Data Ratio = 5.0%

FedAvg [7] (baseline) 66.14±0.21 – 90.13±5.06 – 2028.25±0.0 –
FedProx [16] 69.77±0.55 3.63% 136.99±8.98 51.99% 2028.25±0.0 0.0%
FedMatch [20] 70.04±0.9 3.9% 257.2±19.79 185.36% 5412.0±574.77 166.83%
Polaris [27] 61.93±1.13 -4.21% 94.42±6.12 4.76% 2028.25±0.0 0.0%
ALF [28] 67.08±0.41 0.94% 91.81±6.64 1.86% 2028.23±0.01 -0.0%
Independent Training 29.19±0.7 -36.95% 94.69±6.64 5.06% – –
SFedXL(ours) 82.98±0.52 16.84% 190.49±16.17 111.35% 1542.02±295.61 -23.97 %

Labeled Data Ratio = 10.0%

FedAvg [7] (baseline) 74.37±0.48 – 166.22±24.3 – 2028.25±0.0 –
FedProx [16] 75.31±0.72 0.94% 257.35±29.81 54.83% 2028.25±0.0 0.0%
FedMatch [20] 74.61±0.42 0.24% 473.02±55.12 184.58% 5468.9±581.62 169.64%
Polaris [27] 77.43±0.51 3.06% 165.56±19.28 -0.39% 2028.25±0.0 0.0%
ALF [28] 76.04±0.46 1.67% 169.17±21.7 1.78% 2028.24±0.01 -0.0%
Independent Training 34.98±1.14 -39.39% 178.15±23.93 7.18% – –
SFedXL(ours) 84.7±0.27 10.33% 334.73±39.24 101.38% 1429.38±257.4 -29.53 %

Labeled Data Ratio = 100.0%

FedAvg [7] (baseline) 82.13±0.37 – 1436.95±238.55 – 2028.25±0.0 –
FedProx [16] 79.66±0.81 -2.47% 2428.58±411.08 69.01% 2028.25±0.0 0.0%
FedMatch [20] 80.82±0.65 -1.31% 4173.46±475.54 190.44% 5418.69±477.13 167.16%
Polaris [27] 80.43±0.59 -1.7% 1459.29±240.19 1.55% 2028.25±0.0 0.0%
ALF [28] 77.8±0.86 -4.33% 1476.43±248.8 2.75% 2028.24±0.01 -0.0%
Independent Training 44.07±0.98 -38.06% 1610.59±357.31 12.08% – –
SFedXL(ours) 85.24±0.71 3.11% 2944.22±521.65 104.89% 1405.78±371.02 -30.69 %

ing accuracy and reduced communication costs. Although
training latency increases due to the incorporation of unlabeled
data, the significant performance gains achieved by utilizing

unlabeled data cannot be overlooked. This contribution plays
a pivotal role in the overall success of our algorithm, as it con-
tributes significantly to the overall performance improvement

11

Fig. 3: Convergence performance comparison under different algorithms on FLAME dataset.

Fig. 4: Convergence performance comparison under different algorithms on SAT6 dataset.

of the algorithm.

C. Algorithm Convergence Comparison

The experimental results shown in Fig. 3 and Fig. 4 high-
light the performance of various algorithms on FLAME and
SAT6 datasets, tested with different percentages of labeled
data. The sub-figures in the top row depict the learning
accuracy over 100 communication round, while the charts in
the bottom row illustrate loss during each round.

1) Accuracy Convergence Comparison: Regardless of the
labeled data proportion, the proposed XSL and SFedXL meth-
ods consistently demonstrate superior learning accuracy and
faster convergence rates, with minimal variance in fluctuations.
Notably, the SFedXL method performs on par with the XSL
method, indicating that the CWLF strategy—despite freezing
certain parameters—does not significantly affect performance.
In contrast, algorithms that do not leverage unlabeled data,
such as FedProx, FedMatch, Polaris, and ALF, show perfor-
mance levels nearly identical to the baseline FedAvg algo-

12

Fig. 5: Learning cost & latency performance comparison under different algorithms on FLAME dataset.

Fig. 6: Learning cost & latency performance comparison under different algorithms on SAT6 dataset.

rithm, with no notable improvements. This suggests that these
FL strategies, which are designed for supervised learning, are
not well-suited for UAV swarm environments where unlabeled
data is abundant. Additionally, the independent training model
for each UAV performs the worst, likely due to data hetero-
geneity and challenges in utilizing unlabeled data effectively.

2) Loss Convergence Comparison: In terms of loss con-
vergence, the XSL and SFedXL methods outperform others
by consistently achieving lower loss values across different
labeled data ratios, demonstrating learning consistency for
both labeled and unlabeled data. Similar to the accuracy trends,
other algorithms fail to show significant improvements in
loss reduction compared to the FedAvg baseline. While the
Independent Training method initially experiences a noticeable

decrease in loss, it often plateaus or decreaes, particularly
when labeled data is limited. This is likely due to overfitting
or poor generalization, a result of the lack of collaborative
knowledge sharing typical of FL frameworks. The loss curves
for independent training also exhibit signs of overfitting.

In real world, data is collected in a decentralized manner
and distributed across multiple UAVs in the swarm, often
leading to non-IID data due to variations in distribution and
quality. This heterogeneity can cause models to overfit to data
from specific UAVs while underfitting to others, negatively im-
pacting both learning convergence and accuracy. Furthermore,
discrepancies between the local data of individual UAVs and
the test dataset’s distribution can be significant. As a result,
models trained independently by a single UAV, relying only

13

TABLE III: Ablation Study on FLAME Dataset under Different Strategies

Strategy Accuracy(%) ∆Accuracy Latency (Mins) ∆Latency Commun. Cost(MB) ∆Commun. Cost

XSL CWLF CCS Labeled Data Ratio = 5.0%

74.97±0.08 – 72.57±13.88 – 2845.66±0.0 –
✓ 80.77±0.21 5.8% 259.84±67.94 258.06% 2845.66±0.0 0.0%

✓ 73.93±0.14 -1.04% 65.67±14.33 -9.51% 1545.98±475.98 -45.67%
✓ 76.13±0.15 1.16% 63.69±11.04 -12.23% 2845.66±0.0 0.0%

✓ ✓ 80.18±0.26 5.21% 232.47±75.07 220.35% 1579.71±410.24 -44.49%
✓ ✓ 80.98±0.23 6.01% 239.68±69.49 230.28% 2845.66±0.0 0.0%

✓ ✓ 74.84±0.24 -0.13% 53.96±6.96 -25.64% 1469.03±710.21 -48.38 %

Strategy Labeled Data Ratio = 10.0%

79.09±0.25 – 126.22±13.02 – 2845.66±0.0 –
✓ 82.35±0.26 3.26% 471.51±41.69 273.55% 2845.66±0.0 0.0%

✓ 77.96±0.16 -1.13% 122.24±11.61 -3.16% 1953.76±392.81 -31.34%
✓ 79.28±0.2 0.19% 104.79±19.74 -16.98% 2845.66±0.0 0.0%

✓ ✓ 81.56±0.24 2.47% 446.99±38.77 254.13% 1850.23±526.75 -34.98%
✓ ✓ 82.96±0.17 3.87% 421.03±18.35 233.56% 2845.66±0.0 0.0%

✓ ✓ 79.1±0.27 0.01% 97.56±11.43 -22.71% 1482.15±617.12 -47.92 %

Strategy Labeled Data Ratio = 100.0%

82.95±0.33 – 880.54±130.24 – 2845.66±0.0 –
✓ 83.71±0.61 0.76% 3735.7±584.89 324.25% 2845.66±0.0 0.0%

✓ 80.86±0.23 -2.09% 781.46±102.12 -11.25% 1707.33±414.2 -40.0%
✓ 83.7±0.45 0.75% 768.22±108.24 -12.76% 2845.66±0.0 0.0%

✓ ✓ 83.0±0.42 0.05% 3642.07±508.35 313.62% 1960.79±462.89 -31.1%
✓ ✓ 84.59±0.5 1.64% 3117.59±663.62 254.05% 2845.66±0.0 0.0%

✓ ✓ 83.57±0.16 0.62% 657.17±113.78 -25.37% 1502.77±440.2 -47.19 %

TABLE IV: Ablation Study on SAT6 Dataset under Different Strategies

Strategy Accuracy(%) ∆Accuracy Latency (Mins) ∆Latency Commun. Cost(MB) ∆Commun. Cost

XSL CWLF CCS Labeled Data Ratio = 5.0%

66.14±0.21 – 90.13±5.06 – 2028.25±0.0 –
✓ 83.1±0.48 16.96% 215.03±5.85 138.57% 2028.25±0.0 0.0%

✓ 65.68±0.7 -0.46% 82.87±6.51 -8.06% 1433.78±262.72 -29.31%
✓ 70.45±0.64 4.31% 82.67±1.88 -8.28% 2028.25±0.0 0.0%

✓ ✓ 82.49±0.47 16.35% 209.34±12.96 132.26% 1511.44±305.1 -25.48%
✓ ✓ 85.86±0.31 19.72% 193.15±8.5 114.3% 2028.25±0.0 0.0%

✓ ✓ 66.59±0.19 0.45% 74.17±4.24 -17.71% 1158.45±413.97 -42.88 %

Strategy Labeled Data Ratio = 10.0%

74.37±0.48 – 166.22±24.3 – 2028.25±0.0 –
✓ 84.04±0.65 9.67% 397.87±42.27 139.37% 2028.25±0.0 0.0%

✓ 73.48±0.36 -0.89% 146.99±17.2 -11.57% 1507.95±298.76 -25.65%
✓ 77.77±0.41 3.4% 144.41±20.3 -13.12% 2028.25±0.0 0.0%

✓ ✓ 83.37±0.21 9.0% 387.33±55.86 133.03% 1433.64±347.74 -29.32%
✓ ✓ 87.03±0.43 12.66% 350.53±78.93 110.89% 2028.25±0.0 0.0%

✓ ✓ 76.3±0.55 1.93% 137.22±18.31 -17.44% 1302.94±335.32 -35.76 %

Strategy Labeled Data Ratio = 100.0%

82.13±0.37 – 1436.95±238.55 – 2028.25±0.0 –
✓ 86.26±0.48 4.13% 3653.64±480.84 154.26% 2028.25±0.0 0.0%

✓ 79.7±0.62 -2.43% 1319.89±161.58 -8.15% 1484.49±241.84 -26.81%
✓ 83.24±0.53 1.11% 1188.01±191.3 -17.32% 2028.25±0.0 0.0%

✓ ✓ 85.14±0.47 3.01% 3468.13±484.99 141.35% 1368.4±269.95 -32.53%
✓ ✓ 89.21±0.4 7.08% 3280.69±622.96 128.31% 2028.25±0.0 0.0%

✓ ✓ 82.96±0.35 0.83% 1163.03±222.64 -19.06% 1272.41±264.86 -37.27 %

on local data, tend to perform poorly on the test set. The loss
function curve for independent training can also be volatile,
sometimes failing to converge.

D. Ablation Study

Table III and Table IV present the results of the ablation
study conducted on the FLAME and SAT6 datasets, with

14

FedAvg serving as the baseline. We performed a comparative
analysis of various combinations of the proposed modules,
evaluating their effectiveness in terms of achieving the final
learning accuracy after 100 communication rounds, as well as
their respective training latencies and communication costs.

First, it is evident that employing the XSL strategy alone
significantly improves learning accuracy without increasing
communication overhead. However, incorporating unlabeled
data during local model training extends the local training
time. Second, the CWLF strategy, despite freezing certain
parameters, results in only a slight and imperceptible decline
in accuracy. Moreover, it significantly reduces both training
latency and communication costs. Third, applying the CCS
strategy independently not only slightly improves learning
accuracy but also drastically reduces training latency, without
affecting communication overhead. The accuracy improvement
can be attributed to the design of the utility function in
client cluster scheme, which is a function concerning frozen
parameters. In this context, the users with a smaller utility
value typically exhibit a larger magnitude of model parameter
updates. In the FedAvg algorithm, which employs random
scheduling, these low-utility users are often overlooked, as
they are seen as potential stragglers in each round. In contrast,
the CCS strategy ensures that clients with lower utility values
and larger parameter updates are more likely to contribute to
model updates, thereby enhancing the accuracy and expediting
the convergence.

When evaluating the individual contributions of each al-
gorithm, it becomes clear that the combination of XSL and
CCS yields the highest learning accuracy. Meanwhile, the
integration of CCS and CWLF consumes the least training
time and communication resources. Compared to the baseline
FedAvg algorithm, our SFedXL framework effectively bal-
ances the strengths of the XSL, CWLF, and CCS strategies,
striking a balance between learning performance and resource
efficiency, as well as encompassing both training latency and
communication overhead.

V. CONCLUSION

Recently, FL has emerged as a promising solution for
coordinating a UAV swarm. However, its practical implemen-
tation is hindered by challenges such as device heterogeneity,
restricted resources, and the presence of unlabeled data. To
address these issues, we have proposed a novel SFedXL
algorithm. Specifically, the proposed XSL scheme is designed
to effectively utilize unlabeled data, the CWLF scheme miti-
gates training latencies and reduces communication cost, and
the CCS scheme addresses the straggler problem. Simulation
results clearly demonstrate that our methods outperform tradi-
tional FL approaches in both learning accuracy and learning
efficiency, underscoring the potential of our SFedXL frame-
work as a robust solution for handling unlabeled data and
asynchronous devices in unstable transmission environments.

APPENDIX

To prove Theorem 1, we need to show that whenever m ≥ 1,
K ≥ 1, and C ≥ 1, the following inequality always holds:

aK

C
≤ 1−

(
C−m
K

)(
C
K

) (23)

To prove Theorem 1, we consider the following two cases:
Case 1: When 1 ≤ C < K + m, the FL server will always
select at least one straggler client since we consider client
selection without replacement, which means

PRS(Alast) = PCCS(Alast) = 1,∀K,m ≥ 1.

Case 2: When 1 ≤ K + m ≤ C, if m = 1, we have a = 1
and

PCCS(Alast) =
K

C
,

PRS(Alast) = 1− (C − 1)!

K!(C − 1−K)!
× K!(C −K)!

C!

= 1− (C −K)

C
=

K

C
,

= PCCS(Alast);

If m > 1, K ≥ 1, and C ≥ K + m ≥ 1, under our CCS
Algorithm, the straggler clients are grouped into the last a
clusters, where a = ⌈mK ⌉. Proving the inequality in (23) is
equivalent to proving

(C −m)!

K!(C −m−K)!
× K!(C −K)!

C!
<

C − aK

C
.

Since C ≥ K +m ≥ 1, we have C − aK > 0. According to
the factorial formula, we have

(C −K)!

C!
=

m−1∏
i=0

C − i−K

C − i
× (C −m−K)!

(C −m)!
, (24)

<

m−1∏
i=0

C − aK

C
× (C −m−K)!

(C −m)!
< 1 (25)

Thus, for m > 1, K ≥ 1, and C ≥ K+m ≥ 1, the inequality
in (23) holds. So far, we have

PCCS(Alast) ≤
aK

C
≤ 1−

(
C−m
K

)(
C
K

) = PRS(Alast),∀C,K,m ≥ 1,

which completes the proof.

REFERENCES

[1] M. Zhao, S. Zhao, C. Feng, H. H. Yang, and T. Q. S. Quek,
“SFedXSL: Semi-Synchronous Federated Cross-Sharpness Learning for
UAV Swarm,” in IEEE Int. Conf. Commun. Techno. (ICCT), Chengdu,
China, 2024.

[2] Z. Jia, Q. Wu, C. Dong, C. Yuen, and Z. Han, “Hierarchical aerial
computing for internet of things via cooperation of HAPs and UAVs,”
IEEE Internet Things J., vol. 10, no. 7, pp. 5676–5688, 2023.

[3] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V.
Poor, “Federated Learning for Internet of Things: A Comprehensive
Survey,” IEEE Commun. Surv. Tutor., vol. 23, no. 3, pp. 1622–1658,
2021.

[4] S. K. Pandya et al., “Federated Learning for Smart Cities: A Compre-
hensive Survey,” Sustain. Energy Technol. Assess., vol. 55, p. 102987,
2023.

15

[5] E. V. Butilă and R. G. Boboc, “Urban Traffic Monitoring and Analysis
Using Unmanned Aerial Vehicles (UAVs): A Systematic Literature
Review,” Remote Sens., vol. 14, no. 3, p. 620, 2022.

[6] Y. Guan, S. Zou, H. Peng, W. Ni, Y. Sun, and H. Gao, “Cooperative
UAV Trajectory Design for Disaster Area Emergency Communications:
A Multi-Agent PPO Method,” IEEE Internet Things J., vol. 11, no. 5,
pp. 8848–8859, 2024.

[7] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks From Decen-
tralized Data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Fort
Lauderdale, Florida, USA, 2017, pp. 1273–1282.

[8] S. Wang, M. Chen, C. G. Brinton, C. Yin, W. Saad, and S. Cui,
“Performance Optimization for Variable Bitwidth Federated Learning
in Wireless Networks,” IEEE Trans. Wireless Commun., vol. 23, no. 3,
pp. 2340–2356, 2024.

[9] C. Feng, H. H. Yang, S. Wang, Z. Zhao, and T. Q. S. Quek, “Hybrid
Learning: When Centralized Learning Meets Federated Learning in the
Mobile Edge Computing Systems,” IEEE Trans. Commun., vol. 71,
no. 12, pp. 7008–7022, 2023.

[10] Y. Wang, S. Guo, Y. Deng, H. Zhang, and Y. Fang, “Privacy-Preserving
Task-Oriented Semantic Communications Against Model Inversion At-
tacks,” IEEE Trans. Wireless Commun., vol. 23, no. 8, pp. 10 150–
10 165, 2024.

[11] C. Feng, H. H. Yang, D. Hu, Z. Zhao, T. Q. S. Quek, and G. Min,
“Mobility-Aware Cluster Federated Learning in Hierarchical Wireless
Networks,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8441–
8458, 2022.

[12] Z. Cui, T. Yang, X. Wu, H. Feng, and B. Hu, “The Data Value based
Asynchronous Federated Learning for UAV Swarm under Unstable
Communication Scenarios,” IEEE Trans. Mob. Comput., pp. 1–15, 2023.

[13] T. Wang, X. Huang, Y. Wu, L. Qian, B. Lin, and Z. Su, “UAV swarm-
assisted two-tier hierarchical federated learning,” IEEE Trans. Netw. Sci.
Eng., vol. 11, no. 1, pp. 943–956, 2024.

[14] M. Dai, Y. Wu, L. Qian, Z. Su, B. Lin, and N. Chen, “UAV-assisted
multi-access computation offloading via hybrid noma and fdma in
marine networks,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 1, pp. 113–
127, 2023.

[15] Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T. Q. S.
Quek, “Asynchronous Federated Learning Over Wireless Communica-
tion Networks,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp.
6961–6978, 2022.

[16] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in Proc. Mach.
Learn. Syst. (MLSys), vol. 2, Santa Clara, USA, 2020, pp. 429–450.

[17] L. Zhou, S. Leng, Q. Wang, and Q. Liu, “Integrated Sensing and
Communication in UAV Swarms for Cooperative Multiple Targets
Tracking,” IEEE Trans. Mob. Comput., vol. 22, no. 11, pp. 6526–6542,
2023.

[18] C. Feng, D. Feng, G. Huang, Z. Liu, Z. Wang, and X.-G. Xia, “Robust
Privacy-Preserving Recommendation Systems Driven by Multimodal
Federated Learning,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15,
2024.

[19] S. Li, Y. Wang, S. Guo, and C. Feng, “Task-oriented communication for
graph data: A graph information bottleneck approach,” IEEE Transac-
tions on Cognitive Communications and Networking, pp. 1–1, 2024.

[20] W. Jeong, J. Yoon, E. Yang, and J. Shin, “Federated Semi-supervised
Learning with Inter-client Consistency & Disjoint Learning,” in Proc.
Int. Conf. Learn. Representations (ICLR), Virtual Conference, 2021.

[21] Y. Liu, H. Wu, and J. Qin, “FedCD: Federated Semi-Supervised Learn-
ing with Class Awareness Balance via Dual Teachers,” in Proc. AAAI
Conf. Artif. Intell. (AAAI), vol. 38, no. 4, San Francisco, California,
USA, 2024, pp. 3837–3845.

[22] A. Tashakori, W. Zhang, Z. Wang, G. Joshi, Q. Wang, and J. Zhang,
“SemiPFL: Personalized semi-supervised federated learning framework
for edge intelligence,” IEEE Internet Things J., vol. 10, no. 10, pp.
9161–9176, 2023.

[23] C. Feng, A. Arafa, Z. Chen, M. Zhao, T. Q. S. Quek, and H. H. Yang,
“Toward understanding federated learning over unreliable networks,”
IEEE Trans. Machine Learning Commun. Network., vol. 3, pp. 80–97,
2025.

[24] Z. Jiang, Y. Xu, H. Xu, Z. Wang, J. Liu, Q. Chen, and C. Qiao,
“Computation and Communication Efficient Federated Learning with
Adaptive Model Pruning,” IEEE Trans. Mob. Comput., vol. 23, no. 3,
pp. 2003–2021, 2024.

[25] Y. Mao, Z. Zhao, M. Yang, L. Liang, Y. Liu, W. Ding, T. Lan, and X.-
P. Zhang, “SAFARI: Sparsity-Enabled Federated Learning with Limited

and Unreliable Communications,” IEEE Trans. Mob. Comput., vol. 23,
no. 5, pp. 4819–4831, 2024.

[26] S. Seo, J. Lee, H. Ko, J. Park, J. Kim, S. Yoon, and J. Kim, “Situation-
Aware Cluster and Quantization Level Selection Algorithm for Fast
Federated Learning,” IEEE Internet Things J., vol. 10, no. 15, pp.
13 292–13 302, 2023.

[27] Y. Kang and B. Li, “POLARIS: Accelerating Asynchronous Federated
Learning with Client Selection,” IEEE Trans. Cloud Comput., vol. 12,
no. 2, pp. 446–458, 2024.

[28] E. Malan, V. Peluso, A. Calimera, and E. Macii, “Automatic Layer Freez-
ing for Communication Efficiency in Cross-Device Federated Learning,”
IEEE Internet Things J., vol. 11, no. 4, pp. 6072–6083, 2023.

[29] Z. Huang, L. Shen, J. Yu, B. Han, and T. Liu, “FlatMatch: Bridging
Labeled Data and Unlabeled Data with Cross-Sharpness for Semi-
Supervised Learning,” in Adv. Neural Inf. Process. Syst. (NeurIPS),
vol. 36, Vancouver, Canada, 2024.

[30] W. P. Amorim, E. C. Tetila, H. Pistori, and J. P. Papa, “Semi-Supervised
Learning with Convolutional Neural Networks for UAV Images Auto-
matic Recognition,” Comput. Electron. Agric., vol. 164, p. 104932, 2019.

[31] Z. Wei, M. Zhu, N. Zhang, L. Wang, Y. Zou, Z. Meng, H. Wu,
and Z. Feng, “UAV-assisted Data Collection for Internet of Things: A
Survey,” IEEE Internet Things J., vol. 9, no. 17, pp. 15 460–15 483,
2022.

[32] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel,
E. D. Cubuk, A. Kurakin, and C.-L. Li, “Fixmatch: Simplifying Semi-
Supervised Learning with Consistency and Confidence,” in Adv. Neural
Inf. Process. Syst. (NeurIPS), vol. 33, New Orleans, USA, 2020, pp.
596–608.

[33] J. Ouyang, Y. Liu, and H. Liu, “Two-Timescale Energy Optimization
for Wireless Federated Learning,” in IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), 2024, pp. 1–6.

[34] D. Stripelis, P. M. Thompson, and J. L. Ambite, “Semi-Synchronous
Federated Learning for Energy-Efficient Training and Accelerated Con-
vergence in Cross-Silo Settings,” ACM Trans. Intell. Syst. Technol.,
vol. 13, no. 5, pp. 1–29, 2022.

[35] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-Aware
Minimization for Efficiently Improving Generalization,” in Int. Conf.
Learn. Represent. (ICLR), Vienna, Austria, 2021, pp. 1–19.

[36] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and
R. Nemani, “Deepsat: A Learning Framework for Satellite Imagery,” in
Proc. Int. Conf. Adv. Geogr. Inf. Syst. (SIGSPATIAL), 2015, pp. 1–10.

[37] A. Shamsoshoara, F. Afghah, A. Razi, L. Zheng, P. Z. Fulé, and
E. Blasch, “Aerial Imagery Pile Burn Detection Using Deep Learning:
The FLAME Dataset,” Comput. Netw., vol. 193, p. 108001, 2021.

[38] S. Althunibat, O. S. Badarneh, and R. Mesleh, “Random waypoint
mobility model in space modulation systems,” IEEE Commun. Lett.,
vol. 23, no. 5, pp. 884–887, 2019.

Mingxiong Zhao (S’11-M’16)received the B.S. de-
gree in Electrical Engineering and the Ph.D. de-
gree in Information and Communication Engineer-
ing from South China University of Technology
(SCUT), Guangzhou, China, in 2011 and 2016,
respectively. He was a visiting Ph.D. student at
University of Minnesota (UMN), Twin Cities, MN,
USA, from 2012 to 2013 and Singapore University
of Technology and Design (SUTD), Singapore, from
2015 to 2016, respectively. Since 2016, he has been
with the School of Software, Yunnan University,

Kunming, China, where he is currently an Associate Professor. His research
interests include network security, mobile edge computing, and edge AI
techniques.

16

Shihao Zhao received his B.E. degree in Computer
Science and Technology from Kunming Univer-
sity of Science and Technology (KUST), Kunming,
China, in 2022. Since 2022, he has been pursuing
his master’s degree in Software Engineering at the
School of Software, Yunnan University, Kunming,
China. His research interests include network se-
curity, mobile edge computing, and edge AI tech-
niques.

Chenyuan Feng (S’16-M’21) received the B.E.
degree in electrical and electronics engineering from
the University of Electronic Science and Technology
of China (UESTC), Chengdu, China, in 2016, and
the Ph.D. degree in information system technology
and design from Singapore University of Technology
and Design (SUTD), Singapore, in 2021, respec-
tively. Currently she is a research fellow at Eurecom,
France. Her research interests include edge intel-
ligence, multimedia intelligence, as well as AI for
network and communication.

Dr. Feng is a receipt of the 2021 IEEE ComComAp Best Paper Award. Dr.
Feng was invited to deliver several tutorials and invited talk at International
conferences in the area of machine learning for communication, such as IEEE
PIMRC’2024, IEEE VCC’2024, IEEE ICCT’2022 and IEEE ICCT’2024. Dr.
Feng serves as an Associate Editor for the IEEE INTERNET OF THINGS
JOURNAL and the IEEE OPEN JOURNAL OF THE COMMUNICATIONS SO-
CIETY. Dr. Feng is a Marie Skłodowska-Curie Scholar.

Howard H. Yang (S’13–M’17) received the B.E.
degree in Communication Engineering from Harbin
Institute of Technology (HIT), China, in 2012, and
the M.Sc. degree in Electronic Engineering from
Hong Kong University of Science and Technology
(HKUST), Hong Kong, in 2013. He earned the
Ph.D. degree in Electrical Engineering from Singa-
pore University of Technology and Design (SUTD),
Singapore, in 2017. He was a Postdoctoral Research
Fellow at SUTD from 2017 to 2020, a Visiting
Postdoc Researcher at Princeton University from

2018 to 2019, and a Visiting Student at the University of Texas at Austin
from 2015 to 2016. Currently, he is an assistant professor at the Zhejiang
University/University of Illinois at Urbana-Champaign Institute (ZJU-UIUC
Institute), Zhejiang University, Haining, China. He is also an adjunct assistant
professor with the Department of Electrical and Computer Engineering at the
University of Illinois at Urbana-Champaign, IL, USA.

Dr. Yang’s research interests include wireless communications, networking,
signal processing, the modeling of modern wireless networks, high dimen-
sional statistics, graph signal processing, and machine learning. He serves as
an editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.
He received the IEEE ComSoc Asia Pacific Oustanding Young Researcher
Award in 2023, the IEEE Signal Processing Society Best Paper Award in
2022, the IEEE WCSP 10-Year Anniversary Excellent Paper Award in 2019,
and the IEEE WCSP Best Paper Award in 2014.

Dusit Niyato (S’99-M’08-F’21) received BEng de-
gree from King Mongkut’s Institute of Technology
Ladkrabang (KMITL), Thailand, in 1999 and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Manitoba, Canada, in
2008. He is currently a professor in the School of
Computer Science and Engineering, with Nanyang
Technological University, Singapore. His research
interests include the Internet of Things, machine
learning, and incentive mechanism design.

Dr. Niyato serves as a senior editor of the IEEE
WIRELESS COMMUNICATIONS LETTER, an area editor of the IEEE TRANS-
ACTIONS ON WIRELESS COMMUNICATIONS and the IEEE COMMUNICA-
TIONS SURVEYS AND TUTORIALS, an editor of IEEE TRANSACTIONS ON
COMMUNICATIONS, an associate editor of the IEEE TRANSACTIONS ON
MOBILE COMPUTING, the IEEE TRANSACTIONS ON VEHICULAR TECH-
NOLOGY, and the IEEE TRANSACTIONS ON COGNITIVE COMMUNICA-
TIONS AND NETWORKING. He is a Fellow of IEEE.

Tony Q. S. Quek (S’98-M’08-SM’12-F’18) re-
ceived the B.E. and M.E. degrees in electrical and
electronics engineering from the Tokyo Institute of
Technology in 1998 and 2000, respectively, and the
Ph.D. degree in electrical engineering and computer
science from the Massachusetts Institute of Tech-
nology in 2008. Currently, he is the Cheng Tsang
Man Chair Professor with Singapore University of
Technology and Design (SUTD) and ST Engineer-
ing Distinguished Professor. He also serves as the
Director of the Future Communications R & D

Programme, the Head of ISTD Pillar, and the Deputy Director of the SUTD-
ZJU IDEA. His current research topics include wireless communications and
networking, network intelligence, non-terrestrial networks, open radio access
network, and 6G.

Dr. Quek has been actively involved in organizing and chairing sessions,
and has served as a member of the Technical Program Committee as well as
symposium chairs in a number of international conferences. He is currently
serving as an Area Editor for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS.

Dr. Quek was honored with the 2008 Philip Yeo Prize for Outstanding
Achievement in Research, the 2012 IEEE William R. Bennett Prize, the 2015
SUTD Outstanding Education Awards – Excellence in Research, the 2016
IEEE Signal Processing Society Young Author Best Paper Award, the 2017
CTTC Early Achievement Award, the 2017 IEEE ComSoc AP Outstanding
Paper Award, the 2020 IEEE Communications Society Young Author Best
Paper Award, the 2020 IEEE Stephen O. Rice Prize, the 2020 Nokia Visiting
Professor, and the 2022 IEEE Signal Processing Society Best Paper Award.
He is the AI on RAN Working Group Chair in AI-RAN Alliance. He is a
Fellow of IEEE, a Fellow of WWRF, a Fellow of the Academy of Engineering
Singapore.

