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Abstract—Large Language Models (LLMs) have transformed
various fields with their remarkable ability to comprehend and
generate human-like text. Despite these advancements, their ef-
fectiveness in specialized domains such as finance, law, medicine,
and telecommunications remains limited. To adapt these models
to new domains, it is essential to train them on relevant datasets.
Fine-tuning is a well-known method for training LLMs on
new tasks using specialized datasets. However, generating these
specialized datasets presents a critical challenge, as structur-
ing the data appropriately for effective learning is complex.
To address this challenge, this paper presents 5G Instruct
Forge, an advanced data engineering pipeline designed to create
domain-specific datasets for 5G networking, particularly from
the 3rd Generation Partnership Project (3GPP) specifications.
By processing unstructured documents, i.e., 3GPP Technical
Specifications (TSs), into structured formats, our pipeline enables
LLMs to be fine-tuned for understanding and generating 5G-
related content. As a proof of concept, we generated the Ope-
nAirInterface (OAI) Instruct dataset using our pipeline, utilizing
a subset of the 3GPP TSs used to develop OAI. Evaluation results
demonstrate that training generic open-source LLMs on this
dataset resulted in new 5G-aware LLMs outperforming OpenAI’s
GPT-4 on 5G-specific tasks.

Index Terms—LLMs, fine-tuning, 5G, 3GPP, OAI.

I. INTRODUCTION

L arge Language Models (LLMs) have revolutionized nu-
merous fields with their remarkable ability to understand

and generate human-like text [1]. These models require ex-
tensive training on vast datasets, such as OpenWebText [2],
Common Crawl [3], and Dolma [4], to capture and learn the
nuances of human language from diverse linguistic contexts.
By leveraging such comprehensive data, LLMs can mimic
human language patterns and understand intricacies across
different domains and dialects [5], making them indispensable
tools for natural language understanding, generation, and a
variety of downstream tasks. These tasks include sentiment
analysis, machine translation, and summarization [1], which
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require not only a deep understanding of language but also
the ability to infer and reason from context. In addition to
commercial models like OpenAI’s GPT series, including GPT-
3 and GPT-4, there are notable open-source LLMs available,
such as Meta’s Llama series [4], Google’s T5 series [6],
and Gemma series [7]. These models provide the research
community and industry with powerful tools to build upon and
integrate into a wide array of applications, thus democratizing
access to cutting-edge Natural Language Processing (NLP)
technologies [1].

As the demand for 5G network services continues to grow in
today’s digital world, networks must be updated to meet their
evolving requirements. eXtended Reality (XR) and Virtual
Reality (VR) applications, for example, require critical Quality
of Service (QoS) in terms of latency and throughput [8].
To address these needs, 5G networks need upgrades with
new functionalities. Multiple standardization bodies are ac-
tively working to establish guidelines for implementing 5G.
The 3rd Generation Partnership Project (3GPP) is making
significant efforts to propose Technical Specifications (TSs)
for developers and technical personnel to aid in the devel-
opment of 5G network procedures [9]. However, these TSs
are often complex and voluminous, making it challenging for
developers and readers to find the necessary information. In
this context, chatbot assistants become essential in answering
questions about the TSs’ content. With the rapid advancement
in Generative Artificial Intelligence (GenAI), LLMs offer a
promising solution. These models can learn from vast datasets
and generate human-like text [1], assisting users in navigating
and understanding the extensive 3GPP TSs documents related
to 5G networks.

As 5G-aware LLMs offer a promising approach in enhanc-
ing the efficiency of information provision and development
of 5G networks (and other domains given their standards),
creating them is a complex task [10]. Training existing pre-
trained LLMs in the new 5G domain is not straightforward,
as this training necessitates a high-quality dataset specifically
tailored for the given domain [11]. This involves collecting
data from 3GPP TSs, cleaning, and generating a structured
dataset that is training-optimized (or training-ready), i.e., ready
for the LLM to train on. Among these steps, the cleaning
process is particularly complex due to challenges in handling
figures and paragraphs referencing other paragraphs within
the TSs (and from other TS documents). Additionally, data
generation presents complexities related to post-processing
the cleaned TSs as LLMs require a specific data structure
to respond to users’ 5G-related queries effectively. Therefore,
developing an effective 5G-specific LLM requires a pipeline to
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generate these specialized datasets, ensuring that future LLMs
can bridge this critical gap in 5G technology understanding
and application [12].

To this end, this paper addresses the aforementioned chal-
lenges by proposing a data pipeline designed for dataset
generation specifically to train (i.e., fine-tune) LLMs for under-
standing 5G technologies. The pipeline can collect and clean
a set of 3GPP TSs and perform structured data generation
using existing state-of-the-art LLMs. The resultant data is
subsequently used to train open-source LLMs to create new
5G-aware LLMs capable of understanding and generating 5G-
related text. The major contributions of the paper are as
follows:

• We detail a robust framework for gathering, processing,
and cleansing 3GPP TSs. This framework not only sim-
plifies the transformation of highly technical, unstruc-
tured, and comprehensive documents into a clean format
but also ensures the retention of critical information,
making it conducive for LLM training.

• Within the aforementioned framework, we leverage state-
of-the-art LLMs to generate prompt/completion pairs.
This approach relies on the advancements of powerful
LLMs to create 5G-related datasets for training other
LLMs, with the goal of developing 5G-aware LLMs.

• As a result of the pipeline, we present an open-source
dataset, namely the OAI Instruct dataset1. This dataset
is uniquely tailored to enhance the comprehension and
generation capabilities of LLMs concerning a subset of
22 3GPP TSs.

• To evaluate the pipeline’s effectiveness, we perform a
specific type of fine-tuning called freeze-tuning to adjust
the parameters of open-source LLMs based on our pre-
viously crafted LLM, aiming to create 5G-aware LLMs
and demonstrate the utility of our dataset.

• We thoroughly evaluate GPT-42, open-source LLMs, and
fine-tuned (5G-aware) LLMs using the evaluation seg-
ment of our newly created dataset. This assessment criti-
cally analyzes the enhanced performance of these models
on specialized tasks, highlighting the effectiveness of our
dataset for both training and evaluation methodologies.

The remaining sections of this paper are structured as
follows: Section II describes related works and background.
In section III, we illustrate the system design. In Section IV,
we present results proving our work’s pertinence. Finally,
section V concludes the paper.

II. RELATED WORKS AND BACKGROUND

In this section, we present related works and background on
ways to create LLMs, including training methodologies and
use cases, emphasizing the need for specialized datasets. We
then review existing literature on LLMs dataset generation.

A. LLMs creation

Creating LLMs involves intricate processes of pre-training
and fine-tuning, essential for developing models with special-

1https://huggingface.co/datasets/Netsoft/oai-instruct
2gpt-4-0125-preview

ized capabilities [1]. Pre-training typically includes training
on massive text corpora using the Transformer architecture
to develop generalized language representations, resulting in
foundational LLMs such as Llama3 70B [13], Qwen1.5 110B
[14], and Mixtral0.1 8x22B [15]. These foundational models
provide a solid base with a broad understanding of language
across diverse contexts, making them versatile yet general in
their capabilities. Fine-tuning then adapts these pre-trained
foundational models to specific tasks or domains by leveraging
domain-specific datasets, which are crucial for providing the
necessary context and terminology unique to particular fields.
This stage results in more specialized LLMs, such as those
used for 5G applications, tailored to deliver precise responses
in specific sectors. Further emphasizing the importance of
domain-specific adaptation, LLMs like BioBERT [16] and Fin-
BERT [17] have garnered significant attention for their ability
to leverage specialized knowledge to improve performance in
specific fields. For instance, BioBERT, tailored for biomed-
ical text mining, demonstrates substantial performance gains
achieved by training on biomedical literature. Similarly, Fin-
BERT, fine-tuned on financial data, significantly improves the
handling of financial texts. The use of such models showcases
the efficacy of fine-tuning LLMs on domain-specific datasets
to enhance their understanding and generation of specialized
content, thereby highlighting the crucial role of specialized
datasets in enhancing the applicability and performance of
LLMs in specialized contexts [1].

Advanced techniques are continuously developed to enhance
the outputs of LLMs. Among these, Instruct-type fine-tuning
represents a significant evolution in the field of AI. Unlike
traditional methods, which adjust models using specific task-
related data, Instruct-type datasets such as Alpaca [18], Ul-
traChat[19], and OpenOrca[20] are designed to teach models
to follow user instructions in a more generalized manner.
These datasets contain varied prompts that guide models in
understanding and executing user commands effectively, thus
improving their interactive capabilities [1]. This approach not
only injects a general ability for instruction following into
LLMs but also enhances the user experience by enabling
more natural and intuitive interactions. Prompting strategies,
such as Retrieval-Augmented Generation (RAG), play a cru-
cial role in enhancing the capabilities of LLMs. RAG is a
technique in prompting that involves providing specific inputs
to models to generate desired outputs. It dynamically retrieves
information from a knowledge base during the generation
process, combining the retrieval capabilities of a dense vector
search with the generative power of an LLM. This approach,
highlighted by platforms like Langchain3, enables the model
to access extensive information beyond its initial training data,
improving output accuracy [1]. However, the effectiveness of
RAG depends on a large context window and the quality of
the knowledge base, which can influence the accuracy of the
outputs. These sophisticated techniques collectively enhance
the utility of LLMs in various applications, from chatbots to
virtual assistants, showcasing their flexible adaptability, which
is not seen in more narrowly focused models [1].

3https://www.langchain.com
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B. Datasets generation

The creation and utilization of instruct datasets are piv-
otal for developing effective domain-specific LLMs, which
are essential for achieving high performance in specialized
contexts. Instruct datasets, by providing the necessary con-
textual examples, enable LLMs to comprehend and generate
domain-specific content accurately. For example, models like
T5, which operates within a unified text-to-text framework,
highlight the success of using instruct datasets to attain state-
of-the-art performance across various NLP tasks [21]. More-
over, GPT-3’s fine-tuning process with instruct datasets has
proven its enhanced capabilities in handling tasks that demand
deep domain knowledge [22]. This trend underscores the
critical role of well-constructed instruct datasets that not only
embed detailed domain-specific knowledge but also support
the linguistic capabilities required for broad NLP applications.
Nowadays, open source LLM developers consistently fine-
tune their foundational models on instruct datasets like the
open source LLMs Meta-Llama-3-8B4 and Meta-Llama-3-8B-
Instruct5, which diverge across the LLaMA family’s various
versions and parameter sizes, reflecting a standard practice in
the field.

Research on data generation pipelines provides valuable
methodologies for creating high-quality datasets. For instance,
researchers in [23] explore techniques to enhance dataset
diversity and quality, such as Translation Data Augmentation
(TDA). The latter augments training data by altering existing
sentences in a parallel corpus to diversify training examples
while preserving semantic equivalence. It involves selecting
targeted rare words for substitution to provide new contexts
for these words, using language models to suggest plausible
substitutions, and ensuring that the substitutions and their
translations maintain grammatical and semantic coherence.
Similarly, the authors of [24] illustrate methodologies for
constructing datasets that improve model performance, such
as synthetic data generation and multi-task learning. Recently,
with the rapid explosion in generative AI, LLMs are being
widely used as a key component in dataset generation pipelines
[25]. For example, tools like DataDreamer [26] simplify
the creation of synthetic datasets and facilitate reproducible
LLM workflows, addressing challenges such as model brittle-
ness and reproducibility. Additionally, the open source model
Bonito, introduced in [27], complements these capabilities by
transforming regular text into specialized training exercises for
language models. Bonito utilizes meta-templates from datasets
like P36 to craft synthetic tasks for various domains, enhancing
the diversity and applicability of training materials. However,
both tools exhibit limitations in handling data from .docx
files and struggle with the robotic text format typical of 3GPP
specifications and technical reports. Furthermore, they do not
effectively manage non-textual data such as figures and tables,
which are crucial in these documents, comprising about 66%
of the embedded knowledge.

4https://huggingface.co/meta-llama/Meta-Llama-3-8B
5https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
6https://huggingface.co/datasets/bigscience/P3

C. Research gap

While substantial progress has been made in developing
domain-specific LLMs and creating instruct datasets, signif-
icant gaps remain in the availability of specialized datasets
for the 5G domain. Although [28] and [29] provide methods
to generate datasets for Telecom-specific LLMs and for bench-
marking LLMs in telecom, respectively, these approaches are
broad and cover the entire Telecom domain. Furthermore,
despite figures and tables within TSs containing important
information that does not exist in the text, these approaches do
not take them into account in 3GPP TSs. Thus, an automated
pipeline to convert 5G 3GPP TSs (including figures and tables)
into a 5G-specialized LLM is absent from current research.
Our contribution addresses these gaps by developing an inno-
vative, LLM-centric data generation pipeline specifically for
5G. This pipeline generates instruct datasets from 3GPP TSs,
enabling the creation of 5G-aware LLMs.

III. SYSTEM DESIGN

Our proposed solution, 5G Instruct Forge, presents a com-
prehensive pipeline designed to transform the 3GPP TSs into
a well-structured dataset optimized for fine-tuning, as depicted
in Fig. 1. This transformation involves several stages: (i)
Specification gathering, which can be done either through our
automated scripts or manually. The specifications, generally
in .docx/.doc formats, are then meticulously processed;
(ii) Cleaning and processing, involves extracting essential
elements from each document, such as the table of contents, ta-
bles, figures, abbreviations, and definitions. These elements are
managed utilizing LLM data generation techniques. Following
this, the documents are converted into plain text and concate-
nated to create an embedding database. This database plays a
crucial role in the next stage; (iii) Data generation using LLMs,
supports the creation of eight distinct task type entries using
powerful state-of-the-art LLMs; (iv) Post-processing, verifies
the correctness and integrity of the generated data.

Specifications
gathering

Cleaning and
 processing

 Data generation using
LLMs

Post-processing

Specifications Zip Files

Raw text extracted from
specifications

Synthetic
prompt/completion pairs 

Ready for fine-tuning
instruct dataset

3GPP
Portal

1

2

3

4

Fig. 1: 5G Instruct Forge pipeline stages.
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A. Specifications gathering

The first part of the project involves gathering 3GPP TSs
from the 3GPP portal7. The latter is a central repository for all
3GPP TSs and reports, which are essential for developing and
maintaining global telecommunications standards, particularly
for mobile networks. The portal allows users to download all
specifications from a specific release or a subset of specifica-
tions relevant to their needs. Users can also specify a list of
3GPP specifications by providing the release number and the
specific ID of the documents, such as “23.209”, where “23”
represents the release number and “209” is the specification
ID. The downloaded files are provided in .zip archives,
which include the specifications in .docx or .doc formats,
along with other files in .yaml or .taml formats. We are
only interested in the .docx files and the .doc files are
converted to .docx to standardize the process. The 3GPP
TSs follow a consistent format and adhere to specific styling
policies, including the use of bold text, various heading levels
(T1), and structured paragraphs, as shown in Fig. 2. This
consistency in formatting makes it possible to systematically
extract information using the python-docx8 library.

5.3 Channel organization
The channel organization for the traffic channels (TCH), FACCHs and SACCH/T uses the 26-frame multiframe. It is 
organized as described in figure 2, where only one time slot per TDMA frame is considered.

Figure 2: Traffic channel organization.

The FACCH is transmitted by pre-empting half or all of the information bits of the bursts of the TCH to which it is 
associated (see 3GPP TS 45.003).

The channel organization for the control channels (except FACCHs and SACCH/T) uses the 51-frame multiframe. It is 
organized in the downlink and uplink as described in figure 3.

The channel organization for packet data channels uses the 52- multiframe. Full rate packet data channels in BTTI 
configuration are organized as described in figure 2a1, and in RTTI configuration in figure 2a3. Half rate packet data 
channels can be organized as described in figure 2a2. 

52 TDMA Frames

X = Idle frame
T = Frame used for PTCCH

B0 - B11 = Radio blocks

Figure 2a1: 52- multiframe for PDCH/Fs in BTTI configuration.

Figure 2a2: 52- multiframe for PDCH/Hs.

3GPP

DOCUMENTTYPE

Mobile Phones
TypeYourNameHere TypeDateHere

B0 B1 B2 T B3 B4 B5 XB6 B7 B8 TB9 B10 B11X

3GPP TS 45.001 V18.0.0 (2024-03)23Release 18

Fig. 2: Page 23 of the 3GPP TS 45.001 V18.0.0 (2024-03)

7https://portal.3gpp.org/
8https://python-docx.readthedocs.io/en/latest/index.html

B. Cleaning and processing

In the cleaning and processing phase, the primary objective
is to refine the extracted 3GPP TSs to ensure the dataset is
clean, relevant, and structured for fine-tuning purposes. This
involves several key steps. First, we remove the initial and
final sections of the specifications, as these often contain
ancillary information such as titles, 3GPP contact details,
addresses, phone numbers, and annexes primarily written for
API purposes. These sections are not pertinent to the core
5G knowledge we aim to capture, so we choose to exclude
them aiming at streamlining the documents to focus on the
valuable content. Next, we extract the table of contents from
the main text files and store them separately. They provide
a navigational map of the document structure and are useful
for referencing and indexing. Additionally, we isolate non-
textual data, such as figures and tables, which often contain the
bulk of the information in the specifications. Neglecting this
data would result in a significant loss of content. Therefore,
we treat this non-textual data separately, aiming to convert it
into textual formats that an LLM can process and understand.
This approach ensures that all critical information is effectively
captured and utilized.

Figures and their annotations are processed using a highly
accurate Vision-Text model, namely MiniCPM9, which pro-
vides detailed textual descriptions of the figures, ensuring
that all visual information is translated into a textual format
suitable for LLM training. Fig.3 illustrates the text generation
from 3GPP TS figures using the Vision-Text model. The
process involves first loading the vision model, then converting
the image to PNG format, and finally processing the image
using the model to obtain the textual description. Similarly,
tables are handled by feeding them into an advanced LLM,
which generates detailed descriptions of the tabular data. This
approach ensures that complex information contained in tables
is accurately represented in a textual form, making it more
accessible for the language model.

Image 

System: You are a helpful Vision-
Language model that explains figures in
the context of Telecommunications.
Instruction: Describe the following
figure in details.
Brief Description: 

Prompt

MiniCPM-V-2

The figure depicts a sequence diagram illustrating the interaction between two
network entities, labeled "NF Service Consumer" and "AMF". The diagram shows a
two-step communication process where the NF Service Consumer initiates the
exchange by sending a POST request to the AMF, indicated by the arrow labeled "1.
POST .../evt_sink(XyzNotifications)." This request likely involves sending event
notifications or data to a specific service endpoint managed by the AMF. The AMF
responds with a "204 No Content" status, as shown by the returning arrow labeled
"2. 204 No Content," indicating that the request was successfully processed but
there was no further content to return. This type of interaction is typical in
network functions where the communication is designed to be efficient and
asynchronous, focusing primarily on the exchange of necessary notifications or
commands without requiring a substantial data transfer back to the initiator.

Fig. 3: Figure textual description generation using MiniCPM.

9https://huggingface.co/openbmb/MiniCPM-V-2
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Fig. 4: Illustration of the data cleaning and processing stage.

In addition to processing structural elements of the specifi-
cations, we meticulously extract abbreviations and definitions
from each document. This step is crucial as these elements
encapsulate essential information that is imperative for both
human understanding and LLMs to interpret the technical
content accurately. Following the individual treatment of fig-
ures, tables, tables of contents, abbreviations, and definitions,
we then extract the raw text from all .docx files of the
specifications. This raw text is concatenated into a single, large
.txt file, which forms the basis for the subsequent stages
of our data generation pipeline. This consolidated text file
facilitates a streamlined integration and manipulation of the
data, ensuring a comprehensive dataset is available for further
analysis and machine learning applications. All these steps are
summarized in Fig. 4.

C. Data generation using LLMs

Fig.5 illustrates the data generation stage using LLMs. This
phase is a critical component of our pipeline, which focuses
on transforming clean, raw textual data about 5G into a
domain-specific dataset suitable for training LLMs to become
5G while maintaining their general language capabilities or
evaluation. Our approach leverages both OpenAI’s GPT-3.5
Instruct model10 and the open-source Llama3 70B model11

to create this dataset. The GPT-3.5 Instruct model is utilized
for its superior accuracy and more controlled output, which re-
duces the number of inadequate entries during post-processing.
Its advanced capabilities minimize the risk of generating
inappropriate content. However, the use of GPT-3.5 comes
with challenges, such as the need for data transmission to
third parties, internet connectivity requirements, and potential
latency issues. To address these challenges, we incorporate the
Llama3 70B model, which, despite being less accurate due to
its smaller size, offers advantages such as faster generation
times and local operation with minimal latency. While this
may result in a higher rate of inadequate entries that require
additional filtering, it provides a valuable balance between
control, speed, and data privacy.

The pipeline begins by creating an embedding database
from concatenated text files generated in the previous step.

10https://platform.openai.com/docs/models/gpt-3-5-turbo
11https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

This database is crucial as it facilitates the LLMs’ contextual
understanding during the generation of prompt/completion
pairs. The concatenated text files are transformed into em-
beddings using an OpenAI model called text-embedding-3-
large12, which captures their semantic meanings. The resulting
embeddings are essentially vectors of numerical values repre-
senting each word in the concatenated files and are stored in a
vector database. We used Chroma DB13 because it efficiently
organizes and manages the embeddings, allowing the LLMs
to quickly retrieve relevant information when generating re-
sponses. By adopting a RAG approach, the pipeline ensures
that the LLMs access relevant context, thereby improving the
quality and relevance of the generated data. Following the
creation of the embedding database, the pipeline proceeds to
generate either training data or evaluation data. The dataset
for training will be an Instruct dataset used exclusively for
training LLMs to create 5G-specialized models. In contrast,
the evaluation data will be used to assess the created LLMs’
abilities in 5G knowledge. Next, we delve into the details of
each part.

1) Training data generation: Our pipeline is designed
to produce a variety of training tasks, including question-
answering pairs, fill-in-the-gap pairs, text reformulation, title
and summary generation, and other specialized tasks. These
tasks are important because they enable the LLMs to: (i) Learn
raw knowledge through question-answering; (ii) Identify key
entities and concepts with fill-in-the-gap tasks; (iii) Explore
alternative expressions via text reformulation; and (iv) Correct
misconceptions through tasks addressing false claims. Each
type of task contributes significantly to the development of
the LLM’s domain expertise and language understanding. For
question-answering tasks, the process involves two stages:
generating questions and then generating answers. This two-
pass approach ensures that the questions are well-formed
and relevant, while the answers are accurate and informative.
For simpler tasks, such as filling in the gaps, a single-pass
approach is used where the LLM completes missing parts of
the text.

2) Evaluation data generation: The evaluation data genera-
tion step is crucial for assessing the knowledge and capabilities

12https://openai.com/index/new-embedding-models-and-api-updates/
13https://www.trychroma.com
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Fig. 5: Illustration of the data generation using LLMs stage.

of the trained LLMs. This step also relies on the concatenated
text file containing the 5G specifications, but the structure of
the evaluation dataset differs from that of the training data. We
propose two types of evaluation datasets to test the LLM’s
understanding and generation abilities comprehensively: (i)
The first type of evaluation dataset resembles an exam de-
signed to assess both the knowledge and understanding of
the LLM. This dataset includes columns for “question” and
options labeled from 1 to 4, with the correct answer provided
separately. To further enhance this dataset and introduce
more diversity and challenge for the LLM, we incorporate
yes/no questions where the only possible answers are “yes”
or “no”. This mixed format not only evaluates the model’s
ability to recall information but also tests its decision-making
skills; (ii) The second type of evaluation dataset focuses on
assessing the LLM’s knowledge and generative capabilities
through direct question answering. This dataset is similar in
structure to the training data’s question-answering task but
without specifying an instruction. It includes questions derived
from the 5G knowledge base, and the LLM is expected to
generate accurate and contextually appropriate answers. This
format allows for a straightforward evaluation of the model’s
ability to generate coherent and relevant responses based on its
learned knowledge. By using these varied evaluation datasets,
we can comprehensively assess the LLM’s proficiency in 5G
technology, ensuring that it not only understands the material
but can also generate high-quality responses.

D. Post-processing

In the post-processing phase, we focus primarily on veri-
fying that the training and evaluation datasets conform to the
predefined format. We systematically check for any entries
that do not meet this format, identifying and removing those
that are malformed or incomplete. By ensuring that all dataset
entries adhere to this structure, we maintain the integrity and
consistency necessary for effective training of domain-specific
LLMs and their evaluation. This verification step is critical to
eliminate noise and ensure that the final dataset is clean and
reliable for use in developing 5G expert language models.

IV. PERFORMANCE EVALUATION

The section is structured into three subsections: (i) Evalu-
ation setup, which details the experimental setup; (ii) Evalu-
ation results, which presents the experiments results; and (iii)
Evaluation conclusion, which offers additional insights related
to the experiments.

A. Evaluation setup

The evaluation preparation includes four steps: generating
a 5G-related dataset for LLM training using the pipeline,
creating 5G-aware LLMs, deploying 5G-aware LLMs, and
preparing the evaluation datasets.

• (i) Generating a 5G-related dataset: We selected 22
3GPP TSs that were used to develop OpenAirInterface
(OAI)14, to generate the dataset using the proposed
pipeline, named the OAI instruct dataset.

• (ii) Creating 5G-aware LLMs: Three open-source state-
of-the-art LLMs were fine-tuned using the OAI instruct
dataset with the freeze-tuning method within the LLaMA
Factory framework [30], ensuring that a percentage of the
core model’s parameters were preserved while adapting
it to the specific task. These LLMs are referenced in
Table. I, and the most important hyperparameters for
LLM freeze-tuning are referenced in Table. II;

• (iii) Deploying 5G-aware LLMs: The resulting 5G-aware
LLMs were deployed on a single machine equipped with
an Nvidia A100 GPU with 80GB of vRAM, utilizing the
Llama Factory project for deployment. In this setup, we
set the LLMs’ temperature to 0.7 to balance creativity
and coherence in the responses;

• (iv) Preparing the evaluation dataset: To validate the
effectiveness of our methodology and the integration
of knowledge into the resulting 5G-aware LLMs, we
employed the evaluation benchmark from the OAI in-
struct dataset. This benchmark, comprising over 9,000
question-and-answer pairs, is specifically designed to
measure the model’s capacity to respond accurately to
novel information about 5G technologies. Additionally,
we incorporated a dataset featuring approximately 200
questions, each with four answer options (called 5G

14https://openairinterface.org
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exam). This additional dataset aims to evaluate not only
the LLM’s expertise in 5G but also its proficiency in
language comprehension. This dual assessment approach
addresses concerns regarding potential compromises in
the LLM’s language capabilities due to the fine-tuning
process.

TABLE I: Open-source LLMs used for training.

LLM Number of parameters Size Reference
Llama3 8B 16 Gb 15

Solar 10.7B 21 Gb 16

Mistral 7B 14 Gb 17

TABLE II: Fine-tuning hyperparameters for each open-source
LLM.

LLM Trainable
parameters

Number
of epochs

Learning
rate

(×10−5)

Per-device
training
batch

Llama3 9% 4 4 4
Solar 12% 4 4 4

Mistral 11% 4 5 4

B. Evaluation results

The evaluation results are structured into four stages: (i)
OAI Instruct dataset, which presents a dataset generated by
the proposed pipeline to create 5G-aware LLMs; (ii) 5G-aware
LLMs training, which outlines the chosen fine-tuning method-
ology and includes an ablation study on the hyperparameters of
the corresponding fine-tuning approach; (iii) 5G-aware LLMs
quality, which presents and analyzes the performance of the
newly developed 5G-aware LLMs. At this stage, we conduct
several evaluations, beginning with the training of the LLMs.
We then apply various metrics (e.g., BERTScore, SemScore)
to assess the quality of the generated texts. Additionally, we
monitor the generation time of these LLMs and perform an
exam test to evaluate their understanding of 5G; and (iv)
Expert satisfaction, which assesses user satisfaction with the
newly created 5G-aware LLMs.

1) OAI Instruct dataset: As a proof of concept for our
pipeline, we generated a dataset named OAI Instruct. This
dataset was created by applying our data generation pipeline to
a set of 22 3GPP TSs, upon which the renowned open-source
implementation of 5G networks, OAI, is built. The resulting
dataset, which is available at 18, will be used to create a spe-
cialized LLM capable of interacting with and understanding
aspects of OAI (i.e., 5G). The OAI Instruct dataset includes
87,719 entries in the training set and 9,557 entries in the test
set with a total size of ≈100Mb (≈80Mb for training & ≈6Mb
for evaluation). The training dataset comprises columns for
‘instruction’, ‘task type’, ‘input’, ‘completion’, and ‘prompt’,
with a diverse range of instructions and task types. The

15https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
16https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0
17https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
18https://huggingface.co/datasets/Netsoft/oai-instruct

test dataset is structured differently, featuring ‘completion’,
‘prompt’, and ‘completion2’ columns to evaluate the model’s
performance using known metrics, such as BERTScore[31]
and SemScore [32], which require multiple references, hence
the use of two completions instead of just one. Examples of
entries in the instruct-type dataset are shown in Fig.6.

In comparison to other domain-specific instruct datasets
found in the literature, the finance-alpaca dataset19 is an
illustrative example, with a size of 42.9 MB. It has success-
fully facilitated the fine-tuning of models such as distilgpt2-
finance20 and Llama-personal-finance21, featuring a structure
that includes the key fields of ‘instruction’, ‘input’, and
‘output’, similar to our dataset. Another noteworthy dataset
is lawinstruct22, which, due to its larger size and broader
source inclusion, supports a more extensive range of fine-tuned
LLMs. Our goal underscores the effectiveness of modest-sized
datasets, suggesting that a well-structured dataset of ≈80Mb,
coupled with the right fine-tuning approach and hyperparam-
eters, can proficiently develop an LLM expert capable of
learning, memorizing, and reasoning within a targeted subfield.
This approach aligns with our strategy of creating highly
specialized, efficient LLMs without the need for excessively
large or comprehensive datasets.

2) 5G-aware LLMs training: To demonstrate the effec-
tiveness of our dataset, we initially employ it to fine-tune
LLMs. Fine-tuning involves adapting pre-trained models to
specific tasks or domains using specialized datasets, which
mathematically entails adjusting the model’s parameters θ to
minimize a loss function L(θ) across the dataset. The objective
of fine-tuning can be formalized as:

θ∗ = argmin
θ

N∑
i=1

L(yi, f(xi; θ)) (1)

where xi represents the input data, yi the corresponding
labels, f(xi; θ) the model’s predictions, and N the number
of training examples. The loss function L typically quantifies
the discrepancy between the model’s predictions and the
actual labels, such as the cross-entropy loss in classification
tasks. In practical terms, fine-tuning utilizes gradient descent-
based optimization algorithms to update the parameters. The
gradient ∇θL of the loss function concerning the parameters
is computed, leading to the parameter updates:

θ ← θ − η∇θL (2)

where η is the learning rate. An efficient approach known
as Parameter-Efficient Fine-Tuning (PEFT) [33] involves up-
dating only a subset of the model’s parameters, thus reducing
computational demands. Commonly, this entails freezing most
of the model’s layers and fine-tuning only the upper layers,
expressed as:

θf = θf − η∇θfL, θu = constant (3)

Here, θf represents the fine-tuned parameters, while θu de-
notes the unfrozen parameters. Techniques like LoRA [34]

19https://huggingface.co/datasets/gbharti/finance-alpaca
20https://huggingface.co/lxyuan/distilgpt2-finetuned-finance
21https://huggingface.co/dmedhi/llama-3-personal-finance-8b-bnb-4bit
22https://huggingface.co/datasets/lawinstruct/lawinstruct
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{
"task_type": "question answering",
"input": "What information does the AGCF send to the V-PSAP in the Npcf_UEPolicyControl Create Request message?",
"completion": "The AGCF sends various pieces of information to the V-PSAP including the subscriber's SUPI ...",
"instruction": "Answer the following question concisely."

},

{
"task_type": "filling the gaps",
"input": "When performing redundant transmissions for one or more QoS flows within a __ session, the __ provides two DL CN
Tunnel Info (for __) to the UPF (PSA), indicating that one serves as the __ tunnel. ",
"completion": "The gaps in the previous text can be completed by the following words: PDU,SMF,N9 and redundancy",
"instruction": "Complete the text by adding the missing words."

},

{
"task_type": "reformulation",
"input": "The priority can be given to selecting PGW-C plus SMF for UEs supporting both EPC and 5GC NAS.",
"completion": "The selection of PGW-C combined with SMF should be prioritized for UEs that are compatible with both EPC and
5GC NAS.",
instruction": "Rewrite the provided text differently."

},

{
"task_type": "false_claim_correction",
"input": "The DL Buffering Suggested Packet Count IE indicates the minimum number of downlink data packets suggested to be
buffered in the UP function for this PFCP session.",
"completion": "The DL Buffering Suggested Packet Count IE does not indicate the minimum number of downlink data packets
suggested to be buffered in the UP function for a given PFCP session. Instead, it indicates the maximum number of downlink
data packets that can be suggested for buffering based on the UP function's capabilities, as per the UDBC feature support.",
"instruction": "Locate any incorrect claims in the text and make corrections."

}

Learning raw
knowledge

Identifying
Key Entities

Exploring
Alternate
Expressions

Correcting
Misconceptions

Fig. 6: Example entries of OAI Instruct dataset, generated using 5G Instruct Forge.

adjust a minimal percentage of the total parameters through
small, trainable modules. However, we opted not to use LoRA
due to the significant domain shift involved in our project.
LoRA is better suited for minor modifications, such as subtle
linguistic shifts or learning from minimal data. Instead, we
employed the freezing method, which enables the integration
of substantial new knowledge without compromising the orig-
inal LLM’s language capabilities. This approach effectively
manages significant domain transitions while preserving the
model’s linguistic integrity [33].

Indeed, freeze-tuning requires several parameters to be set,
which are specified in Table II. We conducted an ablation study
to determine the optimal hyperparameter configuration, which
includes:

• Percentage of trainable parameters: This parameter un-
derwent an ablation study to determine its optimal value,
significantly affecting model performance for each open-
source LLM. For example, Fig. 7 illustrates the abla-
tion study of the Mistral LLM. This figure shows the
performance of the 5G-aware Mistral LLM using freeze
tuning on MMLU benchmark [35] and the 5G exam from
our resulting OAI Instruct dataset. This latter involved an
examination format with 200 questions, each presenting
four potential answers but only one correct response. The
objective of the fine-tuning is to inject knowledge into
an LLM without compromising its existing knowledge.
Therefore, the MMLU score measures whether the LLM
has forgotten its default knowledge, while the 5G exam
score assesses the knowledge acquired. From the figure,
we observe that as the percentage of trainable parameters
increases, the LLM learns the new knowledge better
(yellow bars) without forgetting its old knowledge (blue
bars). However, when training more than 11% in the case
of Mistral, the LLM tends to forget much of its default

knowledge and struggles to respond accurately to 5G
questions because it loses the ability to answer questions
based on its prior knowledge. Therefore, we choose 11%
as the percentage of trainable parameters for the Mistral
LLM.

• Number of Epochs: We chose 4 epochs based on pre-
liminary experiments that showed diminishing returns on
performance beyond this point. This allows the model to
learn adequately without overfitting.

• Learning Rate: A learning rate of 4×10−5 was selected to
ensure effective convergence. This range has been shown
to provide a good balance between rapid convergence and
stability during training, as demonstrated in the state of
the art.

• Per-Device Training Batch Size: We set the batch size
to 4, which allows for efficient use of computational
resources while maintaining stability in gradient updates.
This size was chosen to prevent memory overflow while
ensuring that the model receives enough data for updates.

6% 9% 11% 17%
0

50

100

150

Sc
or

es

21.99

101.0

22.45

164.0

19.84

180.0

14.74

160.0

MMLU score 5G exam score

Fig. 7: Impact of the percentage of trained parameters on
MMLU [35] and 5G exam scores.

3) 5G-aware LLMs quality: Following the fine-tuning
process, we conducted a rigorous evaluation that consisted of
comparing the LLM’s answers to the benchmark questions
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Fig. 8: Comparison of LLMs metrics. Bars colored in [HTML]1f77b4blue represent the Default versions of the models, while
bars colored in [HTML]ff7f0eorange represent the 5G-aware versions.

against the reference answers from the dataset. To quantify
the similarity between the generated and reference answers,
we employed:

• BERTScore [31]: This metric uses cosine similarities
between token embeddings from models like BERT
to evaluate textual similarity and model performance.
BERTScore includes three key metrics: precision, recall,
and F1 score. Precision calculates the relevance of the
candidate text by measuring the cosine similarity of each
token to its closest counterpart in the reference text.
Recall evaluates how comprehensively the candidate text
covers the reference text. The F1 score combines these
metrics, providing a balanced measure of textual accuracy

and relevance, making BERTScore particularly effective
at capturing paraphrases and maintaining semantic accu-
racy across different sentence structures.

• ROUGE [36]: This metric assesses the quality of sum-
maries by computing overlap statistics between the gen-
erated text and a set of reference texts. ROUGE includes
several key measures, such as ROUGE-N and ROUGE-
L. ROUGE-N (e.g. ROUGE-1) measures the overlap of
n-grams between the generated text and the references,
serving as a proxy for precision and recall at the n-
gram level. ROUGE-L focuses on the longest common
subsequence, evaluating the fluency and order of the
generated text relative to the references. Together, these



10

metrics provide a comprehensive evaluation of textual
coherence, consistency, and relevance, making ROUGE
particularly effective for assessing the quality of text
summarization tasks.

• SemScore [32]: This metric evaluates the semantic textual
similarity of text generated by models. It consists of com-
paring the models’ output directly with target responses.
SemScore computes the cosine similarity between the
embeddings of the model response and the target, using
high-quality transformer models such as MPNet-Base
[37] to generate these embeddings. This approach allows
SemScore to effectively assess whether the generated text
is contextually appropriate and semantically aligned with
the target responses.

• BLEU [38]: This metric evaluates the quality of machine-
generated text by measuring how well the output aligns
with a set of reference texts. BLEU includes several
key components, including precision scores that assess
the overlap between machine-generated text and refer-
ence texts combined using a geometric mean. It also
incorporates a brevity penalty to discourage overly short
responses. This penalty ensures that the candidate texts
not only align well with the reference texts but also
cover an adequate length, providing a balanced measure
of linguistic accuracy and completeness.

• METEOR [39]: This metric evaluates the quality of
machine-generated text by assessing both exact word
matches and semantic similarity between the candidate
text and reference texts. METEOR considers synonyms
and stemming, providing a more nuanced evaluation
of semantic accuracy. This approach helps capture the
meaning of the text rather than just use the exact word,
making METEOR particularly effective at ensuring trans-
lational adequacy and fluency while maintaining semantic
integrity across different languages and structures.

From Fig.8, we observe several key improvements across
different subfigures. In Fig.8a, the BERTScore precision, re-
call, and F1 scores show significant enhancements for the
5G-aware versions compared to the default version, indicating
effective assimilation of domain-specific 5G knowledge. Ad-
ditionally, these 5G-aware LLMs outperform OpenAI’s GPT-
423, with improvements of 5%, 6%, and 4% in BERTScore’s
F1, precision, and recall metrics, respectively. Fig.8b and
Fig.8c illustrate notable gains in the ROUGE-L and ROUGE-
1 metrics for the 5G-aware models. The enhanced ROUGE-L
precision, recall, and F1 scores in Fig.8b suggest better content
and structure preservation. Similarly, the improved ROUGE-1
scores in Fig.8c reflect better content retention and contextual
relevance. In both cases, the 5G-aware LLMs outperform
GPT-4. Finally, Fig. 8d highlights superior performance in
SemScore, BLEU, and METEOR metrics for the 5G-aware
LLMs, indicating better alignment with reference texts and
enhanced semantic accuracy. Overall, GPT-4’s default version
exhibits limitations in handling specialized topics like 5G,
underscoring the need for fine-tuning. Additionally, GPT-
4’s proprietary nature poses accessibility and cost issues,

23gpt-4-0125-preview

emphasizing the importance of fine-tuning accessible LLMs
to address knowledge gaps in evolving technological fields.

Fig. 9 shows the Perplexity [40] metric for the GPT-4 LLM
and both the default and 5G-aware open-source LLMs, calcu-
lated using the generated outputs from the previous benchmark
questions. Perplexity is a standard metric used to evaluate
language models by measuring how well a model predicts
a sample of text. It quantifies the model’s uncertainty when
generating or interpreting a sequence of words. Specifically,
perplexity is the exponentiation of the average negative log-
likelihood of the correct word sequence under the model’s
predicted probability distribution:

PPL(p) = exp

(
− 1

N

N∑
i=1

log p(wi|w1, w2, . . . , wi−1)

)
(4)

where N is the total number of words in the sequence, and
p(wi|w1, w2, . . . , wi−1) represents the conditional probability
of word wi given the preceding words in the sequence. Lower
perplexity indicates that the model is more confident and
accurate in its predictions. For open-source LLMs, we used
the corresponding tokenizer to calculate the score, whereas,
for GPT-4, we used the GPT-2 tokenizer24, as it is open-
source. From the figure, we can see that the Perplexity score
of the newly trained LLMs is lower than that of the default
version. This means that 5G-aware LLMs were more confident
in generating 5G-related responses, demonstrating that the
training was successful (as a compelling example, Solar’s
perplexity decreased from 878.31 to 21.30 after training).
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Fig. 9: Perplexity score.

Fig. 10 shows the mean generation time for GPT-4, the
default, and 5G-aware versions of open-source LLMs for
responses regarding the previous evaluation. From the figure,
we can see that, despite the added internet latency, GPT-4
ranks first with an average time of 1.52 seconds compared to
the default versions of the LLMs. However, open-source LLMs
are as fast despite their smaller size. Moreover, we can see
that our proposed fine-tuning does not affect generation time
significantly, as the difference between the default versions
and the 5G-aware versions is minimal. Nevertheless, since
these times are longer than GPT-4’s (except for 5G-aware
Mistral), the research community should investigate inference
speed techniques, such as [41], so that these LLMs can be used
in 5G decision-making problems, which require fast decision
speeds.

In addition, in Fig. 11, we aimed to precisely gauge the
understanding of the resulting 5G-aware LLMs on the 5G

24https://huggingface.co/openai-community/gpt2
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Fig. 10: Mean generation time on the Q/A evaluation dataset.

exam from OAI Instruct. This method allowed us to directly
measure each model’s comprehension of the material rather
than just its ability to generate plausible text. The results
from this examination reveal significant distinctions in model
performance, particularly highlighting the superior understand-
ing of 5G topics by 5G-aware LLMs compared to GPT-4,
which scored 156 correct answers. Fine-Tuned Llama3, Solar-
10.7B, and Mistral all demonstrated a higher number of correct
responses, i.e., 186, 176, and 180, respectively, suggesting that
the fine-tuning process has effectively enhanced their ability
to grasp and accurately answer questions about specialized
and technical content. This indicates not only an improved
familiarity with the specific language and 5G concepts but
also an enhanced capability to discriminate between closely
related information. The Solar model initially struggled, not
due to a lack of 5G knowledge but because of its difficulty in
following instructions and handling multiple-choice questions.
Post fine-tuning, Solar10.7B showed marked improvement
in instruction adherence and began successfully answering
such questions, thereby doubling its efficacy by integrating
new 5G knowledge. Mistral, while proficient in following
instructions, showed a noticeable deficiency in 5G-specific
knowledge compared to newer models, reflecting its training
focus on different domains.
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Fig. 11: Exam results of different LLMs.

4) Expert satisfaction: To enhance the evaluation of LLMs
and gain more detailed insights into the quality of generated
responses, we enlisted experts to verify the completions. These
experts rated the quality of the LLMs’ answers on a scale of
1 to 5. As illustrated in Table III, the overall results showed
significant improvements in the Q/A parts of the 5G-aware
LLMs compared to their default versions. Specifically, Llama3
ranks first with an improvement of ≈108%, followed by Solar
with ≈100%, and Mistral with ≈90%. This showcases that
trained LLMs can respond to 5G-related Q/A questions better
than their default versions. This step, a critical part of our

assessment methodology, provides an empirical measure of
the LLMs’ performance in generating accurate and relevant
content within the field.

TABLE III: Improvement in Expert Satisfaction.

LLM Default
version (/5)

5G-aware
version (/5)

Improvement
(%)

Llama3-8B 1.55 3.22 107.74%
Solar-10.7B 1.25 2.50 100%
Mistral-7B 2.00 3.80 90%

C. Evaluation conclusion

The specialized LLMs developed in our study demonstrate
strong potential for advanced future network management
applications, such as making informed decisions in self-
healing systems, detecting anomalies in logs, and managing
self-regulating systems. These capabilities are crucial as we
move towards 6G technologies, highlighting the importance of
specialized LLMs in the future of telecommunications. Below,
we provide some conclusions on: (i) the effect of dataset size
on LLM quality, (ii) LLM cost-effectiveness, and (iii) the
generalizability of newly created LLMs.

1) Dataset size efficiency: After fine-tuning three LLMs
on our proof-of-concept dataset, OAI Instruct, we evaluated
their ability to learn new 5G-specific knowledge and compared
their performance to the more general but less specialized
GPT-4 model. Our results show that our method effectively
enables LLMs to acquire 5G knowledge, even with a relatively
small training dataset of approximately 80 MB. Increasing the
dataset size could further enhance the LLMs’ specialization,
potentially allowing them to cover the entire 5G domain.
However, due to high costs, the current focus in both industry
and research is on developing specialized rather than general
LLMs [42].

2) LLM cost-effectiveness: Using 5G Instruct Forge, the
first step is dataset generation, which was conducted with
OpenAI’s GPT-4 and Llama3 LLMs. To minimize costs, we
can rely solely on free open-source LLMs to generate this
dataset. In this regard, we utilized a single GPU with quantiza-
tion techniques for an open-source LLM that is not inherently
specialized in 5G. By adopting a RAG approach, we efficiently
generated a domain-specific 5G dataset. Data generation can
be accomplished in just a few minutes using a local open-
source LLM running on a single GPU, making it a resource-
efficient process. The second step is fine-tuning, which also
requires only one GPU and takes approximately 15 hours.
With a minimal investment of a few minutes for data genera-
tion and 15 hours for fine-tuning on one GPU, we developed
a powerful domain-specific LLM with fewer than 10 billion
parameters. For inference, the created LLM is compact and
efficient, designed to run on a single GPU while consuming
significantly less energy than larger LLMs. It is also local and
free compared to GPT-4, outperforming it in 5G-related tasks.
Thus, for 5G applications, we can confidently utilize these
small, cost-effective models for various use cases, ensuring
privacy and security, such as in local anomaly detection and
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critical 5G information management on private networks. We
firmly believe that creating domain-specific LLMs offers the
most cost-effective solution, as described in [42].

3) LLM generalizability: It should be noted that the 5G-
aware LLMs are trained on a set of 3GPP TSs using the freeze-
tuning method, meaning only knowledge from these TSs is
injected into the LLMs. They retain their previous capabilities
while incorporating this additional knowledge. However, since
LLMs can reason, if there is information in other TSs that can
be deduced from the TSs used to train the LLM, we believe
that the LLM can infer that information. Conversely, for new
knowledge, these LLMs will not be able to provide a response.
To adapt them, we need to use the 5G Instruct Forge again to
create the embedding database from the new TSs and initiate
fine-tuning to inject the new information into the LLM’s
knowledge. This way, they will retain both their old knowledge
and acquire the new knowledge. Depending on the new TSs,
the fine-tuning time will vary. As a reference, in our fine-
tuning process, we used 22 TSs, which took approximately
15 hours; thus, the time required will differ based on the new
set of TSs.

V. CONCLUSION

In this paper, we introduced the “5G Instruct Forge,” a
cutting-edge data engineering pipeline designed to improve
LLM training using domain-specific datasets from 3GPP TSs.
Our evaluations show that LLMs trained with our OAI Instruct
dataset outperform conventional models like GPT-4 in 5G-
specific tasks, demonstrating significant performance improve-
ments. This work advances the use of LLMs in telecommu-
nications and provides a framework that can be extended to
other technological domains. Looking ahead, our research has
important implications for the development of future networks
like 6G, which will rely on technologies such as self-healing
systems and zero-touch management systems. These advanced
networks will depend on automation capabilities to enable
dynamic and efficient network management without human
intervention.
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