
Rapid Prototyping Design of a 4×4 BLAST-over-UMTS

System

Maxime Guillaud‡, Suman Das†, Andreas Burg§, Markus Rupp∗, Eric Beck†

‡Institute EURECOM, France, maxime.guillaud@eurecom.fr
†Wireless Research Laboratory, Lucent Technologies,NJ, {sumand,ericbeck}@lucent.com

§ETHZ, Switzerland, apburg@iis.ee.ethz.ch
∗Inst. of Comm. & RadioFrequencyEngin., TU Wien, Vienna, Austria, mrupp@nt.tuwien.ac.at

Abstract

BLAST techniques to increase the utilized bandwidth
in commercial systems are currently feasible. This
paper describes the design of a UMTS prototype,
supporting four transmit and four receive antennas,
achieving almost four times the capacity of a conven-
tional system. Various parts of the transmitter and
receiver are mapped on FPGAs and fast DSPs commu-
nicating via a specially designed communication link.
The system was entirely designed using C code, em-
bedded in SIMULINK S-functions for simulation, and,
after validation, automatically mapped onto the hard-
ware platform.

1 Introduction

Recent improvements in understanding rich scatter-
ing environments give rise to hope that the upcom-
ing UMTS system can support more users and higher
bandwidths by applying BLAST techniques [1, 2, 3].

After developing a methodology for mapping C-
code simulations automatically onto real-time hard-
ware platforms [4, 5], the method has been improved
and challenged on a larger system design. A UMTS
transmission with four transmit and four receive an-
tennas has been designed, enabling four times the data
rate on a single CDMA code.

The entire simulation setup is shown in Figure 1.
The transmitter supports four data streams through a
4-by-4 channel. The baseband signal is four times over-
sampled and Gaussian noise is added. The receiver,
consisting of automatic gain control(AGC), synchro-
nization unit (SYNC), square-root raised cosine filter
(SRRC), receiver front end(RFE), and Multiple-Input-
Multiple-Output Decoder(MIMO-DEC), processes the

received signal. This setup matches the actual hard-
ware implementation, with the RFE implemented in
an FPGA and the MIMO-DEC running on a DSP. The
various blocks are discussed in detail in the following
sections. Finally, the simulation environment and the
implemented system on a SUNDANCE experimental
board is described.

2 Transmitter

The transmitter block from [4, 5] was copied four times
and mapped onto a single V1000 FPGA from XIL-
INX. Only 50% of the chip area was utilized support-
ing primary and secondary synchronization channels,
a unique pilot channel for each transmit antenna, and
up to 14 users with individual spreading factors ranging
between 4 and 256 and gains between 0 and 255. 3L-
Diamond’s streaming software (WinServer32) is being
used to connect the transmitter core to a simple RLP
manager on a host-PC receiving and forwarding UDP
packets from an ethernet port.

3 Channel Models

Currently, several MIMO channel models are under in-
vestigation. A straightforward 4-by-4 channel model
defining 16 channels (one from each transmit to each
receive antenna) was derived from the power profile
and delay spreads of one-by-one UMTS channel mod-
els defined in the standard. The channel model can be
defined as:

y(k) = RC(k)Tx(k) (1)
C(k) = H0(k)δ(k) + H1(k)δ(k − τ1) +

... + H3(k)δ(k − τ3) (2)
[Hi(k)]lm = zlmJlm(kTcfD2π)gi. (3)

1

s(k)
-

?

v(k)

C(k) ����
T

AGC
SRRC
SYNC

RFE
MIMO

DEC

ŝ(k)
- - - -- -

Figure 1: BLAST over UMTS prototype setup.

The transmitted symbols x(k) are filtered by the cor-
relation matrix of the transmitter antenna array T,
followed by the time-variant channel C(k) and finally
by the correlation matrix of the receiver antenna array
R. Multipath rays arrive at time 0, τ1...τ3. The instan-
taneous values of each ray from transmit antenna l to
receive antenna m is defined by a power profile zlm,
a Jakes fading component and a normalizing term gi.
Note that this model assumes that all rays in a MIMO
channel are aligned in time, an assumption that has
been validated by recent outdoor measurements. It
should be noted that the channel model is only for
simulation purposes and does not require real-time im-
plementation.

4 Preprocessing

The first block of the receiver includes a digital AGC,
the required eight squared-root-raised-cosine (SRRC)
filters (two per receive antenna) and the synchroniza-
tion unit (SYNC). A digital automatic gain control
stage has been implemented as a first stage to effec-
tively reduce the 14 bit dynamic range from the A/D
converters down to 8 bit for the SRRC filters. The
AGC together with the SRRC filter blocks for one
channel is depicted in Figure 2. The magnitude of the
incoming I and Q signal is approximated by

|I + jQ| ≈ 3
8
(|I|+ |Q|) +

5
8

max(|I|, |Q|) . (4)

This estimate is first block-averaged over P samples
and then used to update a recursive smoothing filter.
It is further necessary to synchronize the updates with
the channel estimation block to ensure that each chan-
nel estimate is not corrupted by the switching of the
AGC (not shown here). The so obtained smoothed es-
timate of the magnitude needs to be inverted. A precise
division is costly in timing and complexity, however in
this case does not require a high precision. It was there-
fore decided to approximate a floating point division,
by shifting the values into the range [1,2] and further
inverting the number by a linear approximation in the
range [0.5,1]. This estimation yields the 6-bit mantissa

of the required gain and a gain exponent that is de-
termined by the position of the highest used bit in the
amplitude average. It is applied to the incoming I and
Q signals through a 14×6 bit multiplication and a shift
operation. The result is then truncated to 8 bit. In-
dependent square root raised cosine filters are applied
to the inphase and quadrature components of all four
receive antennas. As their 25 coefficients are symmet-
rical, only 13 multipliers are required for each one of
the filters. The AGC together with the SRRC filters
requires about 40% of a V1000 XILINX FPGA.

The synchronization detector reliably finds the be-
ginning of a frame and sends this information to the
gain update of the AGC as well as to the receiver front
end.

5 Receiver Front End

The detailed schematic of the receiver front end is
shown in Figure 3. It consists of a timing reference
that generates the scrambling and OVSF codes for pi-
lots (PCG) and user codes (UCG), a frequency offset
compensation mechanism (FOFF), channel estimation,
a rake receiver, and a finger assignment subsystem.
The RFE is clocked at 16 times the chip frequency and
uses a four times oversampled input signal at each of
the four receive antennas. This allows four processing
cycles per sample which can be used to interleave the
samples of the four receive antennas to process them se-
quentially. The scheme inherently infers a high degree
of pipelining and heavily uses time multiplex resources
sharing. This type of architecture is very suitable for
FPGA implementations and is highly recommended
by XILINX and other vendors in various application
notes.

5.1 Channel Estimation

The channel estimation algorithm is by far the block
with the highest complexity. It needs to handle 16
sub-channels with 64 taps each (4 times over-sampling,
spanning 4µs). A straight forward matched filter im-
plementation would require up to 16 FIR filters with
the length of the training sequence (1024 chips at 4×

∑
|I + jQ| P ↓ 1− α

1− αz−1

1
x

SP

SP

SRRC

SRRC

���

���

-

-

-

-

-

-

-

-

-

-
- - -

?

6

?

6

×

×yI(k)

yQ(k) rQ(k)

rI(k)

Figure 2: AGC and SRRC per channel.

oversampling) or alternatively a bank of 16×64 correla-
tors. Both implementations would exceed the resources
of a XILINX Virtex-1000 FPGA by far and would be
rather inefficient in terms of area utilization. Instead a
more advanced architecture was chosen combining FIR
and correlator solution to implement a 4×1 channel es-
timation, by imposing minor restrictions on the choice
of the pilot codes at the transmit antennas. This tech-
nique also allows to replace a great number of registers
with memory as it avoids the necessity to access them
all in parallel. A further area reduction was achieved
through time multiplexing and sequentially processing
of the receive antennas. The area requirement for this
block was reduced to about 15% of a Virtex-1000 de-
vice. For details please refer to [13].

ASSIGNMENT

UCG

FOFF

PCG

-

-

?

-

-

-

6

?

-

-

-r(k)

ŝ(k)

ĉ(k)

FINGER

CHANNEL

ESTIMATION

?

USER

SEL

SYMBOL DE-

SPREADING

Figure 3: Receiver front end.

5.2 Finger Assignment & RAKE Re-
ceiver

The development of the channel tracking and finger as-
signment mechanism also required a particularly care-
full design to suit the peculiar channel structure pro-
vided by the multiple antenna configuration. To iden-
tify the most suitable positions for the RAKE fingers a
common channel power profile is approximated by sum-
ming up the absolute values of the real and imaginary
part of the 16 channel profiles at each tap. This pro-
file is then searched to determine the best positions for
the RAKE fingers considering their power and avoiding
correlation between them. The entire process is done
on the fly as the channel estimate is being generated,
so that there is no need to store the channel informa-
tion for the finger search process, which would require
a large amount of additional memory. The same holds
for the determination of the finger coefficients.

The RAKE receiver is implemented as a set of four
delay lines, one for each receive antenna. They are uti-
lizing the FPGA’s internal dual ported memories and
are tapped by 16 parallel correlators allowing four in-
dependent fingers per receive antenna. Alternatively to
the delay line implementation, an architecture was con-
sidered allowing the correlators to start the integration
process independent of each other at their respective
delays. While this avoids the necessity to implement
a relatively long delay line it complicates the finger
management process, as correlators might skip chips
or even entire symbols as their position changes. The
additional complexity inferred to control and minimize
these effects exceeds the complexity required by the
delay line and therefore the first implementation alter-
native was chosen.

5.3 MIMO-Decoder Interface

The interface between the RFE and the the MIMO
decoder relies on a feed-forward structure, enabling the
use of a simple one-way communication link through
two FIFOs. One of them transfers the soft symbols,
the other the channel estimate. Each channel update
is marked with a two bit identifier. The symbols that
were received during the same time period carry the
same identifiers to align them with the corresponding
channel information for decoding.

6 MIMO Decoding algorithms

Many different MIMO decoding algorithms have been
implemented. Their details are presented in a com-
panion paper [11]. The entire algorithms are mapped
onto TI-C67 DSPs since they allow flexible program-
ming for the irregular algorithms. An FPGA design of
such a structure would have taken a much longer time.
Worth mentioning here is our approach that allows sep-
arating the matrix computations and the actual sym-
bol decoding. No matter what algorithm is applied,
the required matrix inverses only depend on the chan-
nel information and do not require further updates as
long as no new channel information arrives. Since the
channel estimation is averaged over several pilot sym-
bols, the matrix update is not required for many data
symbols (in particular for low spreading factors) and
thus the complexity of the algorithms is only moder-
ate. Depending on the complexity of the algorithm one
DSP can support one user with spreading factor 32 to
64, or, alternatively, more users with correspondingly
higher spreading factors.

7 Simulation Platform

Several simulation environments exist to provide the
developers with necessary tools to design and vali-
date their algorithms. Among those SIMULINK from
MATHWORKS is wide spread at universities as well
as companies. It is a graphical environment that al-
lows to partition a larger simulation problem easily
into smaller functional blocks. Due to its graphical
representation, all in- and output ports of such blocks
are fully described and the representation serves as a
good tutorial presented immediately to everybody in
the design team. Such a tool helps structuring the
code as well as keeping responsabilities for certain team
members restricted to specific blocks. SIMULINK pro-
vides a large library with predefined functional blocks
and can be combined with MATLAB, thus allowing to
quickly write and test code in the MATLAB language

while the entire toolset of MATLAB remains available.

In our design, particularly S-functions were used to
implement the various functional blocks. The advan-
tage here is that these operations can also be written in
ANSI-C and compiled, thus allowing faster simulation
runs as compared to using pure Matlab code. A par-
ticular hurdle seems to be bringing a C-code into the
specific form of an S-function. The newest SIMULINK
revision 12 provides a tools for this while older revi-
sions only provide a template to fill out which is a
very time consuming process. Our goal was to reuse
the entire simulation code directly on the hardware
platform, avoiding the necessity to rewrite/retarget the
code manually with all the necessary additional debug-
ging. To achieve this goal a mapping software was
written that translates one golden code into any de-
scription necessary; i.e., into S-functions for simula-
tion purposes, into code to run on a TI processor or
into a C-code that can be mapped via automatic tools
into VHDL and subsequently into FPGAs. The golden
code is written in form of a GENERIC-C code as it
is common in commercial system design tools such as
COSSAP from SYNOPSYS or SPW from CADENCE.
Such a GENERIC code is basically plain C code with a
header that defines all necessary in- and output ports
and their corresponding data rate. For the simulation
for example the automatic mapping tool figures out
how to map this information correctly into a valid S-
Function that can be plugged into a SIMULINK simu-
lation.

8 Implementation Platform

Since a UMTS receiver requires a huge amount of bit
level manipulations at a fairly high rate, general pur-
pose DSPs are very inefficient to implement those. FP-
GAs offer the right amount of flexibility at the cost
of higher turnaround times for algorithmic modifica-
tions. On the other hand DSPs are very well suited for
mult/add operations on irregular code as it is common
especially for decoder algorithms that rely on matrix
inversions. It was thus decided to implement the re-
ceiver front-end together with AGC, SRRC and syn-
chronization unit on FPGAs, while the actual MIMO
decoding algorithms were implement on DSPs. Not
many experimental platforms provide the co-existence
and even more, the co-operation of DSPs and FP-
GAs. The experimental boards from SUNDANCE
(www.sundance.com), offer a large range of TI-DSPs
and Xilinx FPGAs together with A/D and D/A con-
verter modules.

The design as described in the previous sections al-
lows to implement the entire receiver for a 4×4 BLAST
system on two FPGAs of the V1000 XILINX series and
one TI C-67. As mentioned before the GENERIC-C
code was mapped directly to run on DSPs and FP-
GAs. For the TI-DSPs, the code is enriched by the
real-time system 3L Diamond and by interface drivers
to support the in- and output ports. More specifi-
cally, SUNDANCE provides two 16bit wide busses with
FIFO buffers on their DSP boards that can sustain up
to 100Mwords per sec. data transfer. The same 16bit
wide bus also exists on the FPGA modules allowing
different modules to communicate with each other.

Mapping algortithms into the FPGA world re-
quires additional steps. The ANSI-C code is enriched
by fix-point data types from FRONTIER DESIGN
(www.frontierd.com). They come with a library that
can easily be combined with the standard C compilers
that support SIMULINK. Once the code runs entirely
in fixed-point C data types, the algorithm can automat-
ically be converted into VHDL by applying Frontier’s
A|RT-BUILDER tool. From there VHDL synthesizer
continue to map the code into the required format for
FPGAs. Note that this design path requires the devel-
oper to write the C code specifically to support muli-
rate designs. In particular, finite-state-machines need
to be hand coded in C. Modern EDA tools like A|RT-
DESIGNER (see [12]) allow even to add the control
logic to a given C code description.

9 Conclusion

This paper outlined the architecture of a UMTS-based
MIMO receiver frontend prototype, the rapid proto-
typing methodology and required tools to realize it.
With the described C-based design methodology it was
possible to realize an inital system, to run cycle ac-
curate simulations and to assess the performance and
the hardware complexity of the individual blocks at an
early stage of the design. This allowed us recognizing
critical parts such as the channel estimation early on
and looking for optimized architectures with a reason-
ably low complexity.

Acknowledgments

The authors would like to thank Sue Walker and David
Haessig for their excellent XILINX implementation
work.

References

[1] G.J.Foschini, M.J.Gans, ”On Limits of Wireless Com-
munications in a Fading Environment when Using
Multiple Antennas”, Wireless Personal Communica-
tions, No. 6, 1998, pp. 315-335.

[2] P.W.Wolniansky, G.J.Foschini, G.D.Golden,
R.A.Valenzuela, “V-BLAST: An architecture for
achieving very high data rates over rich-scattering
wireless channels”, in Proc. ISSSE-98, Pisa, Italy.

[3] G.D.Golden, G.J.Foschini, R.A.Valenzuela,
P.W.Wolniansky, ”Detection Algorithm and Initial
Laboratory Results Using V-BLAST Space-Time
Communication Architecture”, Electronics Letters,
Vol. 35, No. 1, pp. 11-14, Jan. 1999.

[4] M.Guillaud, A.Burg, L.Mailaender, B.Haller, M.Rupp,
E.Beck, “From Basic Concept to Real-Time Implemen-
tation: Prototyping WCDMA Downlink Receiver Al-
gorithms - A Case Study”, 34th Asilomar Conference,
Monterey, California, Oct. 2000.

[5] A.Burg, B.Haller, M.Guillaud, M.Rupp, E.Beck,
L.Mailaender, ”A Rapid Prototyping Methodology
for Algorithm Development in Wireless Communica-
tions”, In Proc. Design, Automation and Test in Eu-
rope DATE’01, Munich, 13-16 March, 2001.

[6] T.Kailath, A.H.Sayed, B.Hassibi, Linear Estimation,
Prentice Hall, 1999.

[7] G.J.Foschini, G.D.Golden, R.A.Valenzuela,
P.W.Wolniansky, “Simplified processing for high
spectral efficiency wireless communication employing
multi-element antennas,” IEEE JSAC, vol. 17, no. 11,
Nov. 1999.

[8] R.Van Nee, A.van Zelst, G.Awater, “Maximum Like-
lihood decoding in a space division multiplexing sys-
tem,” VTC Japan, May 15-18, 2000.

[9] G. Awater, A. van Zelst and R. van Nee, “Reduced
Complexity Space Division Multiplexing Receivers,”
VTC Japan, May 15-18, 2000.

[10] J.G. Proakis, Dimitris G. Manolakis, Introduction to
Digital Signal Processing. Macmillan, 1988.

[11] M.Rupp, S.Das, M.Guillaud, ”On MIMO Decoding
Algorithms for UMTS”, 35th Asilomar Conference,
Monterey, California, Nov. 2001.

[12] M.Rupp, “A 64-point FFT Design Example Using
A|RT-Designer,” 34th Asilomar Conference, Monterey,
California, Oct. 2000.

[13] A.Burg, M.Rupp, M.Guillaud, E.Beck, D.Perels,
N.Felber, W.Fichtner, ”FPGA Implementation of a
MIMO Receiver Front-end for UMTS”, submitted to
the IZS-Conference 2002, Zurich, Switzerland

