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Abstract We speed up network automatic power re-optimization by 2x with an algorithm leveraging 
prediction of SNR variations of all services when power adjustments are made, in a meshed optical 
network testbed based on commercial products. ©2024 The Author(s) 

Introduction 
Quality of transmission (QoT), e.g., signal-to-
noise ratio (SNR) optimization methods for opti-
cal networks based on Gaussian noise (GN) or 
machine learning models have been proposed 
and widely applied [1]-[2]. Since optical networks 
need to be optimized periodically while ensuring 
that services are not interrupted during commis-
sioning (service power variation), closed-loop 
control for optimization based on digital twins 
(DTs) has been proposed and experimentally val-
idated [3]-[5].  

However, the previous works were not 

demonstrated in meshed networks nor optimized 

for speed.  

In this paper, we present a fast approach to 

optimize SNR margin (related to the system ro-

bustness to unforeseen events) as well as sys-

tem capacity by predicting SNR performance with 

“multi-step lookahead” operations via digital twins. 

The method is experimentally shown in a meshed 

network testbed based on commercial products 

to ensure parallel commissioning safely, i.e., 

without disturbing existing services.  

Principle 
Optical transport networks consist of optical mul-
tiplexing sections (OMSs): a pair of wavelength 
selective switches (WSSs) for adding/dropping 
optical channels (services), N fiber spans and 
N+1 optical amplifiers (OAs), typically erbium-
doped fiber amplifiers. The power spectra at the 
first OA (booster) and the last OA (preamplifier) 
are monitored by optical channel monitors 
(OCMs). The launch power profile of the booster 
in the OMS can be tuned by adjusting the WSS 
attenuation profile, so that power equalization 
can be implemented to optimize the performance 
of services – e.g., by balancing the amplified 
spontaneous emission (ASE) and the non-linear 
(NL) noises to 3dB to optimize services’ SNR [1]. 
In the following, a “power adjustment step” (or 
“step”) denotes the modification of the power 
spectrum 𝑃𝑛(. ) at the booster amplifier of a given 

𝑂𝑀𝑆𝑛.  

The booster launch power adjustment of an 

OMS yields power profile modification on the 

other OMSs by power propagation, possibly lead-

ing to disruption of existing services. Hence, a DT 

should be used to predict the network-wide QoT 

impact before configuring an OMS. Moreover, the 

DT needs periodical updates and closed-loop 

control to ensure the performance, and achieving 

optimized state may take many small steps, e.g., 

more than 20 steps to achieve a target state in a 

5-node ring network [5]. Then, we can write the 

total commissioning time 𝑇𝑡𝑜𝑡 as: 

𝑇𝑡𝑜𝑡 = 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 + 𝑇𝑠𝑖𝑚 + 𝑇𝑜𝑝 (1) 

where 𝑇𝑢𝑝𝑑𝑎𝑡𝑒  is total time consumption for 

updating the DT, 𝑇𝑠𝑖𝑚 is total simulation time in 

QoT tool including optimization and SNR estima-
tion/prediction, 𝑇𝑜𝑝  is total operation time for 

WSS setting. Specifically:  

𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = (⌈𝑁𝑜𝑝/𝐾𝑢𝑝𝑑𝑎𝑡𝑒⌉ + 1) ∙ 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (2) 

𝑇𝑠𝑖𝑚 = (𝑁𝑜𝑝 + 1)  ∙ 𝑡𝑠𝑖𝑚 (3) 

𝑇𝑜𝑝 = 𝑁𝑜𝑝 ∙ 𝑡𝑊𝑆𝑆 (4) 

where 𝑁𝑜𝑝  is total number of power adjust-

ment steps, ⌈ ⌉ is the ceiling function, the DT is 

updated (through monitoring) every 𝐾𝑢𝑝𝑑𝑎𝑡𝑒 

power adjustment steps, 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 , 𝑡𝑠𝑖𝑚 , 𝑡𝑊𝑆𝑆  are 

single-step time consumption for updating DT, 

QoT prediction, and setting WSS, respectively. 
In this paper, we reduce 𝑁𝑜𝑝  hence 𝑇𝑡𝑜𝑡 . As 

chess players consider multiple moves ahead, 

we propose to predict the consequences of each 

step on the system margin with multi-step 

lookahead instead of predicting the one next step 

only. The network-wide system margin is: 
𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛 = min(𝑆𝑁𝑅𝑖 − 𝑆𝑁𝑅𝐹𝐸𝐶)  for 𝑖 =

1, … , 𝑁𝑠𝑣𝑐, where 𝑁𝑠𝑣𝑐 is the number of services.  

The algorithm (see pseudo-code below) lever-

ages DT to find the optimum launch power 
𝑃𝑛,𝑜𝑝𝑡𝑖𝑚(λ) to equalize the noises ASE/NL=3dB 

for each 𝑂𝑀𝑆𝑛  and channel λ  and line 10 sets 

launch power 𝑃𝑛(𝜆) to: 

{
𝑃𝑛,𝑜𝑝𝑡𝑖𝑚(𝜆),   if |𝑃𝑛,𝑜𝑝𝑡𝑖𝑚(𝜆) − 𝑃𝑛(𝜆)| < 𝛿

𝑃𝑛(𝜆) + 𝛿 ∙ sign (𝑃𝑛,𝑜𝑝𝑡𝑖𝑚(𝜆) − 𝑃𝑛(𝜆)) , otherwise
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It is important to note that the time complexity 

of this algorithm to generate the next step is 

𝒪 (
1

𝐾𝑚
𝑁𝑂𝑀𝑆

𝐾𝑚 ) , hence, the trade-off between 𝐾𝑚 

and computation power also needs to be consid-

ered during commissioning. For a network with 
𝑁𝑂𝑀𝑆  where 𝑂𝑀𝑆𝑛  has 𝑁𝑠𝑝𝑎𝑛(𝑛)  spans, the up-

per bound for simulation time 𝑡𝑠𝑖𝑚 in Eq. (3) is: 

𝑡𝑠𝑖𝑚 ≤
1

𝐾𝑚

( ∑ 𝑁𝑠𝑝𝑎𝑛(𝑛)

𝑁𝑂𝑀𝑆

𝑛

)

𝐾𝑚

𝑡𝑠𝑖𝑚,𝑠𝑝𝑎𝑛 (5) 

where 𝑡𝑠𝑖𝑚,𝑠𝑝𝑎𝑛 is average simulation time per 

span. If any of the Km step results in a significant 

degradation of the SNR, no further simulation of 

this step will be performed, hence Eq. (5) is in-

deed an upper bound. 

Without considering any parallel data collec-
tion for updating DT, the update time 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 in Eq. 

(2) can be written as: 

𝑡𝑢𝑝𝑑𝑎𝑡𝑒 = ∑ 𝑡𝑢𝑝𝑑𝑎𝑡𝑒(𝑛)

𝑁𝑂𝑀𝑆

𝑛

 

= ∑ 2𝑡𝑂𝐶𝑀 + (𝑁𝑠𝑝𝑎𝑛(𝑛) + 1)𝑡𝑂𝐴

𝑁𝑂𝑀𝑆

𝑛

 

(6) 

where 𝑡𝑂𝐶𝑀 is time to get power profile by an 

OCM, 𝑡𝑂𝐴 is time to collect data from an OA. The 

parameters refinement [6] technique can be used 

to estimate the OA gain profile and lumped losses 

so that power monitoring is only needed for the 

first and the last OA of each OMS. 

If monitoring data for all OMSs is collected in 

parallel, Eq. (6) becomes: 

𝑡𝑢𝑝𝑑𝑎𝑡𝑒 = max𝑛 (𝑡𝑢𝑝𝑑𝑎𝑡𝑒(𝑛) + 𝑡𝑑𝑒𝑙𝑎𝑦(𝑛)) (7) 

where 𝑡𝑑𝑒𝑙𝑎𝑦  is the communication time be-

tween the controller and equipment on 𝑂𝑀𝑆𝑛. 

Normally, 𝑡𝑢𝑝𝑑𝑎𝑡𝑒(𝑛) is in the order of seconds 

while 𝑡𝑠𝑖𝑚,𝑠𝑝𝑎𝑛  is in the order of ms, then 

𝑡𝑢𝑝𝑑𝑎𝑡𝑒 ≫ 𝑡𝑠𝑖𝑚  for 𝐾𝑚 = 1  and any 𝑁𝑂𝑀𝑆 . How-

ever, it may be not true in some scenarios if 𝐾𝑚 ≥
2 with a large 𝑁𝑂𝑀𝑆.  

Compared with [3], our proposed method can 
reduce 𝑁𝑜𝑝  (thereby reducing 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 , 𝑇𝑠𝑖𝑚  and 

𝑇𝑜𝑝 and thus total commissioning time) in two as-

pects: 1. Reduce the risk of falling into a local op-

timum state; 2. Unlike [3] multi-step lookahead 

enables parallel OMS optimization while still en-

suring SNR of any service does not degrade dur-

ing intermediate steps, such that the number of 
steps can be divided by 𝐾𝑚: 𝑁𝑜𝑝 → 𝑁𝑜𝑝/𝐾𝑚 . 

Experimental Setup 
The commercial products-based testbed has a 
meshed network topology, as shown in Fig. 1(b). 
The OMSs are heterogeneous, containing heter-
ogeneous fiber spans, and different types of am-
plifiers. The QoT measurements are performed 
by a real-time 400 Gb/s (PDM-PCS16QAM) tran-
sponder. The WSS grid is set to 100 GHz channel 
spacing within the 6 THz C-band. 95 services are 
loaded in the network with a non-optimized state, 
which has a power fluctuation (emulated follow-
ing [7] as a Gaussian distribution with 0 dB mean 
and 1dB standard deviation) due to the channel 
add/drop process.  

The testbed is automated with our software-

defined networking (SDN) framework named AI-

  
(a) Workflow (b) Experimental Setup 

Fig. 1: Workflow and experimental setup. 

Pseudocode 𝐾𝑚-step lookahead prediction  

1: Definition 𝑁𝑂𝑀𝑆 : OMS number,  𝐾𝑢𝑝𝑑𝑎𝑡𝑒 : 

DT update iteration number, 𝐾𝑚: lookahead 

step, 𝛿: power adjustment step size 

2: while not optimized for all OMS 

3:     Update DT 

4:     Find the optimum launch power per OMS 

5:     for 𝑘 =  1, … , 𝐾𝑢𝑝𝑑𝑎𝑡𝑒  

6:         for 𝑚 =  1, … , 𝐾𝑚 

7:             for all candidate steps 

8:                 for 𝑛 =  1, … , 𝑁𝑂𝑀𝑆 

9:                     for λ = 1, …, NCH(n)  

10                         Adjust booster 𝑃𝑛(𝜆)in DT 

11:                     Power propagation in DT 

12:                     QoT prediction in DT 

13:             Update candidate steps’ list 

14:         Find the best 𝐾𝑚 steps 

14:         Implement steps 

 



  

Light [8]. The SDN controller collects the data 

from the physical layer and implements the DT to 

perform the proposed algorithm. The parameters 
of the algorithm are: 𝐾𝑢𝑝𝑑𝑎𝑡𝑒 = 2 (update the DT 

every 2 steps), 𝛿 = 1 𝑑𝐵 (power adjustment step 

size). We compare the following 3 scenarios: 

• 𝐾𝑚 = 1 (baseline [7]); 

• 𝐾𝑚 = 2 (2-step lookahead); 

• 𝐾𝑚 = 2 (2-step lookahead) + parallel.  

The parallel configuration is carried out by simul-

taneously adjusting the launch power of 𝐾𝑚 OMS 

given by 𝐾𝑚-step lookahead prediction. As it is 

impossible to guarantee that all 𝐾𝑚 OMS are ad-

justed simultaneously, the DT checks the impact 

on SNR for all 𝐾𝑚! possible adjustment orderings.  

Simulation and Experimental Results 
The objective of the optimization is to first im-
prove the system margin 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛  and second-

arily to maximize the overall SNR or total capacity 
𝐶 = sum(log2(1 + 𝑆𝑁𝑅)) . Hence, the metric to 
evaluate the convergence speed is the maximum 
number of steps for both 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛 and total ca-

pacity to converge (line 2) i.e., 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛(𝑠) >

𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛,𝑡ℎ = 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛,𝐷𝑇 − 𝜀1  and 𝐶(𝑠) >

𝐶𝑡ℎ = 𝐶𝐷𝑇 − 𝜀2 for step 𝑠 where 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛,𝑡ℎ and 

𝐶𝑡ℎ  are threshold values, 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛,𝐷𝑇  and 𝐶𝐷𝑇 

are optimized target values computed by the DT 
and ε1, ε2 are predefined error tolerances.  

As shown in Fig. 2(a), 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛  has been 

improved by ~1.5dB through power optimization. 

The plots include DT predicted value before 

operation (empty circle), measured value after 

operation (plain circle), and also the DT esti-

mated value after operation (cross). It shows 

good alignment between results from DT and 
measurements. The 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛  converges in 

only ~10 steps for all strategies (Fig. 2(a)), how-

ever, total capacity converges more slowly 

(Fig. 2(b)). We then evaluate the convergence 

speed of the proposed algorithm: as seen on 

Fig. 2(b), baseline takes 32 steps, 2-step 

lookahead algorithm takes 24 steps without par-

allelization, and 16 steps with parallelization. 

Then, the total commissioning time is re-cal-

culated by applying Eq. (1)-(6). Data collection is 

not parallel here. The results are shown in 

Fig. 2(c), normalized to the baseline commission-

ing time (set to 100 for convenience). Compared 

with baseline, the proposed algorithm can save 

22%/46% of 𝑇𝑡𝑜𝑡  with/without parallelization, re-

spectively. The pie chart reveals that the major 

cost of 𝑇𝑡𝑜𝑡 is DT updates, indicating that increas-

ing 𝐾𝑢𝑝𝑑𝑎𝑡𝑒 to reduce update times could further 

save time. 

Conclusion 
We propose and experimentally validate a DT-
based multi-step lookahead prediction algorithm 
to reduce the total steps of operation 𝑁𝑜𝑝 needed 

for network optimization. Consequently, the total 
commissioning time 𝑇𝑡𝑜𝑡 is significantly reduced. 

Moreover, the time contribution of 𝑇𝑡𝑜𝑡  is also 
evaluated so that other methods to reduce 𝑇𝑡𝑜𝑡 
can be performed.   

 

 
(b) Estimation of overall SNR 

 
(a) 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛 variation during commissioning (c) Total commissioning time (normallized) 

Fig. 2: Simulation and experimental results. 
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