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Abstract—Morphological operators are crucial in image anal-
ysis. Their integration into deep learning pipelines could im-
prove performances by extracting or enhancing important image
features, either within network architectures or loss functions.
However, the difficulties in rendering those operators differ-
entiable hinder their integration. In this paper, we present
SoftMorph, a novel framework designed to convert any binary
morphological operator defined as a Boolean expression into
its differentiable and probabilistic counterpart, compatible with
gradient-based optimization. Specifically, we define probabilistic
operators as the expectation of the binary operator with respect
to the probability of generating each binary configuration. This
expectation can be computed trivially from the truth table of
the binary morphological filter, as a multi-linear polynomial
function. Moreover, we approximate the probabilistic opera-
tors with quasi-probabilistic operators directly translated from
the Boolean expressions leveraging Fuzzy logic. These quasi-
probabilistic operators therefore maintain the computational
complexity of the original binary operator. We demonstrate
the efficiency and reliability of our method through validation
experiments, and evaluate the backpropagation capability of the
proposed operators. Finally, we showcase several applications
of morphological operators integrated into neural networks for
image segmentation tasks.

Index Terms—Morphological operations, Image analysis, Deep
Learning, Fuzzy logic.

I. INTRODUCTION

MATHEMATICAL morphology is a fundamental theory
used to process images by extracting or enhancing in-

formation based on geometrical shapes, structures, and spatial
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relationships [1]. Its methodology revolves around two funda-
mental operations: dilation expands the foreground objects in
an image, increasing their size and connectivity, while erosion
shrinks the foreground, eliminating small objects. Dilation and
erosion can be combined or iterated to achieve more complex
operations. These operations can enhance the essential shape
and characteristics of an image, and extract shape features
such as edges, holes, cracks, and corners [2]. Morphological
operations operate on a Structuring Element (SE) that defines
the pattern of the image feature to be processed, encompassing
a large variety of shapes and sizes. Originally defined on
binary images, morphological operations have subsequently
been extended to gray-scale images. An important extension
involves fuzzy morphological operators [3], [4], which adapt
the operations to continuous values, mainly by replacing
erosion and dilation with minimum and maximum operations.

Therefore, morphological operations are particularly useful
for many image analysis and processing tasks such as im-
age segmentation [5]–[8], feature extraction [9]–[12], noise
reduction [13]–[16], or image enhancement [17]–[20]. For
instance, morphological filters were applied in radar imaging
for image restoration by effectively removing noise while re-
taining critical information [21]. Similarly, new morphological
operations were designed for edge detection in noisy medical
imaging [22]. In medical applications, skeletonization is the
operation that extracts the centerline of a segmented structure
such as vessels or the heart. It is often used to assess the
organ’s topology, connectivity and trajectory [23].

Morphological operations can enhance the performance of
convolutional neural networks (CNNs) by extracting mean-
ingful structural information to analyze images. Researchers
have started integrating these operations into loss functions to
improve specific characteristics of segmentation tasks [24],
[25]. Moreover, some operations such as dilation and erosion
could be integrated as pre-processing, intermediate, or post-
processing layers within CNN architectures. This allows to
handle different patterns and tasks than traditional convolu-
tional layers, and hereby refine complex image analysis [26],
[27]. However, traditional binary morphological operations are
based on Boolean expressions, and some are implemented
using minimum and maximum operations, ill-suited for the
gradient-based optimization methods used in deep learning
models. Indeed, that optimization process requires differen-
tiable functions that are smooth and continuous to compute
gradients effectively during the training phase [28], [29].
Binary decisions and min/max operations introduce discon-
tinuities, making them inherently non-differentiable.
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To address this, fuzzy morphological neurons were de-
signed to align operators with gradient-based optimization,
by approximating the soft minimum and maximum functions
[30], [31]. Standard min/max operations can also be seen
as piece-wise differentiable, directly replacing erosion and
dilation with min and max-pooling layers, and combining
them to achieve more complex operations [24], [25], [32],
[33]. Although these methods can successfully incorporate
morphological filters in neural networks, they cannot handle
general morphological operators. Additionally, the use of min
and max-pooling only can lead to discontinuous skeletons
and homotopy inaccuracies [34], [35]. Others have focused
on Learning Morphological Operations by training CNNs to
replicate specific morphological filters [36], [37]. These mod-
els can backpropagate gradients and be integrated into deep
learning pipelines. However, they correspond to approximative
morphological filters trained on a specific domain and may
require fine-tuning. Lastly, one may consider Convolution-like
approaches such as successive convolutional layers with pre-
defined kernels to replicate a particular operation [34], but
this method can be hard to apply to some complex operations.

To the best of our knowledge, there is no existing approach
to seamlessly integrate any morphological operation with any
SE into a CNN in a smooth and differentiable manner.

To address these limitations, we recently proposed a novel
framework [38] to extend binary morphological operations on
probability maps that can be seamlessly integrated into neural
networks either as a loss function or as a final morphological
layer. This framework translates any morphological operation
based on Boolean expressions into a single multi-linear or
proxy polynomial. The resulting soft morphological filters are
differentiable, require no hyperparameter tuning, and can be
derived from any binary morphological filter. We demonstrated
their effectiveness on two medical segmentation applications,
comparing them against state-of-the-art morphological filters.

In this paper, we significantly extend the work by [38]
to SoftMorph, a family of operators based on various fuzzy
logics, providing a generalized approach for translating any
binary morphological operator with any SE into differentiable
and probabilistic equivalents. The new contributions of this
work are summarized as follows:

• We provide a detailed explanation for the definition of
probabilistic morphological filters as the expectation of
the binary filter over the probability of generating each
possible binary configuration, expressed as a multi-linear
polynomial deduced from the truth table.

• We define quasi-probabilistic operators for intractable
truth tables of binary morphological filters. We use
various fuzzy logic operators to convert the Boolean
expression defining the morphological operation into a
soft, differentiable expression. This quasi-probabilistic
operator approximates the probabilistic operator while
maintaining the complexity of the original binary filter.
Unlike previous works on fuzzy morphological operators
that applied to erosion and dilation only, our proposed ex-
pressions apply to any Boolean expression, hence easily
adaptable to new custom operations.

• We quantify the backpropagation capability of the Soft-
Morph operators to ensure their smooth integration into
deep learning pipelines.

• We extend the applications of this framework beyond the
medical domain for various segmentation tasks, across 7
different 2D and 3D datasets. We integrate the SoftMorph
operators as final layers of a neural network’s architecture
and in loss function applications.

Overall, these contributions make the SoftMorph framework
a powerful tool for integrating morphological filters into deep
learning models.

In section II, we review related works to make soft, dif-
ferentiable morphological operations and their integration into
CNNs. Section III details the methodology of SoftMorph. We
provide experiments in section IV-B to validate our morpho-
logical operations and the backpropagation capability of the
proposed operator representations, and in section IV-C we
demonstrate several applications of the proposed framework,
specifically for segmentation tasks.

II. RELATED WORKS

A. Continuous Fuzzy Morphological Operators

Mathematical morphology has been extended from binary to
gray-scale image processing partly through fuzzy set theory, as
introduced by [3]. In this context, gray-scale images are treated
as fuzzy sets, where each pixel value is interpreted as a degree
of membership to a set, and morphological operators are
redefined within that fuzzy space. This approach enables more
nuanced image analysis and has led to various representations,
employing fuzzy conjunction and disjunction operators. The
most notable are the minimum and maximum operations to
represent erosion and dilation respectively [4].

B. Differentiability of Morphological Filters

Subsequent works have addressed the differentiability of
morphological filters through different techniques to integrate
them into deep learning pipelines.

Counter Harmonic Mean: The counter harmonic mean
(CHM) has been studied to approximate the erosion and
dilation operations in [39]. This approach involves raising the
pixel values of an image to a certain power, combining them
with weights, and normalizing the result. Thus, morphological
dilation and erosion correspond to the limit cases when the
power tends to +∞ (dilation) and −∞ (erosion). The differ-
entiable nature of the CHM formulation facilitates gradient-
based optimization and its application in CNNs [40]–[42]. A
morphological neuron, the so-called Pconv layer, implements
the CHM filter to learn the appropriate power value and weight
parameters to optimize the operations. However, this method is
subject to exploding gradients due to the power function [32].

Log-Sum-Exp: The morphological filters have also been ap-
proximated using differential approximations of the minimum
and maximum operations with the Log-Sum-Exp function.
In [31] and [43], it has been tailored to optimize the SE of the
morphological operations. In [44], it is furthermore improved
to learn non-flat SEs by applying bias variables to correct the
rounding errors caused by the soft approximation of min/max.



Non-smooth minimum and maximum operators: In theory,
minimum and maximum operations are not fully differentiable.
While they are differentiable almost everywhere, they lack
a well-defined gradient at points where multiple arguments
of the operations are equal. In practice, these operations
are treated as piece-wise differentiable. That means that the
gradient is propagated only towards the maximum or minimum
element during backpropagation. When multiple arguments
share the same maximum or minimum value, different strate-
gies are employed depending on the context. In typical mini-
mum/maximum operations, the gradient is distributed equally
between those arguments. In commonly used max-pooling lay-
ers, the gradient is assigned exclusively to the first occurrence
of the maximum value within each pooling window. Therefore,
some researchers argue that these non-smooth operators can
be used in deep learning pipelines to replicate the erosion
and dilation operators, while still ensuring the optimization
of models. For example, in [24], the combination of min
and max-pooling layers allows to obtain the borders of the
foreground. Similarly, the pooling layers are iterated to extract
the skeleton in [25]. It is obtained by iteratively getting the
difference between the erosion of the image and the opening
of that erosion. However, this method leads to inconsistencies
creating disconnected skeletons and topological errors. As the
standard pooling layers are fixed with a square SE, [32]
and [33] propose to replace them with learned morphological
pooling layers that can optimize the SE. In [32] non-flat SEs
are optimized to learn the exact morphological operators.

Learning-Based Emulation of Morphological Operations:
Morphological operations trained from data by neural net-
works inherently support gradient-based optimization. It can
provide differentiable solutions for complex operations such as
skeletonization, trained in CNNs for example by [36] and [37].
Other works try to optimize the morphological operation and
the SE learned from some training data, by alternating dilation
and erosion-like convolution layers [45]. However, training
from data is always prone to domain shift and can produce
topological errors [34].

Convolution-like approaches: A specific operation can be
emulated by applying several convolution layers with pre-
defined kernels to detect expected configurations and patterns
in an image. For example, [34] detects simple points, corre-
sponding to pixels that can be removed from the foreground
to obtain a skeleton, only using convolutional and matrix
operations followed by non-linear functions. They defined spe-
cific kernels to recognize 2D and 3D configurations and their
rotational equivalent to check the presence of simple points.
That process requires 57 convolutions to match the Boolean
rules for simple point detection. The reparametrization trick
is employed as the detection is based on binary criteria.
Depending on the operation to replicate, this method can be
computationally expensive due to the high number of convo-
lutions required. Designing specific kernels to detect various
configurations and their rotational equivalents can be complex
and time-consuming, potentially limiting its adaptability.

C. Morphological Filters in Deep Learning applications

Through the aforementioned methods to approximate dif-
ferentiable morphological operations defined on continuous
values, several applications of these operators have been
explored in neural networks [26], [46], [47].

Deep morphological neural networks: There has been a
growing interest in replacing traditional convolutional layers
of CNNs with morphological operations. Deep Morpholog-
ical Neural Networks (DMNNs) leverage the inherent non-
linearity of morphological operations to substitute the linear
convolution and non-linear activation functions typically used
in CNNs. These networks define morphological filters or
layers that approximate the erosion or dilation operations
and optimize the SE based on target data. In some works,
the appropriate sequence of erosion and dilation within the
network architecture is also learned [40], [44], [48]. DMNNs
can alternate morphological layers with standard convolutional
layers, and can also incorporate fully connected layers for
classification tasks [27], [32], [41], [42], [44]. Other main
applications of these networks include image restoration [30],
[32], [33], [40], [48] and edge detection [32]. Besides, [42]
consider these networks more interpretable than usual CNNs
because the learned sequence of morphological operations can
be explicitly recovered and analyzed.

Loss functions with morphological operators: Lastly,
some morphological operations can extract specific image
features to be used in the loss function of a CNN to improve
particular characteristics of the model. The clDice loss
function in [25] requires the extraction of the skeleton to
compute its intersection with the foreground volume, to
maximize the topological preservation in the segmentation
of tubular structures. In [24], they extract the boundaries of
the segmentation to minimize the perimeter difference of the
prediction with the ground truth volume. The segmentation of
small and thin structures is enhanced in [49] by integrating
the white top-hat operation to detect small structures. The
final loss corresponds to the weighted linear combination of
the usual cross-entropy function and its application on small
objects only.

Compared to existing methods, our approach does not in-
volve optimizing the SE or learning the morphological opera-
tions. Instead, we focus on adapting any known binary operator
into a differentiable and probabilistic form, that one might
want to use in a CNN to optimize an image analysis problem.
It provides a solution to precisely replicate the binary operator,
that can be integrated either in the loss function of a CNN or as
a post-processing layer within the network. One key innovation
of our approach is defining the differentiable operators on
probability maps, enhancing their applicability. Additionally,
we ensure to define quasi-probabilistic operators that match
the computational complexity of the binary operators. Previous
methods either approximate those operations, resulting in a
mismatch with the exact binary operator, or are challenging
to apply to complex operations. Overall, our method offers a
more precise and flexible solution to incorporate morphologi-
cal operations into deep learning frameworks.



III. METHODOLOGY

A. Definition of binary morphological filters

We define an image X consisting of N voxels {Xn}, n =
1 . . . N and its corresponding binary segmentation image Y
with Yn ∈ {0, 1}.

A binary morphological operator F () is applied to the
binary image Y resulting in a final binary segmentation Z
such that Z = F (Y ) ∈ {0, 1}N .

This operator F () takes as input k binary variables se-
lected from the neighborhood function N (i, n), providing
the index of the ith neighbor of the voxel n in Y as
YN (1,n), . . . , YN (k,n). It outputs a binary variable Zn =
F (YN (1,n), . . . , YN (k,n)) ∈ {0, 1}. The neighborhood function
corresponds to the SE of F . In mathematical morphology, it
defines the domain of the geometrical features processed in the
morphological operation. For instance, in a 2D image, typical
neighborhoods are defined as k = 4+1 (Fig 1a) or k = 8+1
(Fig 1b). Similarly, in 3D they are defined as k = 6+1, 18+1
or 26 + 1.
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Fig. 1. Definition of the neighborhood variables in a 2D image. (a) 4 + 1
neighborhood. (b) 8+1 neighborhood. (c) Representation of the truth table of
FEx on a hypercube. Each dimension corresponds to a binary input variable
of the morphological operator.

The binary operator F () is a Boolean function that has 2k

different possible input values and outputs a binary variable.
The exhaustive list of those values F (a) ∈ {0, 1}, for
a ∈ {0, 1}k is called the truth table of F () and can be
provided exhaustively for small values of k. Besides, it can
be shown that any Boolean function can be written as a
propositional formula involving the k binary variables with
the logical operator AND (∧), OR (∨) and NOT (¬). In fact,
two operators are sufficient in Boolean logic, since the AND
and OR operators can be expressed with the remaining two

according to De Morgan’s theorem [50]. Similarly, the XOR
(⊕) operator can rewritten as: (A⊕B) = (A∨B)∧¬(A∧B).

Based on the notation defined in Fig.1, the dilation operator
acting on a 4+1-neighborhood of a 2D image can be written
as fDil = Y0 ∨Y1 ∨Y2 ∨Y3 ∨Y4 whereas the erosion operator
is fEro = Y0 ∧ Y1 ∧ Y2 ∧ Y3 ∧ Y4.

As an example, the operator fEx will be reused throughout
this section to illustrate key concepts. The operator fEx is
defined on a 1x3 grid such that Zn = fEx(Yn−1, Yn, Yn+1) =
FEx(Y1, Y2, Y3). It is computed with the Boolean expression:

FEx = Y2 ∧ ((Y1 ∧ ¬Y3) ∨ (¬Y1 ∧ Y3))

Consequently, with k = 2 + 1, there are 8 possible input
configurations represented on the 3-hypercube of Fig 1c.

B. Definition of probabilistic morphological filters

We want to extend these morphological filters to the output
of segmentation algorithms. Typically, the output of a neural
network consists of probabilities yn, which correspond to the
posterior probability yn = p(Yn = 1|X) ∈ [0, 1] of the binary
variables Yn ∈ {0, 1}.

We seek to formalize the definition of a probabilistic
morphological filter F⋆() applied on the probabilistic seg-
mentation image Y = {yn} ∈ [0, 1]N and generate a new
probabilistic image Z = {zn} ∈ [0, 1]N = F⋆(Y). This
filter should generalize the given binary filter Z = F (Y ) such
that both give the same result when the input probabilistic
image is binary Z = F (Y ) = F⋆(Y ). More precisely,
we aim to apply the deterministic morphological operator
F () on a binary image Y only known through its posterior
probability Y = p(Y |X). Therefore we estimate the posterior
zn = p(Zn = 1|X) of the final segmentation Z knowing that
it results from the application of the morphological operation
Z = F (Y ).

Lemma 1 The posterior probability zn can be obtained
through the law of total probability as the expectation of
filtered binary segmentation F (a) :

zn = p(Zn = 1|X) =
1∑

Y1=0

. . .
1∑

YN=0

p(Zn = 1|Y ) p(Y |X)

=
∑

a∈{0,1}N

F (a) p(a|X) = Ea∼p(Y |X)F (a)

Lemma 1, as represented in Fig.2, defines implicitly the
relationship zn = F⋆(Y) of the soft morphological filter.

C. Soft operators using Multi-linear polynomials

It is furthermore required to make the filter differentiable,
i.e. to estimate the derivatives ∂F⋆(Y)

∂ym
. To provide a closed-

form expression of a soft filter defined in Lemma 1, we
propose to adopt a polynomial representation of the Boolean
function F (a), a ∈ {0, 1}k. Indeed we can associate with
any Boolean function F (a) a multilinear polynomial F⋆(x),
x = (x1, . . . , xk)

T ∈ Rk defined as:

F⋆(x) =
∑

a∈{0,1}k

F (a)
k∏

i=1

xai
i (1− xi)

1−ai (1)



Fig. 2. Given a 2x2 input grid with probabilistic values, the probability of each possible binary configuration is calculated. By applying a specific morphological
operator to each binary configuration, we compute the expectation over all configurations to estimate the result of the soft operator on the probabilistic input.

It is easy to see that F (a) = F⋆(a), i.e. that the
polynomial F⋆(x) coincides by construction with the
Boolean function on the hypercube {0, 1}k. Each monomial
F (a)

∏
i:ai=1 xi

∏
i:ai=0(1− xi) is equal to 0 if x ̸= a and

equal to F (a) otherwise. Besides, it is of degree k and linear
with each variable xj , making the polynomial multilinear. This
property leads to the following result:

Theorem The expectation of a Boolean function F (a) ∈
{0, 1}, a ∈ {0, 1}k over a set of k independent variables
with a ∼ Bernoulli(p), p ∈ [0, 1]k is F⋆(p)

Proof It is easy to show that Eai∼Bernoulli(pi)(α+βai) = α+
βpi using the linearity of expectation. Thus, we have :

Ea1(F (a)

k∏
j=1

a
aj

j (1− aj)
1−aj )

= F (a)pa1
1 (1− p1)

1−a1

k∏
i=2

aai
i (1− ai)

1−ai).

By taking the expectation over each variable ai, we get :

Ea(F (a)) =
∑

a∈{0,1}k

F (a)

k∏
i=1

pai
i (1− pi)

1−ai = F⋆(p).

□

Therefore, assuming that the marginal posteriors yn =
p(Yn|X) are independently distributed (which is the case when
dealing with the output of segmentation neural networks or
mean field approximations), we define the soft morphological
filter associated with the binary filter F () as the polynomial
value F⋆(yN (1,n), . . . , yN (k,n)) ∈ [0, 1].

With our example binary operator FEx, we get the multi-
linear polynomial representation of the soft operator :

F⋆
Ex(y1, y2, y3) =

∑
a∈{0,1}3,F (a)̸=0

3∏
i=1

yai
i (1− yi)

1−ai

= y1y2(1− y3) + (1− y1)y2y3

= y1y2 + y2y3 − 2y1y2y3

This function defined over the 3D cube can be seen as the
trilinear interpolation of the binary truth table as illustrated
in Fig. 3a. More generally, the probabilistic morphological

operator defined in Theorem 1, can be interpreted as the
multilinear interpolation of the binary operator F over the
hypercube. Multilinear interpolation is among the most basic
interpolation methods and is symmetric with respect to all
variables, which makes it a natural extension of the binary
operator F to the probabilistic context.

D. Limitations of Multi-linear polynomial representation

The construction of the multilinear polynomial F⋆()
(Eq.(1)) requires the summation over non-zero elements F (a)
of the truth table of size 2k. For non-trivial truth tables, writing
such polynomials requires the use of symbolic computation
software such as SymPy or Maple. But the complexity of
such polynomials grows exponentially with the number k of
variables. For example, if k = 26+1 in a 3D images, there are
227 = 134 217 728 possible input configurations. In practice,
when k > 10 for non-trivial filters, the number of monomials
often becomes prohibitively large.

E. Quasi-probabilistic operators using fuzzy logic

The computation of F⋆ is based on the exhaustive list of
positive binary configurations which can become intractable to
produce. We are looking for alternative computation methods
that have the same complexity as the binary filter F (a),
a ∈ {0, 1}k. To this end, we notice that the probabilistic
version of the AND operator is the product of the probabilities
AND(X1, X2) −→ x1x2 while the OR operator is transformed
into OR(X1, X2) −→ x1+x2−x1x2 = 1−(1−x1)(1−x2) and
the NOT operator as NOT(X1) −→ 1− x1. For any Boolean
operator F () represented by a proposition formula, involving
the AND, OR and NOT operators, we propose to create a soft
quasi-probabilistic operator F•() by substituting the logical
operators AND, OR, and NOT by their probabilistic versions.
This soft operator is a polynomial expression which can be
of a degree greater than k, and is not necessarily multilinear.
However, its computation complexity is the same as the one
of the propositional form of the operator since we have
substituted a simple logical expression with another simple



polynomial one. The quasi-probabilistic polynomial corre-
sponds to a compact and factorized form whereas the multi-
linear polynomial corresponds to its polynomial expansion
combined with the application of the idempotence rule xi = x,
∀i > 0 on all probability variables. The quasi-probabilistic
polynomial can be interpreted as an alternative non-linear
interpolation method of the values over the hypercube whereas
the probabilistic polynomial is a (multi) linear one.

While AND, OR and NOT operators were substituted by
their probabilistic versions, one could think of other ways to
replace the 3 logical operators with algebraic expressions of
continuous values in the range [0, 1]. This has been the focus
of the Fuzzy logic [51] and Fuzzy set theories. They introduce
Triangular Norms (T-norms), and Triangular Conorms (S-
norms) as substitutes for the AND and OR operators with
the complementation operator 1 − x as the substitute for
the NOT operator. T and S-norms are defined on the unit
square [0, 1]× [0, 1] with values on the unique segment [0, 1],
and follow the commutativity, monotonicity, associativity and
element identity properties. Besides, an S-norm S() is dual
of a T-norm T () under the action on the complementation
operator, S(x1, x2) = 1 − T (1 − x1, 1 − x2), which can be
seen as the generalization of the De Morgan’s rules.

There exist many different T/S-norms proposed in the
literature, and they can be ordered pointwise as follows:

T1 ≤ T2 if T1(a, b) ≤ T2(a, b) for all a, b ∈ [0, 1].

The expressions of the main T and S-norms are listed in
increasing order in Table I and their graphs on the unit square
are displayed in Fig. 4. The product T-norm corresponds to
the probabilistic AND operators introduced previously and
it is easy to see on Fig. 4 that the Drastic T-norm is the
smallest whereas the Minmax logic is the largest. A number
of those T-norms have additive generators [52], which means
that there exists a function f : [0, 1] −→ R+ such that
T (x, y) = f−1(f(x) + f(y)). This is the case for the product
logic (with f(x) = − log(x)) and this allows to easily factor-
ize multiple applications of the T and S-norms. For the product
rule, we have for instance : AND(Y0, Y1 . . . , Yl) ≡ y0y1 . . . yl,
OR(y0, y1 . . . , yl) ≡ 1− (1− y0)(1− y1) . . . (1− yl)

With each T-norm, we can substitute the AND, OR, and
NOT operations of the binary function F () to obtain an
approximation F•() of the associated probabilistic operators
F⋆(). Both functions coincide on the vertices of the unit hyper-
cube, but they correspond to different interpolation functions
inside the hypercube. Thus, we call SoftMorph the family of
soft operators derived from a binary morphological operator
F (YN (1,n), . . . , YN (k,n)) which can be either probabilistic op-
erators as multilinear polynomials F⋆(yN (1,n), . . . , yN (k,n))
or quasi-probabilistic operators F•(yN (1,n), . . . , yN (k,n)) as
derived from a T / S-norm. The Einstein and product logic
generate smooth and differentiable expressions whereas the
other T-norms are only piecewise differentiable, in particular
due to the min and max functions. As an example, the Soft-
Morph operator associated with the binary function FEx using
product logic writes as F•

Ex(y1, y2, y3) = y2(1− (1−y1(1−
y3))(1− y3(1− y1))). This is a factorized polynomial which
differs from its probabilistic version and its expansion involves

TABLE I
T-NORMS AND S-NORMS FORMULA FOR DIFFERENT FUZZY LOGICS

Logic Operation Formula
Boolean AND a ∧ b

OR a ∨ b
Drastic T-norm min(a, b) if max(a, b) = 1, else = 0

S-norm max(a, b) if min(a, b) = 0, else = 1
Bounded T-norm max(0, a+ b− 1)

S-norm min(1, a+ b)
Einstein T-norm (ab)/(2− (a+ b− ab))

S-norm (a+ b)/(1 + ab)
Product T-norm a ∗ b

S-norm a+ b− 2ab
Hamacher T-norm 0 if a = b = 0,

else (ab)/(a+ b− ab)
S-norm 1 if a = b = 1,

else (a+ b− 2ab)/(1− ab)
Min-Max T-norm min(a, b)

S-norm max(a, b)

monomials of degree 5 (instead of 3 for the multilinear case)
y1y2 + y2y3 − 3y1y2y3 + y21y2y3 + y1y2y

2
3 − y21y2y

2
3 . Both

polynomials have the same values on the unit hypercube,
but differ elsewhere as seen in Fig. 3. The largest difference
between the probabilistic and quasi-probabilistic functions on
the unit cube is only around 0.06, showing that F•

Ex is a good
approximation of F⋆

Ex. In this simple case, there is no benefit
to use F•

Ex instead of F⋆
Ex, but for more complex functions,

one must resort to quasi-probabilistic SoftMorph functions.

Fig. 3. Field plots of the probabilistic (a) and product-based quasi-
probabilistic (b) morphological filters of FEx over the hypercube. (c) Field
plot of the difference between the two filters. The maximum difference is
reached at the center of the faces or the center of the volume.

F. Relation to prior work

The dilation and erosion operators have been defined on any
grayscale images using the notion of supremum and infimum
[2]. On finite sets, dilation and erosion are obtained by
considering the maximum, and minimum values within a SE.
They have been further generalized as fuzzy morphological
operators [4] with fuzzy (i.e. within the [0, 1] range) SE and
based on fuzzy logic (T / S-norms). However, when restricted



Fig. 4. Graphs of the drastic, bounded, Einstein, product, Hamacher and minmax T-norms on the [0, 1]×[0, 1] unit square. The red dashed contours correspond
to the isocontour at 0.5.

to binary SEs, the fuzzy erosion and dilation operators are also
equivalent to the ones defined in mathematical morphology
(independently of the selected fuzzy logic), i.e. taking the
maximum/minimum values in the neighborhood of a pixel.

It is important to note that those dilation and erosion opera-
tors are specific cases of the quasi-probabilistic morphological
operators when adopting the Min-Max logic. Therefore, the
SoftMorph operators are novel soft formulations of binary
morphological operators that supersede the existing erosion
and dilation operators. Those multi-linear and product-based
operators are smooth and fully differentiable whereas most
other quasi-probabilistic ones require to adopt smooth min-
max approximations to be differentiable. Furthermore, proba-
bilistic morphological operators and their approximations are
”averaged morphological operators” as the expectation of a
binary operator. This implies that the SoftMorph closing and
opening operations are not idempotent (producing the same
output irrespective of the number of times it is applied) unlike
the classical closing and opening using the Min-Max logic.

G. Morphological Operators Of Interest

In this paper, we generate the SoftMorph operators on
5 main morphological operations: erosion, dilation, closing,
opening, and skeletonization. Depending on the SE and the
image dimension, the erosion and dilation FDil Boolean ex-
pressions are written as FEro =

∧k
i=1 Yk and FDil =

∨k
i=1 Yk.

The closing operation is a dilation followed by an erosion
whereas the opening is an erosion followed by a dilation.

Skeletonization is a more complex morphological operation
for which many algorithms have been proposed [53]. This
operation involves repeated thinning operations, applied itera-
tively until the final skeleton is obtained. The morphological
thinning on 2D images proposed by Wagner et al. [54]
is divided into 4 sub-iterations, one for each North, East,
South, and West directions, consists of the following Boolean
function for the North direction defined on the k = 8 + 1

neighborhood as :

F1 = ¬Y6 ∧ ¬Y7 ∧ (Y2 ⊕ Y5 ⊕ ¬Y1) ∧ (Y5 ⊕ Y8) ∧ (Y5 ⊕ Y4)

F2 = (Y6 ⊕ Y8) ∧ (Y2 ⊕ Y8) ∧ (Y1 ⊕ ¬Y8) ∧ ¬Y4 ∧ ¬Y7

F3 = Y2 ∧ Y1 ∧ ¬Y7

F4 = ¬Y6 ∧ Y1 ∧ Y4

F5 = Y2 ∧ Y1 ∧ Y4

F6 = ¬Y6 ∧ ¬Y2 ∧ ¬Y5 ∧ Y4 ∧ Y7

F = ¬Y3 ∧ (F1 ∨ F2 ∨ F3 ∨ F4 ∨ F5 ∨ F6).

The Boolean formula must be rotated for the 3 other directions.
Similarly, we have translated the 3D thinning algorithm

proposed by Palàgy [55] as a Boolean function defined on
the k = 26 + 1 neighborhood which is provided in the sup-
plementary material. In binary skeletonization, the algorithm
ends when the binary structure is stable upon the application
of each thinning sub-iteration. However, the SoftMorph are in
general not idempotent (except with the Min-Max logic) and
therefore a stopping criterion must be defined. We propose to
stop the soft thinning process when the change between two
thinning operations is less than 2% for all pixels in the initial
foreground object.

IV. EXPERIMENTS

A. Experimental setup

Datasets: Experiments are conducted on six 2D and two 3D
datasets. In 2D, The DRIVE dataset [56] corresponds to retinal
blood vessels. The Massachusetts Road [57] dataset comprises
satellite images of road networks. Labeled images are ex-
tracted from the Open Images Dataset V7 [58] for classes
Sea turtle, Starfish and Croissant. The Butterfly dataset [59] is
composed of butterfly images (masks have been corrected and
available in the repository). In 3D, We use the Vessap dataset
featuring synthetic brain vessels [60] and the Liver task from
the Medical Segmentation Decathlon [61].

Evaluation metrics: To evaluate the experimental perfor-
mances on the final segmentations, we use the Dice similarity
coefficient to measure the overlap with the ground truth. For
datasets containing tubular structures (Drive, Massachusetts



road, and Croissant datasets), we additionally use the clDice
metric [25] to assess the topological preservation. Given the
importance of topological accuracy in morphological opera-
tions, we also compute the mean absolute error of topological
invariants: the Betti numbers β0 (the number of connected
components), β1 (the number of holes), and Euler’s number
(the difference between the betti numbers).

Implementation: Experiments are implemented with Python
3.11.4, Pytorch 2.0.1 and 3 Nvidia A40 PCIe GPUs.

B. Validation experiments
1) Validation of SoftMorph on binary images: We evaluate

the reliability of our designed probabilistic morphological
operators on binary images, as summarized in Table II. The
primary objective is to ensure that our probabilistic operators
replicate accurately the binary filters. The reference corre-
sponds to the non-differentiable morphological operations for
erosion, dilation and skeletonization, from the widely used
scikit-image package [62]. We do not assess the opening and
closing operations as they correspond to iterative applications
of erosion and dilation. Additionally, we compare the perfor-
mance of our operators against other existing differentiable
morphological operators on binary images. For the erosion
and dilation operations, we test the max and min-pooling
layers with a kernel of 3x3. For skeletonization, we compare
our method with the soft-skeleton approach from the clDice
paper [25] (corresponding to a combination of min and max-
pooling layers) and the method by Menten et al. [34] (corre-
sponding to the convolutional layers with specific kernels to
detect simple points). In 2D, we also assess a neural network
model trained for skeletonization from [36]. Each method is
evaluated on 15 randomly selected images in 2D from the
DRIVE dataset and in 3D with the VesSap dataset.

Our method precisely replicates the erosion and dilation
operations of the reference, whereas the min and max-pooling
layers demonstrate significant topological errors when the SE
of the operations is defined on the k = 4 + 1 neighborhood.
Especially, the soft min-pooling approach exhibits an average
β0 absolute error of 214.10. These discrepancies do not arise
when the reference SE is set to k = 8+1. This is because these
pooling layers are defined with a 3x3 kernel that corresponds
to the k = 8+ 1 SE. Because they are limited to square SEs,
they can not replicate the k = 4 + 1 SE as defined in 1a.

The skeletons produced by our method and from Menten et
al. are both topologically accurate. However, the soft-skeleton
from clDice and the trained model show high topological er-
rors. It is important to note that the Dice score is not an optimal
metric to assess skeletonization performances compared with
the reference. Multiple valid skeletons can be derived from the
same initial volume, making the definition of the centerline
ambiguous, for example when the width of the object is set
on an even number of pixels. Therefore, the Dice scores from
our method and Menten et al. indicate similarities with the
reference with values of 0.65 in 2D and 0.71 in 3D.

Although our probabilistic operators are considerably slower
than other methods, this trade-off ensures topological correct-
ness. These results demonstrate that our probabilistic morpho-
logical operators are accurately designed and can replicate the

exact traditional binary morphological filters, whereas most
other differentiable methods lack topological reliability or the
adaptability to scale to various morphological operations.

2) Backpropagation capability of SoftMorph: We quantify
the backpropagation capabilities of the probabilistic and quasi-
probabilistic representations to evaluate their impact on gra-
dient computation for optimization within neural networks.
This experiment is similar to the one described in [34]. We
initialize a tensor with random values that we pass through a
morphological operator. The soft-Dice is used to compute the
loss between the operation’s output and a ground truth image
that is also passed through the same operator. The propagation
of gradients enables the adjustment of the tensor’s values until
the operation’s output converges towards that of the ground
truth image. The experiment is performed for dilation, erosion
and skeletonization operations, converging with a learning rate
set to 1 over 20 epochs. The operators compared are the
probabilistic multi-linear polynomial operator, and the family
of proposed quasi-probabilistic operators based on fuzzy logic.
We record the loss values at each epoch, as shown on Fig 5
to compare the convergence speed and performances of the
different operators.

For dilation, the drastic and bounded logic-based operators
fail to facilitate gradient backpropagation across all epochs.
The other operators converge around the 15th epoch, with
the product and Einstein operators reaching the best final loss
values of 0.01 and 0 respectively. For erosion, we observe
the same trend for the drastic and bounded logic operators,
whereas all other operators converge to the exact ground
truth operation output values after around 8 epochs only. In
the skeletonization operation, the drastic and bounded logic
operators achieve the best convergence after 10 epochs, fully
learning the operation’s output. The Hamacher and product
operators follow, reaching a loss of approximately 0.10, with
the Einstein and multi-linear operators trailing at 0.20, 0.24.
The Min-Max operator obtains a Dice loss of 0.47 after 20
epochs, although the Eintein, multi-linear and Min-max do
not appear to have fully converged within this time frame.

Overall, the product-based operator emerges as the most sta-
ble operator representation, allowing an efficient convergence
across all operations. The Hamacher and Einstein operators
also perform effectively but are less consistent than the product
operator. Finally, the drastic and bounded logic exhibit unique
behavior: their very restricted formulations seem to hinder
the backpropagation in simpler operations like erosion and
dilation, yet allowing effective gradient backpropagation in
the more complex skeletonization operation, compensating
for their inherent sparsity and rigidity. Therefore, most of
these operators effectively support gradient backpropagation
for the optimization of CNNs. The product-based logic is
recommended for such use due to its consistent performance.

C. Applications
1) Final morphological layer for segmentation: We test the

integration of the probabilistic morphological operators into a
CNN’s architecture, specifically in the U-net model [63] for
semantic segmentation across seven datasets. In our imple-
mentation, we add a probabilistic morphological operator as



TABLE II
VALIDATION OF DIFFERENTIABLE MORPHOLOGICAL OPERATORS ON 2D AND 3D BINARY IMAGES COMPARED TO NON-DIFFERENTIABLE REFERENCE

OPERATORS. TIME RATIO CORRESPONDS TO THE MEAN RATIO OF RUNNING TIME OF EACH OPERATOR COMPARED TO THE REFERENCE.

Dataset Operation Method β0 ↓ β1 ↓ Euler ↓ Dice ↑ Time ratio ↓
DRIVE Dilation Ours 0 0 0 1 13.33 ±17.02

2D dataset (k = 4 + 1) Soft maxpooling 0.10 ±0.31 6.65 ±6.64 6.75 ±6.60 0.95 ±0.002 0.33 ±0.91
Erosion Ours 0 0 0 1 9.58 ±7.02

(k = 4 + 1) Soft minpooling 214.10 ±98.27 7.60 ±3.69 211.80 ±92.64 0.85 ±0.02 1.09 ±3.33
Skeleton Ours 0 0 0 0.65 ±0.02 115.31 ±28.09

Neural Network 206.15 ±19.66 22.30 ±14.27 226.85 ±30.40 0.77 ±0.02 35.84 ±48.48
Soft-skeleton 1414.20 ±191.19 66.50 ±15.63 1480.70 ±203.26 0.65 ±0.01 1.86 ±6.98
Menten et al. 0 0 0 0.65 ±0.01 89.94 ±75.27

VesSap Skeleton Ours 0 0 0 0.72 ±0.002 121.26 ±4.93
3D dataset Soft-skeleton 8362.20 ±360.33 8.80 ±4.30 8371.00 ±358.99 0.64 ±0.003 0.90±0.048

Menten et al. 0 0 0 0.71 ±0.001 12.37 ±0.61

Fig. 5. Results of the backpropagation capability between the SoftMorph probabilistic and quasi-probabilistic operators for dilation, erosion and skeletonization.

the final layer of the network, following a sigmoid activation
function. The operator is applied twice to enhance its effect
on the network. For the 3D liver dataset, we use the nn-UNet
model [64] that is specialized for medical segmentation. The
training is conducted with the soft-dice loss function, a batch
size of 16, and a learning rate of 1e−4 over 1000 epochs.
The datasets are split into 80% training and 20% testing sets.
The operators tested include the erosion, dilation, opening
and closing filters as the final network layers. We compare
these configurations against the baseline U-Net model without
any morphological operator. The averaged results from the
testing set are presented in Table III. The clDice metric is
only measured for the datasets containing tubular structures.

Our results indicate a tendency for topological improve-
ments across all datasets with the application of morphological
filters. The β0 absolute error is significantly lower with the
inclusion of the morphological operators while maintaining a
high Dice score on the DRIVE dataset. The clDice is also
improved in the tubular structures. However, no definitive
pattern emerges to predict which operator can yield the best
performances based on the data characteristics. We conclude
that integrating morphological operators as final layers of a
U-net architecture for segmentation tasks can considerably
improve the topological accuracy. Currently, determining the
most beneficial morphological operation for a specific dataset
is based only on a trial-and-error approach.

2) clDice loss function: We test the integration of the
probabilistic morphological operators into a loss function. The

loss corresponds to the clDice loss [25] designed to improve
the topological preservation of tubular structure segmentation.
This loss is combined with the SoftDice loss, weighted by
a parameter α. We compare the segmentation performance
on the 2D DRIVE dataset with the SoftDice alone, and
the combination of clDice and SoftDice with α = 0.5 and
α = 0.7. In clDice, it is required to extract the skeleton from
both the prediction and the ground truth. To do so, we test the
soft-skeleton from clDice [25], the method from Menten et al.,
and our product-based quasi-probabilistic skeleton operator.
We also evaluate the effects of dilation and erosion as final
layers of the network in conjunction with the clDice loss
computed with our product operator. We use a U-Net model
trained with a batch size of 16 and a learning rate of 1e−4
over 500 epochs.

Our results in Table IV show that topological performances
are improved with the clDice loss function compared to BCE
and SoftDice alone. The application of clDice with our skele-
tonization method yields the best topological performances in
terms of β0 and Euler numbers, while also maintaining or even
slightly improving the Dice and clDice scores compared to
other methods. The addition of the final morphological layer
further enhances these results by significantly reducing the
number of topological errors.

In conclusion, our skeletonization method demonstrates the
best overall performance compared to the other skeletons. The
soft-skeleton method is prone to topological errors as shown in
the validation experiment in Table II, which likely contribute



TABLE III
DOUBLE MORPHOLOGICAL OPERATORS AS LAST LAYERS OF THE U-NET SEGMENTATION NETWORK. BOLD VALUES CORRESPOND TO IMPROVED

PERFORMANCES COMPARED TO THE BASELINE AND (⋆) DENOTES STATISTICALLY SIGNIFICANT IMPROVEMENTS USING THE WILCOXON RANK TEST.

DATASET Final layer β0 ↓ β1 ↓ Euler ↓ Dice ↑ clDice ↑
DRIVE Normal 37.05 ±9.76 30.90 ±14.33 67.95 ±15.81 0.83 ±0.02 0.87 ±0.03

Opening 27.40⋆ ±8.44 33.30 ±13.45 60.70 ±14.05 0.81 ±0.01 0.88 ±0.03
Closing 28.10⋆ ±6.35 36.15 ±15.16 64.25 ±17.36 0.82 ±0.02 0.87 ±0.03
Erosion 29.70⋆ ±8.55 36.05 ±14.34 65.75 ±14.81 0.82 ±0.01 0.86 ±0.02
Dilation 26.20⋆ ±8.00 28.00 ±15.94 54.00⋆ ±18.71 0.81 ±0.02 0.88 ±0.03

Croissant Normal 3.30 ±2.52 3.55 ±5.42 4.55 ±5.56 0.57 ±0.32 0.56 ±0.32
Opening 3.30 ±3.06 5.15 ±10.82 6.55 ±9.48 0.60 ±0.33 0.59 ±0.33
Closing 1.80⋆ ±2.19 3.40 ±6.06 3.90 ±7.30 0.60 ±0.34 0.58 ±0.34
Erosion 7.15 ±4.82 4.45 ±6.16 5.60 ±5.59 0.57 ±0.29 0.53 ±0.27
Dilation 2.85 ±2.54 4.25 ±5.38 4.80 ±5.45 0.58 ±0.32 0.57 ±0.32

Massachusetts Normal 31.00 ±29.18 30.71 ±31.66 61.47 ±49.27 0.57 ±0.12 0.64 ±0.13
Opening 26.71 ±19.58 29.65 ±31.84 56.35 ±43.30 0.54 ±0.10 0.67 ±0.14
Closing 23.29 ±17.55 29.82 ±31.43 53.00 ±41.32 0.58 ±0.13 0.65 ±0.15
Erosion 20.41 ±18.04 31.24 ±32.17 50.94 ±42.01 0.56 ±0.11 0.64 ±0.13
Dilation 19.29 ±15.70 20.71 ±26.85 37.29⋆ ±29.24 0.54 ±0.11 0.69 ±0.15

Butterfly Normal 1.45 ±1.50 1.25 ±1.68 1.80 ±1.47 0.87 ±0.25 -
Opening 1.20 ±1.32 0.70 ±1.22 1.40 ±1.64 0.86±0.0.27 -
Closing 1.45 ±1.90 1.60 ±2.54 2.45±3.55 0.86 ±0.23 -
Erosion 1.90 ±1.80 2.55 ±3.39 2.75 ±2.65 0.88 ±0.17 -
Dilation 2.55 ±2.82 3.30 ±4.66 2.65 ±2.89 0.86 ±0.20 -

Sea turtle Normal 6.00 ±4.83 2.60 ±2.37 4.80 ±3.49 0.54 ±0.28 -
Opening 5.65 ±4.49 3.20 ±3.02 4.55 ±3.65 0.56 ±0.28 -
Closing 3.20 ±2.38 1.90 ±2.59 3.70 ±3.51 0.41 ±0.30 -
Erosion 9.15 ±9.30 2.70 ±3.21 8.25 ±6.88 0.57 ±0.26 -
Dilation 5.70 ±5.02 3.90 ±3.73 4.50 ±2.56 0.54 ±0.28 -

Starfish Normal 4.1 ±6.89 2.9 ±3.70 5.3 ±6.21 0.60 ±0.31 -
Opening 5.35 ±4.46 2.6 ±3.39 5.45 ±5.16 0.55 ±0.32 -
Closing 4.75 ±6.09 2.95 ±3.44 5.40 ±4.51 0.54 ±0.30 -
Erosion 5.00 ±4.93 2.15 ±2.92 5.65 ±5.48 0.55 ±0.35 -
Dilation 4.30 ±4.79 3.25 ±4.73 4.05 ±4.61 0.53 ±0.37 -

Liver (3D) Normal 2.81 ±3.84 2.48 ±3.57 3.44 ±4.08 0.94 ±0.07 -
Opening 3.00 ±3.16 2.07 ±3.21 3.67 ±4.04 0.92 ±0.07 -
Closing 1.85 ±2.14 1.33 ±2.32 2.15 ±2.32 0.92 ±0.07 -
Erosion 1.63 ±1.88 1.63 ±3.19 2.44 ±3.32 0.92 ±0.07 -
Dilation 1.19 ±1.55 2.04 ±3.24 2.33 ±3.53 0.92 ±0.07 -

to its lower performances. While the skeleton from Menten et
al. demonstrates topological accuracy on binary images, its
lower performances may be due to the reparametrization
trick used in this method. This trick involves a sensitive set
of parameters which can be hard to tune for the specific
characteristics of the task and dataset. Here it is applied with
the default parameters proposed by Menten et al. In this
experiment, training and inference times were comparable
across skeletonization methods, despite our operator being
slower in standalone validation, suggesting its computational
overhead is minimal within CNNs.

Therefore, these findings suggest that SoftMorph operators
can effectively enhance topological performance in segmenta-
tion tasks by extracting accurate morphological features that
can be integrated into loss functions or used as the final layer
of a neural network. It can achieve improved results without
requiring any parameter tuning.

V. CONCLUSION

We presented SoftMorph, a family of differentiable prob-
abilistic and quasi-probabilistic morphological operators for
deep learning frameworks. SoftMorph successfully bridges the
gap to translate any morphological operation defined on any
SE in its soft counterpart while maintaining the computa-
tional complexity of the original binary operator. We have

demonstrated that probabilistic filters can be defined as the
expectation of the binary filter and represented as a multi-
linear polynomial. We have also shown that the factorized
form of the original binary filter can be approximated as
a quasi-probabilistic filter using fuzzy logic. Besides, these
operators replicate the exact output of binary operators on
binary images while enabling gradient-based optimization and
handling probabilistic maps. Integrating some basic morpho-
logical operations can improve the topological performances
of segmentation networks when inserted as the final layer
or within loss functions. Possible improvements include the
optimization of the 2D and 3D skeletonization algorithms, the
definition of morphological operations with non-flat (fuzzy)
SEs, and learning new morphological operations and their
associated optimal SE. Overall, this work opens avenues for
defining new task-specific morphological operations. Their
application could be extended to other image analysis appli-
cations, neural network architectures, and new loss functions
requiring the extraction of morphological features.
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