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Abstract— In this article, we introduce a method to optimize
5G massive multiple-input multiple-output (mMIMO) connec-
tivity for unmanned aerial vehicles (UAVs) on aerial highways
through strategic cell association. UAVs operating in 3D space
encounter distinct channel conditions compared to traditional
ground user equipment (gUE); under the typical line of sight
(LoS) condition, UAVs perceive strong reference signal received
power (RSRP) from multiple cells within the network, resulting
in a large set of suitable serving cell candidates and in low signal-
to-interference-plus-noise ratio (SINR) due to high interference
levels. Additionally, a downside of aerial highways is to pack
possibly many UAVs along a small portion of space which,
when taking into account typical LoS propagation conditions,
results in high channel correlation and severely limits spatial
multiplexing capabilities. In this paper, we propose a solution
to both problems based on the suitable selection of serving cells
based on a new metric which differs from the classical terrestrial
approaches based on maximum RSRP. We then introduce an
algorithm for optimal planning of synchronization signal block
(SSB) beams for this set of cells, ensuring maximum coverage
and effective management of UAVs cell associations. Simulation
results demonstrate that our approach significantly improves the
rates of UAVs on aerial highways, up to four times in achievable
data rates, without impacting ground user performance.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have emerged as a key
technology across multiple market sectors, including photog-
raphy, infrastructure inspection and disaster management [1]–
[3]. Only in recent years have UAVs become an integral
part of the urban scenario as well [4]. Overall, urban air
mobility (UAM), including future transportation, cargo drones,
and other civil applications, is expected to play a disruptive
role in future markets, with recent reports projecting its value
to reach 5.1 billion U.S. dollars by 2028 [5]. However, the
burgeoning interest in UAVs within urban scenarios raises
critical challenges: i) development of regulation for secure
management in urban skies, ii) supporting reliable connectivity
in the sky enabling beyond visual line of sight (BVLoS)
applications. In terms of regulation, industries and regulatory
bodies are working towards creating a highway system for
the sky, namely aerial highways (AHs); similar to traditional
ground road scenarios, AHs —also often denoted as UAV
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corridors— are defined trajectories that UAVs must follow
while pursuing their tasks [6], [7].

In recent years, studies identified in cellular networks the
key technologies to enable BVLoS services [8]–[12]. Never-
theless, the optimal integration of cellular-connected UAVs in
terrestrial networks remains a challenge, especially when con-
sidering AHs. Few pioneering works in the literature addressed
this problem. In the context of AH supported by 4G networks,
authors in [13] considered a set of uptilted sectors to serve the
AH while providing, under specific assumptions, an analytical
framework for outage probability. Similarly, authors in [14]
deployed a new set of uptilted antennas while proposing a
solution to mitigate the generated interference to the ground.
In our previous work [15], we introduced an ADAM-based
solution to optimize the vertical tilt of 4G base stations for
user equipment (UE) on the ground and along AHs without
the need for new infrastructure. Driven by similar motivations,
authors in [16] and in [17] respectively proposed quantization
theory- and Bayesian optimization-based approaches to design
cell antenna tilt and transmit power and optimally cover both
ground user equipments (gUEs) and UAVs within AHs.

In 5G, massive multiple-input multiple-output (mMIMO)
offers a paradigm shift and is capable of enhancing UAVs
communications too [18]–[20]. Previous studies that showed
significant advantages of optimizing serving cells in mMIMO
ultra dense networks (UDNs) [21], [22], suggest that similar
principles benefit UAV in urban macro (UMa) scenarios.
Indeed, the typical line of sight (LoS) for UAVs creates similar
cell association dynamics as in UDNs, therefore controlling
cell association along the AH become crucial for improving
UAVs connectivity. Unlike the real-time centralized schedulers
proposed in previous work, new solutions are needed to tackle
the problem at the radio access network planning stage.

In this work we demonstrate how leveraging the prior
knowledge of the AH trajectory to plan and control the
transmitted synchronization signal block (SSB) beams, and in
turn the UAVs cell association processes, allows to efficiently
optimize connectivity on AHs. Specifically, we propose a new
metric to optimally define the set of cells aimed to serve UAVs,
by jointly considering multiplexing capability, average channel
gain, and interference of each cell. Furthermore, we propose an
elite genetic algorithm (eGA) to optimally select SSB beams
and their transmit power within the set of identified cells,
thereby ensuring desired cell association.1

1Extensions of this work can be found in [23].



II. SYSTEM MODEL

We focus on a downlink, interference-limited scenario, with
models as defined by the 3rd Generation Partnership Project
(3GPP).

Network deployment: We consider a cellular network op-
erating in a sub-6 GHz band (FR1), with carrier frequency
fc and bandwidth B0. The network layout consists of 19
sites, organized in a 2-tier hexagonal grid, with an inter-site
distance dISD. Each site is composed of three sectors2, each
covering 120◦. The complete set of sectors is denoted by
B, with NBS denoting its cardinality. Full frequency reuse is
applied in all sectors. Each sector contains a uniform planar
array (UPA) antenna panel located at a height hBS, consisting
of M single vertically polarized antenna elements, arranged
in Mh horizontal and Mv vertical rows. The total number of
physical resource blocks (PRBs) available is NPRB, each with
a bandwidth of BPRB.

Terrestrial users: Assuming a fully loaded scenario, we
consider a total of Ng gUEs randomly distributed in all cells.
Additionally, to capture the dynamic nature of the network,
the positions of gUEs randomly vary over time.

Aerial users: An AH rAH, spanning a total length of LAH,
is positioned over multiple cell centres and edges of our
scenario at an altitude of hAH. For simplicity, we consider
that the AH is divided into Nseg consecutive segments. Over
the aforementioned AH, a total number of Na UAVs are evenly
spaced with constant inter-UAV distance (IUD) dIUD; all the
defined UAVs move along the AH while maintaining same
dIUD. To maintain continuous aerial traffic, note that when
one UAV exits, another enters the AH.

We denote by G the set of all gUEs, by A the set of UAVs
and by U the set of all UEs, such that U = G ∪ A.

A. Channel Model

We consider the 3GPP statistical channel models defined in
[24] and [25].

Large-scale fading: For each UE u ∈ U and sector b ∈ B,
the large-scale channel between them is obtained from the
LoS probability PLoS, path loss gain ρub

, antenna element
gain gu,b, and shadow fading gain τub

. Note that the shadow
fading gain is modelled as spatially correlated as per the 3GPP
recommendations. Using the 3GPP models, we can then define
the large-scale gain βu,s as follows:

βu,b = ρu,b τu,b gu,b. (1)

Small-scale fading: To model the small-scale fading, the
downlink complex channel vector between each UE u and
each antenna element m of each sector b is defined as follows:

hdl
u,b =

√
K

1 +K
hLOS
u,b +

√
1

1 +K
hNLOS
u,b , (2)

where K is the so-called Rician Factor [24], [25]. The LoS
component of the channel follows the plane-wave approxima-
tion [26], thus representing the phase shift of the plane wave

2In the rest of the paper, the terms “sector” and “cell” are used as synonyms.

with respect to each antenna element of the antenna panel. It
is computed as follows:

hLOS
u,b = e−j 2π

λc
d3D
u,b ej

2π
λc

kT
u,b(ϕu,b,θu,b)Ub (3)

with

ku,b ∈ R3×1, Ub ∈ R3×M , (4)

where λc is the frequency wavelength associated with the
carrier frequency fc, d3Du,b is the 3D distance between UE
u and the antenna panel centre of sector b, kT

u,b (ϕu,b, θu,b)
is the wave vector representing the plane wave variations in
the 3D space, and Ub is the matrix containing the Cartesian
coordinates of each antenna element w.r.t. the antenna panel
centre. The non-line of sight (NLoS) component of the channel
is modeled as a Rayleigh fading complex channel as follows:

hNLOS
u,b ∼ CN (0, IM ) . (5)

B. Cell Association and Precoding

One of the physical layer features introduced in 5G new
radio (NR) is the beamforming capability during the initial
cell discovery phase via SSB beams, which allows sectors to
cover different sections of their designated areas efficiently.
Specifically, in a network operating in the sub-6 GHz band,
referred to as frequency range 1 (FR1), each sector b can
transmit up to 8 SSB beams [27]. These beams are multiplexed
sequentially in time, following a sweep pattern associated with
their sweep index issbs .

SSB beams codebook: At each sector b, each SSB beam s
is represented by a complex codeword wssb

s,b and is selected
from a predetermined SSB codebook Wssb. We assume each
antenna element of the planar array to be connected to a
distinct transceiver. To accommodate beams with varying
beamwidths and beamforming gains, we employ a switching
pattern that sequentially deactivates antenna columns from the
rightmost to the leftmost on the panel. For each configuration,
we generate an intermediate SSB codebook Wssb

i through
a two dimensional discrete Fourier transform (2D-DFT), and
subsequently aggregate these into the general SSB codebook
Wssb, which consists of NCB codewords.

Cell association: To identify its serving cell, each UE u
measures the reference signal received power (RSRP) from
each cell b and each SSB beam s. The measured RSRP is
defined as follows:

rsrpssbu,s,b = βu,b

∣∣hdl
u,b w

ssb
s,b

∣∣2 pssbs,b xs,b, (6)

where xs,b ∈ X is a binary variable, equal to one if beam s
is deployed at cell b, and zero otherwise. The transmit power
allocated by sector b to beam s, denoted by pssbs,b , is an element
of the matrix P. The matrices X and P together provide a
network-wide representation of the deployed beams and their
transmit powers. For each UE u, the serving cell b̂u and beam
ŝu are defined as those that maximize the measured RSRP (6).



γu =
βu,b̂u

∣∣∣hdl
u,b̂u

wdl
u,b̂u

∣∣∣2 pdl
u,b̂u

βu,b̂u

∑
p∈U

b̂u
\u

(
1− δ

(
wdl
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,wdl
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)) ∣∣∣hdl
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wdl
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∣∣∣2 pdl
p,b̂u

+
∑

b∈B\b̂u βu,b
∑

wdl
i,b

∈Wdl
b

1
N

wdl
i,b

∣∣∣hdl
u,b w

dl
i,b

∣∣∣2 pdli,b + NPRB BPRB
N

wdl
u,b̂u

N0

(8)

For each UE u, we define the coverage signal-to-
interference-plus-noise ratio (SINR) γssb

u as follows:

γssb
u =

rsrpssb
u,ŝu,b̂u∑NBS

b=1,b̸=b̂

∑Nssb

s=1 rsrpssbu,s,b δ
(
issbŝu

, issbs

)
xs,b +Nu

,

(7)
where δ

(
issbŝu

, issbs

)
is defined as a binary function that takes

a value of one if, and only if, issbŝu
= issbs .

C. SINR and Achievable Data Rate

Data transmission phase: To leverage the beamforming and
multiplexing capabilities of NR mMIMO systems, we consider
a Type I channel state information (CSI)-based operational
approach [27], [28]. In this NR network setup, each UE re-
ports a set of measurement indices to its serving cell. Based on
these, the sector chooses a specific codeword from a codebook,
defined by 2D-DFT and considering all transceiver active, to
precode the UE’s data. Specifically, the sector b selects, for
each UE u, the downlink precoding vector wdl

u,b̂u
as follows:

wdl
u,b̂u

= argmax
w∈WCB

{
βu,b

∣∣∣hdl
u,b̂u

w
∣∣∣2} . (9)

SINR and achievable rate: The resulting SINR at UE u is
computed according to (8). In this framework, Ub represents
the subset of UEs associated with cell b, and hdl

u,b, wdl
u,b, and

pdlu,b are the downlink complex channel vector, the precoding
codeword, and the associated transmit power of UE u with
respect to cell b, respectively. Without loss of generality,
we assume equal transmit power allocation for all UEs. The
achievable data rate for each UE can be then computed as
follows:

Ru =
N tot

PRB BPRB

Nwdl
u,b̂u

log2(1 + γu), (10)

where Nwdl
u,b̂u

is the number of UE associated with the
same precoding codeword and N0 is the thermal noise power
spectral density.

III. CELL SELECTION AND SSB BEAM PLANNING

The performance of mMIMO networks is affected by the
complex interplay of many system parameters, making its
modelling and large-scale optimization a challenging task.
To tackle this problem, we propose an efficient solution to
maximize UAVs data rates along AH by optimally controlling
UAVs cell association along the AH. To this end, we first
introduce a new metric to identify the optimal serving cell for
each segment of an AH. Then, we develop an eGA algorithm
to optimally select SSB beams and their transmit power from
a fixed codebook, ensuring optimal coverage from those cells.

A. Aerial Highway Segment-to-Cell Association Metric
In traditional cellular networks, serving cells are typically

selected based on metrics such as RSRP. While this metric
may be suitable for gUEs, it often falls short for UAVs closely
packed along the AH, where the high channel correlation,
driven by dominant LoS conditions [29], can severely af-
fect network performance. To optimally determine the cells
designated to serve UAVs along the pre-defined AH, we
now introduce a novel metric that captures the multiplexing
capability, average channel quality gain, and interference.

Aerial highway Segmentation: We begin by discretizing
the AH rAH into Nr equidistant points separated by distance
dr. Utilizing simulations and/or measurements gathered during
exploratory phases, one may determine the expected channel
vector h̃r,b for each point r relative to each cell b as follows,

h̃r,b = Eτ,hdl

[
ρr,b τr,b gr,b h

dl
r,b

]
. (11)

We utilize these vectors to construct the average complex
channel matrix H̃b

r,m ∈ CNr×M between the AH and each
cell b. Subsequently, we introduce the concept of a segment z,
which represents a contiguous subset of Ns points within said
AH rAH. Then, from matrix H̃b

r,m, we define two sub-matrices
H̃b

z,m and H̃b
r−z,m, respectively denoting the complex channel

vectors of segment z and of the remaining AH discrete points.
Cell association metric: We define our proposed mMIMO-

Aerial-Metric-Association (MAMA) metric as follows:

χb
z

(
H̃b

z,m, H̃b
r−z,m

)
= (12)

= cbz

(
H̃b

z,m

)
log2

1 +
P b
z

(
H̃b

z,m

)
F b
z

(
H̃b

z,m, H̃b
r−z,m

)
+N0

 .

The metric in (12) is composed of three components, designed
to account for different channel characteristics, specifically:

• P b
z is the expected average channel gain on segment z

when served by cell b. It is computed as follows,

P b
z

(
H̃b

z,m

)
=

1

Nz

Nz∑
z

1

M

M−1∑
m=0

∣∣hb
z,m

∣∣2 , (13)

and it encapsulates traditional metrics like RSRP.
• cbz is the inverse of the condition number of matrix H̃b

z,m.
It is computed as follows:

cbz

(
H̃b

z,m

)
=

λ
b (M−1)
z

(
H̃b

z,m

)
λ
b (0)
z

(
H̃b

z,m

) , (14)

where λ
b (M−1)
z and λ

b (0)
z denote, respectively, the lowest

and the highest singular values computed using single



value decomposition (SVD). This ratio provides insight
into the spread of singular values, reflecting diversity in
angle of arrivals (AoAs)/angle of departures (AoDs) and
assessing multiplexing capabilities of cell b concerning
segment z.

• F b
z represents the squared Frobenius norm of the cross-

channel correlation. It is computed as follows:

F b
z

(
H̃b

z,m, H̃b
r−z,m

)
=

Nr−Nz∑
i

Nz∑
z

∣∣∑
m

h̃b
i,m h̃b ∗

m,z

∣∣2.
(15)

This component provides information about the correla-
tion between the considered segment and the remaining
points of the AH, thereby assessing the interference level
introduced to other portions of the AH when cell b serves
segment z.

Having divided the AH into Nseg segments, and having
defined a cell association metric, one can then compute the
serving cell b̂z for each segment z as follows:

b̂z = argmax
b∈B

{
χb
z

(
H̃b

z,m, H̃b
r−z,m

)}
. (16)

In the sequel, we denote by b̂(AH) the set of serving cells for
all segments.

B. SSB Beam and Power Selection Algorithm

Given our proposed serving cell selection metric, we now
propose an algorithm to optimally select the set of SSB beams
and their transmit power from the codebook Wssb. These SSB
beams are then to be transmitted at each identified serving cell
to guarantee the desired association of UAVs that are flying in
segment z. In other words, our objective is to find the optimal
binary entries of X and P, governing the selected SSBs
beams and their respective power, that maximize a specific
objective function —later defined in (18)— and, consequently,
maximizing the minimum SINR (7) across the AH.

Before describing our solver, we find it convenient to define
matrices Xbl and Pbl, representing the network configuration
in a traditional scenario with only gUEs. We also list the
constraints that our algorithm obeys:

• Only serving cells in b̂(AH) are permitted to modify their
SSB beam configuration. Conversely, cells not in this set
must adhere to the configurations described by Xbl and
Pbl.

• Cells in b̂(AH) are allowed to modify only one SSB from
the configuration in Xbl and Pbl, thus minimizing large
deviations from the well optimized traditional scenario.

• The power associated with each modified SSB beam is
limited to pssbmax.

• The serving cell for each point r of each segment z must
be b̂z.

To solve this problem, we design an algorithm based on
eGA [30]–[32], known for its efficiency in solving non-convex
non-linear mixed-integer problems.

Preliminaries on eGA: In eGA, a solution emerges from a
population of Npop individuals, which iteratively transforms
according to a objective (fitness) ObjeGA (·) . At each itera-
tion, the population evolves following these steps:

• Selection, where individuals are ranked according to their
fitness function, and Np best individuals are selected as
parents for generating the offspring, i.e., next population
individuals.

• Crossover, where with a certain probability Pcross ele-
ments yq of each pair of parents are randomly exchanged.
We refer to these newly obtained vectors as offspring.

• Mutation, where elements of the offspring vectors are
randomly changed with probability Pmut.

• Elistic Mechanism, where the top Ne individuals are
directly passed to the next population without crossover
and mutation mechanisms.

For each iteration, the optimal solution is selected as the

Algorithm 1: elite Genetic Algorithm Beam Selection
Result: ybest

1 y(p) ← init random population
(
Npop, NCB, p

ssb
max

)
;

2 f ← init zeros (Npop);

3 for i ∈
[
0, N Iter

eGA − 1
]

do
4 for q ∈ [0, Npop − 1] do
5 f [q]← ObjeGA

(
y(q)

)
;

6 end
7 sort population(f);
8 ybest ← y(0);
9 pare ←

[
y(0),y(Ne)

]
;

10 parq ←
[
y(0),y(Np)

]
;

11 for q ∈ Ncross do
12 y(i),y(j) ← randomUniform selPair(parq);
13 for k ∈ 0, [2ns − 1] do
14 if random() ≤ Pcross then
15 y(i)[k],y(j)[k]← y(j)[k],y(i)[k];
16 end
17 end
18 end
19 for q ∈ 0, [Npop − 1] do
20 for k ∈ [0, ns − 1] do
21 if random() ≤ Pmut then
22 y(q)[k]← randInt (0, NCB − 1);
23 end
24 end
25 for k ∈ [ns, 2ns − 1] do
26 if random() ≤ Pmut then
27 y(q)[k]← rand

(
0, pssbmax

)
;

28 end
29 end
30 end
31 e← 0;
32 for q ∈ [Npop −Ne, Npop − 1] do
33 y(q) ← pare[e];
34 e← e+ 1;
35 end
36 EarlyStopping Check

(
i,N stop

eGA

)
;

37 end



individual with the best fitness value. The algorithm progresses
through these steps until it either reaches the designated
number of generations, N Iter

eGA, or the optimal solution remains
unchanged over a specific number of generations N stop

eGA,
therefore enabling an early stopping mechanism.

Proposed eGA beam selection algorithm: For our problem,
each individual q of the population represents a possible
solution and is defined by a vector as follows,

yq =
[
sb̂z

∣∣∣ pssb
b̂z

]
= (17)

=
[
sb0 , . . . , sbz , . . . , sbns

∣∣∣ pssbb0 , . . . , pssbbz , . . . , pssbbns

]
,

where sbz ∈ [0, NCB] represents the codeword index selected
at cell bz from a codebook containing NCB entries, and pssbbz
represents its transmit power. The matrices Xq and Pq are
then computed based on the above vector values. To evaluate
the performance of each individual q, we define the objective
(fitness) function as

ObjeGA (yq)
.
= min

{
γssb
z

∣∣ z ∈ z , b̂z = b̂(AH)
z ,Xq,Pq

}
.

(18)
The objective function in (18) represents the minimum SINR
across all the AH to be maximized. In particular, γssb

z is the
SSB SINR for point z, as defined in (7), conditioned on b̂

(AH)
z

being the serving cell for point z and Xq and Pq being the
selected SSBs beams and their transmit powers, respectively.

Algorithm 1 illustrates the detailed steps.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
SSB beam planning and UAV cell selection. Utilizing the mod-
els presented in Section II, we focus on UMa environments
where each sector employs an 8 × 4 UPA panel operating at
3.5GHz. The study considers a 1250 m AH located 100 m
above the ground and crossing multiple cell edges. Then,
ensuring 100 m inter-UAVs distance dIUD [33], 12 UAVs are
evenly spaced along this highway, and four gUEs are randomly
deployed within each cell.

Performance benchmark: We compare the results obtained
by our solution (“Opt”) to those of a baseline configuration
where the terrestrial network is optimized solely for serving
gUEs (“Baseline”). The baseline configuration positions all
SSB beams at each cell with a tilt of 105◦, covering the az-
imuth plane as recommended by the 3GPP [24]. The matrices
Xbl and Xbl are then computed accordingly.

Algorithm parameters and convergence: In Algorithm 1, we
choose a population size Npop = 100, a number of parents
Np = 75, a number of elites Ne = 20, and we set the
probabilities of crossover and mutation to Pcross = 0.2 and
Pmut = 0.75, respectively. We set the maximum number of
iterations to N Iter

eGA = 15000 and the early stopping criterion to
N stop

eGA = 1000 iterations. Under these settings, our algorithm
converges after 12000 iterations.

SINR and achievable data rate: Figure 1 displays the
cumulative distribution function (CDF) of (a) SINR and (b)
achievable data rates, distinguishing between UAVs and gUEs.
The results show an improvement of 3.7 dB in the 5%-
tile SINR for UAVs, moving from −7.21 dB (Baseline) to
−3.51 dB (Opt). Moreover, our solution offers a four-fold
increase in the 5%-tile achievable data rate for UAVs, rising
from 2Mbps (Baseline) to 8Mbps (Opt). Similar gains are
observed in the mean SINR and mean achievable data rate.
Furthermore, by varying only a single SSB beam from the
baseline configuration while optimizing the network for UAVs,
we incur a very limited gUEs performance degradation of
0.15 dB in the 5%-tile SINR and 1 % in the the 5%-tile
achievable data rate.

Traffic analysis: Figure 2 illustrates how the 5%-tile achiev-
able data rate evolves as the traffic on the AH increases.
For this analysis, we consider an increasing number of flying
UAVs, up to 50, evenly spaced along the AH. When impos-
ing a minimum data rate threshold of 5 Mbps, the baseline
configuration can support only up to 5 UAVs. In contrast,
our optimized solution can accommodate up to 15 UAVs,
effectively tripling the traffic capacity on the AH.

V. CONCLUSION

In this paper, we investigated how to provide optimal
5G connectivity from terrestrial mMIMO networks to UAVs
within AHs, while minimizing impact on ground performance.
We proposed a metric that optimally determines the serving
cells for multiple segments of the AHs by jointly consider-
ing multiplexing capabilities, channel gains, and interference.
Following this, we developed an algorithm to identify the
optimal SSB beam planning strategy, thereby ensuring optimal
coverage of the AHs from the selected cells. Simulation results
demonstrated the benefits of our approach, with gains of up to
four times in achievable data rates for UAVs. This illustrates
that strategically and optimally controlling the selection of
serving cells along the AH is crucial for enhancing UAVs
capacity with minimal impact on ground performance. While
in this paper we optimized the SSBs beams planning given a
fixed AH partition, further performance gains may be achieved
by optimizing the AH segmentation as well.
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Fig. 1. SINR and achievable data rate distribution for 12 UAVs on an AH positioned across cell edges at a height of 100 m.
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