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Abstract—In this work, we investigate uplink communication in
Semi-Blind Cell-Free (CF) Massive Multiple-Input Multiple-Output
(MaMIMO) systems. One of the major challenges in CF MaMIMO
systems is pilot contamination, where multiple user terminals (UTs) may
use the same pilot sequence due to an imbalance between the number
of UTs and the length of the pilot sequence. Semi-blind approaches have
been proposed to address this issue, where access points (APs) jointly
estimate both the channel and user data. This joint estimation leads to a
bilinear problem. Channel estimation in bilinear systems with Gaussian
input has been studied in prior work, with expectation propagation (EP)-
based algorithms, such as variable-level (VL)-EP and hybrid expectation
maximization (EM)-EP, being proposed. However, in this paper, the user
data follows a categorical distribution. To develop a tractable algorithm
that leverages the finite alphabet of the user data, we investigate the Bethe
free energy (BFE) of the bilinear system and propose a message-passing
algorithm by minimizing the BFE. The resulting algorithm combines
variational Bayes (VB), belief propagation (BP), and EP.

I. INTRODUCTION

In Cell-Free (CF) Massive Multiple-Input Multiple-Output
(MaMIMO) systems, user terminals (UTs) are simultaneously
served by all access points (APs) in a given region. A significant
challenge in CF MaMIMO systems is pilot contamination, which
occurs when the number of users exceeds the length of the pilot
sequences. Consequently, the APs cannot estimate the channel solely
based on the pilot sequences. To address this issue, semi-blind
channel estimation is employed [1]. In Semi-Blind settings, APs
jointly estimate the channel and user data based on received signals
and limited pilot sequences.
In [2], it is shown that a Semi-Blind channel estimation problem can
be transformed into a Blind estimation problem with an augmented
channel prior. We adopt this technique in Section II to simplify the
system model. Due to the bilinear relationship between the channel
matrix and data sequences, Semi-Blind problems inevitably result in
a bilinear system model.
The user data can be categorized as either continuous input or
discrete input. A typical continuous input distribution is Gaussian,
as discussed in [3], where the Majorization-Minimization (MM)
algorithm is used for bilinear detection. In this paper, we primarily
focus on finite alphabet data for improved accuracy, though the
proposed algorithm can be easily adapted for Gaussian input.
The goal of our method is to jointly estimate channel parameters and
data symbols in a cell-free semi-blind uplink network.

A. Prior Work

Bayesian estimation in semi-blind structures holds significant po-
tential [1], but it also presents challenges due to high-dimensional
and intractable integrals. Message-passing algorithms, particularly
Expectation Propagation (EP) [4] and Belief Propagation (BP) [5], are
widely used in Bayesian estimation. Both EP and BP assume a fac-
tored joint probability density function and simplify high-complexity
global inference problems into manageable local inference tasks. EP
further reduces complexity by approximating the factors of the joint
pdf with simpler forms, such as Gaussian distributions.
Variable-Level EP (VL-EP) was introduced for Gaussian input data
by combining Expectation-Maximization (EM) with EP [6]. To

improve its convergence properties, hybrid EM-EP and loop-free EM-
EP algorithms were proposed in [3]. However, these approaches are
not designed to handle user symbols from finite alphabets.
1) Expectation Propagation for Gaussian Mixture Models: The bilin-
ear combination of a Gaussian distribution (e.g., channel distribution)
and a discrete distribution (e.g., input data distribution) leads to a
Gaussian Mixture Model. To address the limitations of VL-EP, a
distributed bilinear-EP algorithm was proposed in [7], which adopts
a brute-force approach to inference over finite alphabets, avoiding
high-dimensional computations by considering only one data symbol
at a time. Inspired by [7] and [8], the authors of [2] proposed a
simplified decentralized bilinear-EP algorithm.
2) Bethe Free Energy: The Bethe Free Energy (BFE) is another
powerful tool for Bayesian inference. It represents the variational
energy of a factored joint pdf under a specific trial distribution, whose
form is determined by the factorization scheme of the joint pdf. It
has been demonstrated [9] that various message-passing algorithms,
such as EP and BP, can be derived by optimizing BFE under different
constraints on the trial distribution.
Hybrid Vector Message Passing (HVMP) [10] was proposed based on
BFE optimization, introducing a mean-field constraint for the bilinear
factor. However, this method does not account for finite alphabets and
entirely neglects the correlation between the channel and data.

B. Main Contributions

We propose a low-complexity algorithm for semi-blind channel and
data estimation, leveraging a framework based on BFE-constrained
optimization. To handle the posterior interference effectively, we
introduce an auxiliary variable. Unlike [7] and [2], our method treats
the entire data sequence of a single user as a single atomic variable.
Additionally, we introduce mean-field assumptions in the belief
factors containing delta functions to avoid non-analytical integrals,
simplifying derivations and reducing computational complexity. Our
approach also integrates seamlessly with the decentralized scheme
from [2].
The proposed algorithm preserves the interference terms as in [2],
while simplifying computations, similar to [10]. This balance be-
tween accuracy and complexity makes our approach a significant
advancement in semi-blind channel and data estimation.

II. SYSTEM MODEL

We examine the uplink cell-free semi-blind network containing K
single-antenna user terminals (UTs) and L access points (APs). Each
AP is equipped with M antennas. The received signals of the l-th
AP is[

Yp,l Yl

]
= Hl

[
XT

p XT
]
+
[
Vp,l Vl

]
∈ CM×(P+T ), (1)

where the channel matrix Hl ∈ CM×K comprises of independent
columns. We use hlk to denote the k-th column which follows
CN (hlk|0,Ξhlk ). The matrix Xp represents the transmitted pilots.
We assume that orthogonal pilots are used, i.e., difference columns



of Xp are either the same or orthogonal. We further assume that each
pilot sequence has length P and a total power of Pσ2

x. Similarly, X
represents the data sequence. We denote the data sequence sent by
the k-th UT as xk, which is the k-th column of X. Moreover, we
assume that each element of X follows an i.i.d. discrete distribution,
i.e., the symbols in X are drawn from a constellation set S with
power σ2

x. We define xk ∼ pxk (xk). We also assume additive white
Gaussian noise Vp,l and Vl, where each entry has a power of σ2

v .
For simplicity, we define Cv = σ2

vI.
Since the channels of different APs are independent and all the
noise symbols are independent, the received signals Yp,l and Yl

of different APs are conditionally independent given X. This paper
aims to estimate X and ∀l,Hl jointly.

A. Orthogonal Pilots

When orthogonal pilots are used, we correlate the received pilot
signals Yp,l with the g-th pilot sequence x̃p,g (not to confuse with
the pilot sequence of the g-th user) to obtain the correlated version
of the received pilot signals ỹp,lg:

ỹp,lg = Yp,lx̃
∗
p,g = Pσ2

xHlGg1|Gg| + ṽp,lg, (2)

where we use Gg to denote the UTs groups using the g-th pilot
sequence. The columns of HlGg are composed of the channel
coefficients corresponding to the users using the g-th pilot, i.e., hl,k is
a column of Hl,g if xp,k = xp,g . We denote ṽp,lg = Vlx̃

∗
p,g which

is the transformed noise following a distribution CN (0, σ2
xσ

2
vP IM ).

B. Factored Joint Distribution

We introduce an auxiliary variable Zlk = hlkx
T
k and its vectorization

zlk = vec(Zlk). Therefore, the likelihood of Zlk is captured by Dirac
function p(Zlk|hlk,xk) = δ(Zlk − hlkx

T
k). The joint probability

density function (PDF) can be derived as

p(Yp,Y,Z11, . . . ,ZLK ,H1, . . .HL,X)

=
∏
l

p(Yl|Zl1, . . . ,ZlK)
∏
l

∏
k

p(Zlk|hlk,xk)∏
l

∏
g

p(ỹp,lg,Hlg)
∏
k

p(xk).

(3)

For simplicity, we define

fzl(zl1, . . . , zlK) ∝ p(Yl|Zl1, . . . ,ZlK)

fhlGg
(hlGg ) ∝ p(ỹp,lg,Hlg)

fxk (xk) = p(xk)

fδlk (zlk,hlk,xk) ∝ p(Zlk|hlk,xk).

(4)

The factorization given by (3) admits a factor graph [5]. We denote
F = {fzl , fhlGg

, fxk , δlk} as the set of all factor nodes and V =
{zlk,hlk,xk} as the set of all variable nodes. From the joint pdf (3),
the Semi-Blind system model (1) is simplified into a Blind model

Yl = HlX
T +Vl, (5)

with equivalent Gaussian channel prior Hl ∼
∏

g fhlGg
(hlGg ).

C. Notations

Throughout the context, we will use bold uppercase letters to denote
matrices and bold lowercase letters to denote vectors. Furthermore,
we use lowercase letters to denote the vectorization of uppercase
letters. For example, zlk = vec(Zlk).

III. BETHE FREE ENERGY OPTIMIZATION FRAMEWORK

Bethe free energy is the approximated variational free energy between
the true probability (3) and a constrained Bethe approximation trial
function. For a given factored pdf p, its trial pdf b is obtained by:

p(θ) ∝
∏
α

fα(θα) ⇒ b(θ) =

∏
α bfα(θα)

bθi(θi)
|Ni|−1

, (6)

s.t.

∀α, θi ∈ θα

∫
bfα(θα)dθi = bθi(θi) (7)

where |N(i)| denotes the number of factors fα that contain θi and
θi denotes all the variables except θi.
With (6)-(7), the BFE can be obtained as

BFE=D[b(θ)∥
∏
α

fα(θα)] = D(bfα∥fα) + (|Ni| − 1)H(bθi), (8)

where we define D(b∥q) =
∫
b(θ) ln b(θ)

q(θ)
dθ, and H(·) as entropy.

It is worth noticing that (8) only holds if the factorization (6) is loop-
free and strict constraints (7) are applied. Otherwise, (8) is only an
approximation.

A. Bethe Approximation with Constraints

Following [9], the BFE of (3) is:

BFE =
∑
l

D[bfzl (zl1, . . . , zlK)∥p(Yl|zl1, . . . , zlK)]

+
∑
l,g

D[bfhlGg
(hlGg )∥p(ỹp,lg,hlGg )]+

∑
k

D[bfxk
(xk)∥p(xk)]

+
∑
l,k

D[bδlk (zlk,hlk,xk)∥δ(Zlk − hlkx
T
k)]+
∑
l,k

H[bzlk (zlk)]

+
∑
l,k

H[bhlk (hlk)] +
∑
k

L ·H[bxk (xk)]. (9)

where all the factor-level beliefs bfzl , bδzlk , bfhlGg
, bfxk

, and
variable-level beliefs bhlk , bzlk , bxk are proper distributions normal-
ized to one. Furthermore, to make all these factors consistent, the
variable-level beliefs must be the marginal distribution of the factor-
level beliefs. For all l ∈ [1, L], k ∈ [1,K], the constraints for the xk

are ∫
bδlk (zlk,hlk,xk)dzlkdhlk = bxk (xk) (10)

bfxk
(xk) = bxk (xk). (11)

However, satisfying the strict constraints of hlk and zlk will lead
to an intractable problem. Therefore, we relax the strict constraints
to first and second-order moment constraints (specifically, mean and
covariance constraints). W.l.o.g., we denote those sufficient statistics
as ϕhlk (hlk), ϕzlk (zlk)

Ebfzl
[ϕzlk (zlk)] = Ebzlk

[ϕzlk (zlk)] (12)

Eδlk [ϕzlk (zlk)] = Ebzlk
[ϕzlk (zlk)] (13)

EbfhlGg

[ϕhlk (hlk)] = Ebhlk
[ϕhlk (hlk)] (14)

Ebδlk
[ϕhlk (hlk)] = Ebhlk

[ϕhlk (hlk)] (15)

Moreover, to make the further derivation tractable with finite input
X, we only consider the covariance constraints of elements within
every size-M block ∀t ∈ [1, T ], [zlk](t−1)M+1:tM .



B. Bethe Free Energy Optimization

The optimization criteria can be concluded by

min
b

BFE

s.t. (10) ∼ (15).
(16)

We observe the term D[bδlk (zlk,hlk,xk)∥δ(Zlk − hlkx
T
k)] in (9).

Since we need to minimize the BFE, the posterior factor bδlk must
contain the factor δ(Zlk − hlkx

T
k) to avoid infinity BFE value. In

order to have an analytical algorithm, we use the following mean-field
approximation for the joint belief bδlk :

bδlk (zlk,hlk,xk)=bδh,lk (hlk)bδx,lk (xk)δ(Zlk−hlkx
T
k), (17)

where the belief bδh,lk and bδx,lk are beliefs normalized to one. By
using Lagrangian methods, we can obtain the following message-
passing style system of equations along with (17):

bfzl (zl1, . . . , zlK)=p(Yl|zl1, . . . , zlK)
∏
k

µzlk;fzl
(zlk) (18)

bfhlGg
(hlGg ) = p(ỹp,lg,hlGg )

∏
k∈Gg

µhlk;fhlGg
(hlk) (19)

bfxk
(xk) = p(xk)µxk;fxk

(xk) (20)

bδh,lk(hlk)=µhlk;δlk (hlk)e
∫
bδx,lk

(xk)lnµzlk;δlk
(vec(hlkx

T
k))dxk (21)

bδx,lk(xk)=µxk;δlk(xk)e
∫
bδh,lk

(hlk) lnµzlk;δlk
(vec(hlkx

T
k))dhlk (22)

bzlk (zlk) = µzlk;fzl
(zlk)µzlk;δlk (zlk) (23)

bhlk (hlk) = µhlk;fhlGg
(hlk)µhlk;δlk (hlk) (24)

bxk (xk) = [µxk;fxk
(xk)

∏
l

µxk;δlk (xk)]
1/L, (25)

The equations (17)∼ (22) describes the factor level beliefs while
(23)∼(25) are variable level beliefs. For all f ∈ F, θ ∈ V, we
interpret µθ;f as the variable to factor message. Furthermore, we
can define the factor to variable messages such that the following
relation holds [11]

∀f ∈ N(θ), µθ;f (θ) =
∏

f ′∈N(θ)/{f}

µf ′;θ(θ), (26)

where N(θ) denotes the neighborhood around θ in the corresponding
factor graph. Thus, (25) can be rewritten into the message passing
form

bxk (xk) = µfxk
;xk (xk)

∏
l

µδlk;xk (xk) (27)

Since the sufficient statistics we consider here are first and second-
order moments, the messages µfhlGg

;hlk , µδlk;hlk , µfzl ;zlk
and

µδlk;zlk are all (unnormalized) Gaussian distributions. Therefore,
in the following, for all f ∈ F,θ ∈ V, we use mf ;θ , Cf ;θ to
denote the mean and covariance of the factor-to-variable (normalized)
message distributions µf ;θ . For convenience, we also denote the
mean and covariance of the variable-to-factor (normalized) message
µθ;f as mθ;f and Cθ;f . We should note here that the factor-to-
variable messages fully determine those variable-to-factor messages
and beliefs.
Furthermore, since the second-order sufficient statistics of zlk con-
sidered here only include the covariance between the elements within
each block sub-vector ∀t ∈ [1, T ], [zlk](t−1)M+1:tM , the covariance
matrices Cδlk;zlk ∈ CMT×MT and Cfzl ;zlk

∈ CMT×MT are block
diagonal matrix with block size equals to M . For simplicity, for all
block matrix C, we use the notations {C}tt,M to denote the t-th
M×M block matrix on the diagonal of C. Analogously, we use the

notation {m}t,M to denote the t-th block vector of size M × 1 in
m, i.e., the subvector [m](t−1)M+1:tM .
The computation of factor-level beliefs (18)∼(20), are composed of
two types of factors, the true factors given by the joint pdf model, e.g.,
p(ỹp,lg,hlGg ), and variable-to-factor messages, e.g., µhlk;fhlGg

. We
will use the term ”intrinsic” to denote the true factors and use
”extrinsic” to denote the variable-to-factor messages. Those messages
can be understood as the ”rest” part of the approximated posteriors
besides the true intrinsic. For example, if we look at (19), the
extrinsic

∏
k∈Gg

µhlk;fhlGg
can be interpreted as an approximation

of p(Yp,Y,hlGg )/p(ỹp,lg,hlGg ), where p(Yp,Y,hlGg ) is the
marginalization result of (3).
Since the optimal point of the BFE can be purely represented by those
factor-to-variable messages, we will focus on deriving the update of
the factors-to-variable messages in the following context. Meanwhile,
the update of all the variable-to-factor messages follows (26).

IV. DETAILED DERIVATIONS

The messages are updated iteratively (update one message a time
while considering the other messages to be known) by satisfying the
constraints (10)∼(15), which describe the consistencies between the
factor-level beliefs ∀f ∈ F, bf and variable-level beliefs ∀θ ∈ V, bθ .
Each pair of the (marginalized) factor-level belief and variable-level
belief constrained by (10)∼(15) always has one message different.
We will update that different message by considering the consistency
constraints. Note, in this paper, we base our discussion on the factor-
to-variable messages since the variable-to-factor message is entirely
determined by the definition (26). We can consider the variable-
to-factor messages as aliases of the corresponding factor-to-variable
messages. For example, µzlk;δlk is considered as the same message
as µfzl ;zlk

.

A. Update of µfzl ;zlk

We first investigate the constraint between the beliefs bfzl and bzlk
given by (18) and (23). According to the constraint given by (12),
we need to match the marginal mean and covariance matrix of
zlk. Since the pdf p(y|zl1, . . . , zlK) is a Gaussian pdf with block-
diagonal covariance matrix, the belief bfzl is also a Gaussian with
block-diagonal covariance matrix. Because Gaussian pdf is fully
determined by mean and covariance matrix, matching the moment
of zlk between (18) and (23) is equivalent to matching the entire
distribution between the marginalized version of (18) bfzl (zlk) and
the belief bzlk (zlk) given by (23). Therefore, by forcing the equality
bfzl (zlk) = bzlk (zlk), the update equation for the message µfzl ;zlk

can be obtained by Gaussian reproduction lemma [12]:

µfzl ;zlk
(zlk) = CN (zlk|yl −

∑
k′ ̸=k

mzlk′ ;fzl
,Cv+

∑
k′ ̸=k

Czlk′ ;fzl
).

B. Update of µfhlGg
;hlk

The consistency constraint between (19) and (24) is given by (14). A
detailed derivation of the update equation can be found in [2]. The
mean and covariance matrices of µfhlGg

;hlk (hlk) are given by

CfhlGg
;hlk =

(
Ξ−1

hlk
+C−1

v+h
lk

|y

)−1

(28)

mfhlGg
;hlk = CfhlGg

;hlkC
−1
v+h

lk
|ymv+h

lk
|y, (29)

where Cv+h
lk

|y can be interpreted as the covariance matrix of the
interference (estimated from observations y and prior knowledge)



plus noise, and mv+h
lk

|y can be interpreted as the new observation
with interference terms removed, i.e.,

Cv+h
lk

|y =
σ2
v

σ2
xP

I+
∑

k′∈Gg/{k}

Chlk′ |Y (30)

mv+h
lk

|y =
1

σ2
xP

ỹp,lg −
∑

k′∈Gg/{k}

mhlk′ |Yd
, (31)

where

Chlk|Yd
= (Ξ−1

hlk
+C−1

hlk;fhlGg

)−1

mhlk|Yd
= Chlk|Yd

C−1
hlk;fhlGg

mhlk;fhlGg
.

(32)

C. Update of µfxk
;xk

The consistency constraint between (20) and (27) is given by (11).
Thus, we can immediately get

µfxk
;xk (xk) = p(xk). (33)

D. Update of µδlk;xk

The update of the message µδlk;xk is obtained by satisfying the
consistency constraint (10) between the beliefs (22) and (27). Fol-
lowing the definition of bδlk in (17), we can immediately obtain
µδlk;xk (xk) = bδx,lk (xk)/µxk;δlk (xk). It can be seen from (21)
that the belief bδh,lk is Gaussian (more details in section IV-E. In
fact, we can see bδh,lk = bhlk .). Thus, the message µδlk;xk can be
derived as

µδlk;xk (xk) ∝
∏
t

CN (xkt|m̂δlk;xkt , τ̂δlk;xkt), (34)

with

τ̂δlk;xkt = tr
[
{Czlk;δlk}

−1
tt,MRbδh,lk

]−1

(35)

m̂δlk;xkt= τ̂δlk;xktm
H
bδh,lk

{Czlk;δlk}
−1
tt,M{mzlk;δlk}t,M , (36)

where mbδh,lk
and Rbδh,lk

= Cbδh,lk
+mbδh,lk

mH
bδh,lk

denote the
mean and correlation matrix of the Gaussian pdf bδh,lk calculated in
section IV-E. Note here that the (normalized) message µδlk;xk (xk)
is a categorical distribution, and thus, the variables m̂δlk;xkt , τ̂δlk;xkt

are just parameters for computing the message, they do not corre-
spond to the mean and variance of the elements in xk ∼ µδlk;xk (xk).
From this point, we can also update the belief by

bδx,lk (xk) = µδlk;xk (xk)µxk;δlk (xk). (37)

E. Update of µδlk;hlk

The beliefs given by (21) and (24) should satisfy the consistency
constraint (15). The exponential factor in (21) can be verified as
an (unnormalized) Gaussian. Therefore, the belief bδh,lk is Gaus-
sian, and the outbound message is computed by µδlk;hlk (hlk) =
bδh,lk (hlk)/µhlk;δlk (hlk). The mean and covariance matrix of the
Gaussian message µδlk;hlk are

Cδlk;hlk =

(∑
t

[rbδx,lk
]t{Czlk;δlk}

−1
tt,M

)−1

mδlk;hlk=Cδlk;hlk

(∑
t

[mbδx,lk
]∗t {Czlk;δlk}tt,M{mzlk;δlk}t,M

)
,

where rbδx,lk
= Ebδx,lk

[xk.x
∗
k], mbδx,lk

= Ebδx,lk
[xk] with ”.”

denoting element-wise product.
Thus, we update the belief by

bδh,lk (hlk) = CN (hlk|mbδh,lk
,Cbδh,lk

)

= µδlk;hlk (hlk)µhlk;δlk (hlk).
(38)

F. Update of µδlk;zlk

We examine the moments consistency between (17) and (23) based
on (13). Note here the message µzlk;δlk is implicitly included in bδlk
due to the definition (21) and (21). Therefore, we will update µδlk;zlk

to make (17) and (23) consistent. The update equation of µδlk;zlk can
be derived to be

µδlk;zlk (zlk) =
proj[bδlk (zlk)]
µzlk;δlk (zlk)

, (39)

where the operation q(zlk) = proj[p(zlk)] projects the distribution
p to Gaussian family q with block covariance matrices, such that
the sufficient statistics ϕzlk (zlk) of p and q are the same. Thus, the
message µδlk;zlk is updated by

µδlk;zlk (zlk) = CN (zlk|mδlk;zlk ,Cδlk;zlk )

=
CN (zlk|mbδz,lk

,Cbδz,lk
)

CN (zlk|mzlk;δlk ,Czlk;δlk )
,

(40)

with

mbδz,lk
= mbδx,lk

⊗mbδh,lk

Cbδz,lk
= diag(rbδx,lk

)⊗Cbδh,lk
+Cbδx,lk

⊗mbδh,lk
mH

bδh,lk
,

where Cbδx,lk
= Ebδx,lk

[(xk − mbδx,lk
)(xk − mbδx,lk

)H] is the
covariance of the belief bδx,lk . It can be verified that this covariance
matrix is diagonal. According to (37), the belief bδx,lk is entirely
determined by the messages µfxk

;xk and ∀l, µδlk,xk , which are all
independent according to (33) and (34). Therefore, the covariance
matrix Cbδx,lk

is a diagonal matrix.
Note that the belief distribution bδlk (zlk) is a Gaussian mixture
model. Thus, the resulting covariance matrix Cδlk;zlk may not be
positive semi-definite.
Define the eigenvalue matrix Λδlk;zlk and unitary eigenvector
Uδlk;zlk such that Cδlk;zlk = Uδlk;zlkΛδlk;zlkU

H
δlk;zlk

. We propose
the following correction: for all λ ∈ diag[Λδlk;zlk ], we clip λ−1 to
the range [10−8, 108]. Since we are using the iterative algorithm to
find the fixed point of the BFE, resetting the value will not change
the final result.

V. DECENTRALIZATION METHOD

Until this point, we have developed a distributed BFE-based message-
passing algorithm since a CPU is needed to compute the messages
µxk;δlk . These messages are only used to compute the beliefs bδx,lk

which are then used to update the messages µδlk;hlk and µδlk;zlk .
Based on this observation, we use the backhaul message-passing
scheme (physical message passed from AP to AP) proposed in [2]
to decentralize the computing of bδx,lk . We define the update rule of
the backhaul message from AP l to AP l′ to be

νl→l′(xk) = µδlk;xk (xk)
∏

l′′∈N(l)/{l′}

νl′′→l(xk), (41)

where we exploit the notations and use N(l) to denote the neigh-
borhood of AP l in the AP network. At each AP, the approximated
version of belief bδx,lk (xk) is recovered by

b̂δx,lk (xk) = p(xk)µδlk;xk (xk)
∏

l′∈N(l)

νl′→l(xk). (42)

This approximated belief is exact when the two conditions hold:
1), the backhaul messages converge to the steady point; 2), the AP
network is acyclic. Nevertheless, we will use (42) to replace the exact
update in (37). A suggested update order is concluded in Algorithm
1.



Algorithm 1 Proposed Method in one iteration
Require: ∀l, g, k, yl,pg , yl, p(xk), p(hlk), p(yl|zl1, . . . , zlK)

1: Initialize: All the factor-to-variable messages and bδh,lk s.t.: 1),
If Gaussian, then zero mean and unit covariance matrices. 2), If
categorical distribution, then uniform.

2: [∀l, At AP l, execute the following loop]
3: repeat [∀l′ ∈ N(l)k, g]
4: µzlk;fzl

(zlk) = µδlk;zlk (zlk)
5: Update µfzl ;zlk

based on Section IV-A
6: µhlk;fhlGg

(hlk) = µδlk;hlk (hlk)

7: Update µfhlGg
;hlk based on Section IV-B

8: µfxk
;xk (x) = p(xk) due to Section IV-C

9: µzlk;δlk (zlk) = µfzl ;zlk
(zlk)

10: Update µδlk;xk based on Section IV-D
11: νl→l′(xk) = µδlk;xk (xk)

∏
l′′∈N(l)/{l′}νl′′→l(xk)

12: bδx,lk (xk) = p(xk)µδlk;xk (xk)
∏

l′∈N(l)νl′→l(xk)
13: µhlk;δlk (hlk) = µfhlGg

;hlk (hlk)

14: Update µδlk;hlk based on Section IV-E
15: bδh,lk (hlk) = µδlk;hlk (hlk)µhlk;δlk (hlk) based on (38)
16: Update µδlk;zlk based on Section IV-F
17: until Convergence

VI. SIMULATION RESULTS

In this section, we verify the algorithm using numerical simulations.
We consider a 400m × 400m area with M = 16 APs and K = 8
UTs. The APs are located at the coordinates ( 400

3
i, 400

3
j), where

i, j ∈ {0, . . . , 3}. The UTs are uniformly randomly distributed over
this area. The fading model we use is [7],

σ2
l,k[dB] = −30.5− 36.7 log10(dlk), (43)

where dlk is the distance between AP l and UT k. All the neighboring
APs within 400

3
meters are connected and can exchange informa-

tion of the estimated data symbols. Furthermore, as illustrated in
Algorithm 1, a synchronized message-exchanging scheme is used.
To induce pilot contamination, the pilot sequence length is set to
P = 4. Furthermore, the pilots are randomly assigned to the users.
We use 4-QAM constellation to generate the input symbols XT . To
make the simulations fair, we use power control for each UT and
ensure that the total received power from all the users is the same.
In default setting, the transmitted data sequence spans a length of
L = 12 and the default SNR is set to 19 dB.
We maintain consistent positions for all APs and UTs and conduct
simulations across 50 unique scenarios with varying H, V, and user
data. The metric for evaluating performance is channel normalized
mean squared error (NMSE). The simulation results are concluded
in Fig. 1. For comparison, we also plot the results of the EP-based
decentralized algorithm [2] with the same input and results of VL-EP
[6] with Gaussian input of the same power. In the Genie-Aided sce-
nario, we assume the data to be known. The performance curve of our
proposed method is worse than the EP-based decentralized method.
However, EP-based decentralized method has a higher complexity,
i.e., O[(|A|M3+ |S|)KT ] at each AP, where |S| denotes the size of
the S and A = {x2|x ∈ S}. Meanwhile, the proposed algorithm has
a complexity of O[(M3+|S|)KT ]. To evaluate the robustness of our
method against pilot contamination, we plot NMSE versus T in Fig.
2. The results show that the estimation error decreases significantly as
T increases from 0 to 5. Notably, since the pilot length is 4, at least
T = 4 data length is required to estimate the channel effectively.

VII. CONCLUSIONS

In this paper, we derive a low-complexity message-passing algorithm
for semi-blind estimation based on BFE optimization. Simulations
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reveal that the distributed version of our algorithm achieves the same
performance as MMSE, even with unknown data. Since the message
updates depend solely on the belief bδx,lk , our algorithm integrates
seamlessly into a decentralized scheme. However, the decentralized
implementation experiences performance degradation due to loops in
the backhaul network.
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