
Device Sampling and Resource Optimization for
Federated Learning in Cooperative

Edge Networks
Su Wang , Roberto Morabito , Member, IEEE, Seyyedali Hosseinalipour , Member, IEEE,

Mung Chiang, Fellow, IEEE, and Christopher G. Brinton , Senior Member, IEEE

Abstract— The conventional federated learning (FedL) archi-
tecture distributes machine learning (ML) across worker devices
by having them train local models that are periodically aggre-
gated by a server. FedL ignores two important characteristics of
contemporary wireless networks, however: (i) the network may
contain heterogeneous communication/computation resources,
and (ii) there may be significant overlaps in devices’ local data
distributions. In this work, we develop a novel optimization
methodology that jointly accounts for these factors via intelli-
gent device sampling complemented by device-to-device (D2D)
offloading. Our optimization methodology aims to select the
best combination of sampled nodes and data offloading config-
uration to maximize FedL training accuracy while minimizing
data processing and D2D communication resource consumption
subject to realistic constraints on the network topology and device
capabilities. Theoretical analysis of the D2D offloading subprob-
lem leads to new FedL convergence bounds and an efficient
sequential convex optimizer. Using these results, we develop a
sampling methodology based on graph convolutional networks
(GCNs) which learns the relationship between network attributes,
sampled nodes, and D2D data offloading to maximize FedL
accuracy. Through evaluation on popular datasets and real-world
network measurements from our edge testbed, we find that our
methodology outperforms popular device sampling methodolo-
gies from literature in terms of ML model performance, data
processing overhead, and energy consumption.

Index Terms— Federated learning (FedL), distributed learning,
network optimization.

I. INTRODUCTION

THE proliferation of smartphones, unmanned aerial vehi-
cles (UAVs), and other devices comprising the Internet of

Manuscript received 16 October 2023; revised 12 May 2024; accepted
19 June 2024; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor R. Pedarsani. Date of publication 18 July 2024; date of current
version 17 October 2024. The work of Christopher G. Brinton was supported
by the National Science Foundation (NSF) under Grant CNS-2146171 and
Grant CPS-2313109 and in part by the Office of Naval Research (ONR)
under Grant N000142212305 and Grant N0001423C1016. This work is
an extension of our prior work titled “Device sampling for heterogeneous
federated learning: Theory, algorithms, and implementation” [DOI: 10.1109/
INFOCOM42981.2021.9488906] published in the Proceedings of IEEE
INFOCOM, 2021. (Corresponding author: Su Wang.)

Su Wang was with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA. He is now with the
School of Engineering and Applied Science, Princeton University, Princeton,
NJ 08540 USA (e-mail: hw5731@princeton.edu).

Roberto Morabito is with the Communication Systems Department,
Eurecom, 06410 Biot, France (e-mail: roberto.morabito@eurecom.fr).

Seyyedali Hosseinalipour is with the Department of Electrical Engineer-
ing, University at Buffalo (SUNY), Buffalo, NY 14260 USA (e-mail:
alipour@buffalo.edu).

Mung Chiang and Christopher G. Brinton are with the School of Electrical
and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
(e-mail: chiang@purdue.edu; cgb@purdue.edu).

Fig. 1. Architecture of conventional federated learning (FedL).

Things (IoT) is causing an exponential rise in data generation
and large demands for machine learning (ML) at the edge [2],
[3]. For example, sensor and camera modules on self-driving
cars produce up to 1.4 terabytes of data per hour [4] which
enable the training of ML models for intelligent navigation
and autonomous driving [5]. Unfortunately, traditional ML
techniques where model training is conducted at a centralized
server are not applicable to such distributed environments as
the data often cannot be transferred to a server. There are
two challenges in particular: (i) given the large volumes of
data at the network edge, data transfer to a server imposes
long delays and overloads the network infrastructure [6],
and (ii) in certain applications (such as healthcare), some
users are unwilling to share their data owing to privacy
concerns [7].

Federated learning (FedL) has become a popular distributed
ML technique aiming to overcome these challenges [8], [9].
Under FedL, devices train models on their local datasets, typ-
ically by means of gradient descent, and a server periodically
aggregates the parameters of local models to form a global
model. These global model parameters are then transferred
back to the devices for the next round of local updates,
as depicted in Fig. 1. In standard FedL methodologies, each
device processes its own collected data and operates inde-
pendently within an aggregation period [10], [11]. This will,
however, become problematic in terms of upstream device
communication and local device processing requirements as
implementations scale to networks consisting of millions of
heterogeneous wireless devices [12], [13], [14].

At the same time, device-to-device (D2D) communications
in cooperative 5G/IoT edge networks can enable consensual
local offloading of data processing from resource hungry
to resource rich devices [15], [16]. Additionally, we can
expect that for particular applications, the datasets collected
across devices will contain varying degrees of similarity, e.g.,
images gathered by UAVs surveying the same area [17],
[18]. Processing similar data distributions at multiple devices
adds unnecessary computational and communication over-
heads to FedL, thus leading to an opportunity for efficiency
improvement.

https://orcid.org/0000-0002-7550-1120
https://orcid.org/0000-0002-4240-9934
https://orcid.org/0000-0003-4266-4000
https://orcid.org/0000-0003-2771-3521

Motivated by this, we develop a novel methodology for
smart device sampling with data offloading in FedL. Specif-
ically, we formulate a joint sampling and data offloading
optimization problem where devices expected to maximize
contribution to model training are sampled for training par-
ticipation, while devices that are not selected may transfer
data to devices that are. This data offloading is motivated
by paradigms such as fog learning [13], [19], in which
data offloading only occurs among trusted devices; devices
that have privacy concerns are exempt from data offload-
ing. Furthermore, the data offloading is performed according
to estimated data dissimilarities between nodes, which are
updated as transfers occur. We show that our methodology
yields comparable performance to conventional FedL, and
superior performance relative to baselines from literature while
significantly reducing network resource utilization.

A. Related Work
Resource efficiency in federated learning Since con-

ventional FedL in large-scale networks can incur heavy
communication and computation resource use, many works
have investigated avenues to reduce the resource burden of
edge devices in FedL. In particular, a few popular and recent
approaches have focused on efficient encoding designs to
reduce parameter transmission sizes [20], [21], optimizing the
frequency of global aggregations [22], [23], [24], and device
sampling [25], [26], [27]. Our work falls into the device
sampling category, in which methodologies rely on intelligent
selection of devices for the global aggregation stage of FedL
to improve resource efficiency. In this regard, most works have
assumed a static or uniform device selection strategy, e.g., [9],
[23], [25], [28], [29], [30], and [31], where the main server
chooses a subset of devices either uniformly at random or
according to a pre-determined sampling distribution.

While there are many different approaches for device sam-
pling for FedL such as sampling based on wireless channel
characteristics in cellular networks (e.g., [32], [33], [34],
[35]), we focus on developing a sampling technique that
adapts to the heterogeneity of device resources and the simi-
larities/dissimilarities of data distributions across large-scale
contemporary wireless edge networks. When investigating
literature in this line of device sampling for FedL, popu-
lar works have attempted device sampling based on each
device’s instantaneous contributions to global updates [36],
data proportional sampling based on devices’ local dataset
sizes [26], [37], and sampling devices based on local ML
training loss [27]. Specifically, when compared to the lit-
erature on device sampling by each device’s instantaneous
contributions to the global updates [27], [36], our proposed
methodology introduces a novel perspective based on device
data similarities, and furthermore exploits the proliferation of
D2D cooperation at the wireless edge [16], [38], [39], [40] to
diversify each selected device’s local data via D2D offload-
ing. Our work thus considers the problems of sampling and
D2D offloading for FedL jointly, and leads to new analytical
convergence bounds and algorithms used by implementations.

Towards further cooperation in federated learning. Most
works in advancing conventional FedL [9], [29], [41], [42],
[43] limit network cooperation to the global aggregation
stages. While this is effective in situations requiring absolute
data privacy, many practical large-scale and mobile edge
networks are not limited to such an extent [16], [44], [45].

Fig. 2. A motivating example of a wireless network composed of 5 connected
vehicles and an edge server. The server can only sample two vehicles to
participate in FedL training.

Especially in large-scale and mobile edge networks, devices
can be heterogeneous with respect to their data privacy
demands [46], [47], [48]. While some devices may require
absolute data privacy, many devices may be willing to share
non-sensitive data or share all of their data to a device that
they trust. Such is the case in recent literature on connected
autonomous driving [15], [49], which rely on inter-device
cooperation for normal functionality and is now attempting
to integrate the benefits of modern ML. With this in mind,
works such as [46], [50], and [51] have begun expanding the
scope of cooperation in FedL. Specifically, [46] investigates
FedL performance in the presence of D2D model offloading
among edge devices, [50] proposes device to edge server data
offloading so that edge servers can contribute to FedL training,
and [51] leverages D2D cooperation in edge networks to
develop a modified version of SGD for FedL specifically. Our
work contributes to existing literature in cooperative FedL by
investigating how D2D data cooperation can lead to optimized
device sampling with respect to ML training efficacy and
total network resource consumption. Furthermore, our work
assumes that devices are heterogeneous with respect to their
privacy demands (i.e., they trust some edge devices but not oth-
ers), resulting in some D2D links enabled and others disabled.

B. Motivating Toy Example

Consider Fig. 2, wherein five heterogeneous connected
vehicles communicate with an edge server to train an object
detection model. Due to limited bandwidth, the server can
only exploit 2 out of the 5 vehicles to conduct FedL training,
but needs to train a model representative of the entire dataset
within this network. The computational capability of each
vehicle, i.e., the number of processed datapoints in one
aggregation period, is shown next to the node representing
the vehicle, and the edge weights in the data similarity graph
capture the similarity between the local data of the vehicles.
Rather than using statistical distance metrics [52], which are
hard to compute in this distributed scenario, the data similar-
ities could be estimated by commute routes and geographical
proximity [53]. Also, in D2D-enabled environments, nodes
can exchange small data samples with trusted neighbors to
calculate similarities locally and report them to the server.

In Fig. 2, if the server samples the vehicles with the highest
computational capabilities, i.e., A and B, the sampling is
inefficient due to the high data similarity between them.
Conversely, if it samples those with the lowest similarity, i.e.,
D and E, the local models will be based on low computational
capabilities, which will often result in a low accuracy (and
could be catastrophic in this vehicular scenario). Optimal
sampling of the vehicles considering both data similarities
and computational capabilities is thus critical to the operation
of FedL.

We take this one step further to consider how D2D offload-
ing can lead to augmented local distributions of sampled

vehicles. The node sampling must consider the neighborhoods
of different vehicles and the capability of data offloading
in those neighborhoods. For example, D2D is cheaper in
terms of resource utilization among vehicles that are close in
proximity. The feasible offloading topology shown in Fig. 2
is represented by the data offloading graph. Given C’s high
processing capability and data dissimilarity with neighboring
vehicles E and D, sampling C in a D2D-optimized solution
combined with data offloading from E and D to C can yield a
composite of all three vehicles’ distributions. The purpose of
this paper is to model these relationships for general edge/fog
networks and optimize the resulting sampling and offloading
configurations.

C. Outline and Summary of Contributions
• We formulate the joint sampling, D2D offloading, and com-

munication and computation resource optimization problem
for maximizing FedL model accuracy subject to realistic
network constraints (Sec. II).

• We develop an approach to D2D data similarity estimation
by comparing the dataset centroids across network devices
(Sec. II). This method enables the server to perform the
optimization without harvesting actual device data.

• Our theoretical analysis of the offloading subproblem for
a fixed sampling strategy yields a new upper bound on
the convergence of FedL under an arbitrary data sampling
strategy (Sec. III). Using this bound, we derive an efficient
sequential convex optimizer for the offloading strategy.

• We propose a novel ML-based methodology that learns the
desired combination of sampling and resulting offloading
(Sec. IV). We encapsulate the network structure and offload-
ing scheme into model features and learn a mapping to the
sampling strategy that maximizes expected FedL accuracy.

• We evaluate our methodology through experiments with
network parameters obtained from our testbed of wireless
IoT devices (Sec. V). Our methodology yields better ML
accuracies and less resource consumption than recent device
sampling baselines from literature.

• We experimentally characterize our formulation by investi-
gating its behavior with respect to various key optimization
variables while varying network and sampling device set
sizes (Sec. V).

II. SYSTEM AND OPTIMIZATION MODEL

In this section, we formulate the joint sampling and offloading
optimization (Sec. II-D). We first introduce our edge device
(Sec. II-A), network topology and data similarity (Sec. II-B),
and ML (Sec. II-C) system models.

A. Edge Device Model
We consider a set of devices N = {1, · · · , N} connected

to a server, and time span t = 0, · · · , T for model training.
Each device i ∈ N possesses a data processing capacity
Pi(t) ≥ 0, which limits the number of datapoints it can
process for training at time t, and a unit data processing cost
pi(t) ≥ 0. Intuitively, pi(t), Pi(t) are related to the total
CPU cycles, memory (RAM), and power available at device
i [54]. These factors are heterogeneous and time-varying,
e.g., as battery power fluctuates and as each device becomes
occupied with other tasks. Additionally, for each i ∈ N ,
we define Ψi(t) > 0 as the data transmit budget, and ψi,j(t) >
0 as the unit data transmission cost from device i to device

j. Intuitively, ψi,j(t), Ψi(t) are dependent on factors such as
the available bandwidth and distance. For example, devices
that are closer in proximity would be expected to have lower
ψi,j(t). Our specific derivations of these data processing and
communication variables are based on empirical measurements
from our IoT testbed, which we describe in detail in Sec. V-A.

Due to resource constraints, the server selects a set S ⊆ N
of devices to participate in FedL training. Some devices i ∈
Ŝ ≜ N\S may be stragglers, i.e., possessing insufficient Pi(t)
to participate in training, but nonetheless gather data. Different
from most works, our methodology will seek to leverage the
datasets captured by nodes in the unsampled set Ŝ via local
D2D communications with nodes in the sampling set S.

We denote the dataset at device i for the specific ML appli-
cation by Di(t). Di(0) is the initial data at i, which evolves
as offloading takes place. Henceforth, we use calligraphic
font (e.g., Di(t)) to denote a set, and non-calligraphic (e.g.,
Di(t) = |Di(t)|) to denote its cardinality. Each data point
d ∈ Di(t) is represented as d = (xd, yd), where xd ∈ RM is
a feature vector of M features, and yd ∈ R is the target label.

B. Network Topology and Data Similarity Model
We consider a time-varying network graph G = (N , E(t)),

among the set of nodes N to represent the available D2D
topology. Here, E(t) denotes the set of edges or connections
between the nodes, where (i, j) ∈ E(t) if node i is able/willing
to transfer data in D2D mode to node j at time t. This
willingness to transfer data can depend on the trust between
the devices as an example, and whether the devices are
D2D-enabled. For instance, smart home peripherals can likely
transfer data to their owner’s smartphone, while different
smartphones in an airport may be unwilling to share data.
We capture these potential D2D relationships using the adja-
cency matrix A(t) = [Ai,j(t)]1≤i,j≤N , where Ai,j(t) = 1 if
(i, j) ∈ E(t), and Ai,j(t) = 0 otherwise.

We define Φi,j(t) ∈ [0, 1] as the fraction of node i’s
data offloaded to node j at time t. To optimize this, we are
interested in the similarity among local datasets. We define the
similarity matrix λ(t) ≜ [λi,j(t)]1≤i,j≤N among the nodes at
time t, where 0 ≤ λi,j(t) ≤ 1. Lower values of λi,j(t) imply
a higher dataset similarity between nodes i and j, and thus
less offloading benefit. In practice, neither the server nor the
devices have exact knowledge of the local data distributions.

To this end, we consider an interpretation of similarity
based on comparing data centroids across network devices.
Each centroid is an average of the data contained within a
data cluster. In our setting, each device i has Ci clusters,
the contents of which are determined based on K-means [55]
clustering which is commonly used in existing literature [56],
[57] to estimate dataset similarities. Each cluster c ∈ Ci
contains the data Dc

i (t) so that Di(t) = ∪c∈CiDc
i (t). Thus,

the c-th centroid µc
i (t) at device i is computed as:

µc
i (t) =

1
|Dc

i (t)|
∑

d∈Dc
i (t)

xd. (1)

For each D2D link, we determine the similarity value λi,j(t)
based on the minimum total centroid difference for all clusters
between devices i and j.1 Specifically, we first need to match

1The goal of the data similarity estimation process is to gauge the
data offloading value. If two device pairs have similar minimum centroid
difference, then our formulation estimates that these device pairs have similar
benefit from data offloading.

each cluster b ∈ Cj to some cluster c ∈ Ci with the smallest
centroid difference between them, i.e., we want

c = arg min
c∈Ci

|σc,b
i,j (t)|, (2)

where σc,b
i,j (t) = µc

i (t) − µb
j(t) and σc,b

i,j (t) = 0 implies that
clusters b and c are essentially identical. However, (2) enables
a single cluster c to be the matching cluster for multiple b ∈ Cj ,
which fails to fully characterize the D2D similarity between
all of the data at devices i and j (as its possible for Dc

i (t) to
be the only subset of data that is characterized at this link).
As a result, when a cluster c ∈ Ci has the smallest σc,b

i,j (t) for
multiple clusters b ∈ Cj , we choose to link c to the cluster b
with the smallest σc,b

i,j (t), and subsequently use the heuristic
µ̃c

i (t)→∞ to replace µc
i (t) in (2) for the remaining similarity

computations for the specific link between devices i and j.
In this way, each cluster c ∈ Ci links to at most one cluster
b ∈ Cj . Then the data similarity λi,j(t) between devices i and
j can be computed as

λi,j(t) =
∑
b∈Cj

min
c∈Ci

|σc,b
i,j (t)|
|Ci|

. (3)

For t > 0, λi,j(t) depends on the changes in σc,b
i,j (t), which

in turn depends on the data offloading ratio Φc,b
i,j (t− 1) from

the previous time step. Using these cluster-specific offloading
ratios, we can compute the aggregate data offloading ratio from
device i to j as

Φi,j(t) =
∑
b∈Cj

∑
c∈Ci

Φc,b
i,j (t). (4)

Because devices lack exact information about each other’s
datasets, the selection of specific data for offloading from
device i to device j also depends on the data similarity λi,j(t)
between them, and we explain the exact mechanics during the
data offloading process in Sec. II-D. To capture both the node
connectivity and data similarity jointly for offloading, we also
define the connectivity-similarity matrix Λ(t) = [Λi,j(t)], and
Λ(t) ≜ λ(t)◦A(t), where ◦ represents the Hadamard product.

This above process to determine the data similarities
involves device-to-server transmissions, as devices will trans-
mit their calculated centroids to the server for further
processing such as cluster matching. These computations are
performed prior to the start of our optimization process,
outlined in Sec. II-D, and involve much smaller communica-
tion overhead than ML model transmission during the global
aggregations.

C. Distributed Machine Learning Model
The learning objective of FedL is to train a global ML

model, parameterized by a vector w ∈ Rp (e.g., p weights
in a neural network), by training at edge devices. Formally,
for t ∈ {0, · · · , T}, each sampled device i ∈ S is concerned
with updating its model parameter vector wi(t) on its local
dataset Di(t). The local loss at device i ∈ N is defined as

F (wi(t)|Di(t)) =

∑
d∈Di(t)

f(wi(t),xd, yd)

Di(t)
, (5)

where f(wi(t), xd, yd) denotes the corresponding loss (e.g.,
squared error for a regression problem, cross-entropy for
a classification problem [23]) of each datapoint d ∈ Di.
Each device minimizes its local loss sequentially via gradient
descent:

wi(t) = wi(t− 1)− η∇F (wi(t− 1)|Di(t)), (6)

where η > 0 is the step size and ∇F (wi(t− 1)|Di(t)) is the
average gradient over the local dataset Di(t). With periodicity
τ , the server performs a weighted average of wi(kτ), i ∈ S:

wS(kτ) =
∑

i∈S ∆i(kτ)wi(kτ)∑
i∈S ∆i(kτ)

, (7)

where k denotes the k-th aggregation, k ∈ {1, · · · ,K},
K = ⌈T/τ⌉, and ∆i(kτ) ≜

∑kτ
t=(k−1)τ+1Di(t) denotes the

total data located at node i between k − 1 and k. The server
then synchronizes the sampled devices: wi(kτ) ← wS(kτ),
∀i ∈ S.

Since we are concerned with the performance of the global
parameter wS , we define wS(t) as the weighted average of
wi(t) as in (7) for each time t, though it is only computed
at the server when t = kτ . The global loss that we seek
to optimize considers the loss over all the datapoints in the
network:

F (wS(t)|DN (t)) =
∑

i∈N Di(t)F (wS(t)|Di(t))
DN (t)

, (8)

where DN (t) denotes the multiset of the datasets of all the
devices at time t, and DN (t) ≜

∑
i∈N Di(t).

D. Joint Sampling and Offloading Optimization
The node selection procedure should consider device char-

acteristics mentioned in Sec. II-A and the data similarity
among the nodes represented by the connectivity-similarity
matrix Λ(t). Thus, the goal of our optimization is to select (i)
the subset of devices S⋆ to sample from a total budget of S and
(ii) the offloading ratios Φ⋆

i,j(t) among the devices to jointly
minimize the loss associated with wS(t) and the associated
energy resource consumption (in terms of data processing
energy and data offloading energy use). We consider a time
average for the objective, as devices may rely on intermedi-
ate aggregations for real-time inferences. For the variables,
we define the binary vector x ≜ (x1, · · · , xN) to represent
device sampling status, i.e., if i ∈ S then xi = 1, otherwise
xi = 0, and matrix Φ(t) ≜ [Φi,j(t)]1≤i,j≤N to represent the
offloading ratios at time t. The resulting optimization problem
P is as follows:

(P) : minimize
x,{Φ(t)}T

t=1

1
T

T∑
t=1

(
αF (wS(t)|DN (t))︸ ︷︷ ︸

(a)

+ β
∑
i∈S

EP
i (t)︸ ︷︷ ︸

(b)

+ γ
∑
k∈N

ETx
k (t)︸ ︷︷ ︸

(c)

)
(9)

subject to
Dc

i (t)=Dc
i (t− 1)+Rc

i (t), i ∈ N , (10)

Rc
i (t) =

∑
k∈N

∑
b∈Ck

Db
k(t− 1)Φb,c

k,i(t)Λk,i(t−1), i ∈ N ,

(11)
(1− xi)(1− xk)Φk,i(t) = 0, i, k ∈ N ,

(12)
xkΦk,i(t) = 0, i, k ∈ N , (13)
(1−Ak,i(t))Φk,i(t) = 0, i, k ∈ N , (14)∑
i∈N

xi = S, (15)∑
c∈Ci

Dc
i (t) = Di(t), i ∈ N , (16)

∑
c∈Ci

∑
b∈Ck

Φb,c
k,i(t) = Φk,i(t), i, k ∈ N , (17)∑

b∈Ck

Φb,c
k,i(t) ≤ Ck, i, k ∈ N , (18)

σb,c
k,i(t) = σb,c

k,i(t− 1)(1− Φb,c
k,i(t)),

b ∈ Ck, c ∈ Ci, i, k ∈ N , (19)∑
b∈Ck

b̸=arg min |σb,c
k,i(t)|

Φb,c
k,i(t) = 0, c ∈ Ci, i, k ∈ N , (20)

EP
i (t) = pi(t)Di(t) ≤ Pi(t), i ∈ N , (21)

ETx
k (t) = Dk(t)

∑
i∈S

Φk,i(t)ψk,i(t) ≤ Ψk(t), k ∈ N .

(22)
0 ≤ Λk,i(t) ≤ 1, xi ∈ {0, 1}, i, k ∈ N , (23)

0 ≤ Φb,c
k,i(t) ≤ 1, b ∈ Ck, c ∈ Ci, i, k ∈ N . (24)

The objective function (9) captures the balance between three
key terms: the FedL loss in (9)(a) scaled by α, the data
processing resource use in (9)(b) scaled by β, and the D2D
offloading resource use in (9)(c) scaled by γ. The data at sam-
pled devices, i.e., Di(t) for i ∈ S , changes over time in (10)
based on the total received data Ri(t) for device i. Ri(t) is
determined in (11) by scaling the data transmissions from each
device k ∈ Ŝ to device i according to the data similarity, which
we explain further in the next paragraph. Through (12)-(14),
offloading only occurs between single-hop D2D neighbors
from k ∈ Ŝ to i ∈ S, while (15) ensures that (P) maintains
compliance with the desired sampling size, i.e., |S⋆| = S. The
two expressions (16)-(17) capture the definitions for Di(t) and
Φk,i(t). Next, (18) ensures that the total offload rate at each
device cannot exceed the quantity of its local data clusters, (19)
is the update rule for centroid differences between two clusters
b and c at two difference devices i and k, and (20) clarifies that
data offloading only occurs among the matched data clusters
as described in Sec. II-B. The constraints (21)-(22) ensure
that our D2D offloading solution adheres to maximum device
data processing limits Pi(t), and D2D communication limits
Ψi(t). Finally, (23)-(24) express the lower and upper limits
of the connectivity-similarity values and the data offloading
variables.

Similarity-aware D2D offloading: The amount of raw data
device i receives from k is

∑
b∈Ck

Φb,c
k,i(t)D

b
k(t− 1). Ideally,

device i will receive data from its neighbors that is dissimilar
to Di(0). However, neither i nor k have full knowledge of
each others’ datasets in this distributed scenario (nor does the
server). Therefore, data offloading in P is conducted through
a uniformly random selection of Φb,c

k,i(t)D
b
k(t− 1) data points

(for each data cluster b ∈ Ck) from k to send to i. From the
viewpoint of cluster b at device k, the estimated overlapping
data that arrives at i is Φb,c

k,i(t)D
b
k(t − 1)(1 − Λk,i(t − 1)),

and the resulting useful data is Φb,c
k,i(t)D

b
k(t − 1)Λk,i(t − 1).

We use the entirety of Λk,i(t) for this estimation because it
is possible for data in cluster b to have overlap with multiple
clusters in Ci at device i. So, overall data similarity in the form
of Λk,i(t) provides a better holistic estimate that an incoming
data from device k to i will be similar to any existing data at
device i. Subsequently, we update σb,c

k,i(t) per (19) and then
use the data similarity calculation in (3) to update Λk,i(t).
In particular, when k transfers all of its data to i (i.e., when

Φb,c
k,i(t) = 1 ∀b ∈ Ck), σb,c

k,i = 0 ∀b ∈ Ck and ∀c ∈ Ci,
leading to Λk,i(t)→ 0, thus preventing further data offloading
according to (11). Imposing these constraints promotes data
diversity among the sampled nodes through offloading.

Solution overview: Problem P faces two major chal-
lenges: (i) it requires a concrete model of the loss function
in (9)(a) with respect to the datasets, which is, in general,
intractable for deep learning models [58], and (ii) even if the
loss function is known, the coupled sampling and offloading
procedures make this problem an NP-hard mixed integer
programming problem. To overcome this, we will first consider
the offloading subproblem for a fixed sampling strategy, and
develop a sequential convex programming method to solve
it in Sec. III. Then, we will integrate this into a graph
convolutional network (GCN)-based methodology that learns
the relationship between the network properties, sampling
strategy (with its corresponding offloading), and the resulting
FedL model accuracy in Sec. IV. An overall flowchart of our
methodology is given in Fig. 3.

III. DEVELOPING THE OFFLOADING OPTIMIZER

In this section, we study the offloading optimization subprob-
lem of P . Specifically, our theoretical analysis of (9)(a) under
common assumptions will yield an efficient approximation of
the FedL loss objective in terms of the offloading variables
(Sec. III-B). We will then develop our solver for the resulting
optimization (Sec. III-C).

A. Definitions and Assumptions
To aid our theoretical analysis of FedL, similar to [23],

we will consider a hypothetical ML training process that has
access to the entire dataset DN (t) at each time instance. The
parameter vector vk(t) for this centralized model is trained
as follows: (i) at each global aggregation t = kτ , vk(t) is
synchronized with wS(t), i.e., vk(t) ← wS(t), and (ii) in-
between global aggregation periods, vk(t) is trained based
on gradient descent iterations to minimize the global loss
F (vk(t)|DN (t)).

Definition 1 (Difference Between Sampled and Unsampled
Gradients): We define the instantaneous difference between
∇F (wS(t)|DN (t)), the gradient with respect to the full
dataset across the network, and ∇F (wS(t)|DS(t)), the gra-
dient with respect to the sampled dataset, as:

ζ(wS(t)) ≜
GS(t)
DS(t)

−
∑

i∈N Di(t)∇F (wS(t)|Di(t))
DN (t)

,

(25)

where GS(t) ≜
∑

i∈S Di(t)∇F (wS(t)|Di(t)) is the scaled
sum of gradients on the sampled datasets, and DS(t) =∑

i∈S Di(t) is the total data across the sampled devices.
Definition 2 (Difference Between Sampled and Unsampled

Gradients): We define δi(t) as the upper bound between the
gradient computed on Di(t) for i ∈ S and DN (t) at time t:

∥∇F (wS(t)|Di(t))−∇F (wS(t)|DN (t))−ζ(wS(t))∥≤ δi(t).
(26)

We also make the following standard assumptions [23], [39]
on the loss function F (w) for the ML model being trained:

Assumption 1: We assume F (w) is convex with respect to
w, L-Lipschitz, i.e., ∥F (w) − F (w′)∥ ≤ L∥w − w′∥, and
β-smooth, i.e., ∥∇F (w)−∇F (w′)∥ ≤ β∥w−w′∥, ∀w,w′.

Despite these assumptions, we will show in Sec. V that
our results still obtain significant improvements in practice for
neural networks which do not obey the above assumptions.

B. Upper Bound on Convergence

For convergence analysis, we assume that devices only
offload the same data once, and assume that recipient nodes
always keep received data. This must be done to ensure that the
optimal global model parameters remain constant throughout
time. The following theorem gives an upper bound on the
difference between the parameters of sampled FedL and those
from the centralized learning, i.e., ∥wS(t)−vk(t)∥, over time:

Theorem 1 (Upper Bound on the Difference Between Sam-
pled FedL and Centralized Learning): Assuming η ≤ β−1,
the upper-bound on the difference between wS(t) and vk(t)
within the local update period before the k-th global aggre-
gation, t ∈ {(k − 1)τ + 1, . . . , kτ}, is given by:

∥wS(t)− vk(t)∥

≤ 1
β

t∑
y=(k−1)τ+1

(
Υ(y, k) + ∥ζ(wS(y − 1))∥

)
, (27)

where Υ(y, k) ≜ δS(y)(2y−1−(k−1)τ − 1), and

δS(t) ≜

(∑
i∈S

Di(t)δi(t)

)(∑
i∈S

Di(t)

)−1

. (28)

Proof: See Appendix A.
Through δS(t), Theorem 1 establishes a relationship

between the difference in model parameters and the datapoints
Di(t) in the sampled set i ∈ S. Using this, we obtain an upper
bound on the difference between our wS(t) and the global
minimizer of model loss w∗(t) = arg minw F (w|DN (t)):

Corollary 1 (Upper Bound on the Difference Between
Sampled FedL and the Optimal): The difference of the loss
induced by wS(t) compared to the loss induced by w∗(t) for
t ∈ {(k − 1)τ, · · · , kτ − 1}, is given by:

F (wS(t)|DN (t))− F (w∗(t)|DN (t))

≤ g(Υ̂(K̂)) ≜

(
tξη

(
1− βη

2

)
− (K̂ + 1)L

βϵ2
Υ̂(K̂)

)−1

,

(29)

where Υ̂(K̂) ≜
∑K̂τ

y=(K̂−1)τ+1

(
Υ(K̂, y)+∥ζ(wS(y−1))∥

)
,

K̂ = ⌊t/τ⌋, and ξ = mink
1

∥vk((k−1)τ)−w∗(t)∥2 .
Proof: See Appendix B.

As our ultimate goal is an expression of (9)(a) in terms
of the data Di(t) at each node, we consider the relationship
between g(Υ̂(K̂)) and Di(t), which is clearly non-convex
through Υ̂(K̂). Since Υ̂(K̂)≪ 1 (see Appendix B), (29) can
be approximated using the first two terms of its Taylor series:

g(Υ̂) ≈ 1
tξη(1− ηβ

2)
+

(K̂ + 1)L

βϵ2
(
tξη(1− ηβ

2)
)2 Υ̂. (30)

At each time instant, the first term in the right hand side
(RHS) of (30) is a constant. Thus, under this approximation,
the RHS of (29) becomes proportional to Υ̂, which is in turn
a function of δS(t). The final step is to bound the expression
for δi(t), and thus their weighted sum δS(t), in terms of the
Di(t), ∀i ∈ S.

Proposition 1 (Upper Bound on the Difference Between
Local Gradients): The difference in gradient with respect to
a sampled device dataset vs. the full dataset satisfies:
∥∇F (wS(t)|Di(t))−∇F (wS(t)|DN (t))− ζ(wS(t))∥

≤
(
DN (t)−DS(t)

DN (t)

)
∇F (t) +

γ√
Di(t)

+ C ≡ δi(t),

(31)

where C ≜ (DN (t))−1∑
i∈Ŝ Di(t)∇F (wS(t)|Di(t)), Ŝ =

N \ S, γ is a constant independent of Di(t), and

∇F (t) ≜ (DS(t))−1
∑
i∈S

Di(t)∇F (wS(t)|Di(t)). (32)

Proof: See Appendix C.
The above proposition relates each δi(t) to the number of

instantaneous data points available at device i.

C. Offloading as a Sequential Convex Optimization

Using the result of (30) to replace the RHS of (29) implies
that the FedL loss term in the objective function (i.e., (9)(a)) is
proportional to 1

T

∑T
t=1 δS(t), where δS(t) is defined in (28)

as a sum-of-ratios of δi(t). Considering 1
T

∑T
t=1 δS(t) as the

objective in problem P yields the sum-of-ratios problem in
fractional programming [59]. The scale of existing solvers
for the sum-of-ratios fractional programming problem (e.g.
[60]) are on the order of ten ratios, which corresponds to ten
devices in our case. Contemporary large-scale networks that
may have hundreds of edge devices [2] therefore cannot be
solved accurately or in a time-sensitive manner. Motivated by
the above fact, we approximate δS(t) ≈ 1

S

∑
i∈S δi(t). Using

this with (31), we obtain the following approximation for the
loss function term in (9)(a):

F̃ (t) =
[(

DN (t)−DS(t)
DN (t)

)
∇F (t)︸ ︷︷ ︸

(a)

+
1
|S|
∑
i∈S

γ√
Di(t)︸ ︷︷ ︸
(b)

]
,

(33)
where term (a) is due to sampling and term (b) is the statistical
error from the central limit theorem. Thus, for a known binary
vector x (i.e., a known S) that satisfies (15), we arrive at the
following optimization problem for the D2D data offloading:

(PD) : min
{Φ(t)}T

t=1

1
T

T∑
t=1

(
αF̃ (t)+β

∑
i∈S

EP
i (t)+γ

∑
k∈N

ETx
k (t)

)
s.t. (10)− (14), (16)− (24).

Since the number of datapoints at the unsampled devices is
fixed for all time, DN (t) can be expressed as DS(t) + DŜ ,
where DŜ =

∑
i∈Ŝ Di is a constant. Consequently, both the

coefficient of ∇F (t) in term (a) and the entirety of term (b)
in (33) are decreasing functions of the quantity of data Di(t) at
sampled devices i ∈ S. Furthermore, given ∇F (t), both terms
(a) and (b) in (33) are convex, via (10) and (11), with respect
to the offloading variables in Problem PD. The only remaining
challenge is then to obtain ∇F (t), which we consider next.

Sequential gradient approximation: Obtaining
∇F (t) requires the knowledge of real-time gradients,
∇F (wS(t)|Di(t)), ∀i ∈ S, which are unknown a priori.
Furthermore, the gradients of the devices are only observed

Fig. 3. Overview of the joint sampling and offloading methodology developed in Sec. III&IV. During model construction, our methodology trains a GCN,
using various network realizations and sampled sets of nodes with the data offloading optimization from Sec. III. At the implementation stage, the target
network uses the GCN-based algorithm developed in Sec. IV to obtain a sampled set of devices, which then undergo the D2D data offloading optimization
process. Finally, we apply the results of the sampling and D2D data offloading processes for FedL, yielding a global ML model after training completion.

at the global aggregation time instances t = kτ . Motivated by
this, we approximate ∇F (t) for t ∈ {kτ + 1, · · · , (k + 1)τ},
k ∈ {1, · · · ,K}, using the gradients observed at the most
recent global aggregation, i.e., ∇F (wS(kτ)|Di(kτ)), i ∈ S
on which we perform a sequence of corrective approximations.
Specifically, since the average loss F is convex, ∇F (t) is
expected to decrease over time. We assume that this decrease
occurs linearly and approximate the real-time gradient
using the previously observed gradient at the server as
∇F (t) ≈ ∇F (kτ)/αt−kτ

k+1 , t ∈ {kτ + 1, · · · , (k + 1)τ},
∀k ∈ {1, · · · ,K}, where the scaling factor αk+1 > 1 is
re-adjusted after every global aggregation k. Through the
re-adjustment procedure, the server receives the gradients and
computes the scaling factor for the each aggregation period

as αk+1 = τ

√
∇F ((k − 1)τ)/∇F (kτ).

Given the aforementioned characteristics of terms (a) and
(b) in (33), our proposed iterative approximation of ∇F (t),
and the fact that the constraints of PD are all affine at each
time instance, we can solve this problem as a sequence of
convex optimization problems over time. For this, we employ
the CVXPY convex optimization software [61].

IV. SMART DEVICE SAMPLING WITH D2D OFFLOADING

We now turn to the sampling decisions in problem P ,
which must be coupled with the offloading solution to PD.
After explaining the rationale for our GCN-based approach
(Sec. IV-A), we will detail our training procedure encoding the
network characteristics (Sec. IV-B). Finally, we will develop
an iterative procedure for selecting the sample set (Sec. IV-C).

A. Rationale and Overview of GCN Sampling Approach

Sampling the optimal subset of nodes from a resource-
constrained network to maximize a utility function (in our
case, minimizing the ML loss) has some similarity to 0-1
knapsack problem [62]. In this combinatorial optimization
problem, a set of weights and values for n items are given,
where each item can be either added or left out to maximize
the value of the items within the knapsack subject to a
weight capacity. Analogously, our sampling problem aims
to maximize FedL accuracy while adhering to a sampling

budget S =
∑

i∈N xi. Strategies for the knapsack problem
become unsuitable here because the value that each device
provides to FedL is difficult to quantify: it depends on the
ML loss function, the gradient descent procedure, and the D2D
relationships from Sec. III.

To address these complexities, we propose a (separate)
ML technique to model the relationship between network
characteristics, the sampling set, and the resulting FedL
model quality. Specifically, we develop a sampling technique
based on active filtering of a Graph Convolutional Network
(GCN) [63]. In a GCN, the learning procedure consists of
sequentially feeding an input (the network graph) through
a series of graph convolution [64] layers, which general-
ize the traditional convolution operation into non-Euclidean
spaces and thus captures connections among nodes in different
neighborhoods.

Our methodology is depicted in Fig. 4. GCNs excel at
graph-based classification tasks, as they learn over the intrinsic
graph structure. However, GCNs by themselves have perfor-
mance issues when there are multiple good candidates for
the classification problem [65]. This holds for our large-
scale network scenario, as many high performing sets of
sampling candidates can be expected. The data offloading
scheme adds another important dimension: a sampled node
i may perform poorly when considered in isolation, but it
may have high processing capacities Pi(t) and be connected
to unsampled nodes j ∈ Ŝ with large quantities of local
data and high transfer limits Ψj,i(t). We address these issues
by (i) incorporating the solution from Sec. III into the GCN
training procedure, and (ii) proposing sampling GCN-branch,
a network-based post-processing technique that maps the
GCN output to a sampling set by considering the underlying
connectivity-similarity matrix.

B. GCN Architecture and Training Procedure

We consider a GCN function H(π, Ã) with two inputs:
(i) π ∈ RN×U , a matrix of U node features, and (ii)
Ã ∈ RN×N , the augmented connectivity-similarity matrix.
The feature vector for each node i is defined as πi ≜
[Di(0), Pi(0), pi(0), θi(0)], forming the rows of π, and the
augmented connectivity-similarity matrix is defined as Ã ≜

Fig. 4. Architecture of our GCN-branch sampling algorithm. Given a target network, GCN-branch extracts node and edge features, passing them through
two GCN layers, each of which convolves features in local neighborhoods. This process returns raw output probabilities that we filter, based on data quantity,
connectivity-similarity matrix, and centroid differences, to obtain a sampled set of nodes in the interpretation stage. With the resulting sampled set, we perform
the D2D data offloading process from Sec. III, yielding an output ML model training process for FedL.

Λ(0) + IN , where IN denotes the identity matrix [64]. H
consists of two graph convolutional layers separated by a
rectified linear unit (ReLU) activation layer [63], as depicted
in Fig. 4. The outputs of each layer are defined as:

H(l) ≜ σ
(
D̃− 1

2 ÃD̃− 1
2 H(l−1)Q(l)

)
, l ∈ {1, 2}, (34)

where D̃ is the degree matrix of Ã, Q(l) denotes the trainable
weights for the l-th layer, and σ represents ReLU activation.
Note that H(0) = π, Q(1) ∈ RU×O, and Q(2) ∈ RO×1, where
O is the dimension of the second layer. Finally, log-softmax
activation is applied to H(2) ∈ RN to convert the results into
a vector of probabilities, i.e., Γ ∈ [0, 1]N , representing the
likelihood of each node belonging to the sampled set.

GCN training procedure: To train the GCN weights,
we generate a set of sample network and node data realizations
e = 1, · · · , E with the properties from Sec. II-A&II-B. For
each realization, we calculate the matrices πe and Ãe corre-
sponding to the inputs of the GCN. Then, for each candidate
sampling allocation xs

e = [(xs
e)i]1≤i≤N (with

∑
i(x

s
e)i = S),

we solve PD from Sec. III to obtain the offloading scheme,
and then determine the loss of FedL resulting from model
training and D2D offloading. Among these, we choose the x⋆

e

that yields the smallest objective to be the target GCN output.
The collection of [(πe, Ãe,x⋆

e)]
E
e=1 form the training samples

for the GCN.
As the number of devices N increases, the number of

choices that will be considered for the sampled set increases
combinatorially as

(
N
S

)
. An advantage of this GCN procedure

is that it can be adapted to networks of varying size: once
trained on a set of realizations for tolerable-sized values of
N , the graph convolutional layer weights Q(l), l ∈ {1, 2}, can
be applied to the desired network of varying size by shifting
through the graph. Our obtained performance results in Sec. V
verify this experimentally.

C. Offloading-Aware Smart Device Sampling

Given any network graph, our procedure must solve the
sampling problem at the point of FedL initialization, i.e., t =
0. With the trained GCN in hand, we obtain π and Ã for the
target network and calculate Γ = H(π, Ã), Γ = [Γi]1≤i≤N .

Given this output, our sampling GCN-branch algorithm pop-
ulates the set S as follows. Let Np ⊂ N be the subset of
nodes in the 95th percentile of initial data quantity. Starting
with S = ∅, the first node is added according to S = S∪{s1},
where s1 = arg maxi∈Np

Γi. In this way, the first node
sampled is the device with the highest GCN probability among
nodes with large local data generation. To choose subsequent
sampled nodes, the algorithm performs a recursive branch-
based search on the initial connectivity-similarity matrix Λ(0)
for nodes with the highest sampling probabilities and the
smallest aggregate data similarity, as measured by maximin
centroid difference, to the previously sampled nodes. In doing
so, our algorithm filters the search space for the GCN to yield
subsequent nodes with the most contribution to the existing
sampled set of nodes. We develop this procedure for two main
reasons. Firstly, the GCN scores devices individually, so two
devices with high GCN probabilities may not necessarily yield
a cohesive fit. Secondly, existing work [64], [65] has shown
that a GCN individually may struggle to return a single optimal
set in scenarios where multiple optimal sets are feasible, which
is the case in large-scale networks.

Formally, we choose the n-th node addition as S = S ∪
{sn}, where sn = arg maxi∈Rsn−1

Γi with Rsn−1 denoting
the unsampled nodes above the 95th percentile of link dissim-
ilarity to sn−1 (i.e., based on Λ(0)) and the 80th percentile
of maximin centroid difference relative to all the nodes in
S thus far. In this way, our branch algorithm relies on the
GCN to decide which branch the sampling scheme will follow
given its current sampled nodes (visualization in Fig. 4), so
that subsequent selections are more likely to contain nodes
with (i) different data distributions while (ii) leading to new
neighborhoods that can contribute to the current set. Once the
sampled set S is determined, the offloading is scheduled for
t = 0, . . . , T per the solver for PD from Sec. III.

Summary of methodology: Fig. 3 summarizes our method-
ology developed in Sec. III&IV for solving P . Algorithm 1
also provides an overview of the key steps in the process,
focusing specifically on the steps (i) to build the GCN model,
(ii) for implementation on a target network, and (iii) for
FedL operation on the target network. The sequential convex
optimization for offloading (Sec. III) is embedded within the

Algorithm 1 Summary of Key Steps in Overall Methodology
1: // GCN model construction - Sec. IV-B
2: Step 1: Generate randomized network realizations, each

having graph Gz with z corresponding to a unique real-
ization, for FedL.

3: Step 2: For each realization, find the best sets of sampled
devices, e.g., via brute force search, while factoring in
optimized data offloading via (PD) in Sec. III-C.

4: Step 3: Extract node features (i.e., Pi, pi, Di,Ψi ∀i ∈ N)
and edge features (i.e., ψi,j , Ai,j , λi,j ∀i, j ∈ N , i ̸= j)
for the network realizations.

5: Step 4: Use the results of Step 2 and 3 as the ground truth
to train the GCN’s parameters, Q(l), l ∈ {1, 2} per (34)
in Sec. IV-B.

6:
7: // Implementation and operation for a given network -

follows Sec. IV-C
8: Step 1: Extract node features (i.e., Pi, pi, Di,Ψi ∀i ∈ N)

and edge features (i.e., ψi,j , Ai,j , λi,j ∀i, j ∈ N , i ̸= j)
for a target network, G = {N , E(t)}.

9: Step 2: Pass the target network G = {N , E(t)} and its
features (i.e., Pi, pi, Di,Ψi, ψi,j , Ai,j , λi,j ∀i, j ∈ N , i ̸=
j) through the trained GCN, which has trained weights,
Q(l), l ∈ {1, 2}, in the form of (34) as a result of the
procedure in Sec. IV-B.

10: Step 3: Perform GCN-branch to obtain the set of sampled
devices S, described in Sec. IV-C.

11: Step 4: Perform the D2D data offloading and resource
optimization process of (PD) from Sec. III-C to deter-
mine the offloading ratios Φ(t) for the sampled set S,
given some optimization regime α, β, and γ.

12:
13: // Operation with device sampling and D2D data offload-

ing - Sec. V
14: Step 1: Network uses GCN-branch to select devices i ∈ S

as the sampled nodes and (PD) to obtain the offloading
ratios Φ(t).

15: Step 2: Sampled devices i ∈ S are initialized with ML
model parameters w0

i , and locally update their ML model
parameters, wi(t), via gradient descent in (6).

16: Step 3: At each training iteration t, sampled devices i ∈ S
receive data Φj,i(t)Dj(t) from nearby devices j ∈ N , j /∈
S.

17: Step 4: At each k-th aggregation, the server aggregates
the ML model parameters wS(kτ) =

∑
i∈S ∆i(kτ)wi(kτ)∑

i∈S ∆i(kτ) ,
and then synchronizes the sampled devices’ ML model
parameters to wS(kτ).

18: Step 5: Training process continues until t = T .

GCN-based sampling procedure (Sec. IV). Once the model
is trained on sample network realizations, it is applied to the
target network to generate the S and Φ(t) for FedL.

V. EXPERIMENTAL EVALUATION

A. Setup and Experimental Procedure

1) Network Characteristics via Wireless Testbed: We
employed our IoT testbed in Fig. 5 to obtain device and

Fig. 5. IoT testbed used to generate device and link characteristics.

TABLE I
GLOBAL AGGREGATIONS REQUIRED BY EACH SCHEME TO REACH A

CERTAIN PERCENTAGE OF FEDL MODEL ACCURACY ON MNIST
(69%) AND F-MNIST (41%) WITH S = 6 AND VARYING N . OUR

SAMPLING METHODOLOGY WITH OFFLOADING CONSISTENTLY
OBTAINS THE FASTEST TRAINING TIME. DASHES INDICATE

THAT A METHOD WAS UNABLE TO REACH THE
ACCURACY THRESHOLD

communication characteristics. It consists of Jetson Nano,
Coral Dev Board TPU, and UP Squared AI Edge boards
configured to operate in D2D mode. We used Dstat [66] to
collect the device resources and power consumption. We map
the measured computing resources (in CPU cycles and RAM)
and the corresponding power consumption (in mW) at devices
to the costs and capacities in our model by calculating the
Gateway Performance Efficiency Factor (GPEF) [54]. Specifi-
cally, to determine the processing costs pi(t), we measured the
GPEF of the devices running gradient iterations on the MNIST
dataset [67]. For the processing capacities Pi(t), we pushed the
devices to 100% load and measured the GPEF. We initialized
the devices at 25%-75% loads, and treated the available
remaining capacity as the receive buffer parameter θi(t).

For the transmission costs, we measured GPEF spent
on D2D offloading over WiFi. Our WiFi links, when only
devoted to D2D offloading, consistently saturated at 12 Mbps.
To simulate the effect of external tasks, we limit available
bandwidth for D2D to 1, 6, and 9 Mbps. We then calculated
the transmission resource budget for devices as transfer limits
Ψi(t), and modelled unit transfer costs ψi,j(t) as normalized
D2D latency.

2) Datasets and Large-Scale Network Generation:
For FedL training, we use MNIST and Fashion-MNIST
(F-MNIST) [68] image classification datasets. We consider a
CNN predictor composed of two convolutional layers with
ReLU activation and dropout. The devices perform τ =
5 rounds of gradient descent with a learning rate η = 0.01. Fol-
lowing [39], we generate network topologies with N = 100 to

800 devices using Erdös–Rényi graphs with link formation
probability (i.e., Ai,j = 1) of 0.1. To produce local datasets
across the nodes that are both overlapping and non-i.i.d, the
datapoints at each node are chosen uniformly at random with
replacement from datapoints among three labels (i.e., image
classes). Differentiating the labels between devices captures
dataset heterogeneity (i.e., from different devices collecting
data from different labels). The number of initial datapoints
Di(0) at each device follows a normal distribution with mean
µ = (DN (0))N−1 and variance σ2 = 0.2µ. We further
estimate the initial similarity weights λi,j(0) based on the
procedure discussed in Sec. II-B.

For the GCN-based sampling procedure, we train the model
on small network realizations of ten devices. We consider
sampling budgets of S = 3 to 6, with corresponding train-
ing samples E for each case. We save the resulting graph
convolutional layer weights Q(1) and Q(2) for each choice of
S and reapply them on the larger target networks.

B. Results and Discussion

In the following experiments, we compare our methodology
to several baseline sampling and offloading schemes. The four
sampling strategies considered are Ours, data proportional
probabilities (DPP) [26], [37], power-of-choice (PoC) [27],
and PyramidFL (PYR) [69]. DPP is a random device sampling
technique based on the quantity of local data at network
devices, with larger datasets incurring a higher probability
of sampling for FedL aggregations. On the other hand, PoC
is a sampling technique based on the instantaneous training
losses across network devices, with larger losses equating
to a higher probability of being part of the sampled device
set. PYR is a time-varying sampling technique based on a
combination of exploration and exploitation across network
devices, with exploitation referring to the best performing
nodes and exploration representing careful selection of other
nodes. For PYR, we use an even ratio of 0.5 for both explo-
ration and exploitation. Each of the four sampling schemes is
investigated both with and without data offloading. For our
sampling methodology, we employ our corresponding data
offloading methodology. For DPP, PoC, and PYR sampling
methodologies, we perform a greedy offloading that minimizes
the communication resource costs while maintaining the same
nominal offloaded data quantity as our methodology. A base-
line of FedL with no sampling (i.e., all nodes active) and no
offloading is also included.

In the following, we will first investigate classification
performances, convergence speeds, and resource utilization of
the various sampling methodologies. Then, we will qualita-
tively examine characteristics of our optimization formulation.
Finally, we further examine different optimization regimes
(i.e., combinations of α, β, and γ on the performance of
our methodology), the impact of time-varying links, and
integration with FedDrop [70] in the Appendices.

1) Model Accuracy: Figs. 6 and 7 show FedL accuracy for
different sampling baselines on two popular ML datasets in six
different combinations (S = 3, 4, 5 and N = 100, 200). For
these experiments, our proposed methodology solves (PD)

Fig. 6. Testing classification accuracies over training iterations on MNIST
obtained by the sampling schemes with and without offloading, and by FedL
using all nodes, for different sampled sizes (S) and nodes (N). For S > 3,
our proposed sampling methodology with offloading consistently obtains a
wide margin of improvement over all schemes.

Fig. 7. Testing classification accuracies on F-MNIST for the same setup as in
Fig. 6. The results are consistent with the MNIST dataset. The wide margin of
improvement obtained by our proposed sampling scheme with offloading vs.
without emphasizes the benefit of considering these two aspects jointly for
FedL optimization.

for the data offloading and resource optimization component
using α = 100, β = 0.001, and γ = 0.01 for MNIST or γ =
0.006 for FMNIST.2 We further compare the above α, β, and
γ combination, which we term as the balanced regime, versus
the high energy costs regime for α, β, and γ in Appendix D,
which increases β and γ by an order of magnitude for both
datasets.

For the experiments involving data offloading, Ours
w/ offloading consistently demonstrates at least a 5% accuracy
improvement over the baseline methodologies for MNIST
(Fig. 6) with a maximum of 13% accuracy improvement
in Fig. 6c). Similarly on F-MNIST (Fig. 7), our methodol-
ogy is able to continue outperforming the baseline sampling

2These values of α, β, and γ enable the three objective function terms of
(PD) to all have the same order of magnitude, i.e., O(102).

methodologies for various S and N combinations. The final
accuracy attained by Ours w/ offloading is even able to
match or outperform FedL all nodes in some cases. Our joint
sampling and data offloading methodology is able to achieve
better performance due to two main reasons: (i) it minimizes
the data skew resulting from unbalanced label frequencies,
and (ii) it ensures higher quality of local datasets at sampled
nodes, which reduces bias caused by multiple local gradient
descents. Without offloading, our sampling methodology is
also able to either outperform or match the accuracies obtained
by the DPP, PoC, and PYR sampling strategies. Addition-
ally, our method with offloading is able to offer consistent
improvements over sampling without offloading in most cases,
whereas the effects of data offloading are smaller or even
detrimental for the baseline methodologies. This emphasizes
the importance of designing the sampling and offloading
schemes for FedL jointly.

2) Model Convergence Speed: We next compare the con-
vergence speeds of our methodology to the other schemes in
terms of the number of global aggregations needed to reach
specific accuracy thresholds. Table I compares the convergence
speeds on MNIST (to reach 69%) and F-MNIST (to reach
41%), respectively, for N = 600, 700, 800 and S = 6, and uses
a horizontal line to indicate when a methodology is unable to
reach the specific accuracy thresholds. We investigate sampling
methodologies with and without data offloading.

For methodologies involving data offloading, our method
obtains the fastest convergences rates. Specifically, our method
is at least 58% and 80% faster, in terms of global aggrega-
tions needed to reach the accuracy threshold, than the other
baselines on MNIST and F-MNIST respectively. Furthermore,
our method is only one to consistently be able to reach the
accuracy thresholds. For example, while the baseline PoC
w/ offload is able to reach the threshold for MNIST with
N = 700, it fails to do for N = 600 and N = 800 on
the same dataset.

Even without data offloading, our sampling methodology
is still able to consistently reach the accuracy thresholds for
both MNIST and F-MNIST. By contrast, both DPP and PoC
baselines are unable to consistently obtain the accuracy thresh-
olds for F-MNIST. Overall, we see that our joint sampling and
offloading methodology obtains faster training speeds than the
other methods. Enabling offloading is also seen to improve
the convergence speeds of each sampling scheme; in fact,
without offloading, several baseline cases fail to reach the
given percentage of the FedL baseline.

3) Resource Utilization: Finally, we compare the resource
utilization for the different schemes in terms of the total data
processed and energy used (measured by GPEF consumption)
across a sampled set S of 6 nodes in a network of N =
700 edge devices. Fig. 8 depicts the total data processed while
Fig. 9 shows the corresponding energy costs in GPEF. Both
figures compare the resource consumption (data processed or
energy used) that sampling methodologies with and without
offloading incur in order to reach specific accuracy thresholds
on both MNIST and F-MNIST. We see that our sampling
methodology (both with and without offloading) requires fewer

Fig. 8. Number of samples processed by the schemes with and without
offloading to reach within a certain percentage of a reference testing accuracy
(Ref, 69% for MNIST and 41% for F-MNIST). Our smart sampling with
offloading methodology scales the best in terms of data needed for ML model
training.

Fig. 9. The total associated data processing and communication costs
measured in GPEF linked to Fig 8. Our proposed sampling methodology
with and without offloading obtain some of the lowest costs among all the
baseline comparisons regardless of dataset.

data to be processed and thus results in less energy use relative
to the baselines for various accuracy thresholds.

Specifically, on the processed data side (Fig. 8), Ours w/
offload processes the least amount of training data across all
cases. As the reference accuracy level increases, our method-
ology consistently requires fewer datapoints compared to the
other methods (over 60% fewer on average), emphasizing its
ability to get the most value from each processed datum. This
emphasizes the benefits of well-designed data offloading in
reducing the computational burden across the network as a
whole, which is especially valuable in IoT and mobile edge
applications. Furthermore, Ours without offloading requires
fewer processed data than all other methods under evaluation
aside from Ours w/ offload, which highlights the resource
efficiency of our sampling methodology on its own.

Our methodologies are able to maintain their advantages on
the energy costs side (Fig. 9). Similar to Fig. 8, our methodol-
ogy with and without data offloading incurs the least amount
of energy use as measured in terms of GPEF. On average, our
method uses less energy than the baseline methods on MNIST
and significantly fewer energy than the baseline methods on
FMNIST. While Ours w/ offload processed the least amount
of training data in Fig. 8, we see that, for some cases, the
energy costs incurred by it are fairly similar to those total
costs incurred by Ours without data offloading in Fig. 9.
So even though Ours w/ offload may process fewer data and
thus have a lower data processing cost, it seems that the

Fig. 10. The average data offloading rates at active D2D links while varying
network sizes and sampling quantities. Larger networks exhibit higher initial
average offloading rates and correspondingly have data offloading rates that
decay faster in the FedL training process.

data offloading costs incurred over D2D links can, in specific
scenarios, balance out the energy savings from fewer processed
data for our methodology.

These experiments demonstrate that our joint optimization
method exceeds baseline performances in terms of model
accuracy, convergence speed, and resource utilization. Next,
we experimentally characterize the behavior of the optimiza-
tion formulation (P) by investigating its responses over
training iterations, and the two energy scaling variables, β
and γ.

4) Optimization Characterization: We characterize the
behavior of our optimization formulation (P) in three key
aspects: (i) its behavior over time as the FedL process con-
verges, (ii) its sensitivity to the data processing energy use
(scaled by β), and (iii) its responses to the data offloading
energy use (scaled by γ). For all of these experiments,
we investigate on networks of N ∈ {200, 400, 600, 800}
nodes while sampling S ∈ {3, 5, 7} devices. In addition, these
experiments all use α = 100, β = 0.001, and γ = 0.001 unless
stated otherwise.

First, we characterize the behavior of (P) with respect
to training iterations in Fig. 10. Here, Fig. 10 highlights
the average offloading rate at active links (i.e., links that
have a non-zero data offloading rate). One of the major
effects shown in Fig. 10 is device/link saturation, in which
D2D links gradually cease to be used for data offload-
ing. The main reason for this is that, over time, sampled
devices gather enough data from nearby willing unsampled
devices that they no longer have any remaining data process-
ing capabilities (as described in (21)). This effect becomes
more noticeable as the edge network grows in size, which
leads to more D2D connections from unsampled to sampled
devices and thus faster device/link saturation. For instance
in Fig. 10, the average data offloading rate at active D2D
links rapidly decreases (in less than 10 iterations) from more
than 0.8 to 0 for N = 800 regardless of sampled device
set size, while for N = 200, the average data offloading
rate requires roughly 20 iterations to approach 0 for all
S ∈ {3, 5, 7}.

More D2D connections among devices also leads to higher
initial average data offloading rates among active D2D links
in Fig. 10. The two reasons for this are: (i) more links leads to
more valuable data offloading opportunities and thereby more
data offloading, and (ii) simulation setup in Sec. V-A.2 in

which the datasets for larger networks are initialized at smaller
sizes in order to form a partition of the full ML dataset.

Next, we investigate the sensitivity of (P) to β in Fig. 11.
As we vary β from 0.001 to 10, the cost of processing data
becomes more expensive relative to the FedL loss term in
(P) and (9). Initially, for small β in N = 200, the cost of
processing data is essentially negligible and the average data
processed is at a stable point until the β scaling reaches a
point that is comparable in value to the FedL loss term in (9).
Further increases in β then lead to reductions in the average
data processed per device until nearly no data is processed,
and, correspondingly, the estimated and normalized FedL loss
increases.

Fig. 11 also highlights some of the effects of large-scale
networks and sampled device set size. Here, as the networks
grow in size from 200 to 800 devices, we see that the average
data processed per sampled device is increasing, specifically
from under 200 data per device when N = 200 to over
400 data per device when N = 800. This is because larger
networks have more links, and therefore more valuable data
offloading, which leads to more D2D offloading and more data
processed. On the other hand, as the sampled device set size
increases from S = 3 to S = 7, the opposite effect occurs as
the average data processed per sampled device decreases. More
sampled devices not only leads to more D2D data offloading
opportunities, but also enables the unsampled devices to spread
out their data to more sampled devices. As a result, the burden
of data processing can be shared among more sampled devices,
thus leading to the decrease in average data processed per
sampled device.

Finally, we observe the responsiveness of (P) to changes
in the value of D2D offloading costs in Fig. 12 by measuring
the change in average data offload quantity relative to γ, the
scaling of D2D offloading. As γ increases from 0.00001 to
0.01, the cost of D2D data offloading becomes more expensive
relative to the data processing and FedL cost terms from (9).
Small γ initially has little impact on average data offloading
in small networks of N = 200 until the γ scaling term makes
the D2D communication cost comparable to that of the FedL
performance term in (9). Then average data offloading quantity
rapidly decreases to 0 and correspondingly the normalized
FedL term increases.

Fig. 12 provides two additional insights. First, as the net-
work grows in size from N = 200 to N = 800, the average
data offload quantity per D2D link remains quite stable, with
all Fig. 12a)-Fig. 12d) demonstrating average data offload
rates between 10 to 20 for γ = 0.00001. That being said,
larger networks do demonstrate hightened sensitivity to γ.
For example, for all S ∈ {3, 5, 7}, while the average data
offloaded in a network with N = 200 remains stable for
γ ∈ [0.00001, 0.001], the average data offloaded decreases
more and more rapidly as the network size grows to 400,
600, and then 800 nodes for the same γ range. The second is
that as the sampled device set size increases from S = 3 to
S = 7, the average data offloaded per D2D link increases. This
is due to the existence of more D2D connections between
unsampled and sampled devices, enabling more links to be
active.

Fig. 11. Average data processed per sampled device when varying the data processing energy scaling, β from (9). As β increases, networks are disincentivized
to perform costly ML training, which leads to lower average data processed per sampled device and correspondingly increases in the FedL loss. In addition,
as networks grow in size, the average data processed per sampled device increases as more cost-effective D2D links become available.

Fig. 12. Average data offloaded from unsampled to sampled device when varying the data offloading energy scaling, γ from (9). As γ increases in value,
D2D links become more expensive to use, leading to an expected decrease in average offloaded data quantity and a corresponding growth in the FedL loss
term. The effect of sampling size can also be seen to influence the average data offloading quantity, with smaller sampling quantities yielding lower average
data offloading rates as there are physically less links from unsampled to sampled devices.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed a novel methodology to solve the
joint sampling and D2D offloading optimization problem for
FedL. Our theoretical analysis of the offloading subproblem
produced new convergence bounds for FedL, and led to a
sequential convex optimization solver. We then developed a
GCN-based algorithm that determines the sampling strategy by
learning the relationships between the network properties, the
offloading topology, the sampling set, and the FedL accuracy.
Our implementations using popular datasets and real-world
IoT measurements from our testbed demonstrated that our
methodology obtains significant improvements in terms of
datapoints processed, training speed, and resulting model
accuracy compared to several other algorithms, including FedL
using all devices. Future work may consider the integration
of further realistic network characteristics such as unlabeled
data [71], [72] on FedL, or investigate the integration of
realistic wireless conditions, such as fading, shadowing, and
interference among others [73], for D2D cooperation within
large-scale networks for FedL.

APPENDIX A
PROOF OF THEOREM 1

Since vk(t) = vk(t− 1)− η∇F (vk(t− 1)|DN (t)), wS(t) =
wS(t− 1)−η(∇F (wS(t− 1)|DN (t))+ζ(wS(t− 1)), we get:∥∥wS(t)− vk(t)

∥∥
=
∥∥∥wS(t− 1)− vk(t− 1)− ηζ(wS(t− 1))

− η∇F (wS(t− 1)|DN (t)) + η∇F (vk(t− 1)|DN (t))
∥∥∥.

(35)

We simplify (35) through the following steps:

∥wS(t)− vk(t)∥
(a)

≤ ∥wS(t− 1)− vk(t− 1)∥

+ η
∑
i∈N

Di(t− 1)
DN (t)

∥∇F (wS(t− 1)|Di(t− 1))

−∇F (vk(t− 1)|Di(t− 1))∥+ η∥ζ(wS(t− 1))∥
(b)

≤ ∥wS(t− 1)− vk(t− 1)∥+ η∥ζ(wS(t− 1))∥

+ ηβ
∑
j∈N

Dj(t−1)
DN (t)DS(t)

∑
i∈S

Di(t−1)∥wS(t−1)−vk(t−1)∥

(c)

≤ ∥wS(t− 1)− vk(t− 1)∥+ η∥ζ(wS(t− 1))∥

+
∑
j∈N

Dj(t− 1)
DN (t)DS(t)

∑
i∈S

Di(t− 1)
δi(t)
β

(2t−1−(k−1)τ − 1)

(d)

≤ ∥wS(t− 1)− vk(t− 1)∥+
1
β
∥ζ(wS(t− 1))∥

+
∑
j∈N

Dj(t− 1)
DN (t)

δS(t)
β

(2t−1−(k−1)τ − 1), (36)

where (a) results from expanding ∇F (vk(t− 1)|DN (t)) and
applying the triangle inequality repeatedly, (b) follows from
using the β-smoothness of the loss function and the triangle
inequality, (c) applies Lemma 3 from [23], and (d) uses the

expanded form of δS(t) in (28). We then rearrange (36):
∥wS(t)− vk(t)∥ − ∥wS(t− 1)− vk(t− 1)∥

≤ Υ(t, k)
β

+
1
β
∥ζ(wS(t− 1))∥. (37)

Since ∥wS(t) − vk(t)∥ = 0 when re-synchronization occurs
at t = kτ , ∀k ∈ {1, · · · ,K}, we express ∥wS(t)−vk(t)∥ as:
∥wS(t)− vk(t)∥

=
t∑

y=(k−1)τ+1

∥wS(y)− vk(y)∥ − ∥wS(y − 1)

− vk(y − 1)∥ ≤ 1
β

t∑
y=(k−1)τ+1

(Υ(y, k)+∥ζ(wS(y−1))∥) .

(38)

APPENDIX B
PROOF OF COROLLARY 1

We first define θk(t) ≜ F (vk(t))−F (w∗(t)) ≥ ϵ. Since F is
L-Lipschitz, we apply the result of Theorem 1, and Lemmas
2 and 6 from [23] to obtain:
θK̂+1(t)

−1 − θ1(0)−1

=
(
θK̂+1(t)

−1 − θk+1(K̂τ)−1
)

+
(
θK̂+1(K̂τ)

−1−θK̂(kτ)−1
)
+
(
θK̂(K̂τ)−1−θ1(0)−1

)
≥
(

(t−K̂τ)ξη
(

1− βη
2

))
+K̂τξη

(
1−βη

2

)
− L

βϵ2
Υ̂(K̂)

− (K̂ − 1)
L

βϵ2
Υ̂(K̂) = tξη

(
1− βη

2

)
− K̂ L

βϵ2
Υ̂(K̂),

(39)

where Υ̂(K̂) ≜
∑K̂τ

y=(K̂−1)τ+1 Υ(K̂, y) + ∥ζ(wS(y − 1))∥.
Using the assumptions from Lemma 2 of [23] and the fact
that t ≥ K̂τ , the RHS of (39) is strictly positive, implying
that Υ̂(K̂) ≪ 1 as tξη(1− βη

2) is very small. Next, defining
ϱ(t) ≜ F (wS(t)|DN (t))− F (w∗(t)|DN (t)) ≥ ϵ, we get:

ϱ(t)−1 − 1
θK̂+1(t)

=
F (vK̂(t)|DN (t))− F (wS(t)|DN (t))

θK̂+1(t)ϱ(t)

≥ −L
βϵ2

K̂τ∑
y=(K̂−1)τ+1

Υ(K̂, y) + ∥ζ(wS(y − 1))∥. (40)

Combining (39) and (40), and since θ1(0) > 0, we get
ϱ(t)−1 ≥ tξη

(
1− βη

2

)
− (K̂+1)L

βϵ2 Υ̂(K̂), taking the reciprocal
of which leads to (29).

APPENDIX C
PROOF OF PROPOSITION 1

Since ∇F (wS(t)|Di(t)) is the average of ∇F (wS(t), xd, yd),
∀(xd, yd) ∈ Di(t), we apply the central limit theorem to view
∇F (wS(t)|Di(t)) as Di(t) samples of ∇F (wS(t), xd, yd)
from a distribution with mean ∇F (wS(t)|DN (t)). Then, (31)
can be upper bounded using the definition in (1):
∥∇F (wS(t)|Di(t))−∇F (wS(t)|DN (t))− ζ(wS(t))∥

≤ ∥ζ(wS(t))∥+
γ√
Di(t)

Fig. 13. Comparing the performance of our methodology under the high
energy cost regime versus the standard balanced cost regime for MNIST and
FMNIST for a network with N = 200 and S = 3.

TABLE II
OPTIMIZATION VALUES OF (PD) FOR A NETWORK WITH N = 200 AND

S = 3 ON MNIST AND FMNIST. WE EXAMINE THE VALUES OF THE
UN-SCALED TERMS OF (PD), I.E., THE AVERAGED ESTIMATED FL

LOSS, THE DATA PROCESSING ENERGY, AND THE DATA
TRANSMISSION ENERGY, FOR BOTH THE BALANCED

REGIME AND THE HIGH ENERGY COSTS REGIME

≤

∥∥∥∥∥ −1
DN (t)

∑
i∈Ŝ

Di(t)∇F (wS(t)|Di(t))

+
DN (t)−DS(t)
DN (t)DS(t)

∑
i∈S

Di(t)∇F (wS(t)|Di(t))

∥∥∥∥∥+ γ√
Di(t)

.

(41)

Applying the triangle inequality on the above gives the result.

APPENDIX D
HIGH ENERGY COSTS REGIME ON PERFORMANCE

We investigate the behavior of our methodology in a sce-
nario with energy restrictions, and compare it relative to the
balanced regime. In the balanced regime, the three objective
function terms in (PD) are expected to have a similar degree
of importance, which we can emulate by having similar order
of magnitude via careful choice of α, β, and γ. By contrast,
if devices were disconnected from stable power, they would
have energy limitations, and therefore the energy cost for data
processing and transmissions is likely to be more restrictive.
In response, a network may increase β and γ by an order of
magnitude, thus entering the high energy cost regime.

We examine these two regimes in Fig. 13 and Table II.
For the balanced regime, we employ α = 100, β = 0.001,
and γ = 0.01 for MNIST or γ = 0.006 for FMNIST as in
Sec. V-B, while, for the high energy costs regime, we will use
α = 100, β = 0.01, and γ = 0.1 for MNIST or γ = 0.06 for
FMNIST.

As the high energy cost regime places greater emphasis on
reducing the data processing and D2D data offloading, we see
a reduction in the data processing and transmission energies in
Table II for the high energy cost regime relative to the balanced
regime. This reduced data processing and transmission leads

TABLE III
EXAMINING THE IMPACT OF TIME-VARYING INACTIVE LINKS

(I.E., ADJACENCY MATRIX CHANGES OVER TIME) ON THE
PERFORMANCE OF THE PROPOSED SAMPLING WITH D2D

DATA OFFLOADING METHODOLOGY FOR A
NETWORK WITH N = 200 AND S = 3

Fig. 14. Examining the effectiveness of FedDrop [70] integrated with our
proposed device sampling methodology on both MNIST and FMNIST datasets
for a network with N = 100. FedDrop has yields a small decrease in the
final classification accuracies as well as a significant decrease in the number
of parameters that are transmitted from the sampled devices to the server.

to a corresponding increase in the estimated loss in Table II,
which is reflected by the decreased classification accuracies
shown in Fig. 13 for the high energy cost regime relative to
the balanced regime.

APPENDIX E
IMPACT OF TIME-VARYING LINKS

We examine the ability of our methodology to adapt to
networks with time varying links (i.e., changing adjacency
matrices) in Table III. This experiment randomly deacti-
vates links within the adjacency matrix A such that at any
given iteration t, each i, j-th link will be deactivated, i.e.,
Ai,j(t) = 0, with probability 0%, 25%, 50%, 75%, or 100%.
From Table III, higher link failure rate does reduce the clas-
sification performance for the proposed methodology, which
makes sense as there are fewer links available and thus fewer
D2D data offloading opportunities. Nonetheless, the resulting
accuracies in the scenarios involving time-varying links are
quite close to the case with fixed links. For both MNIST
and FMNIST, the gap between 0% link failure rate and 75%
link failure rate is within 7%, approximately. That being said,
the case with total link failures (i.e., 100% link failure rate)
has over 6% reduced final classification accuracy from the
case with 75% link failure rate. Thus, we can see that D2D
data offloading has substantial impact on the resulting system
performance.

APPENDIX F
EXAMINING INTEGRATION OF FEDDROP [70]

In the following, we examine the impact of federated
dropout (FedDrop from [70]), a methodology designed to

dropout model parameters from the fully connected layers
of ML models in federated settings, on our device sampling
methodology. We use a dropout rate of 75% for MNIST and
70% for FMNIST on the fully connected layers of our CNNs.
As our experiments rely on CNNs with 21840 total param-
eters of which 16560 parameters are for the fully connected
layers, these dropout settings yield device-to-server ML model
transmission savings of roughly 43% and 46% for MNIST and
FMNIST, respectively. The classification performance results
in Fig. 14 show that FedDrop integrated with our methodology
yields a substantial decrease in total ML model parameters
transmitted across all global aggregations. Moreover, these
substantial resource savings only induce a minor decrease,
under roughly 6%, in the final classification accuracies. Thus,
in federated scenarios with device-to-server communication
limitations, our methodology combined with FedDrop offers
significant communication overhead resource savings.

REFERENCES

[1] S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chiang, and C.
G. Brinton, “Device sampling for heterogeneous federated learning:
Theory, algorithms, and implementation,” in Proc. INFOCOM IEEE
Conf. Comput. Commun., May 2021, pp. 1–10.

[2] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for IoT big data and streaming analytics: A survey,” IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart., 2018.

[3] M. A. Alsheikh, “Five common misconceptions about privacy-preserving
Internet of Things,” IEEE Commun. Mag., vol. 6, no. 5, pp. 151–157,
May 2023.

[4] S. Heinrich. (2017). Flash Memory in the Emerging Age
of Autonomy. Accessed: Aug. 8, 2020. [Online]. Available:
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/
2017/20170808_FT12_Heinrich.pdf

[5] M. Wu, F. R. Yu, and P. X. Liu, “Intelligence networking for autonomous
driving in beyond 5G networks with multi-access edge computing,”
IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 5853–5866, Jun. 2022.

[6] X. Li, G. Feng, Y. Sun, S. Qin, and Y. Liu, “A unified framework for
joint sensing and communication in resource constrained mobile edge
networks,” IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 5643–5656,
Oct. 2023.

[7] A. Gupta, S. Misra, N. Pathak, and D. Das, “FedCare: Federated learning
for resource-constrained healthcare devices in IoMT system,” IEEE
Trans. Computat. Social Syst., vol. 10, no. 4, pp. 1587–1596, Aug. 2023.

[8] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), 2017,
pp. 1273–1282.

[9] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[10] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “A novel framework
for the analysis and design of heterogeneous federated learning,” IEEE
Trans. Signal Process., vol. 69, pp. 5234–5249, 2021.

[11] S. Lu, Z. Gao, Q. Xu, C. Jiang, A. Zhang, and X. Wang, “Class-
imbalance privacy-preserving federated learning for decentralized fault
diagnosis with biometric authentication,” IEEE Trans. Ind. Informat.,
vol. 18, no. 12, pp. 9101–9111, Dec. 2022.

[12] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for
wireless communications: Motivation, opportunities, and challenges,”
IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020.

[13] S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 41–47, Dec. 2020.

[14] S. Zehtabi, S. Hosseinalipour, and C. G. Brinton, “Decentralized
event-triggered federated learning with heterogeneous communication
thresholds,” in Proc. IEEE 61st Conf. Decis. Control (CDC), Sep. 2022,
pp. 4680–4687.

[15] C. Chang et al., “BEV-V2X: Cooperative birds-eye-view fusion and grid
occupancy prediction via V2X-based data sharing,” IEEE Trans. Intell.
Vehicles, vol. 8, no. 11, pp. 4498–4514, Nov. 2023.

[16] S. Wang et al., “Towards cooperative federated learning over hetero-
geneous Edge/Fog networks,” IEEE Commun. Mag., vol. 61, no. 12,
pp. 54–60, Dec. 2023.

[17] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[18] S. Wang, S. Hosseinalipour, M. Gorlatova, C. G. Brinton, and
M. Chiang, “UAV-assisted online machine learning over multi-tiered net-
works: A hierarchical nested personalized federated learning approach,”
IEEE Trans. Netw. Service Manage., vol. 20, no. 2, pp. 1847–1865,
Jun. 2023.

[19] S. Hosseinalipour et al., “Parallel successive learning for dynamic
distributed model training over heterogeneous wireless networks,”
IEEE/ACM Trans. Netw., vol. 32, no. 1, pp. 222–237, Feb. 2024.

[20] T. Huang, B. Ye, Z. Qu, B. Tang, L. Xie, and S. Lu, “Physical-layer
arithmetic for federated learning in uplink MU-MIMO enabled wire-
less networks,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Jul. 2020, pp. 1221–1230.

[21] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-IID data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Nov. 2019.

[22] W. Sun, S. Lei, L. Wang, Z. Liu, and Y. Zhang, “Adaptive federated
learning and digital twin for industrial Internet of Things,” IEEE Trans.
Ind. Informat., vol. 17, no. 8, pp. 5605–5614, Aug. 2020.

[23] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[24] T. Wu et al., “Joint edge aggregation and association for cost-efficient
multi-cell federated learning,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Sep. 2023, pp. 1–10.

[25] S. Ji, W. Jiang, A. Walid, and X. Li, “Dynamic sampling and selective
masking for communication-efficient federated learning,” IEEE Intell.
Syst., vol. 37, no. 2, pp. 27–34, Mar./Apr. 2021.

[26] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5132–5143.

[27] Y. J. Cho, J. Wang, and G. Joshi, “Towards understanding biased client
selection in federated learning,” in Proc. 25th Int. Conf. Artif. Intell.
Statist. (AISTATS), Mar. 2022, pp. 10351–10375.

[28] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication net-
works,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949,
Mar. 2020.

[29] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE Conf. Comput. Commun., Apr. 2019,
pp. 1387–1395.

[30] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,” 2018,
arXiv:1812.06127.

[31] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“FedPAQ: A communication-efficient federated learning method with
periodic averaging and quantization,” in Proc. Int. Conf. Artif. Intell.
Statist., 2020, pp. 2021–2031.

[32] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 317–333, Jan. 2020.

[33] W. Shi, S. Zhou, and Z. Niu, “Device scheduling with fast convergence
for wireless federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1–6.

[34] W. Xia, T. Q. S. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu, “Multi-
armed bandit based client scheduling for federated learning,” IEEE
Trans. Wireless Commun., vol. 19, no. 11, pp. 7108–7123, Nov. 2020.

[35] J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, “Scheduling
for cellular federated edge learning with importance and channel aware-
ness,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7690–7703,
Nov. 2020.

[36] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-IID data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun., Aug. 2020, pp. 1698–1707.

[37] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Represent., 2019,
pp. 1–26.

[38] Z. Su et al., “Secure and efficient federated learning for smart grid with
edge-cloud collaboration,” IEEE Trans. Ind. Informat., vol. 18, no. 2,
pp. 1333–1344, Feb. 2022.

[39] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-aware optimization of distributed learning for fog computing,”
IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2019–2032, Oct. 2021.

[40] X. Lin, J. Wu, J. Li, X. Zheng, and G. Li, “Friend-as-learner: Socially-
driven trustworthy and efficient wireless federated edge learning,” IEEE
Trans. Mobile Comput., vol. 22, no. 1, pp. 269–283, Jan. 2023.

[41] F. Dou, J. Lu, T. Zhu, and J. Bi, “On-device indoor positioning: A
federated reinforcement learning approach with heterogeneous devices,”
IEEE Internet Things J., vol. 11, no. 3, pp. 3909–3926, Feb. 2024.

[42] J. Zhang, W. Liu, Y. He, Z. He, and M. Guizani, “Semi-asynchronous
model design for federated learning in mobile edge networks,” IEEE
Trans. Veh. Technol., vol. 72, no. 12, pp. 16280–16292, Dec. 2023.

[43] Y. Qu, C. Dong, T. Wu, Y. Zhuang, H. Dai, and F. Wu, “Efficient edge
intelligence under clustering for UAV swarm networks,” in Proc. Int.
Conf. Space-Air-Ground Comput. (SAGC), Oct. 2021, pp. 112–117.

[44] J. Xie, D. Guo, X. Shi, H. Cai, C. Qian, and H. Chen, “A fast hybrid data
sharing framework for hierarchical mobile edge computing,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Jul. 2020, pp. 2609–2618.

[45] X. Xia et al., “OL-MEDC: An online approach for cost-effective
data caching in mobile edge computing systems,” IEEE Trans. Mobile
Comput., vol. 22, no. 3, pp. 1646–1658, Mar. 2023.

[46] Y. Li et al., “Energy-aware, device-to-device assisted federated learning
in edge computing,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 7,
pp. 2138–2154, Jul. 2023.

[47] S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush, and L. Barbieri, “Oppor-
tunities of federated learning in connected, cooperative, and automated
industrial systems,” IEEE Commun. Mag., vol. 59, no. 2, pp. 16–21,
Feb. 2021.

[48] Z. Lin, H. Liu, and Y.-J. A. Zhang, “Relay-assisted cooperative
federated learning,” IEEE Trans. Wireless Commun., vol. 21, no. 9,
pp. 7148–7164, Sep. 2022.

[49] L. Barbieri, S. Savazzi, M. Brambilla, and M. Nicoli, “Decentralized
federated learning for extended sensing in 6G connected vehicles,” Veh.
Commun., vol. 33, Jan. 2022, Art. no. 100396.

[50] B. Ganguly et al., “Multi-edge server-assisted dynamic federated learn-
ing with an optimized floating aggregation point,” IEEE/ACM Trans.
Netw., vol. 31, no. 6, pp. 2682–2697, Dec. 2023.

[51] Y. Guo, Y. Sun, R. Hu, and Y. Gong, “Hybrid local SGD for federated
learning with heterogeneous communications,” in Proc. Int. Conf. Learn.
Represent., 2022, pp. 1–42.

[52] F. Liese and I. Vajda, “On divergences and informations in statistics
and information theory,” IEEE Trans. Inf. Theory, vol. 52, no. 10,
pp. 4394–4412, Oct. 2006.

[53] T. Jeske, “Floating car data from smartphones: What Google and Waze
know about you and how hackers can control traffic,” in Proc. BlackHat
Euro., Mar. 2013, pp. 1–12.

[54] R. Morabito, R. Petrolo, V. Loscrì, and N. Mitton, “LEGIoT: A
lightweight edge gateway for the Internet of Things,” Future Gener.
Comput. Syst., vol. 81, pp. 1–15, Apr. 2018.

[55] K. Krishna and M. N. Murty, “Genetic K-means algorithm,” IEEE Trans.
Syst. Man, Cybern. B, Cybern., vol. 29, no. 3, pp. 433–439, Jun. 1999.

[56] K. Jacksi, R. Kh. Ibrahim, S. R. M. Zeebaree, R. R. Zebari, and
M. A. M. Sadeeq, “Clustering documents based on semantic similarity
using HAC and K-mean algorithms,” in Proc. Int. Conf. Adv. Sci. Eng.
(ICOASE), Dec. 2020, pp. 205–210.

[57] A. D. Ribas, J. G. Colonna, C. M. S. Figueiredo, and E. F. Nakamura,
“Similarity clustering for data fusion in wireless sensor networks using
k-means,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jun. 2012,
pp. 1–7.

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[59] S. Schaible and J. Shi, “Fractional programming: The sum-of-ratios
case,” Optim. Methods Softw., vol. 18, no. 2, pp. 219–229, Apr. 2003.

[60] T. Kuno, “A branch-and-bound algorithm for maximizing the sum of
several linear ratios,” J. Glob. Optim., vol. 22, nos. 1–4, pp. 155–174,
2002.

[61] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 83,
pp. 1–5, 2016.

[62] S. Martello, D. Pisinger, and P. Toth, “New trends in exact algorithms
for the 0–1 knapsack problem,” Eur. J. Oper. Res., vol. 123, no. 2,
pp. 325–332, Jun. 2000.

[63] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[64] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[65] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 539–548.

[66] Dstat: Versatile Resource Statistics Tool. Accessed: Aug. 8, 2020.
[Online]. Available: http://dag.wiee.rs/home-made/dstat/

[67] The MNIST Database of Handwritten Digits. Accessed: Aug. 8, 2020.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[68] Fashion-MNIST. Accessed: Aug. 8, 2020. [Online].
Available: https://research.zalando.com/welcome/mission/research-
projects/fashion-mnist/

[69] C. Li, X. Zeng, M. Zhang, and Z. Cao, “PyramidFL: A fine-grained
client selection framework for efficient federated learning,” in Proc. 28th
Annu. Int. Conf. Mobile Comput. Netw., Oct. 2022, pp. 158–171.

[70] D. Wen, K.-J. Jeon, and K. Huang, “Federated dropout—A sim-
ple approach for enabling federated learning on resource constrained
devices,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 923–927,
May 2022.

[71] S. Wang, S. Hosseinalipour, and C. G. Brinton, “Multi-source to multi-
target decentralized federated domain adaptation,” IEEE Trans. Cognit.
Commun. Netw., vol. 10, no. 3, pp. 1011–1025, Jun. 2024.

[72] S. Wagle, S. Hosseinalipour, N. Khosravan, M. Chiang, and
C. G. Brinton, “Embedding alignment for unsupervised federated learn-
ing via smart data exchange,” in Proc. GLOBECOM IEEE Global
Commun. Conf., Dec. 2022, pp. 492–497.

[73] M. M. Amiri and D. Gündüz, “Federated learning over wireless
fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5,
pp. 3546–3557, May 2020.

(Henry) Su Wang received the B.S. (with distinc-
tion) and Ph.D. degrees in electrical and computer
engineering from Purdue University, West Lafayette,
in 2018 and 2023, respectively. He is currently a
Post-Doctoral Research Associate with the Depart-
ment of Electrical and Computer Engineering,
Princeton University. His research interests lie at the
intersection of machine intelligence and networking.

Roberto Morabito (Member, IEEE) received the
Ph.D. degree in networking technology from Aalto
University, Finland, in May 2019. He is an Assistant
Professor with the Communication Systems Depart-
ment, Eurecom, France. From June 2019 to March
2021, he was a Post-Doctoral Researcher with the
Edge Laboratory, School of Electrical and Computer
Engineering, Princeton University, USA. His work
intersects the IoT, edge computing, and distributed
AI, focusing on trade-offs in AI service provisioning
and orchestration under computing and networking
resource constraints.

Seyyedali Hosseinalipour (Member, IEEE) received
the B.S. degree in electrical engineering from the
Amirkabir University of Technology, Tehran, Iran,
in 2015, and the M.S. and Ph.D. degrees in electrical
engineering from North Carolina State University,
NC, USA, in 2017 and 2020, respectively. He is
currently an Assistant Professor with the Depart-
ment of Electrical Engineering, University at Buffalo
(SUNY). His research interests include the analysis
of modern wireless networks, synergies between
machine learning methods and fog computing sys-

tems, distributed machine learning, and network optimization.

Mung Chiang (Fellow, IEEE) is the President
and a Roscoe H. George Distinguished Profes-
sor of electrical and computer engineering with
Purdue University. Previously, he was an Arthur
LeGrand Doty Professor with Princeton University
and has founded Princeton Edge Laboratory. He is a
member of the American Academy of Arts and Sci-
ences, the National Academy of Inventors, and the
Royal Swedish Academy of Engineering Sciences.
He received the 2013 Alan T. Waterman Award.

Christopher G. Brinton (Senior Member, IEEE)
received the M.S. and Ph.D. degrees from Princeton
in 2013 and 2016, respectively, both in electrical
engineering. He is the Elmore Rising Star Assistant
Professor of electrical and computer engineering
(ECE) with Purdue University. His research interest
is at the intersection of networking, communications,
and machine learning, specifically in fog/edge net-
work intelligence, distributed machine learning, and
AI/ML-inspired wireless network optimization.

