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Abstract

Computational fact-checking (FC) relies on
supervised models to verify claims based on
given evidence, requiring a resource-intensive
process to annotate large volumes of training
data. We introduce UNOWN, a novel frame-
work that generates training instances for FC
systems automatically using both textual and
tabular content. UNOWN selects relevant ev-
idence and generates supporting and refuting
claims with advanced negation artifacts. De-
signed to be flexible, UNOWN accommodates
various strategies for evidence selection and
claim generation, offering unparalleled adapt-
ability. We comprehensively evaluate UNOWN
on both text-only and table+text benchmarks,
including FEVEROUS, SCIFACT, and MMFC, a
new multi-modal FC dataset. Our results prove
that UNOWN examples are of comparable qual-
ity to expert-labeled data, even enabling mod-
els to achieve up to 5% higher accuracy. The
code, data, and models are available at https:
//github.com/disi-unibo-nlp/unown

1 Introduction

The spread of false information on social media
threatens public trust. For example, during the
COVID-19 pandemic, misinformation led to vac-
cine hesitancy, straining public health systems and
informed decision-making (Saakyan et al., 2021;
Carey et al., 2022; Carrieri et al., 2023). Com-
putational fact-checking (FC) is a vital tool for
verifying claims against diverse evidence types,
including unstructured text and structured tabular
data. Diversity increases task complexity, requiring
advanced NLP methods to cross-reference informa-
tion accurately (Guo et al., 2022).

Traditional FC verification models (i.e., those
making final predictions over evidence, without re-
trieving it) heavily rely on training samples manu-
ally annotated by experts, who meticulously review
and pair claims with corresponding evidence, and
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Figure 1: UNOWN pipeline. Given a corpus of docu-
ments, the Example Generation module (investigated in
this work) outputs training instances.

intentionally modify claims to create refuting exam-
ples. Unfortunately, this process is labor-intensive
and time-consuming, which significantly hinders
the scalability of FC efforts in adapting to evolv-
ing misinformation scenarios (Nakov et al., 2021).
Recent studies have attempted to mitigate these
challenges by automating the generation of training
examples using question-answering (QA) and en-
tity replacement (ER) algorithms (Pan et al., 2021;
Wright et al., 2022). Yet, as shown in Table 1, they
face limitations that restrict their practical utility:

1. They fail to integrate precise tabular data with
nuanced textual data, which is often essential
for verifying real-world claims (Chen et al.,
2020; Aly et al., 2021); see Figure 2.

2. They are confined to specific domains, such as
biomedicine, due to their reliance on vertical
knowledge bases (KBs), compromising their
ability to generalize across fields.

To overcome these limitations, we present UN-
OWN (Figure 1),1 a novel approach that uses pre-

1Pronounced “unknown”, the name draws inspiration from
the cryptic Pokémon hieroglyphs (i.e., ), reflecting the un-
certain factuality label of undisclosed textual claims.

https://github.com/disi-unibo-nlp/unown
https://github.com/disi-unibo-nlp/unown


Work U+S† Domain
Agnostic

Tested
Datasets

Human
Eval‡

Pan et al. (2021) ✗ ✓ FEVER (2018) ✗
Wright et al. (2022) ✗ ✗ (biomed.) SCIFACT (2020) ✓

Ours ✓ ✓
FEVEROUS (2021)
SCIFACT (2020)
MMFC (new)

✓

† The study combines unstructured and structured data as evidence.
‡ The study includes human examination of the generated examples.

Table 1: Summary of works on the automatic generation
of training samples for fact-checking systems.

trained language models (PLMs) to generate syn-
thetic training examples for FC systems, integrat-
ing textual and tabular evidence.2 Unlike prior
work relying on ER methods and domain-specific
data, UNOWN offers a flexible solution that sup-
ports multiple evidence selection and claim genera-
tion strategies, accommodating small and large lan-
guage models (SLMs and LLMs). This versatility
not only broadens the system’s utility across real-
world applications but also facilitates its deploy-
ment in diverse hardware environments, from low-
power devices to advanced computing systems.

We validate our approach by comparing the ac-
curacy of FC models trained on examples gener-
ated by UNOWN versus those labeled by humans.3

To achieve this, we conduct extensive experiments
on text-only and text+table evidence scenarios us-
ing three public FC datasets targeting general and
scientific content: FEVEROUS (Aly et al., 2021),
SCIFACT (Wadden et al., 2020), and MMFC, our
new multi-modal and multi-domain fact-checking
dataset.4 MMFC complements FEVEROUS as the
second existing corpus featuring textual and tabular
evidence, distinguishing it from SCIFACT, which
exclusively focuses on text.

The main findings of our study are as follows:
• In text-only evidence scenarios, training on

UNOWN data yields lower accuracy, showing
an 8% gap compared to human-labeled sam-
ples. However, this gap diminishes to just 2%
with the inclusion of only 100 human-labeled
instances. Conversely, in text+table scenarios,
we achieve up to 5% higher accuracy.

• SLMs and LLMs produce synthetic data of
comparable quality, with just a 1% gap in

2This work focuses on the FC verification sub-component,
excluding evidence retrieval, and thus UNOWN is not intended
as a replacement dataset for a complete FC system.

3We employ state-of-the-art FC models as they existed at
the start of this study (March 2023), without changing their
original implementations and hyperparameters.

4The dataset is available in the HuggingFace
hub: https://huggingface.co/datasets/
disi-unibo-nlp/MMFC

"Aramais Yepiskoposyan"

Figure 2: Example from the FEVEROUS dataset where
the verification of dates reported in the claim requires
reasoning above both textual and tabular information.

downstream FC accuracy.
• By transcending traditional reliance on exter-

nal KBs, UNOWN adeptly generates refuting
claims with sophisticated negation artifacts.

2 Related Work

Computational FC has been an active area of re-
search for decades (Dagan et al., 2005; Guo et al.,
2022). Recently, the rise of LLMs has advanced
the development of FC pipelines (Schulman et al.,
2022), but their effectiveness is still inferior to
human experts (Saeed et al., 2022; Caramancion,
2023). Specialized models are currently the most
effective approach (Li et al., 2023), despite they
require large labeled datasets for training.

Existing methods for automatically generat-
ing FC training examples have been approached
through both unsupervised and supervised tech-
niques. Unsupervised solutions, typically em-
ployed in the absence of labeled data, leverage
PLMs to create textual claims from a given text,
e.g., by using template prompts (Meng et al., 2022).
Supervised approaches rely on specific resources,
e.g., an annotated taxonomy to train an LSTM
model for sentence generation (Meng et al., 2019).

Several works have investigated the generation
of claims from textual evidence (see Table 1). Pan
et al. (2021) produce question–answer pairs using
answer replacement to assemble the refuting claim.
Wright et al. (2022) create supporting claims with
a generative PLM and ER over a domain-specific
KB for evidence refusal in the biomedical field.

Research on generating claims specifically from
tabular data remains limited. While some stud-

https://huggingface.co/datasets/disi-unibo-nlp/MMFC
https://huggingface.co/datasets/disi-unibo-nlp/MMFC


ies have explored template-based methods (Wang
et al., 2021; Veltri et al., 2023), Bussotti et al.
(2023) demonstrated improved results by produc-
ing claims based on human-provided examples.

Artificial text passages have recently demon-
strated greater effectiveness than human-written
ones for reasoning-demanding QA (Frisoni et al.,
2024), but FC tasks have not yet been studied.

To the best of our knowledge, no existing work
has addressed the generation of FC training exam-
ples from structured and unstructured data as input.

3 Problem Formulation

Let d represent a semi-structured document (e.g.,
a Wikipedia page) containing n sentences and m
tables. We define evidence e = {es, et} as a non-
empty subset of sentences es = {s1, . . . , s|es|<n}
and, optionally, cell values et = {c1, . . . , c|et|<p}
extracted from a table within d, where p is the
total number of cells. A supervised FC model F
evaluates whether a textual claim c is supported or
contradicted by the given evidence e. Specifically,
F takes as input a data pair <e, c> and outputs
a verdict from the set L = {Supports,Refutes}.5

Consequently, our goal is to automatically generate
labeled examples E = <e, c, l ∈ L> to train F .

Challenge I: Refuting Claims. There have been
proposals to generate artificial claims by synthe-
sizing e in a sentence. Abstractive summarization
has been explored with text-only evidence (Tonguz
et al., 2021; Wright et al., 2022) and scenarios cen-
tered on cell values only (Bussotti et al., 2023). In
contrast, our goal is to create claims that incorpo-
rate evidence from both structured and unstructured
data, as illustrated in Figure 1. However, while a
Supports claim naturally aligns with the provided
evidence, we also require examples with a Refutes
label to train FC models effectively, which entails
claims that are in conflict with e. Technically, refut-
ing samples should go beyond basic negations such
as “Rome is not in Italy.” They should instead be
adept at capturing nuanced factual contradictions,
e.g., “Rome is in France”, “There are two Colise-
ums in Rome.” Obtaining such variety in claims
remains an open research question.

Challenge II: Low-Budget Environment. In low-
resource settings, restrictions such as commod-
ity hardware infrastructure can affect model su-

5The label Not Enough Information is excluded due to its
rarity, accounting for only 3% of instances in FEVEROUS.

pervision and performance (Parida and Motlícek,
2019; Moro and Ragazzi, 2022, 2023; Huh and
Ko, 2023; Moro et al., 2023a,b,c). In the era of
LLMs, the investigation of flexible and scalable
solutions is being neglected despite their high so-
cial impact (Tamkin et al., 2021). Developing FC
systems capable of scaling and adapting to diverse
user needs and scenarios is imperative.

4 Method

We introduce UNOWN (Figure 3), a novel frame-
work to automate the production of FC training
data. In a first step, e is created from the input d
(evidence selection). Then, e is used to generate
supporting or refuting claims (claim generation).

4.1 Evidence Selection

Anchor Creation. The evidence construction
process begins by creating a textual anchor a.
We distinguish two settings. Text-only: a is a
randomly selected sentence from the document
d. Text+Table: we combine textual and tabular
data to determine a. In alignment with the text-
centric vision of previous works (Berrios et al.,
2023; Tan et al., 2023; Zeng et al., 2023), we fine-
tune T5-large (780M parameters) (Raffel et al.,
2020) on TOTTO (Parikh et al., 2020), a table-
to-text dataset. We sample table cells following
a distribution based on the observed tabular ev-
idence size in the FEVEROUS training set (i.e.,
[2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8]) to generate a (text)
by inference, unifying the data modalities.6 The
prompt uses cell values and includes contextual de-
tails such as table headers and the document title to
maintain coherence (see Figure 4). This approach
eases claim generation but still leaves the question
of how to select evidence.

Evidence Completion. Once a is created, we pro-
pose two alternative strategies to complete the ev-
idence. Random: we pick k random sentences
from d. Various topics may exist within e, as the
information chosen may not be aligned. Semantic
Consistency: es is built by concatenating the k sen-
tences from d that semantically align the most with
a, preserving the topic coherence. As in Liu et al.
(2023), we use cosine similarity after T5 encoding.

We expand on important clarifications.
1. In text-only scenarios, et=∅ and e consists of

a set of sentences. In text+table scenarios, e
6Cell extraction is a consolidated practice for evidence

retrieval in table-based factuality predictors (Aly et al., 2021).



Figure 3: UNOWN pipeline. The input document d consists of sentences and optional tables. (1) When both
modalities are used, we obtain et with a cell sampling and verbalization process. From et, different strategies can
be used to determine es and complete e; in a text-only approach (et = ∅), e is established after sentence sampling.
(2) We generate supporting and refuting claims using PLMs. Non-continuous lines and arrows delineate alternatives.
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Mike works as a teacher in London

Figure 4: Verbalization of a subset of tabular cells.

comprises sentences and a verbalized repre-
sentation of tabular cells. We overwrite e by
prefixing the d title for context with special
<title> and <evidence> token delim-
iters. Concatenation enables cross-attention
among the page title, cells, and sentences.

2. k is drawn randomly from a distribution of
[1, 1, 2, 2, 2, 3, 3, 4, 5], selected based on pat-
terns observed in the FEVEROUS training set.

3. We emphasize that constructing e from et to
es using a single verbalization step is the most

practical approach, avoiding the complexities
of reverse operations.

4.2 Claim Generation

Fine-tuning models on data aligned with the tar-
get task has proven effective in enhancing perfor-
mance (Gururangan et al., 2020). Practically, users
can expect access to external data from related FC
applications and a limited number (e.g., 10, 100) of
internal human samples specific to the downstream
task. Given this context, we define the following
concepts to guide our methodology.

Warm-start: external examples are available for pre-
liminary training (i.e., e → c).

Cold-start: no external data is available.

Few-shot learning: internal examples are accessible for
specialized fine-tuning (regardless of warm/cold start).

Refuting Claims. Generating refuting claims
comes with additional intricacies. We recognize
two main paths to avoid introducing a strong lexical
bias in the artificial training samples, such as basic



negation types. Direct Refusal: we use a PLM
that can directly transform e into a refuting claim,
ensuring a direct and straightforward method. Two-
Step Approach: we summarize e into a supporting
claim and apply a targeted modification to flip its
meaning. This involves either using Direct Refusal
with the supporting claim or employing ER, where
keywords are strategically swapped with antonyms
or related terms from a KB.

5 Experimental Setup

Our focus is on evaluating the veracity component
of the FC process during test time, where mod-
els are provided with gold evidence alongside the
claim for verification. To achieve this, we address
the following research questions:

Q1 Are our generated artificial examples effective
for training FC models?

Q2 Which evidence selection strategy yields the
best performance?

Q3 What method is recommended for generating
refuting claims?

Q4 To what extent does the efficacy of synthetic
examples generalize across various domains?

Q5 How many internal dataset-specific samples
are necessary for few-shot learning to boot-
strap the downstream FC model successfully?

Datasets. In warm-start scenarios, we use a subset
of 10K positive and 10K negative human exam-
ples from FEVER (Thorne et al., 2018), a collec-
tion of claim–evidence pairs based on Wikipedia.
As the leading FC benchmark, we take FEVER-
OUS (Aly et al., 2021), an extension of FEVER

with more complex claims enriched with tabular
evidence (with no overlap between the two cor-
pora). Since the original test set is private and
lacks gold labels and evidence for the claims, we
used the provided validation set as our test set for
evaluation. We then divided this set into two sub-
sets: one containing claims based solely on tex-
tual evidence, and another containing claims that
require both textual and tabular evidence (we ex-
clude claims relying only on tables). To assess
generality, we include SCIFACT (Wadden et al.,
2020), a dataset of expert-written claims paired
with evidence from scientific papers abstracts. For
the same rationale applied to FEVEROUS, we used
the original validation set as our test set. Finally,
we release MMFC, a new multi-modal FC cor-
pus. Mechanically, we sample 2000 instances from
MULTIMODALQA (Talmor et al., 2021), a QA

Dataset Use
Case

Veracity
Labels†

Claim
Length

Evidence
Sent./Cells*

Claim Generation

FEVER Warm-Start 10K / 10K 8.1 2.4/0

FEVEROUS ‡ Few-Shot
Learning 0.1K / 0.1K 27.7 2.1/0

Fact Verification

FEVEROUS
Train 16.2K / 12.7K 27.7 2.2/0
Test 1.5K / 1.7K 27.1 2.1/0

FEVEROUS +
Train 15.8K / 2.3K 26.3 1.6/5.4
Test 1.5K / 0.5K 25.2 1.6/4.4

SCIFACT
Train 0.3K / 0.2K 12.1 2.1/0
Test 0.2K / 0.1K 12.3 1.8/0

MMFC + Test 0.25K / 0.25K 21.3 1.5/1.9
† = supporting claims; = refuting claims. *Average.
‡ 0.01K and 10K variants are also explored.

Table 2: Dataset statistics. Top area: data eventu-
ally employed to align a PLM to the claim genera-
tion task before using it. Bottom area: evidence-claim-
verdict triplets used to train the fact verification model
(UNOWN-generated data) or test it (gold data).

dataset requiring joint reasoning over text, table,
and images. In our sampling procedure, we filter
out instances requiring visual grounding. Then, we
perform few-shot in-context learning with GPT-
4-TURBO to transform each question–answer pair
into a claim paired with text+table evidence. Fi-
nally, we carefully review all examples through hu-
man verification to ensure that all reference claims
were qualitatively accurate and correctly labeled.
Dataset statistics are provided in Table 2. See the
Appendix for details.

Metrics. We assess FC predictions using Accuracy
and F1 scores ([0, 1]; higher is better), distinguish-
ing between Supports and Refutes labels. We vali-
date models on the test sets after training with arti-
ficial and human examples. We finally evaluate the
logical relationship between each evidence–claim
pair with a DEBERTA cross-encoder (Reimers and
Gurevych, 2019) pretrained on natural language in-
ference (NLI) tasks to classify pairs as Entailment,
Contradiction, or Neutral.

Claim Generation Models. As SLM, we use mod-
els built on BART (Lewis et al., 2020). For support-
ing claims, we employ the large version (400M pa-
rameters). For refuting claims, we utilize two vari-
ants: BART-large and BARTNEG (Lee et al., 2021),
a specialized BART-base model (140M parameters)
trained on parallel and opposing claims from the
WIKIFACTCHECK dataset (Sathe et al., 2020).7 As
LLM, we operate with LLAMA-2-7B (Touvron
et al., 2023), opting for QLoRA (Dettmers et al.,

7Although BARTNEG has already undergone a warm-start
process, applying warm start with FEVER is still necessary to
deal with multi-sentence input and language style adaptation.
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Figure 5: Accuracy scores on FEVEROUS by varying the number of its training samples. Dashed bars indicate the
use of external fine-tuning on FEVER. The red dashed line represents the accuracy obtained by human data.

2023) adapter fine-tuning (the prompt template is
provided in the Appendix). We stress that refuting
claim generation can be obtained by: (i) running
these models directly on e; (ii) applying these mod-
els to the claim returned by a supporting model.
Training is done independently for the two claim
types; details are reported in the Appendix.

Entity Replacement Methods. As a baseline
method, and to show the generality of our frame-
work, we adapt the pipeline proposed by Wright
et al. (2022) to domain-agnostic resources, study-
ing three alternative refuting claim generation pro-
cedures. (1) We prompt FLAN-T5-large (780M
parameters) (Wei et al., 2022) with “Answer the
following question. Can you give me an antonym
of {{w}}?”, where w is a word of length ≥ 4
characters randomly chosen for replacement. (2)
We use the GENSIM library (Rehurek and Sojka,
2011) to calculate a similarity matrix between the
words in the supporting claim. The matrix is sub-
sequently used to build a frequency ranking, aid-
ing in deciding which word to replace (least com-
mon, most common, random). Denoting the chosen
item as w, words having similarity > 0.7 to w are
substituted with a similar but distinct word as per
WORDNET (Miller, 1995). (3) We use CONCEPT-
NET (Speer et al., 2017) to identify a set of con-
cepts closely related to each word in the claim. We
build a claim-level frequency ranking on the inter-
section of word-level concepts. Then, we replace
w according to antonym relationships.

Fact-Checking Models. We assess the impact
of our synthetic training examples on accurately
predicting the verdict label of an input claim given
a set of evidentiary sentences. To achieve this,
we choose optimal classification models for the
benchmarks at hand, keeping their weights and
hyperparameters unchanged. For FEVEROUS and
MMFC, we use ROBERTA (Liu et al., 2019) with
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Figure 6: Accuracy scores on FEVEROUS with training
examples generated by LLAMA-2.

a linear layer on top. For SCIFACT, we employ
MULTIVERS (Wadden et al., 2022) with a shared
encoding of the claim and input context.

6 Results and Discussion

6.1 Q1 Quality of Generated Claims

SLMs. We evaluate how UNOWN training exam-
ples generated by small models contribute to a
downstream FC system by measuring performance
on the FEVEROUS test set (Figure 5). In the worst-
case scenario (cold-start, zero-shot learning), the
highest accuracy achievable by UNOWN is 86.7
with BART-large used for the generation of both
supporting and refuting claims. When leveraging
human training instances, the results show a consis-
tent boost in performance. In fact, accuracy climbs
to 92.3 with warm start and just 100 internal target
examples, using BART-large for supporting claims
and BARTNEG for direct refusal—close to the accu-
racy achievable with human-annotated data (94.5).

LLMs. Figure 6 looks at how the claims generated
by LLAMA-2 stack up against those inferred by
the best SLM setup. The accuracy propelled by
LLAMA-2 claims, after training on 100 internal
examples, is 93.3, outperforming the small solu-
tion by a single point. Therefore, incorporating
LLMs does not appear essential in the UNOWN

pipeline, favoring BART-based models for their



Method Entail.† Contrad.‡ Neutral

Supporting

HUMAN 75.00 4.00 21.00
BART 74.57 4.90 20.53
LLAMA-2 71.92 3.95 24.12

Refuting

HUMAN 3.00 77.00 30.00
BART 10.43 56.00 33.57
LLAMA-2 11.23 37.82 50.95
ENTITY REPLACEMENT 36.05 40.70 23.26

† [0, 100]. : ↑ (higher is better). : ↓ (lower is better).
‡ [0, 100]. : ↓ (lower is better). : ↑ (higher is better).

Table 3: The quality of the generated claims in FEVER-
OUS based on NLI scores (text-only scenario).

Challenge

COMBINING TABLES AND TEXTS 93.0 93.0
SEARCH TERMS NOT IN CLAIM 94.0 96.0
MULTI-HOP REASONING 96.0 92.0
NUMERICAL REASONING 93.0 88.0
ENTITY DISAMBIGUATION 88.0 79.0
OTHER 96.0 93.0

Table 4: Accuracy of the FC model on challenge-
specific subsets of FEVEROUS when trained on human-
annotated or UNOWN data. The best results are in bold.

superior effectiveness–efficiency trade-off (see Ta-
ble 8 in the Appendix for efficiency statistics).

NLI. To gain additional insight into the generated
claims, we compute the NLI prediction score be-
tween claims and evidence. Table 3 shows that,
for supporting claims, UNOWN’s examples closely
resemble the score distribution in their human-
written counterparts. Yet, in the refuting examples
generated by UNOWN, the percentage of entailed
claims surpasses that of human-generated ones,
highlighting the greater difficulty in creating re-
futing examples compared to supporting ones. We
observe that the ER baseline performs the worst.

Challenges of Claim Verification. We evaluate the
effectiveness of our data generation method across
challenge categories defined by Aly et al. (2021).
Specifically, we compare the performance of an
FC model trained on UNOWN data versus human-
crafted data on different subsets of the FEVEROUS

test set, each focused on a particular challenge.
As shown in Table 4, the FC model trained on
our data performs competitively in several cate-
gories, such as “Combining Tables and Texts” and
“Search Terms Not in Claim,” even outperforming
the model trained on human-generated data. While
the FEVEROUS-trained model holds a slight advan-

tage in areas like “Multi-hop Reasoning,” “Numer-
ical Reasoning,” and “Entity Disambiguation,” our
approach radically reduces the need for expensive
and time-consuming human annotation.

Human Evaluation. We perform a qualitative
analysis to investigate the quality of the claims
generated by UNOWN. We randomly sample 50
instances from the FEVEROUS training data (25
supporting, 25 refuting). Taking into account the
expense associated with careful human evaluation
and the central role of text as our unified modality,
we accord priority to text-only evidence. Each in-
stance is presented with its original human-selected
evidence and the corresponding claim. To main-
tain fairness, we condition our models on this evi-
dence and generate synthetic claims using our best-
performing models: the warm-started BART-large
for supporting claims and BARTNEG for refuting
claims. After manually verifying the correctness
of the assigned label, which were accurate for all
50 claims, we enlist the expertise of three external
annotators with strong NLP and FC backgrounds to
evaluate the claims. In a blind review process, we
provide them with the evidence and the two claims
(original and generated) in randomized order. Fol-
lowing a direct comparison assessment, which has
proven to be more reliable and sensitive than rating
scales (Kiritchenko and Mohammad, 2017) and has
been used to evaluate abstractive summaries (Fab-
bri et al., 2019; Moro et al., 2023d; Ragazzi et al.,
2024) and answers (Moro et al., 2024), we ask the
annotators to determine which claim is the best
with respect to two dimensions: clarity (effective
communication of the intended meaning with a
good sentence structure, fluency, and English pre-
cision) and coherence (semantic connection to the
evidence). They are also given the option to de-
clare a tie if they perceive the quality of the claims
to be comparable. To aggregate the annotations,
we employ a majority voting approach and calcu-
late Cohen’s κ coefficient to gauge the agreement
between annotators and the majority voting label.
The coefficient value of 0.613 indicates a substan-
tial level of agreement, enhancing the reliability
of our analysis. As illustrated in Figure 7, the re-
sults reveal an interesting landscape. Out of the 50
paired claims, annotators found 35 to be of compa-
rable quality. In 10 cases, the original FEVEROUS

claims were deemed superior, while in 5 cases, the
claims generated by UNOWN were judged to be of
higher quality.
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Figure 7: Human evaluation results on 50 claims.

Text Text+Table

Method Acc. F1 F1 Acc. F1 F1

FEVEROUS
EVID. + CLAIM 94.50 94.92 95.30 82.09 87.83 66.12
EVID. + CLAIM 92.40 92.10 92.70 84.59 90.53 58.69
RAND. w/ GOLD + C 92.30 91.70 92.70 81.81 87.96 62.89
RAND. w/o GOLD + C 85.11 86.07 84.01 84.43 89.90 66.03
SEM. CONSIST. + C 88.33 88.21 88.44 86.83 91.73 67.65

MMFC
EVID. + CLAIM . . . 87.60 88.17 86.97
EVID. + CLAIM . . . 76.00 75.61 76.38

Table 5: Evidence selection comparison in FEVEROUS
and MMFC. Methods use BART and BARTNEG to cre-
ate supporting and refuting claims, respectively. Models
are trained on FEVER and then on 100 dataset samples.

Overall, the generated examples (see the Ap-
pendix) prove to be sufficiently effective for train-
ing FC models, yielding quantitative results in a
2-point margin in absolute accuracy compared to
those achieved by a crowd of annotators.

6.2 Q2 Evidence Selection

We study the impact of alternative evidence selec-
tion methods. We report two experiments using
FEVEROUS training examples: one with text-only
evidence and another with text+table evidence; test
datasets are filtered according to the scenario. For
every human example, referred to as “gold,” we
execute our best BART model with four alternative
evidence selection strategies. Human evidence,
where we use the original evidence handpicked by
the annotators. Random with gold, where the num-
ber of selected sentences matches the human exam-
ple, but the actual cells and sentences are chosen
randomly from d. Random without gold, where
the number of retrieved sentences k, after anchor
definition, is drawn from the distribution presented
in Section 4.1. Semantic consistency, where tex-
tual evidence is retrieved using embedding similar-
ity to the table verbalization (see Figure 4).

Table 5 shows accuracy and F1 results. The
influence of evidence is evident. The use of hu-
man evidence allows UNOWN to produce examples
that match nearly the human upper bound. In the
text+table setting, we achieve even higher scores
for supporting claims, confirming the quality of our
claim generator. In the text-only scenario, perfor-
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Figure 8: Human annotation on negation artifacts.

mance is optimal when guided by the cardinality
of human gold evidence, with random selection
surpassing semantic consistency. In text+table,
semantic consistency outperforms both random se-
lection and original human examples in all metrics.
We observe that human annotators struggle to anno-
tate tabular data accurately, making mistakes that
mislead the classifier. This is also reflected in the
generally lower results for text+table compared to
the text-only scenario.

Table 5 also shows the results for MMFC. In this
dataset, all claims involve text and tabular data and
we only have human gold evidence for the original
claim. We explain the lower quality results for
UNOWN because the warm start includes examples
from FEVER, which are different from those in
MMFC (see the Appendix for examples), possibly
introducing a negative bias.

6.3 Q3 Refuting Claims

We show how the FC performance varies with dif-
ferent types of Refutes generated claims in a quan-
titative analysis and then in a qualitative user study.

Quantitative. We identify FLANT5 as the best ER
method (the results are shown in Figure 12 in the
Appendix); unless otherwise specified, we use ER
to denote this baseline approach. Figure 5 includes
the impact of various negation strategies on the
accuracy of the target task. In cold start, the combi-
nation of BART and BARTNEG using the two-step
approach is effective, while the results are sub-
par with ER, which fails to make refuting claims,
possibly due to limitations in content replacement
without adequate rewording. As anticipated, start-
ing with a warm start is beneficial, resulting in the
highest accuracy with 0 and 100 training samples.

Qualitative. We perform a human analysis to eval-
uate the negation techniques used to refute claims.
We adhere to the negation taxonomy outlined in
previous studies (Zafra et al., 2020; Dobreva and
Keller, 2021). Rigorously, we use two main nega-



Method Accuracy F1 F1

HUMAN TRAINING DATA 84.62 81.05 85.71
ENTITY REPLACEMENT 55.33 57.27 16.51
BARTNEG 65.08 53.79 65.96
ENTITY REPLACEMENT 54.00 57.63 1.98
BARTNEG 74.50 73.53 73.45

Table 6: Strategies for refuting claim generation on
SCIFACT; models use BART to create supporting claims.
In warm scenarios, models are fine-tuned on FEVER.

tion types, namely Verbal Negation (V) and Noun
Phrase Negation (NP). Each is classifiable in three
subclasses, including Lexical (L), where the nega-
tion is expressed with new words or phrases that
alter the sentence meaning (e.g., 10 papers→more
than 10 papers), Morphological (M), where the
form of the word is modified through morphemes
(e.g., legal→illegal), and Replacement (R), where
a phrase is swapped for another with a different
meaning (e.g., 1995→1997). Given these classes,
three annotators (selected among the authors) eval-
uated 30 refuting claims from the original FEVER-
OUS training dataset and 30 refuting claims gener-
ated by UNOWN. The final category is identified
by majority voting over the three suggested labels;
the Cohen’s κ coefficient is 0.91, which shows very
high agreement among annotators. The results of
the study are illustrated in Figure 8, allowing a com-
parison of annotation distributions between the two
sets of examples (UNOWN vs. human). UNOWN

produces an even distribution of refuting claims,
encompassing both noun phrases and verbal struc-
tures, whereas humans tend to prefer noun phrases.
Both UNOWN and humans favor the replacement
strategy for noun phrases and the lexical strategy
for verbs. In both scenarios, the ranking of classes
and subclasses remains consistent, indicating that
UNOWN produces a range of negation types compa-
rable to those observed in a human-crafted corpus.

6.4 Q4 Checking Scientific Claims

We measure the quality of the FC system trained
with UNOWN examples in a different domain.
Due to the lack of heterogeneous datasets such as
FEVEROUS, we use the text-only scientific corpus
SCIFACT. Table 6 confirms the analysis outcome
on FEVEROUS. Human data achieve the best re-
sults, followed by UNOWN with the warm-started
BART. We explain the greater result gap between
humans and UNOWN because the warm start in-
cludes only examples from FEVER. Again, BART-
NEG leads to better results with respect to ER. We
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Figure 9: The FEVEROUS’s average ∆ accuracy im-
provement when shifting from cold to warm.

posit that low F1 refuting scores (i.e., 1.98, 16.51)
stem from FLAN-T5’s pre-knowledge bias, which
may not adequately align with scientific subjects.

6.5 Q5 Bootstrapping: Cold vs. Warm Start
We measure the impact of the examples used to fine-
tune the models. As shown in Figure 5, Figure 6,
and Table 6, a warm-start approach improves the
quality of the generated data. More precisely, Fig-
ure 9 shows the average ∆ accuracy improvement
when shifting from cold to warm in FEVEROUS.
We observe a decrease in ∆ as the number of in-
ternal samples from the target dataset increases,
highlighting the beneficial contribution of using ex-
ternal related data as a guide source of knowledge.
Also SCIFACT exhibits an increase in accuracy for
BARTNEG in the warm approach.

7 Conclusion

We introduced UNOWN, a domain-agnostic frame-
work to automatically generate training examples
for fact-checking systems, bypassing the costly task
of manually annotating large volumes of data. UN-
OWN fits both structured and unstructured data to
compile textual claims that support or refute the
evidence provided. It also accommodates several
solutions for evidence selection and claim genera-
tion to adapt to different scenarios. We evaluated
our framework using three datasets that deal with
general-domain and scientific contexts. The re-
sults indicate that our synthetic examples exhibit a
quality comparable to that of expert-labeled data,
showing the practicality and efficacy of our frame-
work. Quantitative and human evaluation also reg-
ister that our refuting examples have high variety,
comparable to human-generated ones.

Limitations

Although UNOWN is a promising step forward,
some research directions remain unexplored. First,
our generation process lacks coverage of certain



examples within the long tail, e.g., mathematical
operations, such as the premise “Paul is 2 years
younger than Mary.” We consider using a solu-
tion in which more intricate patterns are generated
as queries over relational tables (Bussotti et al.,
2023). Second, once models have been trained
with instances from UNOWN, we could set up ac-
tive learning algorithms to guide our methods in
generating examples that effectively enhance per-
formance on the test set (Zhang et al., 2022). Third,
while the considered datasets contain well-crafted
claims, real-world claims can often be incomplete—
lacking context and presenting ambiguity in rela-
tion to the evidence (Glockner et al., 2024)—or
require multi-modal evidence that extends beyond
text and tables (Akhtar et al., 2023). Furthermore,
reasoning over multiple pieces of evidence from
diverse sources may also be necessary. Finally,
the selection of a specific model for generating
supporting or refuting claims can result in diverse
fact-checking challenges that may vary in their
alignment with the target dataset. For instance,
the FEVEROUS test set contains instances that de-
mand robust multi-hop reasoning abilities, whereas
other benchmarks might require advanced numer-
ical reasoning skills. This observation helps ex-
plain why, despite using identical models for syn-
thetic data generation, the text+table performance
achieved by ROBERTA on MMFC after training
on synthetic data is less promising compared to
its performance on FEVEROUS. These findings
underscore the importance of future research ef-
forts to explore methods for better aligning syn-
thetic data with the characteristics of specific target
datasets. Future endeavors could also consider the
evidence retrieval stage (Frisoni et al., 2022), cross-
domain FC (Kao and Yen, 2024; Domeniconi et al.,
2014), and knowledge extracted from unlabeled
corpora (Frisoni and Moro, 2020) to force the gen-
eration of cross-document claims.

Ethics and Impact Statement

Although fact-checking systems like UNOWN en-
hance information integrity and combat misinfor-
mation, it is essential to ensure their responsible
and beneficial use in society. UNOWN aims to effi-
ciently generate training instances, yet it is needed
to rigorously validate and supervise the synthetic
examples to ensure that they accurately represent
real-world scenarios without introducing inadver-
tent biases. Moreover, high-resource language

models demonstrate limited effectiveness when ap-
plied to low-resource language data (Huang et al.,
2023). Similarly to various domains within NLP
that depend on meticulously constructed datasets,
fact-checking contributions have mainly focused on
a few high-resource languages, such as English and
Chinese (Zarharan et al., 2021). As this could skew
perceptions of automated fact-checking advance-
ments, future studies should prioritize advances in
false claim detection for low-resource languages.
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Appendix

Multi-Modal Evidence. We conduct an ablation
study aimed at evaluating the importance of each
evidence modality for table+text FC instances (Ta-
ble 7). When text or cells are excluded from the
evidence in the test data, accuracy and F1 scores
for the FC model drop significantly.

Test set Accuracy F1 F1

STANDARD TEST DATA 86.9 91.7 67.6
ABLATED TABLES 57.6 66.0 43.9
ABLATED SENTENCES 62.8 71.5 46.3

Table 7: Results on three different test sets: the gold
test set, the same test set with ablated tables in evidence,
and the same test set with ablated sentences in evidence.
Training data is always based on the warm start and the
BART/BARTNEG combination.

Environment. We run each experiment on a cluster
of OS Linux workstations with a single Nvidia
GeForce RTX3090 Turbo GPU of 24 GB VRAM.
UNOWN is developed using PyTorch (Paszke et al.,
2019) and the HuggingFace library (Wolf et al.,
2019) (seed set to 42 for reproducibility).

Experimental Setting. To train BART, we set the
following hyperparameters: learning_rate=1e−4,
batch_size=16, and epochs=20; for LLAMA-2,
we use 4-bit nested quantization, r=8, α=32,
batch_size=1, and epochs=3. For inference, we
adopt beam search (num_beams=5) and nucleus
sampling (top_p=0.01, top_k=40, temp=0.15)
for BART and LLAMA-2, respectively.

Execution Times. Table 8 reports the train and in-
ference time per claim for the claim generation task.
The benefit of smaller models is evident during in-
ference. We also report the average time required
to generate an example in terms of evidence selec-
tion. The total time of about 6 seconds per claim
is in contrast to the time and effort required by a
human to craft a comparable example.

Examples. Tables 9, 10, and 11 report examples of
textual claims generated by our system with differ-
ent models given the same original evidence. The
human-written claim is provided for comparison.
We note that many claims generated by BARTNEG

with Refutes labels do not contain the word “never”.
To illustrate:

• “In the 2006-07 San Jose Sharks season, the
team scored 107 goals, 183 assists, and 1
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Model Task sec/Claim

Claim Generation
BART Train/Infer. 1.92 / 0.12
BARTNEG Train/Infer. 1.01 / 0.08
LLAMA-2 Train/Infer. 1.98 / 2.10

Table-to-Text
T5-TOTTO Infer. 0.75

Evidence Selection (Semantic Consistency)
T5 Tokeniz. + Distance 5.43

Table 8: Time consumption for different tasks.

Shutout.” Here, the real numbers are 107, 283
and 5.

• “Karyn Kupcinet, who died on June 2, 1963,
appeared on The Donna Reed Show and The
Gertrude Berg Show, 1999.” Here, the actual
day is November 28, 1963.

• “Rihanna had a live performance at the Su-
per Bowl in 2012.” Here, the actual singer is
Madonna.

These examples showcase the variability of our
generated claims, ensuring that the models trained
on our data must learn robust patterns beyond sim-
ple negations and manage hard negative cases from
a semantic viewpoint. Additionally, we acknowl-
edge the presence of several generated claims with
Supports labels that contain the word “never”, fur-
ther requiring the ability to capture diverse linguis-
tic patterns. For instance “Bruce Johnston’s song

’I Write the Songs’ never charted.”

Claim Generation Prompts. Prompt tuning ex-
periments proved the marginal role of few-shot
in-context learning. We then opted for a simpler
and reproducible zero-shot approach, also fairer to
small models, as reported in Figure 10.

 

 

Figure 10: Instruction tuning prompt template for claim
generation. The highlighted part is used for loss compu-
tation. Green and red colors denote alternative instruc-
tions for supporting and refuting targets, respectively.

Numerical Reasoning. The FEVEROUS datasets
contains several reasoning examples. Examining

0 5 10 15 20 25 30 35
=
<
>

Occurrences

Figure 11: Human evaluation results on 60 claims, in-
volving both tabular and textual evidence.

its test set for table+text, we reviewed 100 claims
and identified only 7 instances requiring reasoning
through cell aggregation. Consequently, we inves-
tigated how our system was able to deal with them.
We compared some examples of human-written
claims versus UNOWN generated ones, using the
same evidence. We showcase them in Table 12.
For each example, we present the claim generated,
along the intermediate text it generated from the
table. In the first example, we can see that both the
table to text system and the final UNOWN simply
gave a description of the routes without making
any counting. In the second example, even though
it appears that our system counted the points, the
truth is that this number is present in the original
table. In the meantime, the human leveraged this
information to create a superlative “scored the most
points”. In the last examples, again, the T5 Verbal-
izer simply reports “57%” without trying to convert
it to a more subtil information such as “more than
half”, as the human did. Our system even discard
this information and prefers to write a claim about
the number of votes.

We emphasize the role played by the T5-large
table verbalizer in this observation. The inclusion
or exclusion of operations involved in generating
textual descriptions associated with the content of
sampled cells is largely determined by the train-
ing dataset used. The T5 verbalizer is trained on
ToTTo (Parikh et al., 2020). An analysis of the
distribution of various linguistic phenomena con-
ducted by the dataset’s authors reveals that reason-
ing (including logical, numerical, and temporal) is
present in only 21% of the instances. As a second
note, even if we provided claims that require oper-
ations to verify their accuracy, we cannot expect
the final predictor model to handle these operations
effectively. As several experiments have demon-
strated (Chang et al., 2023), even recent LLMs
struggle with basic tasks like averaging. The most
recent approach to address this issue is to use exter-
nal modules, such as Python, to handle the mathe-
matical computations (Yin et al., 2024).



Evidence (d title = Windecker Eagle)
The Eagle AC-7 Eagle 1 (USAF designation YE-5) is an aircraft that was manufactured by Windecker Industries Data from Jane’s All the World’s Aircraft 1971.

Supporting Claims
HUMAN The Eagle AC-7 Eagle 1 is a military aircraft that was manufactured by Windecker Industries.
LLAMA-2 Windecker Eagle is listed in Jane’s All the World’s Aircraft 1971-72.
BART In 1896, Friedrich Baume established a legal practice with A. E. Whitaker, a son of Frederick Whitaker, and won the election.

Table 9: Example from FEVEROUS of UNOWN’s supporting claims with textual evidence.

Tabular Evidence (d title = 2010 FedEx Cup Playoffs)
Bubba Watson [Header : Player]

Textual Evidence (d title = Bubba Watson)
Watson was born and raised in Bagdad, Florida, near Pensacola. He played on the golf team at Milton High School, which had featured future PGA Tour
members Heath Slocum and Boo Weekley just before he attended. Watson played golf for Faulkner State Community College in nearby Baldwin County,
Alabama, where he was a junior college All-American. He transferred to the University of Georgia, the defending NCAA champions, and played for the Bulldogs
in 2000 and 2001. As a junior, Watson helped lead the Bulldogs to the SEC title in 2000.

Supporting Claims
HUMAN The player who had 1,498 points in the regular season of the 2010 FedEx Cup Playoffs attended Milton High School.

BART
Bubba Watson Watson played in the 2010 FedEx Cup playoffs. Watson was born and raised in Bagdad, Florida, near Pensacola. He
played on the golf team at Milton High School, which had featured future PGA Tour members Heath Slocum and Boo Weekley

Table 10: Example from MMFC of UNOWN’s supporting claims, with tabular and textual evidence.

Evidence (d title = Stefan Lessard)
Lessard was born in Anaheim, California, to musician Ron and Jacqueline Lessard. During the 2007 European Tour, Lessard also began a video blog on YouTube.
In October 2005 he married Jaclyn Burton, and together they have three daughters, Hazel Bailey (born March 6, 2004), Flora Jude (born July 13, 2006), and
India (born November 2015).

Refuting Claims

HUMAN
Stefan Kahil Lessard (born on June 4, 1974 outside Anaheim, California) completed his junior year of high school, passed the GED
examinations in the summer of 1991, and was accepted into the Jazz Studies program at Virginia Commonwealth University.

LLAMA-2 Stefan Lessard has been married to Jaclyn Burton since October 2005. They have three sons named Hazel Bailey (born March 6,
2004), Flora Jude (born July 13, 2006) and India (born November 2015).

BART Stefan Lessard never began a video blog on YouTube.

Table 11: Example from FEVEROUS of UNOWN’s refuting claims, highlighting negation artifacts (bold) with respect
to evidence excerpts (underline).

Example 1

HUMAN
Lindfield railway station has 3 bus routes, in which the first platform services routes to Emu plains via Central and Richmond and
Hornbys via Strathfield.

GENERATED Lindfield railway station is on the Northern Line (T9), a historical landmark where it has a little bit of accessibility.

TABLE VERBALIZED
Lindfield railway station is served by services to Emu Plains via the Central Railway Station and Richmond via the Northern Railway
Station.

Example 2

HUMAN
The 2006-07 San Jose Sharks season, the 14th season of operation (13th season of play) for the National Hockey League (NHL)
franchise, scored the most points in the Pacific Division.

GENERATED In the 2006-07 San Jose Sharks season, the team scored 183 goals and had a total of 46 Shutouts.
TABLE VERBALIZED The Anaheim Ducks had 110 points and the San Jose Sharks had 107 points.

Example 3

HUMAN
During the 2003 Ottawa municipal elections, more than half of the votes in the 8th Zone for the Eastern Ontario Public School Board
Trustees seat went to Chantal Lecours.

GENERATED In the 2003 Ottawa municipal election Denis Chartrand was elected with 760 votes.
TABLE VERBALIZED Chantal Lecours received 57.84% of the vote in the 2003 Ottawa municipal election."

Table 12: Comparison of FEVEROUS examples and UNOWN’s ones on numerical reasoning.

Multi-Modal Human Evaluation. Along the eval-
uation of Figure 7, we extended our analysis on
100 claims containing a mixture of the Text+Table
and Text only settings. We report our analysis in
Figure 11. With the frequency of human winning
above the frequency of draws, the task here is per-
formed more difficulty by UNOWN. Despite those
examples are unpleasant to human, they are effi-
cient in practice for model fine-tuning, as seen in
Table 3.

Alternative Entity Replacement Methods. Fi-
nally, Figure 12 shows how we identified FLANT5
and random selection as the best combination for

the ER method used as our baseline approach.
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Figure 12: Comparison of different entity replacement
methods in FEVEROUS.
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are generated by prompting GPT-4-TURBO

(gpt-4-turbo-2024-04-09) as detailed in
Figure 13. The examples employed in the few-shot
learning process are structured as follows:

• input contains the question–answer pair.
• not optimal output shows a type of answer to

avoid.
• better output provides the reference claim.
Refuting claims are generated with the prompt

reported in Figure 14. A why field clarifies the ex-
pected negation behavior and makes explicit the
difference between the not optimal output, incor-
rect output, and better output fields.

We conducted in-depth prompt engineering and
manually checked the generated claims, revising
them as needed to correct errors.

Can you make a claim out of this Question/Answer pair? Your answer should
only contain the claim. You should add no other information.
    Here are some examples of things not to do :
    Input : Is the religion with 16.27% of the Canadian Census of 1871 the same
religion as the Church of England? No
    Not optimal output : The religion constituting 16.27% of the Canadian Census
of 1871 is not the Church of England.
    Better output : The religion constituting 16.27% of the Canadian Census of
1871 is a religion other than the Church of England.

    Input:Which team was Sebastian Svärd on in 2004-05 that played in the 2017
FA Cup final? Arsenal
    Not optimal output : Sebastian Svärd was on the Arsenal team in 2004-05.
    Better output : Arsenal, the team Sebastian Svärd was on in 2004-05, played
in the 2017 FA Cup final

 

SUPPORTS

Figure 13: Prompt for the generation of supporting
claims from question–answer pairs in MMFC.

Can you make a refuted claim out of this Question/Answer pair? Your answer
should only contain the claim. The claim should not be based on basic negation
    
    Here are some examples of things not to do and why:
    Input : Is mobil 1 the official sponsor for the constructor that had a time/retired
of electrical in the Australian Grand Prix race of 2016 f1 team? Yes
    Not optimal output : Mobil 1 was not the official sponsor for the constructor
that had a time/retired of electrical in the Australian Grand Prix race of the 2016
F1 team
    Why : The boolean answer should not cause a poor negation, containing a
simple negation
    Better output : Google was the official sponsor for the constructor that had a
time/retired of electrical in the Australian Grand Prix race of the 2016 F1 team

    Input : in the Season victories of 2017 Astana season, where was the grand
depart for the 2017 Race when the Location was La Planche des Belles Filles
city and country? Düsseldorf, Germany
    Not optimal output : The 2017 Race grand depart from Astana season in La
Planche des Belles Filles was in Düsseldorf, Germany.
    Why : the way the claim is refuted is too subtle
    Better output : The 2017 Race grand depart from Astana season was in Paris,
France.

    Input : When did the home team that had a score of 20-34 in round 7 of the
2018 NRL season enter the NRL? 1988
    Incorrect output : The home team that scored 20-34 in round 7 of the 2018
NRL season entered the NRL in 1988.
    Why : the generated claim is not false with regards to the question/answer
pair
    Better output : The home team that scored 20-34 in round 7 of the 2018 NRL
season entered the NRL in 1975.

    Input : For the religion that has 3,304 females in the Moscow Governorate,
what is its primary literary work? Talmud
    Incorrect output : The religion with 3,304 female adherents in the Moscow
Governorate predominantly follows the Talmud as its primary literary work.
    Why : the generated claim is not false with regards to the question/answer
pair
    Better output : The religion with 3,304 female adherents in the Moscow
Governorate predominantly follows the Bible as its primary literary work.
    
    In any case, the text you generate must be false in light of the initial
question/answer pair.

 

REFUTES

Figure 14: Prompt for the generation of refuting claims
from question–answer pairs in MMFC.


