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Abstract

English

In the era of social networks, the propagation of fake news is increasingly frequent. In the last decade,
numerous events were affected by misinformation. Whether we think of the last US election, or the
COVID crisis, there is little doubt about the influence of such dishonest communication. Therefore,
organisms do their best to counter them. Their efforts aim at reducing fake news include fact-checking
claims published on social medias.

Traditional methods rely on humans to manually annotate each claim, for example in a politician’s
speech. However, this method is not adaptable to the vast amounts of data found on social media, nor to
crisis times when there can be sudden increases in social media posts.

Therefore, a preferred solution is computational fact checking. In this domain, the best solutions
are Machine Learning based. Usually, given a claim, a model retrieves relevant evidence from a corpus.
Then, a predictor model assesses the veracity of the claim based on the evidence. In this thesis, we
investigate how to support information mitigators, such as fact-checkers, in their work. We focus on two
main aspects that are clear bottlenecks for the adoption of computational solutions in practice. The first
aspect is the manual effort to bootstrap and refine the systems. The second aspect is to make systems
more interpretable.

Bootstrapping a fact-checking system, with a supervised learning approach, requires a lot of training
data. As manual annotation is expensive and slow, it is not adaptable to new domains, neither to crisis
situations. In such context, governments or companies cannot afford to wait until a new training set is
manually defined, as this may be too long. The solution we propose is to generate such datasets. Synthetic
datasets are increasingly popular for model fine-tuning or training. In fact-checking, little research has
been done on synthetic datasets construction from tabular evidence. In our work, TENET, we propose to
handle this issue by generating claims from structured evidence sources. In UNOWN, we switch to the
multi-modal setting to perform claim generation using both the tabular and the textual modalities. We
provide generated examples as training data to fact-checking systems. The systems trained with our data
showcase a label-prediction accuracy comparable to the same system trained with human-created training
examples.

Another matter with computational fact-checking is explainability. Fact-checking systems are ex-
plainable when users can understand their decisions thanks to a justification. Given an input claim, most
state of the art models predict a label without any justification on how they reached their conclusion.
Users, in a misinformation context, can be eager to know why the text they are reading is labelled as
possibly misleading or even incorrect. In this scenario, current black-box models fails short. In our work,
we leverage two state of the art approaches to interpret decision taken by deep learning models. We show
that such techniques allow to identify relevant evidence with high accuracy.

This thesis thoroughly explore Synthetic Dataset generation and Explainability of Fact-checking
systems. The solutions we propose ease the building of supervised models in low resource domains and
ease the understanding of predictions by the users.
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French

À l’ère des réseaux sociaux, la propagation de fausses informations est de plus en plus fréquente. Au cours
de la dernière décennie, de nombreux événements ont été affectés par la désinformation. Par conséquent,
les organismes font de leur mieux pour les contrer. Leurs efforts visent à réduire la quantité de fausses
informations en vérifiant les faits des affirmations publiées sur les réseaux sociaux. Les méthodes
traditionnelles reposent sur des humains pour annoter manuellement chaque affirmation. Cependant, cette
méthode n’est pas adaptable aux vastes quantités de données présentes sur les réseaux sociaux, ni aux
périodes de crise où il peut y avoir une augmentation soudaine des publications. Par conséquent, une
solution privilégiée est la vérification automatique de faits. Dans ce domaine, les meilleures solutions
sont basées sur l’apprentissage automatique. En général, partant d’une affirmation, un modèle trouve des
preuves pertinentes dans un corpus. Ensuite, un modèle prédictif évalue la véracité de l’affirmation sur la
base des preuves. Dans cette thèse, nous étudions comment soutenir les fact-checkers dans leur travail.
Nous nous concentrons sur deux aspects principaux qui constituent des goulots d’étranglement pour
l’adoption des solutions automatisées en pratique. Le premier aspect est l’effort manuel nécessaire pour
créer un système. Le deuxième aspect est de rendre les systèmes plus interprétables. Créer un système
de vérification des faits, avec une approche d’apprentissage supervisé, nécessite beaucoup de données
d’entraînement. Comme l’annotation manuelle est coûteuse et lente, elle n’est pas adaptable aux nouveaux
domaines, ni aux situations de crise. Dans un tel contexte, les gouvernements ou les entreprises ne peuvent
se permettre d’attendre qu’un nouveau jeu de données d’entraînement soit défini manuellement, car cela
pourrait prendre trop de temps. La solution que nous proposons est de générer de tels jeux de données.
Les jeux de données synthétiques sont de plus en plus populaires pour le fine-tuning ou l’entraînement
des modèles. Dans la vérification des faits, peu de recherches ont été faites sur la construction de jeux de
données synthétiques à partir de preuves tabulaires. Avec notre système TENET, nous proposons de traiter
ce problème en générant des affirmations à partir de sources de preuves structurées. Avec UNOWN, nous
passons à un cadre multi-modal pour générer des affirmations en utilisant à la fois des données structurées
et non structurées. Nous entrainons les systèmes de vérification des faits à partir d’exemples générés.
Les systèmes entraînés avec nos données démontrent une capacité de prédiction comparable à celle d’un
même système entraîné avec des exemples écrits par des humains. Un autre problème de la vérification
automatique de faits est l’explicabilité. Les systèmes de vérification des faits sont explicables lorsque les
utilisateurs peuvent comprendre leurs décisions grâce à une justification. À partir d’une affirmation, les
modèles de l’état de l’art prédisent une étiquette pour un texte, sans aucune justification sur la manière
dont ils sont parvenus à leur conclusion. Les utilisateurs, dans un contexte de désinformation, peuvent
être désireux de savoir pourquoi le texte qu’ils lisent est étiqueté comme « faux ». Dans ce scénario, les
modèles actuels de type « boîte noire » échouent. Dans notre travail, nous exploitons deux approches
d’explicabilité (xAI) de pointe pour interpréter les décisions prises par les modèles. Nous montrons que
les techniques d’explicabilité permettent d’identifier des preuves pertinentes avec une grande précision.
Cette thèse explore en profondeur la génération de jeux de données synthétiques et l’explicabilité des
systèmes de vérification de faits. Les systèmes que nous proposons facilitent la construction de modèles
supervisés dans des domaines à faibles ressources, et facilitent la compréhension des prédictions par les
utilisateurs.
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Chapter 1

Introduction

1.1 Motivation

Over the last few decades, social networks have grown from being a small part of our lives to being
a major time catcher. Studies found out that people under 24 can spend up to 6 hours a day on social
networks [1]. Therefore, these platforms shape, or at least influence, users’ opinions on popular topics
- especially when claims or theories are repeatedly shared by numerous users. So far, these behaviors
are questionable, as they tend to lead users to become more narrow-minded, but they are not alarming.
Adding fake news to the equation changes the narrative. Misinformation, and its motivated counterpart
disinformation, threatens society. Whether considering the COVID crisis, the US elections, or even the
bedbug crisis in France [2], the diffusion and influence of such misinformation have disrupted elections
or government policies. Consequently, the World Economic Forum placed misinformation as the top risk
for 2024 [3]. It is now more important than ever for social media platforms to mitigate this issue.

On fact-checking websites such as Snopes1 and PolitiFact2, journalists perform fact-checking by
manually collecting claims and verifying them. Along the decision to classify or not a claim as misin-
formation, they provide external relevant documents justifying their choice. While this is a technically
straightforward solution, this task is time-consuming and hard to scale to a large number of claims.

Events such as the COVID crisis caused an explosion in the number of claims to check [4]. As manual
fact-checking is expensive and requires time from human annotator to check each claim, computationally
based fact-checking solutions became popular [5]. ClaimBuster [6] is the first tentative to find check-
worthy claims and automatically provide labels for them. In their work, they output a label coming from
a curated datasets of already fact-checked claims. New methods to fact-check claims without a direct
comparison with existing claims appeared driven by the emergence of transformer-based models and
their text understanding capabilities [7].

Different approaches have been proposed according to the evolution of the underlying deep learning
architectures. A first wave of systems have been built leveraging Pretrained Language Models (PLM)
– usually encoder only – with fine-tuning. Fine-tuning of language models [8] consists in adapting a
pretrained model to a specific downstream task by further training it on a task-specific dataset. The
technique relies on supervised learning; thus the training requires a labeled dataset t. Such dataset is built
from a corpus C of documents d. Each example from the dataset is a triple of (i) textual claim c, (ii) k
evidence piece such as e = {ej | ∀j ∈ {0, k}}, and (iii) a label l. In other words, the example of index
i is xi = (c, {e0, . . . , ek}, l). Figure 1.1 presents an annotated example from a fact-checking dataset
crafted by humans from Wikipedia pages. In the example, the Claim c ‘Rome, located in Italy, is famous
for the Coliseum, while Nice is a seaside City in France.’ is joint with evidence e, which contain both
textual evidence, ‘Coliseum is in Rome’,‘Nice is a seaside City’, and tabular evidence, i.e., the ‘Nice’,
‘France’, ‘Rome’, ‘Italy’ cell values. All evidence appear in documents inside the corpus C. Along the
claim and evidence, the human annotator provides a label l for the example. This dataset of annotated

1https://www.snopes.com
2https://www.politifact.com

8



Example

Evidence

City Country

Rome Italy

Nice France

Table Text

Coliseum is in Rome
Nice is a seaside City

Claim

Rome, located in Italy, is famous for the 
Coliseum, while Nice is a seaside City in France.

Label

SUPPORTS

Figure 1.1: Example from a fact-checking dataset

examples (claims, evidence and label) is then used to train a model.

Evidence 
Retriever VerifierClaim 𝑐 Explainer 𝐸𝑟′

Explainer’s
Evidence

𝑙𝑟
Predicted 

Label 

𝐸𝑟
Evidence
Retrieved

Training 
data 𝑡Corpus

𝐶

1 2Figure 1.2: Pipeline for fact-checking inference. From the input claim c, the retriever uses C to provide
verifier evidence Er. From this information, the verifier provides a veracity label lr. The explainer uses
outputs from the latter to give a subset of useful evidence E′

r.

Once the models have been trained, they are used to verify unseen claims. Figure 1.2 presents
a standard fact-checking pipeline at inference time, where a textual claim and a reference corpus of
documents are given as input. The pipeline presents two main models: an Evidence Retriever and a
Verifier, both represented with a yellow box in the Figure. The retriever, given the claim c and the corpus
C with evidence, outputs the claim-relevant evidence Er. The verifier uses the retrieved evidence Er

and the claim c to predict a verdict lr. Originally, the verifier has been fine-tuned using the training data
t. Optionally, the last step is an explainer model that outputs a more precise selection of evidence E′

r,
restraining Er only to the evidence that were used by the verifier for taking a decision.
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FEVEROUS ADS

Method. F1 Refutes F1 Supports F1 Refutes F1 Supports
FT-Bert 0.66 0.88 0.47 0.96
LLM-Prompt 0.72 0.86 0.04 0.95

Table 1.1: Performance of fine-tuned (FT) methods versus a Large Language Model (LLM) for fact-
checking two datasets. The LLM used is ChatGPT 3.5 Turbo, the FT-Bert is Roberta Large for FEVEROUS

and CT-Bert for ADS. FEVEROUS’ claims are general knowledge information from Wikipedia, while Ads
contain social media’s advertisements from Facebook.

The second wave of systems rely on the more recent Large Language Models (LLMs), such as
ChatGPT [9] or LLaMA 3 [10]. Initial approaches use the instructed LLM as is, without any further
training. This raises the question if an out-of-the-box LLM be an effective fact-checker. Table 1.1 reports
results on the well-known fact-checking FEVEROUS dataset, where given the claim and evidence as input,
we can compare the predicted label output with the original, gold label. In this setting, where evidence are
based on Wikipedia’s general knowledge, we see that a not fine-tuned LLM can match the result quality
of a fine-tuned model, both for claims labeled as Supported and for those labeled as Refuted. However,
things change radically with more domain specific claims. The ADS dataset contains ads published on
Facebook, containing claims that cannot be debunked easily with traditional common knowledge [11].
As in this dataset, 88% of the claims have a gold label ‘Supports’, we report the F1 score of the two
labels to take into consideration the skew. The results are lower for both approaches for the ‘Refutes’
label. However, the non fine-tuned LLM reports very low results in detecting misinformation. Even
providing the model with examples in the prompt, a few shots technique to counter-balance the lack of
fine-tuning [12], does not help improving the prediction quality. These results justify the importance
of a fine-tuned model, especially in settings relying on specific domain data. Other studies also report
that while LLMs are a good fit for generative tasks such as decomposition of claims, they struggle on
predicting a label [13]. Moreover, as LLMs require powerful hardware [14], a fine-tuned smaller model,
such as Bert, is preferable as it is cheaper to run and consumes less energy [15].

1.2 Problems

Given an annotated dataset for fine tuning, we can obtain a high-quality fact-checking model for that
domain. However, the major drawback is the time needed to build such dataset: writing up one of the
most used fact-checking training corpus by a single annotator would take 183 full workdays [7]. As this
is expensive and time consuming, money and time can become a bottleneck. Moreover, the dataset would
cover only one domain. One may need data to perform fact-checking on claims for a new domain, such as
medical or legal [16], but the original model would perform poorly as we saw for the ADS dataset. Most
fact-checking corpora contain claims based on Wikipedia facts, but domain shift is an important problem
for ML in general [17, 18]. More precisely, a model trained on a certain type of data would struggle to
generalize, and would benefit from a training on the target-task data [19]. In other terms, a model trained
to label claims similar to “Barack Obama was born in the US” might struggle on the claim “Covid cases
went up by 10% since the beginning of 2024 in Germany.”. In certain circumstances, especially in crisis
times, a new model built using target-task data needs to be ready in short time. Therefore, manual writing
of a train set, while feasible, is not desirable. All these reasons motivate the need for an easier and more
accessible way to create datasets with training examples.

Apart from the data generation’s problem, output explainability is another issue to deal with. Indeed,
a fact-checking model outputs a label given a claim. However, most models are built on deep learning
architectures, such as transformers. Those architecture are not explainable by nature: we could say that
they act as black-boxes [20, 7, 21, 22]. More precisely, it is not feasible to know which evidence was
useful to the fact-checking model to take its decision. It is not either possible to know if an evidence
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piece pushed the decision toward ’Supports’ or ’Refutes’, simply by checking the output or the activated
neurons [23, 24]. Fact-checking users in general want to know what are the reasons behind a decision,
especially for a ‘Refutes’ label that mark as misinformation some content. A solution could be to provide
the retrieved evidence Er. However, retrievers often struggle to retrieve accurate evidence due to the
complexity of indexing vast, diverse data sources [25]. As predictors models are robust to noise [26],
increasing the overall amount of retrieved evidence used as input for the predictor is a solution to obtain
accurate prediction. As we want to provide the predictor model as many useful evidence as possible to
make a decision, Er can become large (e.g., 20 to 40 sentences or cell values) and therefore too noisy to
be useful as explanation source for the user. A system providing a concise and complete justification is
thus needed.

In this thesis, we tackle both problems by answering the following research questions.
1 Can we automate the generation of domain-specific training data for a predictor model in a

multi-modal setting?
2 Can we explain the output of any black-box fact-checking predictor model? Can we distinguish

evidence used by the fact-checking model from unnecessary ones?

1.3 A solution to expensive dataset construction?

Given how expensive are human annotations, we aim to find alternative techniques to build a training

dataset. In this section, we discuss research question 1 . After presenting the problem, we jump on its
challenges and briefly present our solution.

1.3.1 Problem

Creation of examples to fine-tune a model is an expensive task. It is also time-consuming and prone
to error. To reduce error numbers, some efforts aim at lowering human error rate in annotation [27].
We explore a different path. To simultaneously mitigate the problems of domain-specificity and cost,
a solution is to synthetically create a dataset. This method is inspired by the data driven AI principle,
where we improve the performance of a solution by focusing on improving the data rather than changing
the model [28]. We deal of data generation first restraining to tabular data only, before widening to a
multi-modal setting.

Our technique is adaptable to multiple tasks, but we focus on the generation for the Natural Language
Inference (NLI) task of fact-checking [29]. The datasets generated by our technique finally serve to train
a fact-checking model.

From structured data In this setting, we aim to construct a claim based on tabular evidence as in
Figure 1.3. The claim here can be generated and verified by using the four evidence cells provided.

There are several motivations to use tabular data as evidence. Usually, textual data is used to convey
information in a narrative form. On the other hand, tabular data provides information in a form more
adapted to analytics and operations.

One reason is that most existing annotated datasets use a whole table as evidence for a claim[30, 21].
However, the more advanced datasets report evidence at a cell level [7] and this is the default granularity
for effective applications, such as fact-checking, where tables can be very large [31].

Another concern is the use of mathematical expressions, such as max, min, and count, or comparison
across values, in real claims. Existing annotated datasets mostly contain claims that can be checked with
simple lookup. For instance, in ToTTo [32], a table to text dataset, 80% of claims are relying on text
without any mathematical expressions. Existing real problems are beyond what is currently covered in
annotated datasets. As we saw that un-adapted training data leads to a model performing poorly during
test, we need new datasets providing more complex claims.
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Example

Evidence

City Country

Rome Italy

Nice France

Table

Generated Claim

Rome is in Italy while Nice is in France.

Label

SUPPORTS

Figure 1.3: Example of a claim relying on structured data as evidence

From multi-modal inputs Some scenarios require to fact-check content showing a combination of
images and texts [33, 34] as evidence. Others, such as Feverous [7], combine texts and tables, as in
Figure 1.4. The claim can only be labelled by using all the modalities: the table provides the city location
information, while the text precise the famous spots of each city. Notice that while the evidence is
identical to the example in Figure 1.1, the claims are different.

If low-resource domains already lack existing datasets in a unimodal setting, moving to the multi-
modal setting only makes it worse. Multi-modality datasets are scarce even for general knowledge
domains. New datasets are thus needed to tackle this issue. But those datasets are hard to craft, they bring
a variety of challenges that we discuss next.

1.3.2 Challenges

The first challenge is correctness The credibility of a veracity label comes from the reputation of the
fact-checking source [35]. Therefore, it is important for a fact-checking tool to be precise in predicting
labels, as being approximate can lead to an untrusted method. As a consequence, we need correctly
structured examples—in terms of natural language, the evidence used, and the label—to develop effective
fact-checking models.

Diversity in the training data is another key challenge. Diversity can be analyzed from multiple angles,
we focus on two. The first is the diversity in the different patterns of selected evidence. A naive way to
select evidence is to consider only the first sentence in an article, or the last row in a table. Evidence
selection across examples in the dataset should cover a large amount of different patterns. The second
angle is the diversity in the description pattern in natural language. The claims constructed, even for
the same evidence, must be as various as possible - the claims must not just rephrase or summarize
the evidence, but perform operations such as count or max on them. This challenge is present both in
selecting cells in a uni-modal setting, and in combining sentences with cells in the multi-modal context.

Scalability is a third challenge. A claim generation system should involve as little human intervention
as possible. As human cost is one of the main issues we tackle, a synthetic dataset generation system can
afford to use some human annotations, but their number should be as limited as possible.

An unavoidable challenge is the generation of ’Refutes’ claims. The training of a fact-checking model
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Example

Evidence

City Country

Rome Italy

Nice France

Table Text

Coliseum is in Rome
Nice is a seaside City

Generated Claim

Rome and France are respectively in Italy and 
France, with one of them known for the Coliseum.

Label

SUPPORTS

Figure 1.4: A claim relying on both unstructured and structured data

requires such crucial examples in the training set. These examples are crucial for training a robust model,
as they help delineate misleading claim from supported ones. Therefore, an example generation system
should create both supported and refuted claims. However, crafting high-quality refuting claims is not
trivial: these refuted claims must cover the many possible ways to articulate falsehoods. In a tabular
setting, one can leverage basic table operations to create claims that are in contradiction with the data
evidence. In a unstructured data context, one cannot use the same strategy and needs to find alternative
techniques.

Finally, multi-modality is a last challenge. Depending on the task, the system should be able to
use as input text and/or other modalities, such as tables. A generation model thus needs to deal with
multi-modals inputs. It also needs to be able to merge multiple pieces of evidence, independently of their
type, into a single claim.

1.3.3 Solutions

To tackle the cost of building the training data t, we develop example generation methods. We start with
a structured evidence setting before moving to the multi-modal setting.

We present the overall generation pipeline for both approaches in Figure 1.5. From the corpus C, the
Example generation module produces a list of ‘Supports’ and ‘Refutes’ claims, each of them relying on
different pieces of evidence and pages from the corpus. This list of claims, along the their evidence and
the label, will serve as training data t to to the verifier.

From structured data To build a synthetic dataset, a first step is to select the evidence to base the claim
upon. Keeping in mind the challenges mentioned above, the quality of evidence selection is crucial and
cannot be neglected. Therefore, we select cells mimicking the human patterns found in a gold training
set, when available. As the evidence is tabular, a natural approach is to use SQL queries. Our solution
infers patterns from existing human-crafted example and derives SQL queries from them to get more
data evidence. As we need ’Refutes’ claims, we perform error injection to create inconsistent tables for
such claims. The original, clean table is the evidence in the example, while the erroneous one is used to
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Figure 1.5: Example generation pipeline

generate the claim text in the next step. Error injection in a table is a simple task: shuffling columns and
adding or removing tuple permits to obtain a table incoherent with the original one.

In the last step, we produce a textual claim from the evidence. A model fine-tuned on a Table2Text
dataset is a natural fit for this task. To be consistent with the challenge of claim variety, we produce
different kinds of reasoning claims. For instance, the evidence containing ages of persons is used to
produce simple claims ‘Mike is 24 and Anne is 54’, but also an aggregate one, such as ‘The oldest
person is 54’. We explore both PLM generation and LLM generation, as the cheapest PLM is suitable for
low-resource constraints.

Our results show that automated generation of training data in a tabular setting permits to obtain an
effective fact-checking model that performs on par with a model trained with human-written data. This

represents a first answer to research question 1 .

From multi-modal inputs Switching from uni-modal to multi-modal requires modifications and new
techniques to create a dataset. The first step of our pipeline is still to select evidence before generating a
claim. To select evidence, we first select cells before adding sentences that are the close to the cells, e.g.,
in the same page. To tackle the multi-modality challenge, we bring the two modalities into a single one.
This is done leveraging table to text models, as in the tabular setting above. Once the tabular content is
converted to a textual evidence, we use text summarization techniques to convert multiple sentences into
a single claim [36].

Using modality conversion and summarization techniques, we finally build a claim out of the evidence.
The results we obtained show that automated generation of training data in a multi-modal setting allows
to obtain a fact-checking model as accurate as a model trained with human-written data, answering

positively research question 1 .

Results overview Results comparing the performance of models trained with generated data instead of
human data are shown in Table 1.2. We train fact-checking models with the datasets in the table’s first
column and report for each dataset the final verification accuracy from both human and generated claims.
According to results, the models trained with generated claims are competitive with models trained with
human ones, falling only few points below in most case.
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Dataset Type Work Accuracy for Human Accuracy for Generated
TabFact Table TENET 68.8 66
Infotabs Table TENET 82.5 60

Feverous
Table TENET 88.6 82.5

Feverous Text UNOWN 94.5 92.3
Table+Text UNOWN 82.1 84.6

MMFC Table+Text UNOWN 87.6 76

Table 1.2: Fact-checking accuracy results over four datasets for a verifier trained with human examples
(Human) and with examples created by our systems (Generated)

1.4 Explaining a model’s decision

Explaining a verifier’s decision is an important step in fact-checking. Professional fact-checkers clearly ask
for “Models designed in such a way that their outcomes are explainable, unbiased, and more accountable
to ethical considerations” [5]. We first describe the problem, then present challenges occurring for
explaining systems. Finally, we briefly describe our solutions to tackle the issue.

1.4.1 Problem

A fact-checking verifier takes as input evidence and a claim, and outputs a label of veracity. But what
about the reasons behind a label? Models usually work as a black box, predicting an output without any
explanation [33]. Therefore, the only information the model returns given the user claim is the label:
‘Supports’, ‘Refutes’ or ‘Not enough information’. In order to understand the output of the system, users
are eager to see the reasons behind the prediction.

Moreover, assessing the reasons behind a decision is an ethical requirement [37]. During training,
any model may learn to use information that discriminates groups of people, e.g., on gender [38], when
making a decision. Fact-checking is yet another task where such bias may apply. Indeed, a label switch
could happen on some claims based on an unrelated facts concerning, for instance, race, in the model
inputs. As new datasets appeared to counter-balance minority discrimination in LLMs, explainability
remains a key mitigation for this problem [39].

To provide users the evidence behind a model’s decision, a simple solution is expose to the users the
whole evidence Er, as given to the predictor by the retriever. However, this is not easy to consume for
humans because of the limitations of evidence retrievers. Indeed, when compared to human retrieved
evidence, existing techniques provide a low F1 score on retrieved evidence for the same claims, e.g., 0.1 in
the most popular corpus [7]. This explains why verifiers are fed with a lot of evidence, up to 40 sentences
(or cells) to obtain the best results in claim verification. This implicates that evidence identified by a
retriever contain a lot of noise, making it hard for the end user to understand a decision simply by looking
at Er. Moreover, the evidence is ranked on relevance w.r.t. the claim, but such ranking has no information
in terms of the role played by the evidence in the model decision. For instance, an evidence piece, such a
sentence or a cell value, for a claim can steer the labelling towards ‘Refutes’, while another piece steers it
toward ‘Supports’ - this information is not available to the retriever module. Finally, providing such set
cannot answer the ethical problem mentioned above, as these evidence pieces are not necessarily all used
by the predictor model.

We want to be able to explain what are the evidence pieces used to take a decision. Ideally, we aim at
providing evidence-based explanations for any black-box fact-checking system. The creation of such

method provides a qualitative answer to 2 .
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1.4.2 Challenges

Explaining fact-checking models is a challenging task. Once we obtain evidence from a retriever, we
do not want to provide the user a ranked list of the retrieved evidence, as done by a re-ranker [40].
Such subset is purely based on information-retrieval principles, without any information about the target
predictor model. In other words, such ranking cannot capture the behavior of the predictor.

There are few systems that fact-check a claim and simultaneously explain the decision based on
the evidence [41, 42, 43]. However, these models fall short when provided with retrieved evidence that
is naturally noisy, as opposed to gold evidence. Additionally, none of these models can adequately
characterize the role played by the evidence. Specifically, they struggle to articulate anything beyond the
usefulness of the evidence in the labeling process.

Evidence 
Retriever Verifier𝑐

𝐸𝑟′

𝑙𝑟𝐸𝑟

𝑡𝐶

𝑒1:Noisy evidence

𝑒2:Useful evidence

𝑒3:Noisy evidence

𝑒4:Noisy evidence

𝑒5:Useful evidence

𝑒2:Useful evidence

𝑒5:Useful evidence

Explainer

Figure 1.6: The process of filtering retrieved evidence Er to create a more coherent selection E′
r, reflecting

the evidence actually used by the verifier. Each evidence piece push the verifier’s classification toward a
specific label. Our system detect this behavior, that we highlight in this Figure

Some work explore explanation with an independent module [34, 44]. One of the main challenges in
post-hoc explanation systems is dealing with the inherent noise in retrieved evidence. Noise can arise
from a variety of sources, including irrelevant or misleading information that complicates the task of
discerning relevant evidence from the irrelevant. Consequently, this noise can lead to inaccurate model
predictions if not properly filtered.

Additionally, characterizing the role of evidence poses another challenge. Current models typically
provide a binary assessment of evidence usefulness without offering insights into how specific pieces of
evidence influenced the decision. This lack of granularity limits the explanatory power of the system. A
robust post-hoc explanation system should be able to highlight the significance of each piece of evidence,
identify which elements supported the final decision, and clarify any counter-evidence considered during
the prediction process.

As depicted in Figure 1.6, the integration of the explainer into the fact-checking pipeline must
efficiently handle the noisy evidence outputted from the retriever. The verifier processes this noise during
its prediction, and then the explainer interacts with the verifier while taking as input both the noisy
evidence Er and the corresponding label lr. This interaction is crucial to ultimately identify the evidence
that is genuinely useful to the verifier, which we designate as the refined set E′

r. Therefore, developing a
framework that addresses these challenges is essential for enhancing the interpretability of fact-checking
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Verifier

Explainer
𝑬𝑃𝐷

…

Input

Claim
Rome, known for the 
Coliseum, is in Italy.

𝐸𝑟

Rome / Italy

Nice / France

Nice is a seaside city

Coliseum is in Rome

Rome / Italy

Nice / France

Rome / Italy

…

Rome / Italy

Nice is a seaside city

Coliseum is in Rome

Nice is a seaside city

Coliseum is in Rome

Output

𝐸𝑟′

Rome / Italy

Coliseum is in 
Rome

Figure 1.7: Explaining the verifier prediction using xAI techniques. Bold evidence are the useful evidence
for taking the decision, and are selected by the explainer as justification.

systems.

1.4.3 Solution

To address research question 2 , we adapt and evaluate state-of-the-art post-hoc explainable AI meth-
ods [45, 46] to investigate the impact of each piece of evidence on the verdicts produced by existing
black-box predictor models. This approach is particularly advantageous as it requires no additional
components to be integrated into or interfaced with the model. Instead, the labels for evidence are derived
from the model scores associated with each claim label, which allows us to vary the evidence used as
input across multiple executions.

We employ two widely used explainable AI (xAI) methods, SHAP [45] and LIME [46], as they are
specifically designed to work with any black-box model. By perturbing the inputs of a fact-checking
model —specifically, by removing pieces of evidence— we can observe the resulting impact on the
predicted label. This output provides insights into the importance of each piece of evidence in contributing
to a "Supports" or "Refutes" label. In addition to distinguishing between useful and noisy evidence, these
explanatory methods reveal the extent to which a model relies on its underlying knowledge as opposed
to the provided evidence when making predictions. By comparing the contributions from evidence and
the inherent knowledge of the model, we can assess whether the model predominantly depends on its
pre-existing knowledge rather than the evidence supplied. This critical analysis is made possible through
our approach.

Figure 1.7 illustrates the architecture employed in this method. Initially, the evidence set Er is
perturbed to generate a collection of modified evidence sets, denoted as EPD. We then run the verifier
model on each of these perturbed sets. By analyzing the new scores produced by the model for each
perturbation, we estimate the contribution of every individual piece of evidence. Ultimately, this process
yields an explanation detailing the impact of each piece of evidence on the final label.

Explanations enable us to address two key questions:

• Q1: To what extent does the fact-checking model rely on the evidence and the claim in making
its decisions? Does this reliance vary depending on whether a claim is supported, refuted, or
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considered to lack sufficient evidence?

• Q2: Which pieces of evidence influence the model’s predictions? Can the model effectively
distinguish between useful evidence and noise, identifying instances of evidence that are unrelated
to the claim evaluation?

Our experiments revealed that some fact-checking models heavily depend on the evidence to predict
labels, while others assign less significance to it. By employing xAI methods, we can effectively identify
which pieces of evidence are useful for the model when evaluating a claim.

1.5 Document Structure

This thesis is organized as follows. First, Chapter 2 provides an overview of existing contributions in
Natural Language Processing (NLP) and computational fact-checking. Following this, we present our
contributions, beginning with the exploration of synthetic datasets. In Chapter 3, we focus on generating
a synthetic dataset based on a unimodal tabular source. Next, in Chapter 4, we expand our approach to
include multi-modal sources, incorporating textual evidence alongside the tabular data. In Chapter 5,
we shift our focus to explainable AI (xAI) and examine how existing xAI methods can be adapted to
enhance fact-checking tasks. Before concluding, we demonstrate a real-world application of our methods
in Chapter 6. Finally, Chapter 7 discusses potential future directions for this research.
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Chapter 2

Related Work

In the last years, automated fact-checking methods democratized simultaneously to NLP. New approaches
in both fields permits to reach unprecedented results, providing solid blocks to construct systems for end
users. Before discussing state of the art fact-checking techniques, we first introduce the evolution of
Pretrained Language Model (PLMs), as this is the architecture and models used in most of our solution.
We then continue our overview by focusing on example generation for AI and specifically on obtaining
training data automatically. To conclude, we examine how existing research addresses explainability in
the context of fact-checking.

2.1 A Pretrained Language Model Era

2.1.1 Small Language Models

Natural Language Processing (NLP) has evolved significantly over the past few decades, with early
methods relying on rule-based systems and statistical approaches using n-gram [47] to model language
understanding and generation. Later on, Convolutional Neural Networks have been proposed to improve
textual understanding [48]. However, these methods struggled with capturing the complexities of human
language. The introduction of neural networks, particularly Recurrent Neural Networks (RNNs) [49],
marked a turning point in the field. Among these, Long Short-Term Memory (LSTM) [50] networks
introduced significant innovations, addressing the limitations of vanilla RNNs by enabling better han-
dling of long-term dependencies in text sequences. This allowed for preliminary advancements in text
understanding and generation. Although there have been improvements with xLSTM models [51],
Transformers - with their attention based architecture [52] - revolutionized the field, offering a new level
of capabilities and applications. With the profusion of models and frameworks available today, one can
easily find a model adapted to a specific task and fine-tune it precisely for such target [53].

Among the vast range of available models, some Small Language Models (SLMs [54]) are particularly
noteworthy. Several of them are used across this thesis given their small size that allows fine-tuning and
inference even with relatively small GPUs in reasonable time. T5 [55] (Text-to-Text Transfer Transformer)
model is an encoder-decoder model with transformer-based architecture trained on 1T tokens. One of its
variant can be fine-tuned to useful to effectively deal with tabular content. More precisely, T5 fine-tuned
on the ToTTo corpus [32], which is a dataset containing tables and their textual descriptions. When
used to fine-tune T5, it creates a model adept at interpreting table data [56]. Figure 2.1 displays an
occurrence of numerical reasoning from ToTTo. Here, the operation is a counting on the years. Thanks to
the versality of the dataset in reasoning and desribing, the T5 model fine-tuned on ToTTo is particularly
useful to deal with converting structured data to unstructured data, an unavoidable task when building
tabular-based claims. Bart [57], on the other hand, has been extended into BartNeg, a variant useful for
sentence negation with fine-tuning [58]. In our work, we use BartNeg to create example claims with
different labels when crafting a training dataset. Finally, Roberta [59], a BERT [60] based model, is
oftentimes used in a fine-tuned setting for fact-checking applications [7]. This specific fine-tuned model
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Figure 2.1: Example from the ToTTo dataset on numerical reasoning

obtains, for any given textual claim, its veracity label with a simple classification task. These SLMs
models can work in low-resources setups and are widely adopted in practice.

2.1.2 Large Language Models

Recently, significant strides have been made with more refined architectures, such as Large Language
Models (LLMs). Unlike earlier models like T5, which focus on converting text inputs to text outputs
specifically, LLMs leverage unprecedented scale and capacity to understand and generate human-like
text across a broader spectrum of applications, pushing the boundaries of what these models can achieve.
Instruction-based models [61] perform various tasks without additional fine-tuning, simply by providing
the right instructions in the prompt. Techniques have appeared to improve the results obtained with this
easy-to-apply method. Whether we consider chain-of-thought prompting [62], or expert prompting [63],
research has found ways to enhance the capabilities of those models significantly with very low additional
user effort. The main drawback of those models is their cost at inference and training. They are very
expensive to run, requiring powerful GPUs, with the smallest models operating with parameters going
from few billions [64] up to the hundreds of billions [65]. Furthermore, leading LLMs such as GPT-4 [9]
are not open-weighted and require payment through an API. Some open-weights models are worth noting,
such as LLaMa2 [66] and LLaMa3 from Meta, trained on 2 trillion tokens. A common limitation
of those models is that they cannot be easily retrained for specific applications or domain, leading to
solutions such as Retrieval-Augmented Generation (RAG), to provides access to information of events
subsequent to the model’s training [67].

The list of existing LLMs keeps growing daily. Even though we do not exploit them in our work, it is
worth mentioning Claude [68], Gemini [69], and Phi-3 [70]. To make the best choice among all those
candidates, several studies compare results obtained by these models on different tasks [71, 72].

In a fact-checking context, those versatile models can be used for any step of the pipelines: generation
of a synthetic dataset [73], fact-checking, and explainability [44]. However, even if they can be used
easily, they are often not competitive with models tailored (with fine tuning) towards a specific task, as in
out-of-domain datasets [11].

2.1.3 Fine-tuning

Fine-tuning PLMs is a popular approach to adapt the models to specific tasks or domains, as it allows
specializing general-purpose models to effectively handle niche areas. SLMs and LLMs can be fine-
tuned, with the latter usually involving quantization techniques to manage their important number of
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parameters [74]. Techniques such as Low-Rank Adaptation have also gained traction as they allow more
efficient updates to the model without retraining entirely the large network [75]. The fine-tuning process
can significantly improve performance especially in domain-specific contexts [76]. This adaptability
makes fine-tuning a vital technique for enhancing the utility of PLMs in tasks such as fact-checking.

Specifically for LLMs in their instruct variant, techniques appeared to counter-balance cases where
performing an actual fine-tuning is not feasible. The difficulty might arise from the size of the model, or
the lack of training examples. Those techniques include few-shot learning [12] and demonstration based
prompting [77, 78]. In the former, we provide in the prompt examples of inputs and the desired outputs.
For the latter, the examples are more structured with explanations.

2.2 Fact Checking

Fact checking has a long historical precedent, traditionally being the responsibility of editors and human
researchers in every newspaper to ensure the accuracy of published content [79]. Here we focus on
Computational Fact Checking, a field that has appeared in the last decade to assist human fact-checkers
in their tasks. But what is fact-checking?

Fact-checking is the task of verifying the veracity of a given claim. Fact-checking has its own
terminology. Misinformation can be defined as false or incomplete information that is generated or spread
by a person who believes it to be true [80]. Disinformation, on the other hand, refers to the deliberate
dissemination of false information, with the intent to mislead [3, 81].

Evidence 
Retriever Verifier ExplainerClaim 

retrieval

Output

Label

Justification

Figure 2.2: Standard fact-checking pipeline

Figure 2.2 presents a traditional fact-checking pipeline, that can apply both for human and computa-
tional fact-checking. It starts with retrieving claims that are worth checking, for example from the speech
of a politician or from an article online. Finding check worthy claims [82], and finding which claims
have already been fact-checked [83], are important tasks as misinformation can spread six times faster
than real news [84], requiring quick action. To help deciding which claims are worth checking, one can
label the harmfulness level of refuted claims [85]. By interviewing experts, frameworks to categorize
misinformation types and rank their threat level have been proposed [81].

Once a claim is noted check-worthy, the next action is to check its veracity. This step requires
first to retrieve evidence and then validate the claim against the evidence to assess if the former is
accurate [86]. When available, the evidence is complemented with information on the author or the time
of publication, as the context brings important information to assess the veracity of a claim and it should
not be neglected [81].

Once the checker, human or virtual, is able to give a label to the claim, they produce an explanation.
The explanation has the objective of convincing the user to trust the label, basing on the evidence put
together [87, 41, 88]. Justification should not be neglected, a number of works [89, 90] emphasize how
difficult it is to convince user of a fact-checking results without justification. Failing to provide faithful
justification can backfire against the fact-checking output [33]. Close to justification, analysing the
motives behind disinformation is an important feature of the pipeline [81]. While it is a common task for
fact-checkers, to the best of our knowledge, no fact-checking model is able to help mitigators on it.
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Among the main challenges encountered by fact-checkers, the need for more automated procedures
is the most important [91, 33]. This is motivated by the amount of content to monitor, which overloads
human fact-checkers. We discuss next the main resources that have been proposed to support fact-checkers
in their work. While the Claim retrieval step is important, we focus our work in this thesis on three
modules in the Figure 2.2 : Evidence retrieval, Verification, and Explanation.

Later in this chapter, we present related methods for synthetic dataset generation, that help building
qualitative fact-checking models. We then conclude discussing techniques to explain the output of
fact-checking models. All together, these contributions are a step forward helping fact-checkers with the
huge amount of claims they have to check.

2.2.1 Automated Fact Checking Overview

Automated Fact Checking (AFC) can be decomposed into several steps, each step having its own
particularities [5]. In this part, we report an overview of those steps.

As for manual annotators, an automated fact-checking pipeline starts by finding check worthy claims,
before retrieving evidence for those, predicting a label, and finally providing a justification [33]. As
justifications are important, ideally, we want AFC systems that are explainable, i.e., they produce a
verdict for the given claim and can explain it. However, most existing AFC systems are based on deep
learning solutions, such as fine-tuned models obtained with transformers. As those can be considered a
“black box” model because of their complex and large architecture, they are not naturally explainable.
While some techniques try to explain them by exposing their weights [92], others make the decision-
taking understandable by using logical systems [93], as we will see later on in the explainability section.
However, when coming to provide the user a convincing justification, for example by exposing the small
set of impactful evidence that drove the outcome, those systems fail short.

AFC systems require datasets to be trained or tested on. Some work tried to craft claims from question
answering forum [94], as we also do in our creation of an annotated dataset (MMFC). Some datasets are
built collecting claims manually from humans [86, 7]. Those datasets serve to train and test fact-checking
systems, or even to craft explainability systems. We present other datasets, specific to our tasks, in the
next section.

Automated Fact Checking faces many challenges when deployed in practice. Ambiguous claims are
an open problem for AFC systems [95, 96]. Claims can be misleading, e.g., “I never lost any chess game”
while the speaker never played chess. Disinformation posts often attempt to justify their false claims by
selectively quoting or misrepresenting qualitative scientific sources in a dishonest manner [97] – while
humans fact-checkers could tackle this issue, automated systems struggle on this task [98]. Automatic
models should in general be more accountable to ethical consideration [5] and one way of doing this is
to provide clearly the evidence used by a model. Dealing with refuted (likely false) claims is another
important challenge. AFC systems particularly struggle on refuted claims compared to human fact-
checkers [99]. Another challenge is the ability to go verification of textual claims and multi-modality
verification in general [100, 34]. Finally, trustworthiness of evidence sources [101] and bias in the way
annotators wrote claim for manually constructed datasets [102] are noteworthy challenges that human
fact-checkers need help on.

2.2.2 Datasets

Feverous [7] is a reference dataset in the fact-checking literature and one of the main resources across
this thesis. It contains manually curated fact-checking examples, each consisting of a claim, data evidence
supporting or refuting the claim, and a label. It consists of 87k claims in total, evidence can be composed
of text, tabular data only, or both, making it multi-modal. Figure 2.3 presents an example from this
dataset. To the best of our knowledge, it is the only fact-checking dataset relying on both tabular and
textual evidence, making it particularly relevant for our work. An important aspect to consider for this
type of dataset is the time needed to build it; in that case, a single annotator would need 183 workday to
write all claims. Beyond ‘supports’ and ‘refutes’, this dataset also contains a third label –‘not enough
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Figure 2.3: Example from a fact-checking dataset

information’– for the cases where the claim cannot be judged given the evidence available in the given
corpus. Examples with this labels are a small minority, but we will show that they bring interesting
perspectives in an explainability framework.

There are several other datasets worth mentioning for the fact-checking task. First, some datasets that
source their evidence on text only. SciFact [20] consists of expert-written claims grounded on abstracts
of scientific papers as evidence. It contains 1.5k claims with textual evidence and label. Fever [86]
is the predecessor of Feverous. In this dataset, the 185k human examples are again a collection of
claim-evidence pairs grounded on Wikipedia. On the other hand, some datasets contain only tabular
evidence. TabFact [21] is also based on Wikipedia, it contains 92k claims. Each claim is linked to a
whole table that serves as evidence. As the link is at the table level rather than the cell level, as opposed
to Feverous, the granularity is coarser. Finally, Infotabs [30], also based on Wikipedia, contains 16.5k
claims with table evidence, similarly to TabFact.

Claims of those datasets are designed specifically from Wikipedia, therefore, a Fact-checking model
trained on them would struggle in out of domain, real conditions. To mitigate this, authors proposed
more datasets, such as FM2 [103] and AVeriTeC [104]. The former obtains its claims from an online
competition where users build hard claims to deceive other users. The latter involves claims where the
evidence can be sourced from the whole internet, and can be retrieved with a web search.

However, existing fact-checking datasets may contain leaked evidence for claims and they may miss
sufficient evidence to refute a claim [99]. Therefore, a model trained on such datasets cannot be precisely
described as relying on evidence for two reasons. The first is that it might already have seen the evidence
in its training, and the second is that it is not feasible to correctly predict a claim as ‘refutes’ without the
corresponding evidence.

2.2.3 Checking Models

In Feverous, along with the dataset, a baseline checking system is provided. The system has the two
traditional components, as described earlier for most AFC systems. The first component is a retriever
that is fed with a claim and a corpus of documents. To retrieve evidence, the system first selects pages
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and sentences using TF-IDF, combined with a PLM to retrieve cell values from tables in the pages. The
second component is a predictor, or verifier, that also relies on a PLM oriented toward classification.
Given the claim and the retrieved evidence, it provides a verdict. It classifies the claim as either ‘supports’,
‘refutes’, or ‘not enough information’. This model is built on top of Roberta [59], fine-tuned on different
natural language inference datasets [105] before being fine-tuned on the Feverous train dataset.

Several other models have been proposed for fact-checking. Similarly to the baseline system above,
more domain-specific model can be built from existing fine-tuned encoders. For example, CT-BERT [22]
is a transformer-based model that is pre-trained on a large corpus of COVID-19 related Twitter messages.
CT-BERT is specifically designed to be used on COVID-19 content, particularly from social media.
In the opposite direction, other models use more complex and expensive agentic approaches on top of
LLMs [106]. In OpenTab [107], authors tackle both problems of retrieval and prediction using LLMs
combined with SQL. A row selector finds relevant rows for which a LLM generate queries for to answer
a question. Once the queries are run, another LLM picks the right answer from the SQL running output.
Other models involve both prediction and justification. We will deal of them in the next section.

However, even with better logical and retrieval abilities, fact-checking systems still struggle on
complex claims that involve operations such as aggregation for verification. Indeed, existing models
cannot perform calculation and computation in a reliable way. In MuMath-Code [108], the authors tackle
this issue by using LLMs and training them to generate relevant Python code to solve a target mathematical
task. Their work focus on math problem resolution and not on fact-checking. This highlights a promising
path on how to tackle this issue.

2.3 Example generation

Synthetic dataset generation has emerged as a pivotal strategy to create training data for a wide array
of applications, enhancing model robustness. It is especially effective to counter the expensiveness of
human annotation. For example, in the recent NEMOTRON-340B model [65], 98% of the instruct train
set has been generated by an 8B model. Synthetic data generation has also proven instrumental in fields
such as medical imaging and autonomous driving, where it has significantly reduced the dependency on
manually annotated datasets [109, 110].

As the effectiveness of fact-checking models largely hinges on the availability of substantial and
diverse training datasets, we discuss synthetic dataset generation for NLP. Since LLMs are getting so
powerful, one may think about using them to generate claims directly out-of-the-box. Even though our
preliminary experiment has shown their low performance out of the box for fact-checking, we could
still use them for text generation. Indeed, 150k training examples for a Chain of Thought task have
been created using as a base PDFs of math exercises [108]. Using this synthetic dataset to fine-tune a
7B model, they were able to reach state of the art in AI math Olympiad 2024. Similar exercises have
been done for other tasks such as steering LLMs to act as a tutor in assisting students [111]. This show
potential for using LLMs to create fact checking examples.

In the context of fact-checking, synthetic data generation has been pivotal in creating large-scale
datasets that help improve the performance of fact-checking models, especially in low-resource scenar-
ios [112]. Several works based on SLMs to build training datasets base their generation on existing
examples. In COVID-Fact [113], the authors create ‘refutes’ examples from ‘supports’ human-written
claims, releasing a dataset for fine-tuning models. Augmentation is another common method for extending
datasets with new examples. Data Augmentation techniques are common data centric approaches, from
Computer Vision to NLP [114]. Various techniques exist for NLP augmentation, including adding or
removing word and inserting random punctuation [115]. Even simple method deliver interesting results
on text classification tasks. There are also approaches that generate synthetic datasets even without
existing. Some are based on templates [116, 117]. In CLAIMGEN [118], the authors first generate a
question, before generating a claim out of it using a PLM and a Knowledge Graph to build a synthetic
fact-checking dataset. Similarly, other works first create questions answers pairs from Wikipedia and
then convert them into claims [119].

24



2.4 Explainability

Most fact-checking models do not provide an explanation along with their decision. However, fact-
checkers need to share with readers their interpretation of the evidence [89]. Explainable models are
crucial not only for building user trust but also for aiding readers in making informed decisions based
on transparent and understandable justifications [120, 121]. There are many possible ways in which
a model can be considered explainable, and it is a slippery concept because there is no universally
agreed-upon definition. The criteria for explainability often vary based on the context, stakeholders, and
application [122]. A model that is simple and easy to understand, such as a decision tree, might still
produce results that require domain-specific knowledge to interpret meaningfully. Thus, for different
stakeholders, a transparent model may not be equally interpretable across contexts. This variability can
lead to conflicting notions of what makes a model interpretable, making it crucial to define those systems
with caution.

There are checking systems that provide both a label prediction and a justification, motivated by
the need to display the user more than a verdict. In most cases, the explainability module is part of
the system and cannot be plugged onto a different, existing system. A first category relies on LLMs,
for example to separate a claim in subclaims, predict their labels and justifications [44]. Others use
use RAG and in context learning, leveraging LLMs to produce a label prediction for the claim and an
evidence selection [67]. However, the explanation provided by the LLM, when asked to justify a veracity
label, may not be fully consistent with the actual evidence that led the model to reach the decision. The
evidence selected for explanation might differ from the evidence the model truly relied on to make its
determination. We must also remember that systems relying on LLMs are currently expensive in terms of
cost to execute them.

Other systems rely on SLMs, where, for example, a justification is built at the same time as the
fact-checking label is produced [41]. In CURE [43], the authors rely on a SLM to infer the usefulness
of evidence at the token and sentence level. Therefore, the explanation they provide is a subset of the
input evidence. In other systems, attention weights are used to emphasize the most relevant portions of
the evidence, where justifications are often represented by scores assigned to each piece of evidence[92,
123, 124]. Another approach that is self explanatory is to use logic-based systems [93, 87], where the
explanation can then be directly retrieved from the rules used to obtain the prediction. However, these
approaches rely on Knowledge Graph, which limits their applicability in real world setting. Other systems
order the relevant subset of evidence in between the retriever and the predictor. For example, re-ranking
the evidence of the Feverous retriever model in order to provide the predictor only relevant evidence
increase the performance of the pipeline [40]. While this approach is effective to improve the accuracy of
prediction, the identified ranking of evidence does not reflect how the predictor uses the evidence, so it
cannot be used to explain the output label effectively

Ideally, a justification should explain how the retrieved evidence are used and show the reasoning
process taken to reach the verdict [33]. This in order to convey the model’s reasoning through a clear
and believable explanation. Moreover, transparent and explainable models are essential for identifying
and mitigating potential biases that might arise during the fact-checking process, thereby enhancing the
fairness of the system [125]. Following this idea, and in contrast with the approaches above, in this
thesis we tackle the explanation generation problem using popular post-hoc explanation methods for deep
learning systems, such as SHAP [45, 46] and LIME [46], which have the important property of being
usable on any system.

In the following chapters, we delve deeper into related works pertinent to the thesis’s contributions,
providing discussions and contextual analyses that highlight the significance and impact of our research.
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Chapter 3

Generation of Training Examples for
Tabular Natural Language Inference

Originally published as: Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti.
Generation of Training Examples for Tabular Natural Language Inference. Proc. ACM Manag.
Data 1, 4, Article 243 (December 2023), 27 pages. https://doi.org/10.1145/3626730

Diving into the world of synthetic dataset generation, we first start with tabular data as source. In this
work, we leverage NLP techniques with database query language, in order to generate high quality claims
for fact-checking models.

3.1 Introduction

In Natural Language Processing (NLP), a large class on natural language inference (NLI) problems aim
at classifying a given hypothesis, such as a textual statement, as true/false/unknown given some evidence.
While this is a well-studied problem for the setting with text as evidence [126], recently it has emerged a
new class of applications that focus on inference with structured data as evidence, i.e., tabular natural
language inference (TNLI). Example applications are table understanding [127, 30] and computational
fact checking, where systems label text claims according to input structured data [31, 128, 129]1.

The best solutions for TNLI are supervised. Manually defined datasets for TNLI have been proposed,
such as Feverous [7], TabFact [130], and Infotabs [30]. However, these datasets have three main issues.
(i) They cover only some generic topics with tables from Wikipedia. For example, if there is a need
for fact-checking claims for emerging domains such as Covid-19, a new annotated corpus must be
crafted by manually writing examples using the tabular reports published by governments. (ii) They
are not comparable in scale and variety to those available for textual NLI [126]. In terms of reasoning
requirements, about 80% of the examples in Totto [131] have sentences describing the data with text that
does not contain mathematical expressions, such as max, min and count, or comparison across values.
(iii) They contain bias and errors that may lead to incorrect learning in the target models [132].

The problem of the lack of labeled examples has been treated in the literature for NLI, but it has not
been tackled yet for TNLI. If some examples are given, in a warm start setting, existing NLI augmentation
methods can be used in the TNLI setting: the text part of the example can be rewritten with augmentation
w.r.t. the (fixed) data [133]. While these methods increase the number of examples, they do not generate
a new corpus that raises the variety and complexity of the examples w.r.t. the structured data, ultimately
with minor impact on the accuracy of the TNLI tasks. Moreover, in a cold start setting, where training
data is not available, there is no proposal yet on how to create annotated examples for TNLI starting only
from the tables.

1E.g., https://coronacheck.eurecom.fr
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TENET 
Name         Party    Spouse

  t1      Barack        Dem     Michelle
  t2      Donald        Rep      Melania

               t3      Nancy         Dem        Paul
Training data

TNLI 
application

Test data

Claim c: “Donald is married 
to Michelle”
Label l: Refutes
Evidence cells E: 
   t2.Name: “Donald” 
   t2.Spouse: “Melania”

Claim c:  “Barack and Nancy 
are in the same party”
Label l: Supports
Evidence cells E: 
    t1.Name: “Barack”
    t3.Name: “Nancy” 
    t1.Party: “Dem”,
    t3.Party: “Dem”

Figure 3.1: Given any table, TENET generates new training examples for a target TNLI application. The
first example has a hypothesis that is refuted according to the data evidence.

In this work, we argue that user provided tables can be exploited to generate ad-hoc training data for
the application at hand. Our system, TENET2 (TExtual traiNing Examples from daTa) generates large
annotated corpora of training examples that are complex and rich in terms of data patterns, linguistic
diversity, and reasoning complexity. Figure 3.1 shows an overview of our proposed method. The system
generates training data for the target TNLI application given only a table as input. Once the examples are
generated, they are used to train the inference model that is validated on test data.

TENET is built around three modules that cover the three main elements of a complete and annotated
TNLI example.
Data Evidence. A key intuition in our approach is that tabular data already contains rich information for
new examples. Content changes across datasets, and every relation has its own active domain. Moreover,
data relationships across entities and their properties are arranged differently across datasets. To identify
data evidence to create a variety of examples, we propose alternative approaches to select sets of cells
from the given table, including a query generation algorithm for the semi-supervised case. A query
returns a set of evidence, such as Donald and Michelle in the first example in Figure 3.1, each partially
describing an example.
Textual Hypothesis. Once the data is identified, we obtain the textual statement (or hypothesis) for the
annotated example. Given a set of cells, we generate queries that identify such data evidence over the
input table. Every query characterizes the data with different conditions (e.g., selections with constants)
or constructs (e.g., aggregate). From the query and the evidence, we create a text with a prompting
method that exploits the human-like generation abilities of large pre-trained language models (PLMs),
such as GPT-3 [134]. Our prompting leads to a variety of hypothesis that are factual, such as Barack and
Nancy are in the same party in the second example in Figure 3.1, while maximizing the coverage of the
provided evidence and minimizing hallucination.
Inference Label. Finally, we need the corresponding label for every example. While Supports examples
are obtained naturally, as the hypothesis reflects the evidence from the table, for Refutes examples we
introduce generic methods built around the idea of injecting errors in the data evidence. Once the data is
modified, the process for text generation is applied to the “dirty” data to obtain hypothesis that are refuted
w.r.t. the original “clean” data.

Our contributions may be summarized in the following points:

• We introduce an end-to-end system that generates TNLI example from tabular data (Section 3.2).
The system is generic, as it does not make assumptions w.r.t. the content of the input tables. The
architecture supports both unsupervised generations (cold start) when only tables are provided,
and semi-supervised (warm start), where some manually written examples are available. While
the former is more general, the latter generates high-quality examples even in settings where the
number of tables available for training is limited.

2Code and datasets available at https://github.com/dbunibas/tenet
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Figure 3.2: TENET overview. Existing examples are optional. Any text-to-text pre-trained language
model (PLM) can be used, e.g., ChatGPT. Any target TNLI application can be supported, e.g., tabular
fact-checking.

• We introduce algorithms for the generation of the three main components of an annotated exam-
ple: data evidence (Section 3.3), textual hypothesis (Section 3.4), and Refutes counter-examples
(Section 3.5). In every component we enforce variety in terms of data patterns and reasoning
challenges.

• We show results for five TNLI test datasets, comparing the results obtained by training with
manually written examples vs those obtained with training data generated by TENET (Section 3.6).
Training examples generated with TENET lead to reasoning models that outperform the accuracy
of the same models trained with data from human annotators in a variety of settings. We also show
that TENET’s examples can be used in test data for the validation of reasoning models.

We then conclude the paper with a discussion of related work (Section 3.7) and open research
directions (Section 3.8).

3.2 Overview of the solution

Problem Formulation. Let r be a tuple in the instance I for a relational schema R and Ai an attribute
in R. We refer with cell value to the value of tuple r in attribute Ai and with table to the instance I for
simplicity3. A textual hypothesis is a sentence in natural language.

A Tabular Natural Language Inference (TNLI) application takes as input a pair (table c; textual
hypothesis h) and outputs if h is supported or refuted by c. Data evidence is a non empty subset of cell
values from c that varies from a small fraction in some settings [7] to the entire relation in others [130]4.
Solutions for the TNLI task rely on supervised models trained with annotated examples - our goal is to
reduce the effort in creating such training data.

We consider solving the example generation problem for a TNLI application A where we are given
the label space L for A, a corpus of tables C, and (optionally) a set of training examples T for A. Every
example is composed by a quadruple (h, l, e, c) with textual hypothesis h, label l ∈ L, set of data evidence
cells e contained in one relational table c in the corpus C. We assume access to a text-to-text pre-trained
language model (PLM) M . We do not assume access to the TNLI application A at hand. In this work we
focus on L with Supports and Refutes labels only, as those are the most popular in TNLI corpora, e.g.,
97% of the examples [7].

In the warm start version of the problem, training examples for A are available and used by TENET.
In the cold start version of the problem, we drop the assumption on the availability of the examples T . In
this case, we aim at creating new training examples D for A just by using the tables in C.

Process and Challenges. TENET is designed around three main steps, as depicted in Figure 3.2.
Given a relation table c ∈ C, it first gathers the evidence (set of cells) e to produce a Supports example.
Second, to enable the generation of a Refutes example, it injects errors in table c to create its noisy version
and derive data evidence e′. Third, a textual claim (hypothesis) h is generated for every data evidence e.

3Some TNLI corpora contain both relational and entity tables, i.e., relational tables transposed with a single row. TENET

supports both, but we focus the presentation on relational ones for clarity.
4Our proposal is independent from the size of the data evidence and its retrieval.
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The quadruple (data evidence e, textual claim h, label Supports/Refutes, table c) is a complete example
for training data D for the target TNLI application A. However, the three steps come with their own
challenges.

Table 3.1: People table. Cells in bold form data evidence e1.

Name Age City Team

t1 Mike 47 SF DBMS
t2 Anne 22 NY AI
t3 John 19 NY DBMS
t4 Paul 18 NY UOL

Data Evidence. Training examples D must capture the variety of relationships in a table, such as
those relating cell values in the same tuple or attribute. An hypothesis is defined over a group of cell
values, such as the data evidence e1 highlighted in bold in Table 3.1 for tuples t1 and t2, i.e., names of
two people with different age values. Hypothesis “Mike is older than Anne” captures the relationship
across these four cell values. A data evidence with two cell values, e.g., Name for tuple t1 and Age from
tuple t2 can lead to an hypothesis, e.g., “There is a person called Mike and a person 22 years old”, but
such sentence does not capture relationships across tuples nor attributes. In general, for effective training,
the data evidence covered by the examples should cover the variety of patterns that can be identified in a
relation.

One approach for the data evidence generation is to pick different sets of cell values at random. While
this simple approach is effective and enables an unsupervised solution, there are meaningful patterns, such
as e1, that may be covered rarely by accident. One approach to improve this task and obtain meaningful
patterns with a smaller number of generated examples is to infer data patterns from human-provided
examples T , when those are available. For an example in T , we identify a query q that returns the cell
values in its data evidence as one result row. We then execute such query over the relation. The query
leads to more sets of cells (one per result row) that enable the generation of examples following the same
data pattern, for example involving t3 and t4.

Hypothesis. Given a table c and an evidence set e ∈ c, the latter can be described with a textual
sentence. However, the way a set of cells is converted to a sentence has a huge impact on the variety and
the reasoning complexity of the training data. Indeed, given a set of cells from a table, many alternatives
exist for describing it in natural language. Consider again data evidence e1 in the example. The values in
bold can be correctly described with “Mike is older than Anne." or “There are two persons with age higher
than 19.". The more alternative sentences for a given data evidence are created, the better the training set
for the target model. Unfortunately, most efforts for automatic data-to-text are focused on surface, or
look-up, sentences [131], such as “Mike is 47 years old and Anne 22.". While this kind of sentences are
fundamental, we aim at maximizing the variety in the training data. For this goal, we generate various
queries that return evidence e given c. Such queries represent different ways of semantically describing
the data. We then propose prompting methods for PLMs to generate alternative sentences to describe the
evidence set according to the semantics of the queries.

Label. By construction, the generated data evidence is coherent with the semantics expressed in
the input table. An evidence set leads to an example with a Supports label w.r.t. the data in the table.
However, applications also need examples with a Refutes label, i.e., textual claims not supported by the
input table. We tackle this problem with an error injection approach, perturbing the input table to break
the original relationships across cell values. This new version of the table is then used to identify again
an evidence set e′, which leads to a textual hypothesis that does not reflect the semantics of the original
(clean) table.
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3.3 Data evidence generation

We distinguish cold start, where training data for the target application are not available, and warm start,
where examples exist.

Cold start. Given a table c from the corpus C, a method to gather evidence is to randomly selects
subset of cell values from c. In a simple setting, the number of cells for each data evidence ei can be
picked from a uniform distribution between 1 and m, where m in TNLI datasets is usually 10 or less.
This method can be extended by profiling any available training corpus for TNLI and obtain a distribution
of the evidence size, or this can be provided by the user. For Table 3.1, a possible data evidence is the
set of cells “Mike”, “19’, “DMBS”. Intuitively, with a large number of samples, the random selection
eventually models all possible patterns in the tables.

Warm start. If there exist examples T for the application A, we can replace the random selection
with a method designed for using T . The intuition is that every example in T has a data evidence ei
that represents a human-defined pattern over the data. Our assumption is that humans express more
meaningful patterns that those that we can guess at random. Therefore, being able to capture these
patterns enables us to quickly create diverse sets of data evidence.

To identify a pattern, we resort to the task of query synthesis from the cell values in the data evidence.
Given an existing example from D, we refer to it as the seed s. An example comes with its label ls,
evidence set es, textual hypothesis hs, and the table used to verify it cs. Given the set of cell values es
and table cs as input, we want to identify the query q that outputs such es among its results. Executing
such query over the original table cs, we obtain more data evidences e1, . . . , en that follow the original
data pattern in es.

Consider again the example in Table 3.1 with cell values in bold in the first two rows (t1 and t2) as
seed data evidence es. Given such input, we want an algorithm producing a query that returns all pairs of
distinct names with their different ages, such as

q: SELECT c1.Name, c2.Name as Name2, c1.Age, c2.Age as Age2
FROM people c1, people c2
WHERE c1.Age > c2.Age AND c1.Name <> c2.Name

Table 3.2: Evidence cell values sets identified by querying cs with q derived from es.

tid Name Name2 Age Age2

e1 Mike Anne 47 22
e2 Mike John 47 19
e3 Mike Paul 47 18
e4 Anne John 22 19
... ... ... ... ..

Query q executed on the seed table cs returns the relation in Table 3.2. Each row in the query result is
a set of cells for data evidence with the same pattern modeled by the original evidence es in the seed.
Notice how es is also among the results (e1). Every row in the result of the query can be used to create a
new Supports example.

From Examples to Queries. For a given seed example, the textual hypothesis hs is available. As
there are several approaches to infer SQL queries from text (i.e., text to SQL problem, or semantic
parsing), it seems natural to apply one of those to obtain the query above. However, in our approach we
derive the query from the data evidence because text to SQL methods are not applicable to our setting.
There are three reasons to explain this failure.

First, in a text to SQL task, the input is a NL question and the goal is to obtain the corresponding
query. However, our hypothesis are factual expressions. This breaks the assumption in such methods,
which are trained on questions such as “What is the region for Kabul?” or ”What are the cities in Germany
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Figure 3.3: Evidence graphs derived from two seed examples.

with more than 10000 residents?". Also, when compared to examples in text to SQL corpora, TNLI
examples have longer sentences (average of 25 vs 12 words) and contain a larger number of entities
(average of 10.5 vs 4.3 nouns). We tested a system [135] over our hypothesis and, in a manual evaluation
of its output for 40 hypothesis, it was able to return partially correct SQL queries only in 20% of the
cases.

Second, the table structure in semantic parsing datasets is relational only, while TNLI corpora include
entity tables, which have attribute labels in the first attribute and are popular on the Web.

Third, even if existing systems could express a query to identify the data evidence es precisely, that
would not be useful for our setting. For the goal of generating more examples, we need a query that
returns the original data evidence es as one of its row results, as in Table 3.2 (tuple e1), together with
more cell sets (tuple e2, e3, . . .). The other rows are crucial in our setting as they have the information
to produce new examples that follow the same data pattern from the seed. More precisely, given a seed
example involving data evidence es and table cs, we are interested in obtaining an evidence query (or
e-query) qe that returns the cell values in es in one row of its results when executed over cs. This problem
is clearly different from general semantic parsing.

While we cannot build on existing solutions, we have the ability to access the data evidence es in
the seed example, which has precise information about the output of the query. We discuss next how to
exploit such seed data evidence to obtain the evidence query.

E-Query Generation. At the core of our solution, we rely on an evidence graph to represent
relationships among cells in data evidence es. Each node corresponds to a cell from es and has a label
with a pair of values: its attribute label and its row id. The pair acts as identifier for the cell and allows
the reconstruction of row and attribute relationships. A (directed) edge across two nodes represent the
relationship between their values, e.g., equality, difference, greater than/less than. An example graph
derived from data evidence es with tuples (Mike, 47), (Anne, 22) is reported in the left hand side of
Figure 3.3, while the right hand side reports a graph for data evidence e′s with tuples (Anne, NY), (John,
NY), (Paul, NY).

Once the evidence graph is derived, we construct the query from it by associating every tuple id
across the nodes in the graph to a tuple variable in the query, e.g., es leads to two variables in the query,
while e′s to three. These variable are used in the FROM clause, e.g., for es we get FROM people c1,
people c2. We then create the SELECT clause going over the union of the nodes and reporting each
node with its variable and attribute, e.g., for es we get SELECT c1.Name, c1.Age, . . .. Finally,
we add the conditions by navigating the edges according to their direction (equality, greater than, lower
than) and corresponding variable and add those to the WHERE clause, e.g., for es we get c1.Age >
c2.Age AND c1.Name <> c2.Name AND c1.Name <> c2.Age AND . . ..

The procedure for query generation is detailed in Algorithm 1. Consider the graph derived from data
evidence example es in Figure 3.3. This graph g, together with the table cs, is our input for the generation
of the e-query q. We initialize the three clauses qs, qf , qw of the query with keywords ‘SELECT’, ‘FROM’
and ‘WHERE’, respectively (lines 1-3 in the algorithm). We start the graph traversal from a node n (line
5), for example node with label e1.Name. We collect the tuple idx for the node (1 in the example, line
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Algorithm 1: Generate Query
Input: table cs , evidence graph g
Output: query q

1 qs=“SELECT"
2 qf=“FROM"
3 qw=“WHERE"
4 visited=[] //Set of visited edges for graph traversal
5 foreach node n ∈ g do
6 tupleIdx = n.getTupleId //Return the tuple idx for the node
7 attName = n.getName //Get the attribute name for the node
8 alias = ‘c’ + tupleIdx //Get the relation alias for the node
9 if alias /∈ qf then

10 qf += cs + ‘ AS ’ + alias +‘,’ //new relation in From
11 qs+= alias + ‘.’ + attName + ‘AS’ + attName + tupleIdx + ‘,’ //new attribute in Select
12 foreach edge e : (n, d) do
13 if e /∈ visited then
14 visited += e //add edge to visited
15 condition = e.getCondition //Get the condition (<, >, =, or <>) for the two nodes
16 qw += alias + ‘.’ + attName + condition + ‘c’ + d.getTupleID + ‘.’ + d.getName + ‘ AND ’ //new

condition in Where

17 q = qs + qf + qw //union of clauses and removal of pending ‘,/AND’
18 return q //return query

6), the attribute name (‘Name’, line 7) and the relation alias in the query (c1, line 8). The alias for node
e1.Name is not in qf , so we add it (lines 9-10). We also add the selection condition ‘c1.Name,’ - pending
commas are removed at the end (line 17). We now process outgoing edges for the node, that become
conditions in the Where clause (line 12). If an edge has not been visited, we add the corresponding
condition to the Where clause (line 16). For example, for the edge going from Node e1.Name to Node
e2.Name, we add “c1.Name <> c2.Name AND” - pending AND are removed at the end (line 17). The
resulting query is obtained by concatenating the three clauses and returning it (lines 17-18). Once a query
is derived, its execution on c gives a result table like the one in Table 3.2.

3.4 Hypothesis generation

One problem in example generation is converting to NL text the data evidence from a table. This
generation process is known as the data-to-text problem: given the data evidence, i.e. a set of cells, the
goal is to create a sentence for the given cell values faithfully. Existing solutions handle this problem
with the creation of surface sentences, e.g., for evidence (Mike, 47), (Anne, 22) they describe the cells
with a sentence like “Mike has 47 years and Anne 22.”.

However, TNLI corpora contain sentences that go beyond surface sentences. Our goal is to generate a
variety of hypotheses from the data evidence in the way they are described. For the evidence example
above, our goal is to generate also sentences such as “Mike is older than Anne." or “Mike is the oldest
person, followed by Anne.”. These more challenging hypotheses can still be verified with the same
evidence, but require more reasoning and are therefore valuable as training examples for the TNLI models.

To tackle this problem, we resort again to the expressive power of SQL. We split the generation
process into two steps: i) we compute all the queries over the table such that every query gives as result
the data evidence, and ii) for every query, we use a PLM M to generate the desired hypothesis. We
discuss these two steps next.
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3.4.1 Semantic Queries for Text Variety

Our intuition is that data evidence can be described by the several SQL queries that identify it in the table.
These queries are alternative ways to describe the data. By computing the queries, we immediately obtain
a semantic characterization that can be used to generate hypothesis beyond surface sentences. Given a
table c and data evidence e, a semantic query (or s-query) over c returns exactly e before the execution of
the aggregate functions. Notice that in this case we are not after multiple results, as in the e-query that
identifies several examples at the extensional level (over the tuples). The goal is query diversity for the
same set of cells; we want variety at the intensional level (over the data description).

Analyzing the examples in popular TNLI corpora [7, 130, 30], we identify two main types of queries.

Table 3.3: Data evidence e2 (in bold) and e3 (underlined).

Name Age City Team Salary

t1 Mike 47 SF DBMS 50k
t2 Anne 22 NY AI 50k
t3 John 19 NY DBMS 35k
t4 Paul 18 NY UOL 55k

Local s-query. This type of query leads to hypotheses related only to the values in the evidence. We
name them local, as they do not involve information outside the cells in the data evidence. Consider
evidence e1 Table 3.1; possible queries for it are:

• Surface (or Lookup) s-query: a query that selects cells only with constant selections; SELECT
c1.Name, c2.Name, c1.Age, c2.Age FROM People c1, People c2 WHERE c1.Name
= ‘Mike’ AND c2.Name = ‘Anne’ AND c1.Age = 47 AND c2.Age = 22

• Comparison s-query: a query that compares two or more rows by at least one attribute; SELECT
c1.Name, c2.Name, c1.Age, c2.Age FROM People c1, People c2 WHERE c1.Name
= ‘Mike’ AND c2.Name = ‘Anne’ AND c1.Age > c2.Age

Global s-query. This type of query generates hypotheses related to information in the entire table.
Here, SQL constructs involve constants and attributes not only in the data evidence. If we also consider
the table then more queries can be defined:

• Filter s-query: it selects the cells in the evidence according to conditions. For example, given e1
and Table 3.1, an s-query that identifies the people with AGE greater than 19; SELECT c1.Name,
c1.Age, FROM People c1 WHERE c1.Age > 19.

• Aggregate s-query: it selects the cells used in an aggregate operation. If the column is numerical,
the aggregate function can be sum, avg, count, max, or min. If the column is categorical, then only
count is used. Evidence e1 cannot be identified with an aggregate s-query. However, if the evidence
is the entire Age column, as for e2 in Table 3.3, an aggregate s-query identifies such values, as we
test the exact containment of the cell values involved in the query before the aggregate function.
E.g., an aggregate query that returns the highest age in the group is: SELECT MAX(Age) FROM
People

• FilterAggregate s-query: it selects the result of an aggregate over a group identified by a selection.
Evidence e3 in Table 3.3 contains cells (22, NY, 50k), (19, NY, 35k), (18, NY, 55k) and can be
identified by a FilterAggregate s-query stating that there are three people from NY with an average
age of 19.7 years and the minimum salary is 35k: SELECT COUNT(City), AVG(Age),
MIN(Salary) FROM People WHERE City=’NY’
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Generating s-queries. Given as input the evidence e and the table c, we want to infer every query qi
such that qi(c) = e before execution of the aggregates.

Unfortunately, the problem of synthesizing even simple queries from a subset of cells has been shown
to be not tractable [136, 137]. Our case is even more challenging as we are interested in queries with
aggregates and filters. To keep the query generation lightweight, our trade-off is to consider only the
subset of 5 possible s-query types presented above, effectively biasing the query generation presented in
Algorithm 2.

Algorithm 2: Generate S-Query
Input: set of evidence cells e (i.e., a set of tid.attr), table c
Output: sQueries

1 sQueries = [] //Output
2 eAttrs = {} //Set of attributes used in e
3 eTids = {} //Set of tids used in e
4 eAttrsTids = {} //Dictionary<attr,tids>: ∀ attr. → set of tids ∈ e
5 eAttrsVals = {} //Dictionary<attr,values>: ∀ attr. → set of values ∈ e
6 oAttrsTids = {} //Dictionary<attr,tids>: ∀ attr. → set of tids /∈ e
7 oAttrsVals = {} //Dictionary<attr,values>: ∀ attr. → set of values /∈ e
8 foreach cell v ∈ d do
9 eAttrs += v.attr; eTids += v.tid; eAttrsTids[v.Attr] += v.tid

10 eAttrsVals[v.Attr] += getCellValue(c, v)

11 foreach cell v ∈ (data \ e) do
12 oAttrsTids[v.Attr] += v.tid; oAttrsVals[v.Attr] += getCellValue(c, v)

13 n = len(eAttrs) //Number of different attributes in e
14 sQueries += new Surface(project: cells in e)
15 if NOT (sameTIDs(eAttrs, eAttrsTids) ∧ len(eAttrsTids[eAttrs[0]]) > 1) then
16 //If for some attribute there are different seleted tuple ids, only a surface query is allowed
17 return sQueries
18 foreach attr ∈ eAttrsV als do
19 comps = findAllowedOperators(attr, eAttrsV alues)
20 foreach comp ∈ comps do
21 sQueries += new Comparison(project: cells in e, condition: tid in eTids AND

generateBooleanComparisons(comp, attr, e)
22 if eAttrsVals[attr] ∩ oAttrsVals[attr] = ∅ then
23 sQueries += new Filter(project: eAttrs, condition: attr in eAttrsVals[attr])
24 sQueries += combineAggregateOperators(aggregate: eAttrs, condition: attr ∈ eAttrsVals[attr])
25 if isNumerical(attr) ∧ min(eAttrsVals[attr]) > max(oAttrsVals[attr]) then
26 sQueries += new Filter(project: eAttrs, condition: attr > max(oAttrsVals[attr]))
27 sQueries += combineAggregateOperators(aggregate: eAttrs, condition: attr > max(oAttrsVals[attr])
28 if isNumerical(attr) ∧ max(eAttrsVals[attr]) < min(oAttrsVals[attr]) then
29 sQueries += new Filter(project: eAttrs, condition: attr < min(oAttrsVals[attr]))
30 sQueries += combineAggregateOperators(aggregate: eAttrs, condition: attr < min(oAttrsVals[attr])

31 if len(oAttrsTids[0]) == 0 ∧ len(oAttrsTids[i]) == 0 ∧ len(oAttrsTids[n]) == 0 then
32 sQueries += combineAggregateOperators(aggregate: eAttrs)
33 return sQueries

We first initialize data structures (lines 1-12). sQueries contains the s-queries for the given evidence
e and table c. For each attribute in e, we keep track of the rows in the evidence (eAttrsTids), the cell
values of the evidence (eAttrsVals), the rows of the data not in the evidence (oAttrsTids) and, the cell
values in the data not in the evidence (oAttrsVals). Considering evidence e3 and table c in Figure 3.3,
eAttrsTids[Age] contains t2, t3 and t4, while oAttrsTids[Age] has the only row not included in e3 for
attribute Age, namely t1. Similarly, eAttrsValues[Age] contains the three selected values for age, 22, 19
and 19, while oAttrsValues[Age] has 47.

The data structures are used to check what s-queries can be generated for the input at hand. Surface
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Algorithm 3: combineAggregateOperators
Input: attributes attrs , possible empty condition, evidence e
Output: sQueries sQueries

1 sQueries = []; aggrAttrs = {}
2 foreach attr ∈ attrs do
3 aggrAttrs[attr] = findAllowedAggr(attr, e)

4 foreach permutation p in permutations(aggrAttrs) do
5 // p contains a list of aggr functions on different attributes attrs
6 sQueries += new Aggregate(aggregate:p, condition: condition)

7 return sQueries

s-queries can always be generated (line 14), corresponding to returns exactly the cells in the evidence.
These queries are flexible and allow us to handle any kind of evidence, while other s-queries require more
structured evidence. In particular, to generate comparison, filter, and aggregate queries, all the rows in the
evidence should have the exact same attributes selected. In the case when only one row is selected, or
some rows have different attributes, the algorithm will stop and only the surface s-query is returned (lines
15-17). To give an example, using evidence with (Mike, 47), (Paul, NY), (DBMS, 35k), the algorithm
will generate only the surface s-query.

If the check at line 15 is passed (i.e. we did not interrupt the procedure), we can produce different
s-queries. For each attribute in the evidence e, we first check if the attribute enables a comparison among
its values in e with the auxiliary function findAllowedOperators (line 19). If some comparison operators
are discovered (like <, >, =) then for each comparison (comp), we add a new comparison s-query to
sQueries (line 21). Since in a SQL query in the WHERE clause we can only define pairwise comparisons,
we use the utility function generateBooleanComparisons to generate all such pairwise comparisons
depending on the number of rows in e for the given attribute attr. This allows us to generate a WHERE
clause that involves t1.Attr comp t2.Attr . . . tn−1.Attr comp tn.Attr.

The next s-queries require a filter over one attribute. Such a query can be generated whether a group
of values is selected together for an attribute. More formally, we check if, for an attribute attr, none
of the values selected in e are present in d \ e (lines 22-23). In our example e3, for attribute City, the
evidence contains the value NY , and it can be considered as a filter since all rows with the NY value for
City are selected. The corresponding WHERE clause is City = “NY”. Another filter is for a numerical
attribute can be triggered when values in the evidence are below/above a constant, e.g., attribute Age in
e3, containing all people younger than 47. This check (lines 25 and 28) verifies that all the values in the
evidence are greater (lower) than the values for the attribute outside the evidence (d \ e).

In addition, once a Filter s-query is generated, we check if an aggregate operation can be used to
combine them in a FilterAggregate query (lines 24, 27, 30). An additional function, combineAggregate-
Operators performs this check.

Notice that combineAggregateOperators generates all the permutations for the allowed aggregate op-
erations on given attributes and generates a set of s-queries (Algorithm 3). In particular, for each attribute
attr, we first compute the allowed aggregate operations (line 3). Given an attribute, findAllowedAggr
returns count() for categorical attributes and count(), avg() for numerical attributes; if e contains also the
min/max value in d then it also returns the min()/max() function. We then generate all the permutations
of the attributes and the aggregate operation for each attribute. For example, evidence e3 in Table 3.3
admits a count(), avg(), and min() for the Age and Salary attributes, while allowing only count() for
City. Thus possible permutations generated include [count(Age), count(City), count(Salary)], [avg(Age),
count(City), count(Salary)], [min(Age), count(City), avg(Salary)].

Finally, in lines 31-32 of Algorithm 2, we check if an entire column is selected, and for them, we
generate multiple Aggregate s-queries with the same approach described above.

We are not claiming that the list of s-query types above is exhaustive and covers all the possible
queries that identify the evidence. For example, we are not covering the “Order by” s-query, e.g., the one
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for e1 that identifies the top 2 people with the highest AGE: SELECT Name, Age FROM People
c1 ORDER BY Age DESC LIMIT 2, leading to the sentence “Mike and Anne are the two oldest
persons.", or “Group by” s-query, where one might want to compare aggregate values between two
groups to generate a sentence like “People in DBMS team have an average salary higher than people from
AI team.". However, our study of the TNLI corpora shows that the five types above cover most of the
hypotheses used in practice. In Section 3.6.3, we show how additional s-queries have a small positive
impact in the accuracy on the target TNLI application.

Table 3.4: S-Queries generated by TENET.

Name Example

Surface SELECT a1.Name, a2.Name, a1.Age, a2.Age
FROM People a1, People a2
WHERE a1.tid = t1 AND a2.tid = t2

Comparison SELECT a1.Name, a2.Name, a1.Age, a2.Age
(<, >, =) FROM People a1, People a2

WHERE a1.tid = t1 AND a2.tid = t2
AND a1.Age > a2.Age

Filter SELECT Name, City FROM People
WHERE City in “NY”

FilterAggregate SELECT max(Age) FROM People
WHERE City in “NY”

Aggregate SELECT count(Name), avg(Age) FROM People

Table 3.4 reports the different type of s-queries that might be discovered from Algorithm 2, together
with some examples.

3.4.2 Text Generation

Once we know for each evidence the possible s-queries, we generate textual sentences that form the
hypothesis for the TNLI example.

We exploit the text generation capabilities of pre-trained large language models (PLMs), such as those
in the GPT family [138]. A PLM is trained over huge amounts of textual data, which gives it proficiency
in writing, and on source code, which gives it the ability to be instructed with functions.

Table 3.5: Functions used by TENET in ChatGPT prompts.

S-Query Function Example

Surface read(attrList)[*] Anne is 22 years old
and Paul is 18.

Comparison compare(op, attr) Anne is older than Paul.

Filter filter(cond, attr) Anne, John and Paul
are from NY.

FilterAggregate filter(cond, attr); The oldest person
compute(func, attr)=val from NY is 22 years old.

Aggregate compute(func, attr)=val Mike is the oldest person.

For each s-query, we define a task that describes the text generation function that we want to use.
Such generation functions are defined by us with the prompts for the PLM. The text generation functions
mapped to the relative s-queries are reported in Table 3.5 with examples of the text they generate. The
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op parameter is related to operators =, < and > for numerical attributes, while = only for categorical
attributes. The cond parameter is the condition used in the WHERE clause. The func parameter refers to an
aggregation function among count, avg, sum, min, or max. For example, given the Filter s-query SELECT
Name, City FROM People WHERE City in (“NY”), we derive the operation filter(in
(“NY”), City).

To avoid hallucination of the model in calculating aggregate functions, for compute functions
we calculate the value val from the evidence and feed it to the PLM; this enables us to avoid such
computation with the PLM, as it brings little to this task. For example, given the evidence e3 in Table 3.3,
we explicitly calculate the avg for the attribute Age, and use the calculated value in the operation
compute(avg,Age)=19.66. This helps the PLM to express a sentence like “The average age is 19.66”.
In general, our approach based on evidence and s-queries returns factual hypothesis, while a baseline
solution based only on prompts for the PLM create examples with hallucination that ultimately lead to
worse performance in the target TNLI task. We report on this comparison in Section 3.6.3.

Table: Cars
Model | Year
—————————
500 v3 | 2012
Clio v6 | 2018
—————————

Function:
compare(>,Year)

Example:
“The 500 v3 is an older model than the Clio
v6”

Table: Table Name
Attr1 | Attr2 | ... | Attrn
—————————
v11 | v12 | ... | v1n
...
vm1 | vm2 | ... | vmn
—————————
Function: (Desired verbalization expressed
by function f)
Example:
(it returns a textual sentence using v11 ... vmn
according to f)

Figure 3.4: One of the 16 examples for in-context learning (left) and generic serialization of the evidence
in the prompt at test time (right).

Since in most cases PLM cannot be fine-tuned, as they are offered with APIs, we opt for using them
with a prompt with some examples (few shots, or in-context learning in NLP terminology) [139]. The
prompt consists of two parts.

The first part is fixed and contains 16 examples of how to verbalize the data evidence with an operation.
For every example, it reports the table name and the text linearization of the schema [29]. Then each row
of the evidence is linearized in the same way. If some attribute lack a value in the evidence, we add “null”
as the cell value. Finally, we define the expected textual hypothesis. For example, a comparison operation
is reported in the left hand side of Figure 3.4 for a data evidence with two tuples and two attributes.

The second part reports unseen data evidence and an operation to steer the model to generate the
desired text. The right hand side of Figure 3.4 shows the input before instantiating it with the table and
operation at hand.

3.5 Refutes examples generation

The methods above produce Supports examples, i.e., the label states that the data evidence entails the
textual hypothesis. This is true by construction, as the hypothesis are derived directly from the evidence.
However, TNLI applications have also Refutes examples, where the evidence contradicts the hypothesis.
Our approach to the generation of Refutes examples relies on our method for generating the Supports
ones. We generate a Refutes example for every Supports one. Given some evidence e from the original
input table c, we inject noise in a copy c′, so that we derive a new evidence e′. An hypothesis h′ is then
derived from e′. Hypothesis h′ is a Supports sentence for c′, with evidence e′, but it is also a Refutes
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sentence w.r.t. the original (clean) table c and evidence e. The new example is the tuple with label Refutes,
c, h′ and evidence e.

Table 3.6: A modified version of the “People” table with shuffling of the original “Age” values and one
injected tuple.

Name Age City Team

t′1 Mike 18 NY DBMS
t′2 Anne 19 NY AI
t′3 John 22 SF DBMS
t′4 Paul 47 NY UOL
t′5 Mary 17 NY SYS

Consider again Table 3.1, denoted as c and the evidence e=(Mike, 47), (Anne, 22). First, we create a
copy c′ of the table and manipulate it to inject noise. We shuffle in c′ the values for 50% of the attributes
(we discuss in Section 3.6.3 how we set this threshold) involved in e. The resulting table is reported in
tuples t′1 - t′4 in Table 3.6, only Age has been shuffled. This step breaks the original relationships across
cell values at the tuple level. We then either introduce a new tuple in c′, such as t′5, or remove from c′

one tuple at random. This step changes the cardinality of the tuples, which is key for s-queries involving
aggregates, and introduces out-of-domain values. The generation of the new values depends on the type.
For categorical attributes, we use a PLM, which generates “Mary”, “NY” and “SYS” for tuple t′5. For
numerical attributes, we generate lower/higher values than the min/max value for every active domain -
these new values break the original min/max/avg property for the updated attribute, e.g., the new min
value “17” in t′5. Finally, we remove from c′ any row that appears in c.

Given the new “noisy” table c′, we directly apply the generation of Supports claims from Section 3.4.
We use evidence e to generate an e-query q over c, then we use q to obtain the new evidence e′. Finally,
we generate h′ from e′ and c′. Hypothesis h′ is supported by evidence e′ (table c′), but it is refuted by
original evidence e (table c). For example, a claim may state “Mike is younger than Anne”, which is
refuted as hypothesis w.r.t. the data in Table 3.1. As another example, consider the evidence e2 for the
FilterAggregate s-query (Table 3.3), which takes all Age values. In this case, there is no shuffling, but the
new evidence e′2 includes 17. Therefore a Refutes claims for operation Max cannot be generated, as (47)
is a valid evidence in e2, but an hypothesis involving Min can be generated, as (17) is not in e2.

3.6 Experiments

We organize our evaluation around four main questions. First, does TENET automatically generate
training data of quality comparable to those manually created by human annotators? Second, what is
the impact of the information stored in the PLMs at the core of most inference models for TNLI? Third,
what is the impact of the models and parameters used in TENET? Fourth, what are the costs of TENET, in
terms of execution time and budget for external APIs?

Before getting into the discussion of the results, we present datasets, models, and metrics used in the
evaluation.
Train Datasets. We use three datasets from the TNLI literature: FEVEROUS [7], TABFACT [130], and
INFOTABS [30]. Each dataset comes with one subset (split) of examples for training and one for test.
Every annotated example consists of a table, a textual hypothesis, data evidence (subset of the table), and
a Supports/Refutes label. All examples are manually written by humans. We report dataset statistics in
Table 3.7; “Avg # of row/attributes” is per table.

As a baseline, we extend the original training datasets with an augmentation for text [140]. Given an
example, we produce seven new versions of it by changing the textual hypothesis using back translation,
wordnet, word2vec, synonyms, random word swap, random word deletion, random word insertion (Aug).

We also produce training datasets for our techniques. Given a corpus of tables, we always generate
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Table 3.7: Statistics for the datasets. All datasets except OUTOFDOMAIN and SWAPPED have train and
test splits.

Source # of Avg hyp. Avg # of
examples length row/atts

Tr
ai

n FEVEROUS Wiki 10k 122.0 10/3
TABFACT Wiki 92k 73.0 14.5/6
INFOTABS Wiki 16.5k 55.5 14.5/2

Te
st

FEVEROUS Wiki 1k 123.2 10/3
TABFACT Wiki 25k 70.8 14.5/6
INFOTABS Wiki 7k 57.1 15.5/2

OUTOFDOMAIN UCI 0.15k 45.0 16/8
SWAPPED ¬(Wiki) 1k 105.0 10/4

the Tenet Cold (TenetC) dataset (Section 3.3). If examples have annotation for data evidence, we can
also generate the dataset for Tenet Warm (TenetW). Hypothesis are created with s-queries (Section 3.4)
and negative examples are generated according to Section 3.5. For each given table, we produce three
Supports and three Refutes hypothesis, therefore all TENET datasets are balanced in terms of labels.

For every table, TENET creates one example with a surface query (cause those are the most popular
kind in the corpora and can always be generated) and two for the two rarest s-queries among the other
four types (Comparison, Filter, Aggregate, FilterAggregate). Table 3.4 reports s-queries from the more
commonly observed in the corpora to the rarer. If the complex s-queries cannot be generated, the
remaining examples are obtained with surface queries.
Test Datasets. The datasets from previous papers (FEVEROUS, TABFACT, and INFOTABS) have their own
testing datasets with annotated examples manually written by humans (statistics in Table 3.7). However,
as all these models use tables from Wikipedia, we create also a test dataset with eight out-of-Wikipedia
(OUTOFDOMAIN) tables selected from different sources. Finally, TENET can go beyond its role in the
training step and be used also to generate test datasets, which is useful for evaluation of existing methods.
In this spirit, we also generate a test dataset, SWAPPED, as described in Section 3.6.2.
Inference Models for TNLI. In this work, our goal is to show the quality of automatically generated
training data. We therefore do not propose new TNLI models and adopt the ones in the original papers.
In FEVEROUS, the inference predictor is a RoBERTa (large) encoder fine-tuned for classification on
multiple NLI datasets [141]. In TABFACT, the inference predictor is built as a program synthesis problem,
modeled as a latent program search followed by a discriminator ranking [142]. In INFOTABS, the inference
predictor is also a RoBERTa (large) encoder fine-tuned for classification.
Pre-trained Language Models. For the hypothesis generation (Section 3.4) and the error injection
(Section 3.5), we assume that a pre-trained language model (PLM) is available. We tested several PLMs
and use ChatGPT as default. We report a comparison of T5, fine-tuned on ToTTo, and ChatGPT in
Section 3.6.3.
Metrics. We report accuracy for the TNLI task: how many Supports/Refutes classification decisions are
correct over the total number of tests. We also report execution times and cost (for external APIs) in
running the models (Section 3.6.4).

3.6.1 Quality of Training Examples

We start by comparing results with training data with examples generated from the same sets of tables.
The tables are taken from FEVEROUS, TABFACT, and INFOTABS datasets. As state of the art solutions,
we directly use the manually written examples (Human), eventually augmenting them (Human+Aug). For
TENET methods, we take the corresponding tables of the original training data and generate examples
with TenetC and TenetW. For every experiment, we increase the number of input tables, collect or generate
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Figure 3.5: Inference accuracy for different training datasets over the FEVEROUS test data. The x axis is
the number of tables in training set. Human is FEVEROUS original training data.

Figure 3.6: Inference accuracy for different training datasets over the FEVEROUS test data. The x axis is
the number of examples in training set. Human is the FEVEROUS training data.

the examples, and run the inference model to compute the accuracy on the test data. For example, given a
subset of the original examples in FEVEROUS training corpus, TenetC generates evidence and hypothesis
using only the table in every example, while we use the original example for Human. We finally assess
the quality of the examples, both original and generated, on the same test splits.

The TNLI accuracy results in Figure 3.5 for the FEVEROUS test data show the impact of examples,
which is a proxy for their quality. Up to 700 input tables, both TENET-generated datasets outperform the
examples written by humans, with more than 20 absolute points in cases with less than 150 tables. Even
with only 200 tables available for the training step, both TENET example generation methods achieve an
accuracy over 0.8 on the (manually crafted) original test data. If we augment the Human examples with
those generated by TenetW, we observe accuracy at 0.8 even with only 150 tables in the training corpus.

TENET benefits by the fact that for every input table, it extracts one data evidence and generates
three Supports and three Refutes examples, while the humans wrote one example per table. To make a
comparison over the same number of examples, we report the same experiment, but with results plotted
according to the total number of examples, regardless of the number of tables.

Figure 3.6 compares the results obtained with sets of examples of the same size, but from different
methods, on the FEVEROUS test data. TENET’s examples (both TenetW and TenetC) lead always to higher
accuracy than the original examples with traditional augmentation (Human+Aug). Moreover, TENET’s
examples lead to comparable accuracy w.r.t. the human-written corpus up to around 1.5k examples. After
this value, the results are quite stable for our generated datasets, while they slowly increase for those
written by humans. This is consistent with Figure 3.5, as Human outperforms TENET when using at least
800 tables. Our explanation is that there is a long tail of reasoning cases that are not covered by the five
s-queries that we have designed, e.g., FEVEROUS test data has a small fraction of hypothesis involving
arithmetic operations. While new s-queries can be added, the plot shows that with only five types we can
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Figure 3.7: Inference accuracy on FEVEROUS when training with the union of human examples (100 to
400) and TENET generated examples (0 to 1000). The first bar is for Human examples only, other bars
are for Human+Tenet examples.

already obtain automatically very good training datasets.
Figure 3.7 reports the results for the training done with a combination of Human and Tenet examples

for FEVEROUS. We report the impact of different numbers of generated examples. Increasing the size
of the generated training data increases the accuracy on the test set. The benefit of TENET examples is
higher with smaller numbers of human training examples.

Table 3.8: Accuracy on FEVEROUS test set augmenting the original train set with TENET and text
augmentation examples. TENET-X stands for examples generated from X tables.

Train set Augmented Augmented Size Accuracy

FEVEROUS - - 0.909
FEVEROUS TENET-50 153 0.910
FEVEROUS TENET-100 321 0.916
FEVEROUS TENET-200 683 0.911
FEVEROUS TENET-300 1018 0.917
FEVEROUS TENET-400 1357 0.910

Table 3.8 reports results for a combination of Human and Tenet train examples on FEVEROUS. We
augment the entire original training set with TENET’s examples using an increasing number of seed tables.
The best accuracy is obtained with 300 tables (1018 training examples) and an accuracy of 0.917. A
larger number of generated examples has a smaller impact. We observe a similar pattern with the baseline
text augmentation [140]: adding all augmented examples to the original human examples leads to a lower
accuracy (0.908).

Figure 3.8 reports the results for the accuracy of the inference model for INFOTABS and TABFACT test
datasets. For both datasets, the examples generated by human annotators do better than TENET examples.
One difference from FEVEROUS is that these datasets have up to eight examples per table, therefore the
accuracy grows faster with more tables compared to Figure 3.5. For TABFACT, the difference is a few
points, while for INFOTABS is more significant. This is because the latter contains only entity tables
derived from Wikipedia info-boxes. Those are equivalent to tables with a single row and many attributes,
thus not suitable for s-query generation and our algorithm defaults to surface hypothesis for these cases.
Finally, INFOTABS examples use the whole table as data evidence, which explains why we cannot derive
e-queries for TenetW for it. However, we remark that our examples are generated without involving
humans, therefore with a cost that it is a fraction of the one to obtain the original training datasets.
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Figure 3.8: Inference accuracy for different training datasets over INFOTABS (left) and TABFACT (right)
test data. The x axis is the number of tables in training datasets. The red curve corresponds to Humans,
the blue curve to Tenet Cold, and the black curve to Tenet Warm.

3.6.2 Impact of Information from Pre-training

In this experiment we measure the impact of the knowledge stored in PLMs. Are the inference models
really using the input evidence and tables? Or they rely on the information in the PLMs?

Indeed, PLMs have been trained with large amount of information, including dump of the Web and
Wikipedia. With existing datasets derived from Wikipedia, it is not obvious how much of the inference
decision comes from the information gathered in the weights of the large language model and how much
is coming from the evidence and table passed as input for the TNLI task.

To enable such analysis, we use two test datasets: OUTOFDOMAIN and SWAPPEDFEVER. We design
OUTOFDOMAIN with five tables from the UCI repository [143] (Abalone, Adults, Iris and Mushroom)
and three sports tables used in NLP text generation challenges [144]. Hypothesis and labels are manually
crafted by the authors with the generation process outlined in the Feverous paper [7].

For SWAPPED, the goal is to create hypothesis that contradict the information in Wikipedia. For this
task, we create hypothesis that are supported by the tables given as input, but are in contradiction with
the original Wikipedia tables, which are likely present as learnt information in the PLMs. To create this
dataset, we take tables O from the Feverous corpus and create Supports hypothesis A with our methods.
We then inject errors in the tables, obtain tables O′, and create Refutes hypothesis B. We then swap
the labels in the examples. We change the labels of the original Supports hypothesis A, as they are
now Refutes for tables O′, and do the same for B. The (now) Supports hypothesis in examples B are
supported by the provided tables, but are in contradiction with the original Wikipedia tables that have
been used in the pre-training of the PLMs.

For this experiment, we train the FEVEROUS inference predictor on TENET training data and on the
original FEVEROUS datasets as in the previous section.

Table 3.9: Accuracy results for test datasets OUTOFDOMAIN, derived from non-Wikipedia tables, and
SWAPPED, with examples contradicting information in Wikipedia tables. Training examples (5k) derived
from FEVEROUS tables.

Generated Train Set FEVEROUS Train Set
Test set TenetW TenetC Human Human+Aug

OUTOFDOMAIN 0.84 0.80 0.77 0.76
SWAPPED 0.65 0.65 0.64 0.61

The results in Table 3.9 show two important insights. First, accuracy results are lower compared to the
original datasets from the literature. This is because those inference tasks are defined over concepts and
entities that are already “known” to the PLMs used in the inference. This is evident with the SWAPPED

dataset that contradicts the original knowledge in the Wikipedia tables used in the pre-training of the
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PLM. Models that rely on the provided data evidence, rather than PLMs’ knowledge, are more robust
when executed on new domains.

Second, the model trained on TENET data outperforms the models trained with humans’ examples.
Our examples better steer the inference model into learning to use of the data evidence, rather than the
internal information in the PLM. This is especially important for domain-specific tables that are covering
entities not on the Web, with an improvement of 7 absolute points with TenetW’s model over the humans’
model.

3.6.3 Ablation Study

In this section, we first measure the impact of the PLM on the quality of the generated examples. We then
study the impact of parameters used across the data evidence and hypothesis generation.
Role of PLM. As a baseline for the first experiment, we report for the training data produced directly by
a pretrained language model for this task (PLM). We use ChatGPT to automatically generate hypothesis
from tables given only a prompt with the instructions and examples. For each table of a given dataset,
ChatGPT generates (i) three Support and three Refuse hypothesis using data in the table, and (ii) the set
of cells used to produce each sentence (evidence). Tables are presented using the same linearization of
Figure 3.4.

Table 3.10: Accuracy results with different PLMs for example generation. Same inference model trained
on examples from 300 tables from FEVEROUS train corpus.

TenetW Train TenetC Train PLM Train
Test set T5 ChatGPT T5 ChatGPT ChatGPT

FEVEROUS 0.79 0.80 0.81 0.82 0.70
TABFACT 0.60 0.65 0.56 0.62 0.65
INFOTABS n.a. n.a. 0.57 0.51 0.63

OUTOFDOMAIN 0.81 0.84 0.80 0.80 0.69
SWAPPED 0.67 0.65 0.63 0.65 0.58

Table 3.10 shows that TENET generates valid examples independently from the PLM used in the
hypothesis generation. This applies with T5, fine tuned on ToTTo [131], and with ChatGPT, with
in-context learning. PLM creates useful examples, but without the guide of the data evidence and the
s-queries, it is prone to hallucinations that degrade the quality of the training data. In other words,
generating examples out of the PLM is doable but TENET methods get higher quality. On average, TENET

with ChatGPT has slightly better results because of its superior ability in text generation. However, using
OpenAI API comes with its own issues, in terms both of data privacy, usage cost, and execution time
(Section 3.6.4).

Figure 3.9: Impact of 1, 2, 5 data evidence per table in example generation. FEVEROUS test data, 3
s-queries per evidence.
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Figure 3.10: Impact of 1, 3, 5 s-queries per table in example generation. FEVEROUS test data, 1 data
evidence per table.

Table 3.11: Accuracy results with different thresholds for the # of shuffled attributes in Refutes example
generation.

Test set Type Quality Quality Quality
with τ = 0.25 with τ = 0.5 with τ = 0.75

FEVEROUS Cold 0.74 0.77 0.69
FEVEROUS Warm 0.74 0.77 0.74
INFOTABS Cold 0.54 0.57 0.54
TABFACT Cold 0.50 0.62 0.54
TABFACT Warm 0.52 0.65 0.57

Impact of Parameters. Figure 3.9 shows the inference accuracy when varying the number of results
taken from the evidence-query for every table. The experiment is run over the FEVEROUS test data, with
tables in its training data, and with TENET models that use three s-query for every data evidence. Results
show that a larger number of data evidence per table leads to better results with very few tables, but has
marginal gain with an increasing number of tables in the training. We explain this behavior with the fact
that using examples from more tables is more beneficial than using the multiple examples from the same
table. For a trade off for quality and cost of example generation, we set one data evidence as default.

Figure 3.10 shows accuracy results when varying the number of s-queries executed for every data
evidence. The experiment is over the FEVEROUS test data, with tables in its training data, and with
TENET models using one result from the e-query. Results show that more hypothesis lead to better results
on average, especially with small numbers of tables. As a trade-off between cost and quality, we set three
s-queries as default.
Impact of different thresholds in refute example generation. To identify the right percentage of
attributes to shuffle, we test different threshold τ values (Section 3.5). We use 200 FEVEROUS tables and
generate positive and negative examples with TENET. We then train the model and measure the inference
accuracy. Results in Table 3.11 show that 50% leads to the best quality.

Table 3.12: Accuracy results with two additional s-queries.

Test set Type Standard New Improvement
S-Queries S-Queries

FEVEROUS Cold 0.77 0.78 +0.01
FEVEROUS Warm 0.81 0.83 +0.02
INFOTABS Cold 0.59 0.59 0
TABFACT Cold 0.65 0.63 -0.02
TABFACT Warm 0.65 0.66 +0.01
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Impact of new s-queries. To define the impact of adding new s-queries, we extend the set in Table 3.4
with two new s-queries: ranked, which uses the RANK() function in Postgres to craft examples such as
“John is the second youngest person”, and percentage, which calculates the difference in % for pairwise
numerical values to generate examples such as “Bob earns a salary that is 50% higher than John’s”. These
kinds of examples are present in a small percentage in TNLI corpora. We use such new s-queries over 200
Tables and extend the original TENET training data with the corresponding training examples. Accuracy
results in Table 3.12 show that adding examples from the two new s-queries brings a small gain in quality.

3.6.4 Execution Time and Cost

Figure 3.11: Average time for generating one example with Cold and Warm approaches. For each
scenario is reported the time taken by each generation step, with total time on the top of each bar. Time in
seconds and reported in log scale.

We measure TENET execution time to generate training data. We create five samples of 200 tables
from FEVEROUS and execute the full pipeline with Cold and Warm approaches. We report in Figure 3.11
the average time in generating a single training example. We partition the overall time across the
generation of the new evidence (blue, bottom), the hypothesis generation (orange, middle), and the text
generation with ChatGPT (green, top). The average time does not change significantly between the cold
and warm approaches. In the warm approach, more time is spent in the evidence generation. Indeed,
generating and executing the e-queries takes more time than random selection. On the other hand, using a
seed evidence in the warm approach leads in most cases to more compact evidence, involving a smaller
number of attributes compared to random. The cold setting, due to its random nature, involve several
attributes, and thus generates more s-queries to check. The most expensive step in our approach (97% of
the execution time) is due to text generation. This heavily depends on the ChatGPT availability and it
takes on average from 1.5 to 2.2 seconds per request.

Table 3.13: Costs of generating hypothesis with ChatGPT.

# Tables # Positives # Negatives Total # Price ($)

Warm 200 1670 1536 3206 11.6

Cold 200 1655 1580 3245 11.7

Table 3.13 reports the costs of generating hypothesis with the OpenAI API and ChatGPT for 200
tables. The cost linearly depends on the number of generated examples, as ChatGPT calculates the costs
based on the size of the input prompt together with the size of the generated output. On average the
generation of one example costs 0.0037$. The total cost of all the experiments reported in this paper is
about $130 for 36K generated examples. Using a smaller PLM, such as T5, on a local machine (Apple
M1 Max laptop) does not have any API cost and takes on average 1 sec for the text generation step of one
training example. However, the quality of the generated text is slightly lower than ChatGPT.

In conclusion, TENET generates a training example with a lower time and cost w.r.t. those required
by human annotators.

45



3.7 Related works

TENET is a system spanning different problems. We start discussing augmentation and generation of text
examples. We then focus on extracting SQL statements from NL text and from query results. Next, we
cover text generation from tabular data. Finally, we discuss applications in Tabular Natural Language
Inference (TNLI).
Augmentation of Textual Examples. In augmentation, the goal is to provide additional annotated data
by modifying existing examples. In one baseline, we use a method that augment examples to create more
hypothesis for the same tabular data evidence.

Augmentation can be performed on the data or on the feature space [133]. In the data space, several
works operate at the character level [145, 146] by swapping, removing, adding letters; injecting common
spelling mistakes; or replacing words with abbreviations, e.g., “I’m”. Approaches that operate at the
word level, use word swap/deletion [147, 148, 149, 150, 151] or replacement with synonyms, hypernyms,
and antonyms [145]. At the document level, a popular method is round trip translation [152, 153]. New
textual samples are also created with generative methods [147] and pre-trained language models (PLMs)
[154, 138]. For example, by using GPT-2, as a generator, and reinforcement learning to guide it towards
specific class labels in the decoding stage [155]. We also use PLMs (ChatGPT and T5) for text generation,
but our generation is driven by the relational data.

Other works focus on transforming the feature space, rather than the raw data. Noise addition is used
to create new examples by modifying the vectors with the injection of zeros [156] or updating them with
random multiplications [157]. An alternative to noise is interpolation, such as combining similar vectors
from examples with the same label [158, 159]. This line of work is not applicable in our case where the
evidence table data is explicit in the example.
Generation of Textual Examples. For example generation in the unsupervised setting (no examples
available), several works focus on exploiting PLMs to obtain textual claims. In SuperGen [160], an
original text t is combined with a template prompt to obtain a positive, neutral or negative sentence from
the PLM, e.g., given sentence t, the prompt for a new negative sentence is “t. However the truth is...“. In
the supervised setting, humans are asked for hints on the output, e.g., by annotating a taxonomy with
related words to train a LSTM model that generates sentences [161]. In another direction, the classifier is
trained with examples from a fine-tuned text generator [162] or with examples extracted from Wikipedia
paragraphs with Bart models [57] that obtain pairs of (claims, label) [119]. While these works share some
ideas with our approach, they cannot consume tables as input.
Semantic Parsing. In the supervised setting, we generate data evidence for new samples from a given
example. As we want full control on the data (to distinguish Supports and Refutes), we derive a SQL
query for every data evidence. Text-to-SQL (semantic parsing) methods that infer the query from the
given hypothesis [163, 164, 165]. perform poorly when executed on factual claims. For instance, RAT-
SQL [135] derives a query from a textual NL question and table pair. While it handles datasets with
multiple tables and foreign keys [166], it assumes relational tables only, works on questions (not factual
claims) as input, and mostly returns incorrect queries in our setting.
Query Reverse Engineering. In this problem, the goal is identify the query that generates a given output.
Deriving surface-queries, that overfit on the input, is always possible, while for more general queries
the complexity is exponential [137]. However, some methods focus on getting one query for the given
example [137, 167], in this case the complexity is in P-time under some assumptions. This is not suitable
for us, as we want to find a variety of s-queries to reflect the different kinds of reasoning needed in the
inference. Moreover, some of these methods require both positive and negative output examples [137],
while we have only (positive) data evidence. Related approaches for query-by-example also propose
heuristics for the discovery of sets of possible queries, but the solution is for interactive use [168], while
in our case we aim at full control over the variety of s-queries. Finally, given the nature of the corpora in
NLTI problem, we do not focus on the inference of joins [169].
Text Generation from Tables. There are works on verbalizing tables to produce sentences that describe
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them. Data-to-text generation has been traditionally tackled by leveraging domain knowledge and
complex grammar rules [170, 171]. Recent breakthroughs in NLP, remove cumbersome sentence
and content planning [131]. R2D2 [172] combines a generator with a faithfulness discriminator for
the produced text t to reduce “hallucinations” such as entities appearing in t that are not in the data.
DocuT5 [173] tackles the lack of context in describing data by manually adding table information and
foreign keys. In our setting, we use table names, captions, and any document structural information
as context. These works lead to fluent sentences, but only in the form of description of the tuples. In
analogy to queries, they describe the output of look-up operations. We extend these approaches by
generating textual claims that describe data retrieved with SQL operations beyond simple look-up, such
as aggregates. LogicNLG [174] also discusses the requirement of logical operations in the generated text
to go beyond the surface realization of a set of cell values. They create a dataset with more complex
examples, such as math operations and comparisons, and test sentence generation with several methods.
Our work introduces prompts based on few-shots for generative models, such as GPT-3, which perform
better than the previous methods.
Tabular NLI. TNLI determines if a textual hypothesis is supported or refuted based on a given premise
in tabular format. Applications include computational fact-checking [129], table understanding [127, 30]
and assistance in data-centric fields such as finance and healthcare [175]. As an example of existing
datasets, Feverous is a collection of labelled textual claims generated by a crowd starting from Wikipedia
pages [7]. The pipeline for fact checking is composed of a cell retriever (given the claim and the tables)
and a veracity predictor (given the claim and data evidence). Similarly to Feverous, the SemEval-2021
Task 9 [176] has 2k tables on which claims are built for fact verification and cell evidence selection. From
the tables, claims for the training set are generated using IBM Watson Discovery and test claims are
written by annotators. The claim generation is based on templates and is poor in terms of variety. In
TabFact [130], the examples rephrase table data with operation on cells, such as count and max, to obtain
the claim. One checking method uses a linearized table with a BERT model, while a second method uses
Latent Program Analysis. In InfoTabs [30], annotators build a dataset with 3 sentences for each table.
They test various pre-trained NLI systems on their dataset and conclude that they do not perform well.

3.8 Conclusion

We proposed a generic solution that automatically constructs high-quality annotated datasets for TNLI.
Experiments show that given only a table as input, TENET creates examples that lead to high accuracy
when used as training data in the target tasks. Even in settings with a small number of tables for the
training of the system, TENET produces examples with variety both in the pattern of the data and in the
reasoning used to verify or refute the hypothesis.

While TENET is an important first step, there are several research directions still open. First, there
are classes of examples in the long tail that are not represented in our generation process. Examples
include mathematical operations, such as hypothesis “Mike is 27 years older than Anne”. As the number
of possible s-queries is large, we envision a solution where s-queries are inferred from hypothesis in
annotated corpora, similarly to what we do for e-queries, with a new learning task that extends existing
work on semantic parsing [164]. Second, existing corpora contain also examples that span multiple tables
or even tables and text, but our e-query generation algorithm must be extended for such settings. In a
similar direction, new algorithms for e- and s-queries are needed to generate examples than require joint
reasoning over text and tabular data [177]. Third, once models have been bootstrapped with TENET,
we could design active learning algorithms to solicit human-written examples that effectively improve
performance on the test set.
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Chapter 4

Unknown Claims: Generation of
Fact-Checking Training Examples from
Unstructured and Structured Data

Originally published as: Jean-Flavien Bussotti, Luca Ragazzi, Giacomo Frisoni, Gianluca Moro
and Paolo Papotti. Unknown Claims: Generation of Fact-Checking Training Examples from
Unstructured and Structured Data. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2024), 15 pages. Association for Computational
Linguistics. [178]

We continue our diving, this time orienting our investigations on the mixture of tabular and textual
evidence as sources for Synthetic Dataset creation. Taking advantage of multi-modality, we aim to build
a framework to build examples that are qualitative, but also versatile. As in Chapter 3, we target the task
of Fact-Checking to build and test our Fact-Checking model.

4.1 Introduction

The spread of false information on social media threatens public trust. For example, during the COVID-
19 pandemic, misinformation led to vaccine hesitancy, straining public health systems and informed
decision-making [179, 180, 181]. Computational fact-checking (FC) is a vital tool for verifying claims
against diverse evidence types, including unstructured text and structured tabular data. Diversity increases
task complexity, requiring advanced NLP methods to cross-reference information accurately [33].

Traditional FC models heavily rely on training samples manually annotated by experts, who meticu-
lously review and pair claims with corresponding evidence, and intentionally modify claims to create
refuting examples. Unfortunately, this process is labor-intensive and time-consuming, which significantly
hinders the scalability of FC efforts in adapting to evolving misinformation scenarios [91]. Recent studies
have attempted to mitigate these challenges by automating the generation of training examples using
question-answering (QA) and entity replacement (ER) algorithms [182, 36]. However, as summarized in
Table 4.1, they face limitations that restrict their practical utility:

1. They fail to integrate precise tabular data with nuanced textual data, which is often essential for
verifying real-world claims [183, 184]; see Figure 4.2.

2. They are confined to specific domains, such as biomedicine, due to their reliance on vertical
knowledge bases (KBs), compromising their ability to generalize across fields.

To overcome these limitations, we present UNOWN (Figure 4.1),1 a novel approach that uses pretrained
language models (PLMs) to generate synthetic training examples for FC systems, integrating both textual

1Pronounced “unknown”, the name draws inspiration from the cryptic Pokémon hieroglyphs, reflecting the uncertain
factuality label of undisclosed textual claims.

48



Train

Cities Evidence
Selection

Corpus

City Country

Rome Italy

Nice France

Coliseum is in Rome
Nice is a seaside city

City Country

Rome Italy

Nice France

Nice is a seaside city

Coliseum is in Rome

Claim
Generation

Evidence:

Claim❌:
Label:

Coliseum is in Rome

Refutes

Rome Italy

Coliseum is in France

Train Data

Example Generation

Inference
Test Data

Supports ✅

Refutes ❌

Fact-Checking Model

Evidence:

Claim ✅:
Label:

Coliseum is in Rome

Supports

Rome Italy

Coliseum is in Italy

Figure 4.1: UNOWN pipeline. Given a corpus of documents, the Example Generation module (investigated
in this work) outputs training instances.

Work U+S† Domain
Agnostic

Tested
Datasets

Human
Eval‡

QACG[182] ✗ ✓ FEVER [86] ✗
ClaimGen[36] ✗ ✗ (biomed.) SCIFACT [185] ✓

Ours ✓ ✓

FEVEROUS [184]
SCIFACT [185]
MMFC (new)

✓

† The study combines unstructured and structured data as evidence.
‡ The study includes human examination of the generated examples.

Table 4.1: Summary of works on the automatic generation of training samples for fact-checking systems.

and tabular evidence. Unlike prior work relying on ER methods and domain-specific data, UNOWN

offers a flexible solution that supports multiple evidence selection and claim generation strategies,
accommodating small and large language models (SLMs and LLMs). This versatility not only broadens
the system’s utility across real-world applications but also facilitates its deployment in diverse hardware
environments, from low-power devices to advanced computing systems.2

We validate our approach by comparing the accuracy of FC models trained on examples generated by
UNOWN versus those labeled by humans.3 To achieve this, we conduct extensive experiments on text-only
and text+table evidence scenarios using three public FC datasets targeting general and scientific content:
FEVEROUS [184], SCIFACT [185], and MMFC, our new multi-modal and multi-domain fact-checking
dataset.4 MMFC complements FEVEROUS as the second existing corpus featuring textual and tabular
evidence, distinguishing it from SCIFACT, which exclusively focuses on text.

The main findings of our study are as follows:
2We prioritize using SLMs due to their suitability for resource-limited environments, ensuring broad applicability.
3We employ state-of-the-art FC models as they existed at the start of this study (March 2023), without changing their original

implementations and hyperparameters.
4The dataset is available in the HuggingFace hub: https://huggingface.co/datasets/jeflbu/MMFC.
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"Aramais Yepiskoposyan"

Figure 4.2: Example from the FEVEROUS dataset where the verification of dates reported in the claim
requires reasoning above both textual and tabular information.

• In text-only evidence scenarios, training on UNOWN data yields lower accuracy, showing an 8% gap
compared to human-labeled samples. However, this gap diminishes to just 2% with the inclusion
of only 100 human-labeled instances. Conversely, in text+table scenarios, we achieve up to 5%
higher accuracy.

• SLMs and LLMs produce synthetic data of comparable quality, with a 1% gap in downstream FC
accuracy.

• By transcending traditional reliance on external KBs, UNOWN adeptly generates refuting claims
with sophisticated negation artifacts.

4.2 Problem Formulation

Let d represent a semi-structured document (e.g., a Wikipedia page) containing n sentences and m
tables. We define evidence e = {es, et} as a non-empty subset of sentences es = {s1, . . . , s|es|<n} and,
optionally, cell values et = {c1, . . . , c|et|<p} extracted from a table within d, where p is the total number
of cells. A supervised FC model F evaluates whether a textual claim c is supported or contradicted by
the given evidence e. Specifically, F takes as input a data pair <e, c> and outputs a verdict from the
set L = {Supports,Refutes}.5 Consequently, our goal is to automatically generate labeled examples
E = <e, c, l ∈ L> to train F .
Challenge: Refuting Claims There have been proposals to generate artificial claims by synthesizing e in
a sentence. Abstractive summarization has been explored with text-only evidence [186, 36] and scenarios
centered on cell values only [187]. In contrast, our goal is to create claims that incorporate evidence
from both structured and unstructured data, as illustrated in Figure 4.1. However, while a Supports claim
naturally aligns with the provided evidence, we also require examples with a Refutes label to train FC
models effectively, which entails claims that are in conflict with e. Technically, refuting samples should
go beyond basic negations such as “Rome is not in Italy.” They should instead be adept at capturing

5The label Not Enough Information is excluded due to its rarity, accounting for only 3% of instances in FEVEROUS.
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Figure 4.3: UNOWN pipeline. The input document d consists of sentences and optional tables. (1) When
both modalities are used, we obtain et with a cell sampling and verbalization process. From et, different
strategies can be used to determine es and complete e; in a text-only approach (et = ∅), e is established
after sentence sampling. (2) We generate supporting and refuting claims using PLMs. Non-continuous
lines and arrows delineate alternatives.

City Name Function

London Mike Teacher

New York Luke Researcher

"Working People"

    
        
        
        
    

Mike works as a teacher in London

Figure 4.4: Verbalization of a subset of tabular cells.

nuanced factual contradictions, e.g., “Rome is in France”, “There are two Coliseums in Rome.” Obtaining
such variety in claims remains an open research question.
Challenge: Low-Budget Environment In low-resource settings, restrictions such as commodity hard-
ware infrastructure can affect model supervision and performance [188, 189, 190, 191]. In the era of
LLMs, the investigation of flexible and scalable solutions is being neglected despite their high social
impact [192]. Developing FC systems capable of scaling and adapting to diverse user needs and scenarios
is imperative.
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4.3 Method

We introduce UNOWN (Figure 4.3), a novel framework to automate the production of FC training data. In
a first step, e is created from the input d (evidence selection). Then, e is used to generate supporting or
refuting claims (claim generation).

4.3.1 Evidence Selection

The evidence construction process begins by creating a textual anchor a. We distinguish two settings.
Text-only: a is a randomly selected sentence from the document d. Text+table: we combine textual and
tabular data to determine a. In alignment with the text-centric vision of previous works [193, 194, 195],
we fine-tune T5-large (780M parameters) [196] on TOTTO [197], a table-to-text dataset. We sample
table cells to generate a (text) by inference, unifying the data modalities.6 The prompt uses cell values
and includes contextual details such as table headers and the document title to maintain coherence (see
Figure 4.4). This approach eases claim generation but still leaves the question of how to select evidence.

Once a is designated, we propose two alternative strategies to complete the evidence.
Random: we pick k random sentences from d. Here, various topics may exist within e, as the information
chosen may not be aligned.
Semantic Consistency: es is constructed by concatenating the k sentences from d that semantically align
the most with a, preserving the topic coherence. As in [198], we use cosine similarity after T5 encoding.

We expand on important clarifications.
1. In text-only scenarios, et=∅ and e consists of a set of sentences. In text+table scenarios, e

comprises sentences and a verbalized representation of tabular cells. We overwrite e by prefixing
the d title for context with special <title> and <evidence> token delimiters. Concatenation
enables cross-attention among the page title, cells, and sentences.

2. k is drawn randomly from a distribution of [1, 1, 2, 2, 2, 3, 3, 4, 5], selected based on patterns
observed in the FEVEROUS training set.

3. We emphasize that constructing e from et to es using a single verbalization step is the most
practical approach, avoiding the complexities of reverse operations.

4.3.2 Claim Generation

Fine-tuning models on data aligned with the target task has proven effective in enhancing performance [76].
Practically, users can expect access to external data from related FC applications and a limited number
(e.g., 10, 100) of internal human samples specific to the task. Given this context, we define the following
concepts to guide our methodology.

Warm-start: external examples are available for preliminary training (i.e., e → c).

Cold-start: no external data is available.

Few-shot learning: internal examples are accessible for specialized fine-tuning (regardless of warm/cold
start).

Refuting Claims Generating refuting claims comes with additional intricacies. We recognize two main
paths to avoid introducing a strong lexical bias in artificial training samples, such as basic negation types.
Direct refusal: we use a PLM that can directly transform e into a refuting claim, ensuring a direct and
straightforward approach. Two-step approach: we summarize e into a supporting claim and then apply a
targeted modification to flip its meaning. This involves either using direct refusal with the supporting
claim or employing ER, where keywords are strategically swapped with antonyms or related terms from
a KB.

6Cell extraction is a consolidated practice for evidence retrieval in table-based factuality predictors [184].
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Dataset Use
Case

Veracity
Labels†

Claim
Length

Evidence
Sent./Cells*

FEVER Train 10K / 10K 8.1 2.4/0
FEVEROUS Test 1.5K / 1.7K 27.1 2.1/0
FEVEROUS + Test 1.5K / 0.5K 25.2 1.6/4.4
SCIFACT Test 0.2K / 0.1K 12.3 1.8/0
MMFC Test 0.25K / 0.25K 21.3 1.5/1.9

† = supporting claims; = refuting claims. *Average.

Table 4.2: Dataset statistics.

4.4 Experimental Setup

Our focus is on evaluating the veracity component of the FC process during test time, where models
are provided with gold evidence alongside the claim for verification. To achieve this, we address the
following research questions:

Q1 Are the generated artificial examples effective for training FC models?
Q2 Which evidence selection strategy yields the best performance?
Q3 What method is recommended for generating refuting claims?
Q4 To what extent does the efficacy of synthetic examples generalize across various domains?
Q5 How many internal dataset-specific samples are necessary for few-shot learning to bootstrap the

downstream FC model successfully?

Datasets In warm-start scenarios, we use human examples from FEVER [86], a collection of claim–
evidence pairs based on Wikipedia, with a balanced of 10K positive and 10K negative instances. As the
leading FC benchmark, we take FEVEROUS [184], an extension of FEVER with more complex claims
enriched with tabular evidence (there is no overlap between the corpora). To assess generality, we include
SCIFACT [185], a dataset of expert-written claims paired with evidence from scientific papers abstracts.
Finally, we release MMFC, a new multi-modal FC corpus. Mechanically, we sample 2000 instances
from MULTIMODALQA [199], a QA dataset requiring joint reasoning over text, table, and images. In
our sampling procedure, we filter out instances requiring visual grounding. Then, we transform each
question–answer pair into a claim paired with table+text evidence by performing few-shot in-context
learning with GPT-4-TURBO. We carefully review all examples to guarantee their highest quality. Dataset
statistics are provided in Table 4.2. More precisely, supporting claims are generated by prompting GPT-4
(gpt-4-turbo-2024-04-09) as detailed in Figure 4.12 in Appendix. The examples employed in
the few-shot learning process are structured as follows:

• input contains the question–answer pair.
• not optimal output shows a type of answer to avoid.
• better output provides the reference claim.
Refuting claims are generated with the prompt reported in Figure 4.13 in Appendix. A why field

clarifies the expected negation behavior and makes explicit the difference between the not optimal output,
incorrect output, and better output fields.

We conducted in-depth prompt engineering and assessed the claims produced by manual checking of
the claims obtained.
Metrics We assess FC predictions using accuracy and F1 scores ([0, 1]; higher is better), distinguishing
between Supports and Refutes labels. We validate models on the test sets after training with artificial and
human examples. We finally evaluate the logical relationship between each evidence–claim pair with a
DEBERTA cross-encoder [200] pretrained on natural language inference (NLI) tasks to classify pairs as
Entailment, Contradiction, or Neutral.
Claim Generation Models As SLM, we use models built on BART [57]. For supporting claims, we
employ the large version (400M parameters). For refuting claims, we utilize two variants: BART-large
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and BARTNEG [58], a specialized BART-base model (140M parameters) trained on parallel and opposing
claims from the WIKIFACTCHECK dataset [201].7 As LLM, we operate with LLAMA-2-7B [66], opting
for QLoRA [202] adapter fine-tuning.

Prompt tuning experiments proved the marginal role of few-shot in-context learning. We then opted
for a simpler and reproducible zero-shot approach, also fairer to small models, as reported in Figure 4.5.

 

 

Figure 4.5: Instruction tuning prompt template for claim generation. The highlighted part is used for loss
computation.

We stress that refuting claim generation can be obtained by: (i) running these models directly on e;
(ii) applying these models to the claim returned by a supporting model. Training is done independently
for the two claim types. We run each experiment on a cluster of OS Linux workstations with a single
Nvidia GeForce RTX3090 Turbo GPU of 24 GB VRAM. UNOWN is developed using PyTorch [203] and
the HuggingFace library [204] (seed set to 42 for reproducibility).

To train BART, we set the following hyperparameters: learning_rate=1e−4, batch_size=16, and
epochs=20; for LLAMA-2, we use 4-bit nested quantization, r=8, α=32, batch_size=1, and epochs=3.
For inference, we adopt beam search (num_beams=5) and nucleus sampling (top_p=0.01, top_k=40,
temp=0.15) for BART and LLAMA-2, respectively.
Entity Replacement Methods As a baseline method, and to show the generality of our framework, we
adapt the pipeline proposed by [36] to domain-agnostic resources, studying three alternative refuting
claim generation procedures. (1) We prompt FLAN-T5-large (780M parameters) [205] with “Answer the
following question. Can you give me an antonym of {{w}}?”, where w is a word of length ≥ 4 characters
randomly chosen for replacement. (2) We use the GENSIM library [206] to calculate a similarity matrix
between the words in the supporting claim.

The matrix is subsequently used to build a frequency ranking, aiding in deciding which word to
replace (least common, most common, random). Denoting the chosen item as w, words having similarity
> 0.7 to w are substituted with a similar but distinct word as per WORDNET [207]. (3) We use
CONCEPTNET [208] to identify a set of concepts closely related to each word in the claim. We build a
claim-level frequency ranking on the intersection of word-level concepts. Then, we replace w according
to antonym relationships.
Fact-Checking Models We assess the impact of our synthetic training examples on accurately predicting
the verdict label of an input claim given a set of evidentiary sentences. To achieve this, we choose optimal
classification models for the benchmarks at hand, keeping their weights and hyperparameters unchanged.
For FEVEROUS and MMFC, we use ROBERTA [141] with a linear layer on top. For SCIFACT, we
employ MULTIVERS [209] with a shared encoding of the claim and input context.

4.5 Results and Discussion

4.5.1 Quality of Generated Claims

SLMs. We measure how well the UNOWN examples generated with small models contribute to training a
downstream FC system on the FEVEROUS test set (Figure 4.6). In the worst-case scenario (cold-start,

7Although BARTNEG has already undergone a warm-start process, applying warm start with FEVER is still necessary to deal
with multi-sentence input and language style adaptation.
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Figure 4.6: Accuracy scores on FEVEROUS by varying the number of its training samples. Dashed bars
indicate the use of fine-tuning on FEVER. The horizontal red dashed line represents the accuracy obtained
by human data.

Figure 4.7: Accuracy scores on FEVEROUS with training examples generated by LLAMA-2.

zero-shot learning), the highest accuracy achievable by UNOWN is 86.7 with BART-large used for the
generation of both supporting and refuting claims. The results show a consistent boost in performance
by leveraging human training instances. In fact, accuracy climbs to 92.3 with warm start and just 100
internal target examples, using BART-large for supporting claims and BARTNEG for direct refusal—close
to the accuracy achievable with human-annotated data (94.5).
LLMs Figure 4.7 looks at how the claims generated by LLAMA-2 stack up against those inferred by the
best SLM setup. The accuracy propelled by LLAMA-2 claims, after training on 100 internal examples, is
93.3, outperforming the small solution by a single point. Therefore, incorporating LLMs does not appear
essential in the UNOWN pipeline, favoring BART-based models for their superior effectiveness–efficiency
trade-off.Table 4.3 reports the train and inference time per claim for the claim generation task. The benefit
of smaller models is evident during inference. We also report the average time required to generate an
example in terms of evidence selection. The total time of about 6 seconds per claim is in contrast to the
time and effort required by a human to craft a comparable example.
NLI To gain additional insight into the generated claims, we compute the NLI prediction score between
claims and evidence. Table 4.4 shows that, for supporting claims, UNOWN’s examples closely resemble
the score distribution in their human-written counterparts. Yet, in the refuting examples generated by
UNOWN, the percentage of entailed claims surpasses that of human-generated ones, highlighting the
greater difficulty in creating refuting examples compared to supporting ones. We observe that the ER
baseline performs the worst.
Human Evaluation We perform a qualitative analysis to investigate the quality of the claims generated
by UNOWN. We randomly sample 50 instances from the FEVEROUS training data (25 supporting, 25
refuting). Taking into account the expense associated with careful human evaluation and the central role
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Model Task sec/Claim

Claim Generation
BART Train/Infer. 1.92 / 0.12
BARTNEG Train/Infer. 1.01 / 0.08
LLAMA-2 Train/Infer. 1.98 / 2.10

Table-to-Text
T5-TOTTO Infer. 0.75

Evidence Selection (Semantic Consistency)
T5 Tokeniz. + Distance 5.43

Table 4.3: Time consumption for different tasks.

Method Entail.† Contrad.‡ Neutral

Supporting

HUMAN 75.00 4.00 21.00
BART 74.57 4.90 20.53
LLAMA-2 71.92 3.95 24.12

Refuting

HUMAN 3.00 77.00 30.00
BART 10.43 56.00 33.57
LLAMA-2 11.23 37.82 50.95
ENTITY REPLACEMENT 36.05 40.70 23.26

† [0, 100]. : ↑ (higher is better). : ↓ (lower is better).
‡ [0, 100]. : ↓ (lower is better). : ↑ (higher is better).

Table 4.4: The quality of the generated claims in FEVEROUS based on NLI scores (text-only scenario).

of text as our unified modality, we accord priority to text-only evidence. Each instance is presented with
its original human-selected evidence and the corresponding claim. To maintain fairness, we condition
our models on this evidence and generate synthetic claims using our best-performing models: the warm-
started BART-large for supporting claims and BARTNEG for refuting claims. After manually verifying
the correctness of the assigned label, which were accurate for all 50 claims, we enlist the expertise of
three external annotators with strong NLP and FC backgrounds to evaluate the claims. In a blind review
process, we provide them with the evidence and the two claims (original and generated) in randomized
order. Following a direct comparison assessment, which has proven to be more reliable and sensitive than
rating scales [210, 211], we ask the annotators to determine which claim is the best with respect to two
dimensions: clarity (effective communication of the intended meaning with a good sentence structure,
fluency, and English precision) and coherence (semantic connection to the evidence). They are also given
the option to declare a tie if they perceive the quality of the claims to be comparable. To aggregate the
annotations, we employ a majority voting approach and calculate Cohen’s κ coefficient to gauge the
agreement between annotators and the majority voting label. The coefficient value of 0.613 indicates
a substantial level of agreement, enhancing the reliability of our analysis. As illustrated in Figure 4.8,
the results reveal an interesting landscape. Out of the 50 paired claims, annotators found 35 to be of
comparable quality. In 10 cases, the original FEVEROUS claims were deemed superior, while in 5 cases,
the claims generated by UNOWN were judged to be of higher quality.

Overall, the generated examples prove to be sufficiently effective for training FC models, yielding
quantitative results in a 2-point margin in absolute accuracy compared to those achieved by a crowd of
annotators.
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Figure 4.8: Human evaluation results on 50 claims.

Text Text+Table

Method Acc. F1 F1 Acc. F1 F1

FEVEROUS
EVID. + CLAIM 94.50 94.92 95.30 82.09 87.83 66.12
EVID. + CLAIM 92.40 92.10 92.70 84.59 90.53 58.69
RAND. w/ GOLD + C 92.30 91.70 92.70 81.81 87.96 62.89
RAND. w/o GOLD + C 85.11 86.07 84.01 84.43 89.90 66.03
SEM. CONSIST. + C 88.33 88.21 88.44 86.83 91.73 67.65

MMFC
EVID. + CLAIM . . . 87.60 88.17 86.97
EVID. + CLAIM . . . 76.00 75.61 76.38

Table 4.5: Evidence selection comparison in FEVEROUS and MMFC. Methods use BART and BARTNEG

to create supporting and refuting claims, respectively. Models fine-tuned on FEVER and then on 100
dataset samples.

4.5.2 Q2 : Evidence Selection

We study the impact of alternative evidence selection methods. We report two experiments using
FEVEROUS training examples: one with text-only evidence and another with text+table evidence; test
datasets are filtered according to the scenario. For every human example, referred to as “gold,” we execute
our best BART model with four alternative evidence selection strategies. Human evidence, where we use
the original evidence handpicked by the annotators. Random with gold, where the number of selected
sentences matches the human example, but the actual cells and sentences are chosen randomly from d.
Random without gold, where the number of retrieved sentences k, after anchor definition, is drawn from
the distribution presented in Section 4.3.1. Semantic consistency, where textual evidence is retrieved
using embedding similarity to the table verbalization (see Figure 4.4).

Table 4.5 shows accuracy and F1 results. The influence of evidence is evident. The use of human
evidence allows UNOWN to produce examples that match nearly the human upper bound. In the text+table
setting, we achieve even higher scores for supporting claims, confirming the quality of our claim generator.
In the text-only scenario, performance is optimal when guided by the cardinality of human gold evidence,
with random selection surpassing semantic consistency. In text+table, semantic consistency outperforms
both random selection and original human examples in all metrics. We observe that human annotators
struggle to annotate tabular data accurately, making mistakes that mislead the classifier. This is also
reflected in the generally lower results for text+table compared to the text-only scenario.

Table 4.5 also shows the results for MMFC. In this dataset, all claims involve text and tabular data
and we only have human gold evidence for the original claim. We explain the lower quality results
for UNOWN because the warm start includes examples from FEVER, which are different from those in
MMFC. Tables 4.7, 4.8, and 4.6 report examples of textual claims generated by our system with different
models given the same original evidence. The human-written claim is provided for comparison. We
note that many claims generated by BARTNEG with Refutes labels do not contain the word “never”. To
illustrate:
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Evidence (d title = Stefan Lessard)
Lessard was born in Anaheim, California, to musician Ron and Jacqueline Lessard. During the 2007 European Tour, Lessard also began a
video blog on YouTube. In October 2005 he married Jaclyn Burton, and together they have three daughters, Hazel Bailey (born March 6,
2004), Flora Jude (born July 13, 2006), and India (born November 2015).

Refuting Claims

HUMAN
Stefan Kahil Lessard (born on June 4, 1974 outside Anaheim, California) completed his junior year of high school,
passed the GED examinations in the summer of 1991, and was accepted into the Jazz Studies program at Virginia
Commonwealth University.

LLAMA-2 Stefan Lessard has been married to Jaclyn Burton since October 2005. They have three sons named Hazel Bailey
(born March 6, 2004), Flora Jude (born July 13, 2006) and India (born November 2015).

BART Stefan Lessard never began a video blog on YouTube.

Table 4.6: Example from FEVEROUS of UNOWN’s refuting claims, highlighting negation artifacts (bold)
with respect to evidence excerpts (underline).

Evidence (d title = Windecker Eagle)
The Eagle AC-7 Eagle 1 (USAF designation YE-5) is an aircraft that was manufactured by Windecker Industries Data from Jane’s All the
World’s Aircraft 1971.

Supporting Claims
HUMAN The Eagle AC-7 Eagle 1 is a military aircraft that was manufactured by Windecker Industries.
LLAMA-2 Windecker Eagle is listed in Jane’s All the World’s Aircraft 1971-72.

BART
In 1896, Friedrich Baume established a legal practice with A. E. Whitaker, a son of Frederick Whitaker, and won the
election.

Table 4.7: Example from FEVEROUS of UNOWN’s supporting claims with textual evidence.

Tabular Evidence (d title = 2010 FedEx Cup Playoffs)
Bubba Watson [Header : Player]

Textual Evidence (d title = Bubba Watson)
Watson was born and raised in Bagdad, Florida, near Pensacola. He played on the golf team at Milton High School, which had featured future
PGA Tour members Heath Slocum and Boo Weekley just before he attended. Watson played golf for Faulkner State Community College in
nearby Baldwin County, Alabama, where he was a junior college All-American. He transferred to the University of Georgia, the defending
NCAA champions, and played for the Bulldogs in 2000 and 2001. As a junior, Watson helped lead the Bulldogs to the SEC title in 2000.

Supporting Claims
HUMAN The player who had 1,498 points in the regular season of the 2010 FedEx Cup Playoffs attended Milton High School.

BART
Bubba Watson Watson played in the 2010 FedEx Cup playoffs. Watson was born and raised in Bagdad, Florida, near
Pensacola. He played on the golf team at Milton High School, which had featured future PGA Tour members Heath
Slocum and Boo Weekley

Table 4.8: Example from MMFC of UNOWN’s supporting claims, with tabular and textual evidence.

• “In the 2006-07 San Jose Sharks season, the team scored 107 goals, 183 assists, and 1 Shutout.”
Here, the real numbers are 107, 283 and 5.

• “Karyn Kupcinet, who died on June 2, 1963, appeared on The Donna Reed Show and The Gertrude
Berg Show, 1999.” Here, the actual day is November 28, 1963.

• “Rihanna had a live performance at the Super Bowl in 2012.” Here, the actual singer is Madonna.

These examples showcase the variability of our generated claims, ensuring that the models trained
on our data must learn robust patterns beyond simple negations and manage hard negative cases from
a semantic viewpoint. Additionally, we acknowledge the presence of several generated claims with
Supports labels that contain the word “never”, further requiring the ability to capture diverse linguistic
patterns. For instance “Bruce Johnston’s song ’I Write the Songs’ never charted.”

We conduct an ablation study aimed at evaluating the importance of each evidence modality for
table+text FC instances (Table 4.9). When text or cells are excluded from the evidence in the test data,
accuracy and F1 scores for the FC model drop significantly.

4.5.3 Q3 : Refuting Claims

We show how the FC performance varies with different types of Refutes generated claims in a quantitative
analysis and then in a qualitative user study.
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Test set Accuracy F1 F1

STANDARD TEST DATA 86.9 91.7 67.6
ABLATED TABLES 57.6 66.0 43.9
ABLATED SENTENCES 62.8 71.5 46.3

Table 4.9: Results on three different test sets: the gold test set, the same test set with ablated tables in
evidence, and the same test set with ablated sentences in evidence. Training data is always based on the
warm start and the BART/BARTNEG combination.

Quantitative Figure 4.9 shows how we identified FLANT5 and random selection as the best combination
for the ER method used as our baseline approach.

Figure 4.9: Comparison of different entity replacement methods in FEVEROUS.

Unless otherwise specified, we use ER to denote this baseline approach. Figure 4.6 includes the
impact of various negation strategies on the accuracy of the target task. In cold start, the combination
of BART and BARTNEG using the two-step approach is effective, while the results are subpar with ER,
which fails to make refuting claims, possibly due to limitations in content replacement without adequate
rewording. As anticipated, starting with a warm start is beneficial, resulting in the highest accuracy with
0 and 100 training samples.
Qualitative We perform a human analysis to evaluate the negation techniques used to refute claims.
We adhere to the negation taxonomy outlined in previous studies [212, 213]. Rigorously, we use two
main negation types, namely Verbal Negation (V) and Noun Phrase Negation (NP). Each is classifiable
in three subclasses, including Lexical (L), where the negation is expressed with new words or phrases
that alter the sentence meaning (e.g., 10 papers→more than 10 papers), Morphological (M), where the
form of the word is modified through morphemes (e.g., legal→illegal), and Replacement (R), where a
phrase is swapped for another with a different meaning (e.g., 1995→1997). Given these classes, three
annotators (selected among the authors) evaluated 30 refuting claims from the original FEVEROUS

training dataset and 30 refuting claims generated by UNOWN. The final category is identified by majority
voting over the three suggested labels; the Cohen’s κ coefficient is 0.91, which shows very high agreement
among annotators. The results of the study are illustrated in Figure 4.10, allowing a comparison of
annotation distributions between the two sets of examples (UNOWN vs. human). UNOWN produces an
even distribution of refuting claims, encompassing both noun phrases and verbal structures, whereas
humans tend to prefer noun phrases. Both UNOWN and humans favor the replacement strategy for noun
phrases and the lexical strategy for verbs. In both scenarios, the ranking of classes and subclasses remains
consistent, indicating that UNOWN produces a range of negation types comparable to those observed in a
human-crafted corpus.
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Figure 4.10: Human annotation on negation artifacts.

Method Accuracy F1 F1

HUMAN TRAINING DATA 84.62 81.05 85.71
ENTITY REPLACEMENT 55.33 57.27 16.51
BARTNEG 65.08 53.79 65.96
ENTITY REPLACEMENT 54.00 57.63 1.98
BARTNEG 74.50 73.53 73.45

Table 4.10: Strategies for refuting claim generation on SCIFACT; models use BART to create supporting
claims. In warm scenarios, models are fine-tuned on FEVER.

form of the word is modified through morphemes (e.g., legal→illegal), and Replacement (R), where a
phrase is swapped for another with a different meaning (e.g., 1995→1997). Given these classes, three
annotators (selected among the authors) evaluated 30 refuting claims from the original FEVEROUS

training dataset and 30 refuting claims generated by UNOWN. The final category is identified by majority
voting over the three suggested labels; the Cohen’s κ coefficient is 0.91, which shows very high agreement
among annotators. The results of the study are illustrated in Figure 4.12, allowing a comparison of
annotation distributions between the two sets of examples (UNOWN vs. human). UNOWN produces an
even distribution of refuting claims, encompassing both noun phrases and verbal structures, whereas
humans tend to prefer noun phrases. Both UNOWN and humans favor the replacement strategy for noun
phrases and the lexical strategy for verbs. In both scenarios, the ranking of classes and subclasses remains
consistent, indicating that UNOWN produces a range of negation types comparable to those observed in a
human-crafted corpus.

4.5.4 Q4: Checking Scientific Claims

We measure the quality of the FC system trained with UNOWN examples in a different domain. Due to
the lack of heterogeneous datasets such as FEVEROUS, we use the text-only scientific corpus SCIFACT.
Table 4.10 confirms the analysis outcome on FEVEROUS. Human data achieve the best results, followed
by UNOWN with the warm-started BART. We explain the greater result gap between humans and UNOWN

because the warm start includes only examples from FEVER. Again, BARTNEG leads to better results
with respect to ER. We posit that low F1 refuting scores (i.e., 1.98, 16.51) stem from FLAN-T5’s
pre-knowledge bias, which may not adequately align with scientific subjects.

4.5.5 Q5: Bootstrapping: Cold vs. Warm Start

We measure the impact of the examples used to fine-tune the models. As shown in Figure 4.8, Figure 4.9,
and Table 4.10, a warm-start approach improves the quality of the generated data. More precisely, Fig-
ure 4.13 shows the average ∆ accuracy improvement when shifting from cold to warm in FEVEROUS. We
observe a decrease in ∆ as the number of internal samples from the target dataset increases, highlighting
the beneficial contribution of using external related data as a guide source of knowledge. Also SCIFACT

exhibits an increase in accuracy for BARTNEG in the warm approach.

4.6 Related works

Computational FC has been an active area of research for decades [213, 31]. Recently, the rise of
LLMs has advanced the development of FC pipelines [214], but their effectiveness is still inferior to
human experts [215, 216]. Specialized models are currently the most effective approach [217], despite
requiring for large labeled datasets for training. Existing approaches to automatically generating FC
training examples has been approached through both unsupervised and supervised methods. Unsupervised
solutions, typically employed in the absence of labeled data, leverage PLMs to create textual claims from
a given text, e.g., by using template prompts [218]. Supervised approaches rely on specific resources,
e.g., an annotated taxonomy to train an LSTM model for sentence generation [219]. Several works have
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Table 4.10: Strategies for refuting claim generation on SCIFACT; models use BART to create supporting
claims. In warm scenarios, models are fine-tuned on FEVER.

4.5.4 Q4: Checking Scientific Claims

We measure the quality of the FC system trained with UNOWN examples in a different domain. Due to
the lack of heterogeneous datasets such as FEVEROUS, we use the text-only scientific corpus SCIFACT.
Table 4.10 confirms the analysis outcome on FEVEROUS. Human data achieve the best results, followed
by UNOWN with the warm-started BART. We explain the greater result gap between humans and UNOWN

because the warm start includes only examples from FEVER. Again, BARTNEG leads to better results
with respect to ER. We posit that low F1 refuting scores (i.e., 1.98, 16.51) stem from FLAN-T5’s
pre-knowledge bias, which may not adequately align with scientific subjects.

4.5.5 Q5: Bootstrapping: Cold vs. Warm Start

We measure the impact of the examples used to fine-tune the models. As shown in Figure 4.6, Figure 4.7,
and Table 4.10, a warm-start approach improves the quality of the generated data. More precisely, Fig-
ure 4.11 shows the average ∆ accuracy improvement when shifting from cold to warm in FEVEROUS. We
observe a decrease in ∆ as the number of internal samples from the target dataset increases, highlighting
the beneficial contribution of using external related data as a guide source of knowledge. Also SCIFACT

exhibits an increase in accuracy for BARTNEG in the warm approach.

4.6 Related works

Computational FC has been an active area of research for decades [214, 33]. Recently, the rise of
LLMs has advanced the development of FC pipelines [215], but their effectiveness is still inferior to
human experts [216, 217]. Specialized models are currently the most effective approach [218], despite
requiring for large labeled datasets for training. Existing approaches to automatically generating FC
training examples has been approached through both unsupervised and supervised methods. Unsupervised
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Figure 4.11: The FEVEROUS’s average ∆ accuracy improvement when shifting from cold to warm.

solutions, typically employed in the absence of labeled data, leverage PLMs to create textual claims
from a given text, e.g., by using template prompts [219]. Supervised approaches rely on specific
resources, e.g., an annotated taxonomy to train an LSTM model for sentence generation [220]. Several
works have investigated the generation of claims from textual evidence (see Table 4.1). [182] produce
question–answer pairs using answer replacement to assemble the refuting claim. [36] create supporting
claims with a generative PLM and ER over a domain-specific KB for evidence refusal in the biomedical
field. Research on generating claims specifically from tabular data remains limited. While some studies
have explored template-based methods [176, 221], [187] demonstrated improved results by generating
claims based on human-provided examples. To our knowledge, no existing work has addressed the
generation of training examples by integrating both structured and unstructured data as input.

4.7 Conclusion

We introduced UNOWN, a domain-agnostic framework to automatically generate training examples for
fact-checking systems, bypassing the costly task of manually annotating large volumes of data. UNOWN

fits both structured and unstructured data to compile textual claims that support or refute the evidence
provided. It also accommodates several solutions for evidence selection and claim generation to adapt to
different scenarios. We evaluated our framework using three datasets that deal with general-domain and
scientific contexts. The results indicate that our synthetic examples exhibit a quality comparable to that
of expert-labeled data, showing the practicality and efficacy of our framework. Quantitative and human
evaluation also register that our refuting examples have high variety, comparable to human-generated
ones.

Limitations

Although UNOWN is a promising step forward, some research directions remain unexplored. First, our
generation process lacks coverage of certain examples within the long tail, e.g., mathematical operations,
such as the premise “Paul is 2 years younger than Mary.” We consider using a solution in which more
intricate patterns are generated as queries over relational tables [187]. Second, once models have been
trained with instances from UNOWN, we could set up active learning algorithms to guide our methods in
generating examples that effectively enhance performance on the test set [222]. Finally, the considered
datasets include well-crafted claims, but real claims can be incomplete (i.e., lacking context)—with
ambiguity in the text with respect to the evidence [223]—or require multi-modal evidence that goes
beyond text and tables [100].
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Can you make a claim out of this Question/Answer pair? Your answer should
only contain the claim. You should add no other information.
    Here are some examples of things not to do :
    Input : Is the religion with 16.27% of the Canadian Census of 1871 the same
religion as the Church of England? No
    Not optimal output : The religion constituting 16.27% of the Canadian Census
of 1871 is not the Church of England.
    Better output : The religion constituting 16.27% of the Canadian Census of
1871 is a religion other than the Church of England.

    Input:Which team was Sebastian Svärd on in 2004-05 that played in the 2017
FA Cup final? Arsenal
    Not optimal output : Sebastian Svärd was on the Arsenal team in 2004-05.
    Better output : Arsenal, the team Sebastian Svärd was on in 2004-05, played
in the 2017 FA Cup final

 

SUPPORTS

Figure 4.12: Prompt for the generation of supporting claims from question–answer pairs in MMFC.
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Can you make a refuted claim out of this Question/Answer pair? Your answer
should only contain the claim. The claim should not be based on basic negation
    
    Here are some examples of things not to do and why:
    Input : Is mobil 1 the official sponsor for the constructor that had a time/retired
of electrical in the Australian Grand Prix race of 2016 f1 team? Yes
    Not optimal output : Mobil 1 was not the official sponsor for the constructor
that had a time/retired of electrical in the Australian Grand Prix race of the 2016
F1 team
    Why : The boolean answer should not cause a poor negation, containing a
simple negation
    Better output : Google was the official sponsor for the constructor that had a
time/retired of electrical in the Australian Grand Prix race of the 2016 F1 team

    Input : in the Season victories of 2017 Astana season, where was the grand
depart for the 2017 Race when the Location was La Planche des Belles Filles
city and country? Düsseldorf, Germany
    Not optimal output : The 2017 Race grand depart from Astana season in La
Planche des Belles Filles was in Düsseldorf, Germany.
    Why : the way the claim is refuted is too subtle
    Better output : The 2017 Race grand depart from Astana season was in Paris,
France.

    Input : When did the home team that had a score of 20-34 in round 7 of the
2018 NRL season enter the NRL? 1988
    Incorrect output : The home team that scored 20-34 in round 7 of the 2018
NRL season entered the NRL in 1988.
    Why : the generated claim is not false with regards to the question/answer
pair
    Better output : The home team that scored 20-34 in round 7 of the 2018 NRL
season entered the NRL in 1975.

    Input : For the religion that has 3,304 females in the Moscow Governorate,
what is its primary literary work? Talmud
    Incorrect output : The religion with 3,304 female adherents in the Moscow
Governorate predominantly follows the Talmud as its primary literary work.
    Why : the generated claim is not false with regards to the question/answer
pair
    Better output : The religion with 3,304 female adherents in the Moscow
Governorate predominantly follows the Bible as its primary literary work.
    
    In any case, the text you generate must be false in light of the initial
question/answer pair.

 

REFUTES

Figure 4.13: Prompt for the generation of refuting claims from question–answer pairs in MMFC.
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Chapter 5

Explaining The Role of Evidence in
Data-Driven Fact Checking

Under submission at ARR (NAACL 2025): Jean-Flavien Bussotti, Andrea Baraldi, Francesco
Guerra and Paolo Papotti. Explaining The Role of Evidence in Data-Driven Fact Checking.

After the exploration of Synthetic Datasets in a uni modal and in a multi modal setting, we now
target explainability of models. Instead of creating training data for models,we want to understand
how fact-checking models utilize them to make decisions. Explaining reasons behind a decision are
important to convince a user. More than simply understanding, we craft an explainable module for
existing fact-checking models.

5.1 Introduction

Online misinformation endangers democracy and trust in news sources. While fact-checking mitigates
this, human-based methods are resource-intensive and cannot scale with the rapid content influx on social
media [224].

Automated methods have been proposed to address this scalability challenge, offering cost-effective
alternatives. Computational fact-checking involves establishing the relationship between a textual claim
and a body of evidence to determine if the evidence supports, refutes, or is insufficient [179]. Evidence
can be structured tabular information, unstructured text, or both [224]. Evidence-based solutions are the
most common and effective approaches for this problem.

Such computational solutions rely on a ML pipeline, where, given a claim to check, a first model
(retriever) identifies relevant evidence from a corpus of documents and a second model (verifier) evaluates
the veracity of the claim using such evidence. Table 5.1 illustrates an annotated example from a fact-
checking dataset. The retriever returns both evidence that support the claim (two sentences in green) and
refuting evidence (the one in red, stating that the production rights and certification are held by Wei Hang,
not Windecker Industries). It also retrieves noisy content that is not useful to the verifier’s final decision
(in gray).

Correct labeling is crucial but insufficient for combating misinformation. Most solutions act as
black-boxes: they provide accurate inferences but do not explain the reasoning behind the decisions.
However, fact-checkers reject solutions that do not expose the evidence justifying the model’s output [129].
Transparency is essential for users to verify the evidence and decide if they agree with the model [224].

Our goal is not just to identify relevant evidence for the given claim, as done by re-rankers in the
retrieval stage [40], but to determine how pieces of evidence influence the verifier’s claim classification.
Our solution aims at labeling evidence similarly to the colored annotations in Table 5.1. Inference is
not enough: it is essential to explain the reasoning behind a verifier by determining the key piece of
evidence in supporting, refuting, or stating that a claim lacks sufficient information for verification. In
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CLAIM The Eagle AC-7 Eagle 1 is a military aircraft that was manufactured by Windecker Industries.

EVIDENCE The Eagle AC-7 Eagle 1 (USAF designation YE-5) is an aircraft.
Windecker Industries was an American aircraft manufacturer founded in 1962.
It was manufactured by Windecker Industries. [...]
Wei Hang holds the rights and the type certificate to produce the aircraft.

LABEL SUPPORTS

Table 5.1: Annotated example from the FEVEROUS dataset with a claim, its retrieved evidence (supporting
in green, noise in gray and refuting in red), and the corresponding ground truth label.

this direction, we propose a framework that explains the workings of a fact-checking model by scoring
individual pieces of evidence based on their contribution to the decision-making process.

The framework enables users to better understand the results of a fact checking tool. In particular,
we derive explanations of the individual examples that can be aggregated in a global explanation of the
model. Explanations allow us to address the following three questions:

• Q1: What are the evidences that steer the decision? Can the verifier discern noise, identifying
pieces of evidence that are important in the claim evaluation?

• Q2: To what extent the verifiers rely on the evidence and the claim to perform the decision? Is
this reliance determined by whether a claim is supported, refuted, or deemed to have insufficient
evidence?

• Q3: How is distributed the impact of the different pieces of evidence on the verifier? Do verifiers
use all the evidence?

This work explores these questions using post-hoc methods explanations methods (Section 2) over
four popular datasets and three verifier models, two of which have their own intrinsic explainer (Section
3). Our experimental campaign demonstrates that post-hoc methods enable analysis of every verifier,
including those based on fine tuning pre-trained language models (PLMs), with quality of the evidence-
based justifications comparable to intrinsic explainers (Section 4).

Related Work. Unlike approaches focused on creating inherently explainable verification models [225]
(intrinsic explainability), our work aims to provide explanations for decisions made by black-box models
(post-hoc explainability). In contrast with some attempts to provide textual justification for the verdict [41],
we emphasize the need to explicitly enable the users to check how the input evidence contributes to the
prediction.

Several verifiers come with intrinsic explainers. Some systems decide each piece of evidence’s
usefulness before making a claim label prediction [44]. The evidence label is thus not based on how a
fact-checking model used it, but on a LLM’s decision on how pertinent the evidence could be to label the
claim. Other approaches imply the training of an explainer[226, 227], while the post-hoc methods do
not require training. These systems cannot provide information on the role played by the evidence in
the model decision, i.e., our approach measures how an evidence piece steers a claim’s labels towards

‘Refutes’, while another piece steers it toward ‘Supports’. Neither they can be used out of the box on any
verifier.

We focus on popular verification models based on pre-trained language models, which have demon-
strated competitive performance in practice and the best trade off when considering also cost/energy
issues [106].

For our study, we use two local post-hoc attribution methods, LIME [120] and SHAP [228], which
explain a prediction by measuring how different parts of the input (the evidence, in our setting) contribute
to the prediction. The first randomly removes features of an input example and trains a linear interpretable
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Figure 5.1: The explanation framework.

surrogate model to predict the model’s output for these perturbations. The second attributes the contribu-
tion of each feature to the model’s prediction, via dataset perturbations created with cooperative game
theory. Both methods enables practitioners to explain and interpret machine learning models [229].

5.2 The Framework

The Fact-checking Problem. We define evidence e = {es, et} as a non-empty subset of sentences
es = {s1, . . . , s|es|<n}, where n is the total text count, and cell values et = {t1, . . . , t|et|<p} aris-
ing from a table, where p is the total cell count. A supervised verifier model F assesses whether a
textual claim c finds support or contradiction w.r.t. a given evidence e. Formally, F takes as input
a data pair <e, c> and outputs a verdict in the space L . We name gold evidence the evidence se-
lection from the fact-checking dataset. Those evidence are the clean ground-truth of evidence to be
retrieved. They are required to deduce L , in contrast with noisy evidence. In this work, we consider
two settings. In the binary (2-label) setting L = {Supports,Refutes}, while in the full (3-label) setting
L = {Supports,Refutes,Not Enough Information}. The Not Enough Information (NEI) label is associ-
ated to cases where in the corpus there is not enough evidence to state if the claim is supported or refuted.
Some verifier proposal focus on the binary case because of the infrequency of datasets with three labels,
e.g., NEI examples account for only 3% of FEVEROUS’s instances.

Our Proposal. Figure 5.1 shows our framework1 to understand the contribution of each evidence in
predicting the label for a claim. It adapts a local post-hoc explainer (LIME and SHAP in our study)
to evidence and claim. Local post-hoc explainers rely on “variations” of the input to compute the
contributions of the features (every example’s evidences) in the decision (for a claim). In our framework,
a perturbed dataset is generated for the example by removing pieces of evidence. The explainers use
the predictions of the verifier over the perturbed dataset coupled with the original claim to build the
explanation. It assigns for each example a contribution to each feature (evidence) and to an intercept,
defined as the average difference between the overall prediction and the total contribution of all individual
evidences in the perturbed dataset. This can be interpreted as the contribution that the explainer attributes
to the claim within the context provided by the evidence. The prediction is thus approximated expressed
as a function of the contributions defined by the explanation:

Pred ≈
N∑
i=1

contribution(ei) + Intercept (5.1)

where contribution(ei) (contribution of evidence i) is the contribution over the model prediction detected
by an explainer for an evidence.

1The code is available on the project github https://anonymous.4open.science/r/explainable-fact-checking-268D/
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Dataset #Claim T. |Claim| #Ev. #Noise

Fev.3L 71.2k(27.2k/2.2k/41.8k) train 25.3 1.6 16.8
7.9k(3.5k/0.5k/3.9k) test 24.9 1.4 17.6

Fev.2L 69k(27.2k/0/41.8k) train 25.3 1.6 16.8
7.4k(3.5k/0/3.9k) test 24.9 1.4 17.5

SciFact 0.8k(0.2k/0.3k/0.3k) train 12.3 1.3 9.0
0.3k(0.1k/0.1k/0.1k) test 12.5 1.3 8.7

AVTC 2.8k(1.7k/0.3k/0.8k) train 17.1 2.6 5.6
0.5k(0.3k/0.04k/0.1k) test 14.4 2.6 5.5

FM2 10.4k(5.3k/0/5.1k) train 13.7 1.3 9.1
1.4k(0.7k/0/0.7k) test 13.8 1.3 9.1

Table 5.2: Statistics of datasets used for training and testing the fact-checking models. The number of
claim details stand from left to right for ‘Supports’, ‘Not Enough Information’, and ‘Refutes’.

Dataset Precision Recall F1 Sufficient

Fev. 2L 0.07 0.36 0.12 ✗
Fev. 3L 0.07 0.36 0.12 ✗
SciFact 0.13 1 0.23 ✓
AVeriTeC 0.32 1 0.48 ✓
FM2 0.12 1 0.22 ✓

Table 5.3: Performance metrics for the retrievers used to build every dataset (Precision, Recall, F1).

5.3 Datasets and Models

We first introduce the datasets in our study and how we inject noise in the evidence set for every example.
We then present the different models in our study and the configuration of the explainers.

5.3.1 Datasets

We select four fact-checking datasets. All examples consist of a claim written by a human, a label, and
the golden evidence used to classify the claim. Statistics about the datasets after pre-processing are
in Table 5.2. When the original test set is private, we use the original validation set as test set.

Feverous [230] is an extension of Fever [231] with more complex claims. Claims are crafted by
humans from textual and tabular evidence from Wikipedia. We linearize tabular evidence in the format:
CellV alue <context>CellHeader</context>. We create variants of the dataset with and without the label
‘Not Enough Information’, namely Fev.3L and Fev.2L.

SciFact [232] contains expert-written claims paired with evidence from scientific papers. The
evidence is from textual sources only. One challenge of this dataset is that its content is scientific rather
than general.

FM2 [233] is obtained from an online multiplayer game where users write claims from a list of
evidence from Wikipedia. To gain points, claims must be hard to fact-check by other players. Evidence is
only textual and the ‘Not Enough Information’ label is not present.

AVeriTeC (AVTC) [104] contains real-world claims to verify with Web evidence. Each claim has
evidence in the form of question-answer pairs supported by online content. We treat each pair as one
textual evidence. This dataset has a fourth label, ‘Conflicting Evidence/Cherry-picking’, we do not report
it in our results as no verifier returns it.

Controlled Noisy Evidence. Datasets come with golden evidence for every claim. However, we must
include noisy evidence in the examples to enable our experiments. Whenever possible, we obtain the
evidence with retrievers, as this is how they arise in practice. When no corpus is available, we mix the
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golden evidence with noise. We show an overview of retrieval performances in Table 5.3. We detail next
how we add noise to every dataset.

For Feverous, the corpus of Wikipedia pages and the retriever are provided in the pipeline, so we run
it on the train and test datasets to obtain their noisy versions. We retrieve 5 documents per claim, and
in each documents 5 sentences and 3 tables. The retriever selects an arbitrary number of cells per table.
Crucially, golden evidence is missing after the retrieval step (0.36 Recall) and a lot of noise is selected in
the dataset (0.07 Precision). In the Feverous datasets, recall is lower than 1, i.e., some golden evidence
are not picked by the retriever. This may lead the labels of the verifier to be less accurate, as it may lack
sufficient information to verify the claim.

SciFact authors included for each example five “distractor abstracts” that cover topics mentioned in
the original article. We append sentences from these abstracts to the original evidence, up to a total of 20
sentences.

To write a claim, FM2’s users use one to two sentences out of ten sentences selected from Wikipedia
on a given subject, the remaining sentences are used as noise.

In AVeriTeC, gold evidence are human-created question-answer pairs. The authors provide a question-
answer generator to obtain retrieved evidence. From the generator, we pick the least relevant pairs
measured by BM25 ranking against the claim. We add an average of 5.5 pairs per example. For this
dataset, the retrieval performance are higher than the other datasets.

5.3.2 Models and their training

For the verifier models, the objective is to infer a label from a claim and the retrieved evidence. Before
testing models on the test set, we fine-tune them on the corresponding train set.

RoBERTa [141] is a transformer-based language model. We fine-tune the model on relevant NLI
datasets [105] as in Feverous, with learning rate 1e−5 for the dataset with 3 labels, and 1e−7 for the
datasets with 2 labels. We run the training for 1 epoch on Feverous and AVeriTeC, and 3 epochs on FM2
and Scifact. For Scifact, we further improve results by reducing the skew in labels in the train set.

GFCE [41] jointly trains veracity prediction and explanation generation using a fine-tuned version of
DistilBERT. It leverages both claim texts and supporting evidence to produce justifications. We use a
learning rate of 1e−5 for every dataset. We train FM2, Feverous and SciFact on 3 epochs, and AVeriTeC
on 2. We reduce the imbalance in AVeriTeC at train time by equalizing the number of ‘Supported’ and

‘Refuted’ claims.
We report an LLM-prompting verifier based on LLaMa 3.1 70B [234]. The prompt includes the

description of the task and the claim with its evidence. The model outputs a veracity label as well
as a list of the evidence used to take the decision. The inference takes up as 2 hours for a thousand
predictions. To enable analysis with SHAP and LIME, we also use an alternative prompt without the
evidence-labeling task, reducing both input and output lengths, and consequently the running time. We
observe a comparable behavior with this prompt in claim labeling, but with inference time reduced by
75%.

5.3.3 Configurations of the Explainers

We use LIME and SHAP to analyze verifier outputs. For the GFCE and RoBERTa models, we set 500
perturbation samples per explanation, while for LLaMa, we reduced it to 100 due to its computational
cost. We explain a subset of the datasets: we exclude examples exceeding 512 tokens (too long for
RoBERTa) and sample up to 1,000 examples from each dataset.

5.4 Experiments

We address the research questions presented in the introduction. For Q1, we start by investigating the
ability of SHAP/LIME-based explanations to distinguish Noise from Useful Evidence by contrasting
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them against intrinsic explainer models. Then, for Q2, we analyze how every model uses the input
evidence and the claim in outputting a label. Finally, to address Q3, we investigate the importance given
by verifiers to the useful evidence for each label individually.

5.4.1 Experimental Setup

The experiments were conducted on a system running Ubuntu 20.04.6 LTS with a kernel version of
5.4.0-177-generic. The hardware configuration consisted of an AMD EPYC 7272 12-Core Processor
with 128GB of RAM, and a NVIDIA GeForce RTX 3090 GPU with 24GB of memory. The software
setup included Python 3.8.10, LIME 0.2.0.1, SHAP 0.45.0. To run inference on LLaMa 3.1 70B, we used
a more powerful server running Ubuntu 20.04.6 LTS with a kernel version of 5.15.0-122-generic. The
hardware configuration consisted of an AMD EPYC 7742 64-Core Processor with 512GB of RAM, and a
NVIDIA A100-SXM with 80GB of memory. The software setup included Docker 23.0.3 where we ran in
a container LLaMa 3.1 using Python 3.9.

The runtime performance of the explainability methods was measured with comparable configurations:
500 perturbations per single explanation, explaining 3 set of 1000 examples (thousand per each dataset
type) and applied to the two models in consideration.

• LIME: between 1:55h and 2:18h to explain 1,000 examples for the 3-label model; between 1:31h
to 1:41h with the same configuration for 2-label model.

• SHAP: between 2:48h to 3:21h to explain 1,000 examples for the 3-label model; between 2:59h to
3:43h with the same configuration for 2-label model.

5.4.2 Configurations of the Explainers

To analyze the outputs of the verifier models, we utilized two explainability methods: LIME (Local
Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations). These methods
were employed with consistent configurations across different models, except for LLaMa 3.1 70B, which
required adjustments due to computational constraints. For both the GFCE and RoBERTa models, we
used 500 perturbation samples to generate each explanation. This number of samples ensures explanation
stability and fidelity to the model’s behavior. Given that the number of explanation units (evidence) is not
greater than 10 it follows that we are always covering at least half of all the possible combinations or
evidence. Considering that explainers weigh more samples close to the original item the chosen number
of perturbations guarantees fidelity. However, for LLaMa 3.1 70B, generating explanations was more
time-consuming due to the model’s larger size and complexity. To accommodate this, we reduced the
number of perturbation samples to 100. This reduction allowed us to obtain results in a reasonable time
frame without sacrificing too much on the quality of explanations. Another important adjustment was
related to the number of examples we explained from each dataset. We first filtered out examples that
were too long for RoBERTa (over 512 tokens), as these would exceed the model’s input length limit and
make the explanations less comparable. From the remaining examples, we selected up to 1,000 examples
to explain for each dataset. Some datasets had fewer than 1,000 examples available for explanation after
filtering, in which case we explained all the available examples. This approach ensured that the explainers
were applied to a manageable and representative subset of the data.

5.4.3 SHAP and LIME based Noise Detection

We measure the ability of SHAP and LIME to act as an evidence labeling system, when used to observe
a verifier model. To assess the quality of our proposal, we measure it against explanations provided by
intrinsic explainer models (GFCE and LLaMa), that output both a label for the claim and for each input
evidence piece.
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Evidence Labeling GFCE and LLaMa output a binary label for each evidence piece, together with an
importance in decision score. However, this information does not label evidence piece in terms of their
role in the decision, i.e., if they steer the verifier towards a refutes or supports decision.

For SHAP and LIME, we model the noise detection problem as a binary classification task using the
sum of absolute contributions of the explanations as score. We hypothesize that any noisy evidence should
leave the prediction unaltered, i.e., the explainer recognizes that a noisy evidence does not change the
state of the claim. From the methods, we obtain scores for every evidence piece relative to its importance
in a claim label decision. To label each evidence piece as noise or useful, we infer a threshold that
separate them. The best values for each dataset and observed model are different, making this threshold
unique to every setting. To infer each threshold, we use the explanation scores obtained for 100 evidence
pieces from the train set executed on the model currently observed, as follows. As we are working on the
train set, gold labels for evidence usefulness are available. We choose the threshold that maximize the
sum of the F1 score for useful evidence and the F1 score for noisy evidence. We then categorize each
evidence as Useful or Noise using the threshold obtained.

Table 5.4: Performance comparison across different models and datasets in terms of claim verification
(left), explanations from the intrinsic explainers (middle), and explanations from the post-hoc explainers
(right). Best explanation result for every dataset and observed model pair in bold.

DS Model Verifier Intrinsic Explainer SHAP/LIME
Acc. F1 Sup F1 Nei F1 Ref Acc. F1 Useful F1 Noise Acc. F1 Useful F1 Noise

Fe
v.

2l Roberta 0.61 0.73 - 0.35 - - - 0.88/0.83 0.24/0.30 0.93/0.90
GFCE 0.48 0.03 - 0.64 0.78 0.31 0.87 0.56/0.83 0.27/0.40 0.69/0.90
LLaMA 0.69 0.70 - 0.68 0.88 0.47 0.93 0.88/0.86 0.21/0.20 0.94/0.92

Fe
v.

3l Roberta 0.60 0.71 0 0.41 - - - 0.89/0.88 0.35/0.40 0.94/0.93
GFCE 0.59 0.69 0 0.46 0.79 0.33 0.88 0.80/0.82 0.36/0.34 0.88/0.89
LLaMA 0.57 0.70 0.17 0.44 0.88 0.46 0.93 0.83/0.84 0.33/0.26 0.90/0.91

Sc
iF

ac
t Roberta 0.67 0.69 0.75 0.49 - - - 0.83/0.86 0.28/0.23 0.91/0.92

GFCE 0.37 0.52 0 0.23 0.38 0.20 0.50 0.66/0.58 0.21/0.20 0.79/0.72
LLaMA 0.76 0.80 0.71 0.72 0.80 0.51 0.88 0.87/0.85 0.29/0.26 0.93/0.92

FM
2 Roberta 0.70 0.72 - 0.68 - - - 0.87/0.88 0.27/0.16 0.93/0.93

GFCE 0.58 0.59 - 0.56 0.60 0.32 0.71 0.87/0.83 0.09/0.20 0.93/0.90
LLaMA 0.87 0.88 - 0.87 0.85 0.58 0.91 0.88/0.85 0.40/0.38 0.93/0.92

AV
T

C Roberta 0.79 0.86 0.52 0.78 - - - 0.78/0.78 0.49/0.49 0.86/0.86
GFCE 0.59 0.50 0.50 0.69 0.37 0.49 0.17 0.70/0.69 0.48/0.44 0.79/0.79
LLaMA 0.76 0.77 0.44 0.85 0.88 0.81 0.92 0.77/0.75 0.63/0.54 0.84/0.83

Useful Evidence Identification Table 5.4 presents our results. Each row represent a dataset and the
verifier run on it – this is the observed model for our approach. Columns under Verifier report the
associated verifier performance on claim labeling. Columns under Intrinsic Explainer report the the
Accuracy, F1 Useful and F1 Noise for labeling evidence for the PLM-based models that can justify
their decisions, i.e., GFCE and LLaMa. Columns under SHAP/LIME, report the same metrics using our
post-hoc methods. All scores for a single dataset are computed by running the models on the associated
test set - both for claim and evidence labeling.

Overall, SHAP provides more accurate results than LIME, independently of the metric analyzed.
SHAP wins in 62%, 69%, and 54% of the cases when looking at Accuracy, F1 Useful, and F1 Noise,
respectively. For most dataset/model pairs, the SHAP and LIME based explainers perform on par with the
intrinsic explainer - GFCE or LLaMa - regardless of the metric. Post-hoc methods outperforms GFCE’s
explainer on 13 over 15 results when using such observed model as verifier. If we compare across all
explainers for a single dataset (both intrinsic and post-hoc), the accuracy of evidence labeling metric for
SHAP/LIME is the highest on 4 out of 5 datasets. In noise detection and accuracy, post-hoc methods
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outperform intrinsic ones in all cases expect two, where LLaMA shines in terms of identification of
useful evidence. The results show that post-hoc explainers can compete with PLMs that are specifically
trained on this task. Finally, our proposal is the only one that can explain a Roberta model, which lack an
intrinsic explaining.

Restraining to explanations based on SHAP and LIME, in all cases, the worst accuracy for evidence
labeling is obtained when the observed model is GFCE’s verifier. This is consistent with the performance
of the verifier, that is in average for all datasets 14 absolute points under the worst scores among the two
other verifiers.

When looking at results for a same model and a same dataset, we remark that GFCE’s explanations
have scores that are not concordant with its verifier’s scores. The origins of this behavior relies in the
separation of the explainer and verifier in this model. Indeed, even if they are trained with a joint-loss, the
GFCE’s explainer prediction are not directly linked to the verifier’s decisions.

The performance of SHAP and LIME being highly dependant on the verifier’s performance, we
would expect the models to struggle on evidence labeling for GFCE. Most of the results of our explainer
for this verifier are only a few points behind its alternatives. We make the hypothesis that GFCE’s verifier
is able to detect correctly noise, but still cannot infer the right claim label from the useful evidence, thus
resulting in the verifier’s scores observed. The analysis performed in Section 5.4.4 supports our reasoning.

Through the experiments, it appears that post-hoc methods are able to discern noise. Results show
that in some situation they can identify them better than intrinsic explainers tailored on this task. By
extension, we can conclude that fact-checking models effectively distinguish between useful and noisy
evidence. This provides an answer to Q1.

5.4.4 Model Reliance on Claim and Evidence

We analyze how the verifier model depends on the (gold) evidence, noise and claim to make decisions
over (1) whether the model relies on the claim and the evidence for predictions, (2) how contributions are
distributed among the evidences.
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Figure 5.2: Distribution of contribution scores obtained with SHAP of the useful evidence, noisy evidence,
and claim on the predicted classes (Supports, Refutes, NEI). We spread horizontally the five datasets and
vertically the three observed models. Every plot reports the predicted class over the x and the prediction
contributions for useful evidence, noise and the claim itself.
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Importance of claim and evidence. We analyze separately the examples labeled by a model as Supports,
Refutes or Not Enough Information. For each example, we compute three contributions: the one from
the useful evidence (obtained averaging the contributions for all useful evidences), the one from the
noisy evidence (by averaging them), and the one from the intercept (the contribution from the claim).
The distribution of these contributions for all examples in the test set is shown in Figure 5.2 as USEFUL

(evidence), NOISE (evidence), and CLAIM. Computing the average contribution for useful and noise lets
us analyze their contribution independently from their unbalance in quantity. Even though models may
assign greater contributions to useful evidence than over noise, in some experiments the higher number of
noisy evidence makes the sum of their contribution greater than the contribution of the useful evidence.

We report the analysis on every dataset and every verifier. The behavior is consistent between SHAP
and LIME, so we report results for the former, as it perform slightly better in the previous study.

From Figure 5.2, we see that regardless of the model or dataset, the average contribution of useful
evidence in claim labeling is greater than contribution from noisy ones. The exception is label Not Enough
Information, where Noise contributes as much as useful evidence. For this label, verifiers predominantly
exploit the claim. This behavior indicates a lack of sufficient useful evidence, coherently with the results
in Table 5.4.

Observing RoBERTa on the Feverous 2 labels dataset, we see that most of the contribution for Refutes
come from evidence, especially the useful ones. In the Supports case, the median of the contributions
of the claim is the only score deviating from zero, i.e., the claim is the only factors that contribute to
the claim labeling - evidence being discarded. This may suggest that the model decides to label a claim
as Supports when it cannot find any evidence to refute it. On the Feverous 3 labels, the model displays
a similar behavior than on Feverous 2 labels. In the AVeriTec dataset, RoBERTa predominantly bases
its decision on the Claim across all labels. We observe the same behavior for GFCE across all models.
This reliance on the Claim, rather than on useful evidence, undermines the verifier’s trustworthiness, as
reflected in the non excellent results in terms of labeling of the claims in Table 5.3.

For LLaMa, the post-hoc methods show that the majority of the contributions always come from the
evidence. However, among the three verifiers, it is the only one that does not count on evidence to label
AVeriTec Not Enough Information.

To answer Q2, the analysis show that the three verifiers rely on evidence and claim very differently to
perform their decision. The contribution of claim and evidence over label is very different across models.

Contribution spread on the evidence. We measure whether the contributions are evenly distributed
across evidence pieces. We rank the evidences by decreasing contribution in all examples. Then, we
compute the mean for all the evidences with the same rank.

Results in Figure 5.3 confirm observations made for answering Q2. We see that the verifiers rely on
evidence very differently. The GFCE verifier is only lightly influenced by the evidence to take a decision,
with a maximum contribution of the most useful evidence of 0.2 across every datasets on Supports
and Refutes labels. Also, in the case where the predicted label is Not Enough Information, GFCE and
RoBERTa on AVeriTeC have a high contribution score for the most useful evidence, showing that the
model could switch its decision to Not Enough Information from a single evidence piece. This leads to
a natural question: how can adding an evidence make the model switch the prediction toward lack of
information? Such result may indicate that the verifier did not learn correctly the implications of this
label, probably due to the very small percentage of such claims in the training data.

Finally, we look specifically at contribution ranking for evidence across models and datasets. LLaMa
appears to make the most reasonable usage of evidence as, both for Supports and Refutes, it spreads the
contribution scores more than the other verifiers over the available evidence. This verifier is also the
only one that use the evidence on every dataset – with first contribution always around 0.5. As a non
fine-tuned LLM, not tailored for the fact-checking task, we could expect RoBERTa and GFCE to take the
advantage here. Furthermore, one could expect that the LLM’s extensive knowledge base could enable it
to disregard the provided evidence.

Splitting by label, evidence play a key role for RoBERTa when the model predicts Refutes, while this

72



5 10

0

0.5

1

5 10 5 10 5 10 5 10

0

0.5

1

0

0.5

1

predicted class SUP REF NEI

Rank position Rank position Rank position Rank position Rank position

m
e
a
n

m
e
a
n

m
e
a
n

Fev. 2L Fev. 3L SciFact AVeriTeC FM2

L
L
a
M

a
 3

.
1
 7

0
B

G
F
C
E

R
o
B
E
R
T
a

Figure 5.3: Mean and 95% confidence interval of contribution score over the predicted class grouped by
predicted class and rank of the evidence piece in the set of evidence of an example, removing evidence
pieces contributing negatively on the predicted class. Experiment run on each verifier and each dataset.

behavior is less visible for Supports. On the other hand, LLaMa exhibits a more balanced performance
between the two labels. As for GFCE, the low contribution of each evidence concerns all labels. By
exploring the distribution of the evidence’s impact on the model, we have thoroughly addressed Q3.

5.5 Conclusion

We address the black-box nature of neural fact-checking models by applying post-hoc XAI methods to
identigy relevant useful and its contribution to claim classification across four established datasets. Our
findings suggest that models effectively rely on evidence for supported claims and can discern noisy
evidence, thus enhancing transparency. We demonstrate that post-hoc methods like LIME and SHAP
can sometimes provide higher-quality explanations than intrinsic explainers across three fact-checking
systems. With a running time of 6 seconds on some model per one claim, post-hoc methods can be
considered as a slower but effective alternative to intrinsic explainers. For future work, we envision a
verifier model that inherently provides both labels and evidence explanations, aiming to leverage the
insights of post-hoc methods while significantly reducing computational costs.

5.6 Limitations

We acknowledge the limitations in our study.
Our approach relies on the assumption that the evidence retrieved by the system is contextually

relevant to the claims being checked. While our framework effectively identifies and explains relevant
evidence, its performance is contingent on the quality of the evidence retriever. In practice, if the retriever
retrieves predominantly noisy or irrelevant evidence, the effectiveness of the explainability methods
(LIME and SHAP) in attributing correct contributions may be compromised. This assumption might not
always hold true, especially in diverse or dynamic datasets where context relevance is harder to ascertain.
Our empirical evaluation is confined to the Feverous dataset and the verifier models trained with it. While
Feverous is a comprehensive benchmark, our findings’ generalizability to other datasets, domains, or
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languages remains unexplored. Consequently, the performance and robustness of our approach may vary
when applied to different fact-checking scenarios or datasets with distinct properties. Future research
should extend these evaluations to a wider array of datasets and contexts to better understand the scope of
our method.

The effectiveness of our proposed framework is inherently linked to the capabilities of LIME and
SHAP post-hoc explainability methods. These methods have their own limitations, such as sensitivity to
input perturbations and assumptions about local linearity around the data points being explained. Should
these assumptions fail, the explanations provided may not be reliable. But by aggregating a large number
of explanations (3k) we consider more trustful the aggregated results rather than each single explanation.
Moreover, both methods can be computationally intensive, which might limit their applicability for
real-time or large-scale fact-checking tasks.
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Chapter 6

Applying Computational Fact-Checking to
Identify Health Misinformation on Social
Media

Originally published as: Grazia Cecere, Jean-Flavien Bussotti, Clara Jean, Nessrine Omrani, and
Paolo Papotti. Digital Divide and Artificial Intelligence for Health. Digital Transformation Society
(May 2024), 35 pages. [11]

In this thesis, we explored technical solutions aimed at enhancing inference models. Our investigation
focused on data-driven AI, specifically the generation of synthetic datasets, and we expanded our research
to incorporate multi-modal approaches. Additionally, we examined the impact of input on output through
the lens of explainability. While our work was primarily applied to the fact-checking use case, it had
not yet been implemented in real-world scenarios. In this chapter, we support economic researchers
by providing customized models for analyzing Facebook ads. In doing so, we leveraged our dataset
generation techniques to address the imbalance in their training dataset, which originally contained
uneven distributions of different labels.

6.1 Introduction

Artificial intelligence (AI) defined as machines, software, and algorithms that act by recognizing and
responding to their environment [235] has caused significant transformations in a range of industries and
sectors [236, 237, 238, 239, 240, 241]. It has triggered innovations in areas such as more sustainable
production [242] and resource optimization [243], and is fundamentally changing how humans engage
with technology. For these reasons, AI is often studied from a socio-technical perspective [244].

At the same time, past and current socio-economic development challenges persist around the world
[245, 246, 247]. The 2030 Sustainable Development Agenda, an international agreement signed by 193
United Nations members in 2015, was created to respond to these challenges. It includes 17 Sustainable
Development Goals (SDGs) and 169 targets and is aimed at promoting prosperity while preserving the
environment and ensuring decent living standards. The growing influence of AI has prompted research
into whether AI could become one of the tools used to achieve these SDGs [248, 249, 250]. Most of the
existing research highlights the positive impacts of AI use in various sectors [251, 252, 253], and tends to
underexplore its dark-side [254, 255].

One area where use of AI is particularly evident is online digital platforms and especially social
media. Social media platforms are considered primary sources of information. Based on a 2023 Pew
survey, 50% of users in the US always or sometimes use social media as a source of information. Meta
is the most popular platform (30% of users) while TikTok has experienced the largest growth in the
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last three years [256].1 Compared to traditional media, the value added of social media is the ability of
AI-driven algorithms to match content to individuals based on their personal characteristics or interests
which results in significantly lower user search costs [257]. Alongside user-generated content, ads on
social media are important sources of information. They serve commercial purposes and also are posted
by a range of different institutions such as government and non-government organizations (NGOs), to
inform individuals about issues such as health emergencies, or increase awareness of green developments.

However, the huge volume of content offered on social media platforms requires more than algorithmic
matching; it also requires robust AI-driven algorithms to curate and manage this content. Curation of the
massive volume of advertising is crucial for the platform management and it is achieved through use of
AI-driven algorithms which evaluate a very large mass of content, and especially sensitive content related,
for example to health.2 Previous studies show that social media platforms are often subject to polarization
in relation to political content [258], and to echo chambers [259] and potential algorithmic bias in the
diffusion of information on job offers and education [260, 261]. A recent surge in (mis)information
related to health prompted the World Health Organization (WHO) to coin the term “infodemic” and call
for urgent research on the issue [262].

The problems caused by the spread of misinformation online has resulted in regulators and policymak-
ers putting increased pressure on social media management platforms in terms of the content published
on their platforms which now is subject to the recently implemented Digital Service Act (DSA). Several
studies that adopt an SDG perspective have suggested that AI as a non-neutral technology, could hinder
achievement of the SDGs [263, 264]. However, there is a lack of empirical evidence to substantiate
these claims. In this paper, we explore whether AI and use of social media platforms as a primary
source of information could threaten progress towards the SDGs related to reducing inequalities (SDG10)
and increasing health and well being (SDG3).3 We focus in particular on how AI-driven algorithms
might exacerbate economic and social differences. The research questions addressed are: Do AI-driven
algorithms efficiently control the type of content diffused on digital platforms? Do AI-driven algorithms
reduce or exacerbatesocio-economic inequality by reducing the digital divide?

We collected ads displayed in the US on both Meta and Instagram from the Meta ad library for
the period January to June 2020. We consider only ads displayed in all US states.4 During the period
analyzed which included the COVID-19 pandemic, many of the ads were health related. For each of the
ads in our dataset, we have detailed information on the ad text, the total number of impressions, and the
distribution of impressions by age and by gender. We also had information on the total number of ad
impressions displayed by individual US states, and socio-economic demographic data for individual US
states.

To address the research questions, we employed a method that involved use of a fact-checking
algorithm which exploits a range of different technologies to detect misinformation related to health
issues during the pandemic. The fact-checking algorithm enabled evaluation of the likelihood that an
ad contained false or unsupported claims designed as misinformation [265]. Our approach combined
broad understanding of complex textual claims enabled by pre-trained language models (PLM) with
domain-specific knowledge allowed by the fine-tuning of these models with curated datasets.To train
the model, we used human annotations and relied on synthetic data produced by a generative AI tool to
increase the training sample size. Use of the fact-checking algorithm was aimed at identifying whether a
given ad in our dataset included misinformation or not.

We combine data collected from the Meta ad library and the results of the fact-checking algorithm
with US state-level administrative data. We were interested in whether algorithmic display of health-
related ads reduces existing socio-economic inequalities by reducing the digital divide. To our knowledge,
there is an absence of research on whether ad content distributed by AI-driven algorithms on social media
affect inequality among individuals in terms of accessing health information.

1https://www.pewresearch.org/journalism/fact-sheet/social-media-and-news-fact-sheet/, last accessed April 2024.
2https://medium.com/@ComicRealmReports/metas-latest-findings-experiments-suggest-algorithms-have-no-impact-on-political-opinion-3bdf7549f6bf,

last accessed April 2024.
3https://www.pewresearch.org/journalism/fact-sheet/social-media-and-news-fact-sheet/, last accessed April 2024.
4see Section 6.3 section for more details
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Our findings based on fact-checking show that very few of the health-related ads displayed on the
Meta platform contained misinformation. Although the fact-checking algorithm categorized 15.41% of
the ads as ambiguous only 0.2% were seen as providing misinformation. However, we found evidence
of a digital divide in the context of ad display based on AI-driven algorithms. First, health-related ads
classified as misinformation or ambiguous were more likely to be displayed in US states characterized by a
low GDP per capita. Second, we observed higher display of health-related ads containing misinformation
in US states with high percentages of individuals with no health insurance cover.

This paper has several managerial and policy implications. First, our fact-checking algorithm
directly addresses the need for robust, automated online content moderation tools. In information-
heavy environments such as newsrooms, the appropriate tools could help regulators, policy makers,
and journalists to swiftly and accurately verify the validity of claims and data [266] by significantly
reducing the pressure on human fact-checkers and promoting more timely debunking of misleading
claims. This is in line with EU recommendations related to harnessing new technologies such as AI to
tackle misinformation [267]. Problems related to managing misinformation were considered in 2024 by
the World Economic Forum to be the most prominent risk over the coming two years5. Our study has
made some initial steps towards bridging the gap between the research community and targeted markets,
and offers some potential solutions to this issue. Second, platforms need to be aware of the dark-side of
using AI-driven algorithms. For example, they can reinforce existing inequalities by conveying certain
types of health-related information to certain population categories but not others. If this occurs, then
AI-driven algorithms will be an obstacle to the achievement of the 2030 Agenda SDGs. Although the
regulatory authorities are imposing increased scrutiny of information and content shared on social media
platforms, our results highlights the need for better control of algorithmic ad displays and especially those
related to health information.

Our paper is organized as follows. Section 6.2 reviews the current literature on online misinformation,
algorithmic decision-making and internet technologies inequality. Section 6.3 introduces the context of
the study and describes the data collection via the Meta Ad Library API and external data sources. Section
6.4 details the construction and training of the fact-checking algorithm. Section 6.5 offers preliminary
analysis through descriptive evidence. Section 6.6 presents our main results. Section 6.7 discusses the
potential mechanisms explaining our results and the underlying implications. Section 6.8 highlights some
limitations and concludes.

6.2 Literature Review

The article relies on three streams of literature. First, we refer to the literature on online misinformation.
Second, we contribute to the literature related to algorithmic decision-making. Third, we build on the
literature that invests how internet technology affects inequality.

6.2.1 Online Misinformation

Numerous studies highlight social media platforms, including Meta and Twitter, as widespread channels
for disseminating misinformation online [268, 269, 270]. In particular, [271] identifiy a robust correlation
between Meta use and the consumption of false news articles. To complement this finding, [272]
demonstrates that misinformation and rumors proliferate more easily in social networks featuring an echo
chamber. An explanation is related to people who often share misinformation because their attention is
focused on factors other than accuracy of the news they read [273].

While misinformation might seem insignificant in terms of impacts on individuals, the reality
contradicts this assumption [274]. [275] discovers that the impact of misinformation depends on the
sophistication of the individuals exposed to it. For example, [276] demonstrate, in the context of search
engines, that online searches to verify the truthfulness of false news articles can actually increase the

5https://www.weforum.org/publications/global-risks-report-2024/, last retrieved January, 2024.
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probability of believing them. In the electoral perspective, [277] reveal that overconfidence exacerbates the
impact of widespread misinformation on democratic decision-making. During the COVID-19 pandemic,
a plethora of information has circulated, occasionally leading to adverse effects on public health [278]
with direct effect on vaccination intent [279].

Addressing the necessity to combat online misinformation, [280] explore the use of crowdsourcing as
a potential solution. While the authors showcase crowdsourcing as an effective fact-checking strategy in
specific settings, the inconsistency and lack of actionable results prompt the exploration of alternative
solutions for more effective fact-checking of online misinformation. As an illustration, [281] apply
transformer-based models6 (CT-BERT) and node embedding techniques7 (node2vec) to address COVID-
19-related conspiracy theories using tweet text and user interaction graphs, and show this is a viable
approach to address this challenge. [282] advocates Natural Language Processing (NLP) as a non-human
innovation intermediary, enhancing decision-making by expanding information analysis and reducing
costs through automation. In the same vein, [283] underscore the efficiency of NLP tools, particularly the
F-term approach, in classifying patent documents based on technical attributes.8

Until now, there persists an ongoing discussion regarding the potential of AI in addressing the issue of
detecting online misinformation [267]. Our article differs from previous studies with the development of
a fact-checking algorithm specifically tailored to advertising content on social media platforms. Notably,
our focus diverges from traditional emphasis on posts or tweets, commonly targeted in previous efforts.
Moreover, the aim of this algorithm is to aid fact-checkers in more effectively debunking the classification
of ad content containing misinformation.

6.2.2 Algorithmic Decision-Making

Given the large volume of content available online, digital platforms are increasingly relying on AI-driven
algorithms to process content and data. AI defined as general-purpose technology is of great interest to an
increasing number of private and public organizations [285] because AI-driven algorithms are inherently
scalable. Another advantage of AI-driven algorithms is that they are able to perform human-alike task
without human intervention or with little human involvement.

Given the need for personalization to ensure optimal content-user matches [286], AI-driven algorithms
may lead to unintended side effects [287]. [288] show, through a comprehensive dataset, the intrinsic
connection between news consumption, the news shared by friends, and how algorithms rank news. In
further exploration, [289] find that content-based and collaborative filtering recommendation algorithms
could contribute to the formation of filter bubbles. From a theoretical standpoint, [290] demonstrate
that recommendation systems blend consumer interests with content. However, they warned that if the
platform recommends a content type diverging from a consumer’s optimal mix, the algorithm might
introduce recommendation bias.

We contribute to this body of literature by examining whether and how misinformation related to
health issues disseminates on social media platforms according to individual US states socio-economic
characteristics.

6.2.3 Digital platforms and internet technology inequality

The third strand of literature focuses on examining the impact of internet technologies within the digital
economy on societal inequality. The early diffusion of internet has been associated with a wider gap in the
access and use of information and communication technologies (ICT) creating the so called digital divide.
This has contributed to increase already existed inequalities [291]. There is a large literature that have
documented the digital divide in the internet usage [292] and in the geographical dispersion of internet
diffusion increasing inequality between urban and rural area [293]. Recently, a new form of digital divide

6A transformer model is a type of neural network that learns context and consequently, meaning, by discerning connections
within sequential data.

7Node Embeddings are vectors that reflect properties of nodes in a network.
8The F-term [284] approach is a method used to classify patent documents using the k-nearest neighborhood method.
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has been observed by [294] through the ability of individuals to navigate on the Internet while being
aware of the role of algorithms. The fact that not everyone benefits equally from the technology requires
more investigation towards establishing clear technology needs that could lead to the development of
more coherent frameworks and policies to bridge digital gaps [295]. We enhance this body of literature by
investigating how the nature of information disseminated through social media, facilitated by algorithmic
decision-making, may exacerbate geographical digital divides and inequalities. This is achieved by
providing varying levels of information quality based on individual and geographical characteristics.

6.3 Empirical Section

6.3.1 Data Collection

We gathered data from the Meta ad library to empirically test the diffusion of online misinformation and
its algorithmic display according to socio-demographic characteristics of US states. We chose Meta due
to its prominence as the main player in algorithmic news distribution channels [267]. Given the crucial
importance of managing health-related misinformation, we focused on pandemic related ad content.
Figure 6.1 shows an example of health-related ads related to pandemic. We collect the data using the
Meta API.9

Figure 6.1: Health-related Ads Related to Pandemic

Our final sample included 149,734 ads from 1,102 advertisers. We limit our sample to only ads
displayed in all US states. As advertiser can decide to target the whole country or only a given set of
states, we consider only ads published in whole country to study the intensity of ad distribution in each
state. This aims at mitigating advertiser targeting bias and to focus on algorithmic ad display.

Online advertising is an essential communication tool. While online advertising may be for commer-
cial purpose, it is also used by public institutions and NGOs to inform individuals. Thus, algorithmic

9API is Application Programming Interface.
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detection of information is triggered by the coexistence of different types of information. The urgency sur-
rounding the COVID-19 pandemic meant that platforms had to be able to discern whether advertisements
were appropriate or potentially contained inaccurate information [296].

Before publication, all paid ads on Meta are reviewed by an automated ad-screening system to ensure
compliance with Meta’s advertising policies. This algorithmic ad screening helps the platform to identify
ad content that might harm users through what the platform terms ‘unacceptable content’. Examples of
unacceptable content include ads promoting child sexual exploitation, abuse, and nudity, discriminatory
practices, hate speech, inaccurate health information, and anti-vaccine content.10 Ad that includes any of
these types of content violates Meta’s advertising policy and is removed from the platform. Figure 6.2
shows an example.

Figure 6.2: Example of Ad being Removed

6.3.2 Measuring Ad Distribution Inequality

To assess inequality in ad display, we augmented the Meta ad-related data with three sources of US
state-level administrative data. First, we collected open data from the US Census Bureau for year 2020
on the percentages of people without health insurance in the whole population by individual US state.
Second, we collected US Centers for Disease Control and Prevention (CDC) open data on number of
COVID-19 cases per state and per month in 2020, and matched them with our study period. Third, we
collected data on state GDP for the year 2020 from the US Bureau of Economic Analysis (BEA). We
aggregated ad-level data to the state level enabling us to match ad-related data with US administrative
data.

6.4 Fact-checking using a Deep Learning Model

To analyse the ad content, we use a fact-checking method that relies on a deep learning model. We rely
on a fact-checking model to verify and annotate the content of real ads published on Meta’s ad library
platform. To annotate the whole dataset, we use a fine-tuned CT-BERT [297] pre-trained model to predict
a label for each ad. CT-BERT is a deep learning model trained on crisis-related text data, including social
media posts and domain-specific vocabulary. It aims to better understand and interpret language used
during various types of emergencies. We adopt it to build a classifier to automatically label our examples

10See https://transparency.fb.com/policies/ad-standards/ for a full list, last retrieved February, 2024.
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because, given the purpose of its creation, it is well adapted to our task. While CT-BERT is a relatively
small model, we find that its performance are on-par or better than much larger models, such as LLama2
7b [298] fine tuned for classification and ChatGPT[299] instructed with prompting.

As any encoder model, CT-BERT relies on fine-tuning to be instructed for our dataset and labels. We
further train the original CT-BERT model using custom examples. We use human annotation to classify
the content of a random sample of 2,600 ads including both health-related ads and not health-related
ads ads. We annotate this set of ads using three categories: “Not misinformation”, “Ambiguous” and
“Misinformation”. We follow the same approach used by [300] based on the guidelines provided by the
statement of the Australian Competition and Consumer Commission (ACCC) to distinguish between
false and misleading claims.11 We also rely on the FTC statement related to unproven COVID-19 health
related claims.12

However, this manually annotated dataset cannot be directly provided to the model as the training data
is significantly skewed across the distribution of the labels, with “Not misinformation” being the most
represented label. The class unbalance is an important problem in the training set, as this may lead the
model to predict only the popular class. We therefore address this issue with two combined approaches.

First, we augment the data in the “Misinformation” class by generating 400 synthetic examples [301,
302]. We generate such examples by using ChatGPT [299] with two methods based on “in context”
learning. The first exploits the availability of misinformation definitions discussed above (from ACCC
and FTC). We include in the LLM prompt the definition of misinforming text to steer the generation [303].
A second method is also based on prompting LLMs, but instead of descriptions, we use human labeled
misinformation examples following the “few shots” approach [304]. The newly generated data set is
then evaluated by humans. Ultimately, only 250 examples are considered high quality and added to the
training data.

We report the three prompts that we used to generate additional training examples (labeled as
“Misinformation”) to fine tune the fact-checking model.

In the first prompt, we give to the model guidelines for creating claims. These guidelines are sourced
from the FTC and ACCC. No examples are given to the model. Therefore, we ask the model to generate
claims which violates at least one of the provided guidelines.

I’m building a fake news detection model. For this I need misinformation claims.
Given the following rules, can you write me some claims that would be classified as misinformation
: -Product and service claims must be truthful, substantiated, and include accurate information
on price, quality, and benefits. -Misrepresentations, withholding key information, or making
false origin claims are illegal. -Exaggerations are often permissible, but objectively false claims,
especially about prices and comparative advantages, are not. -COVID-19 related advertising must
avoid false or unproven treatment claims; comparative claims require accurate information. -Claims
about product quality, safety, and environmental impact must be factual and specific. -All claims,
including those about COVID-19 prevention or treatment, need credible scientific support and
transparent pricing. -The FTC enforces against deceptive COVID-19 claims; platforms monitor
and penalize such misinformation.
Each claim should break one or multiple rules above. The claim should not be too obvious. For
example, avoid writing in the claim ’there are no evidence that this is true’. Also, the claim should
not contain the evidence that prooves it is misinformation

In the second prompt, we only provide the model a small list of examples from our dataset, and an
instruction on what to do. The task is to supplement the list with additional items.

11See the definition: https://www.accc.gov.au/consumers/advertising-and-promotions/false-or-misleading-claims, February,
2024

12https://www.ftc.gov/business-guidance/blog/2021/04/advertisers-stop-unproven-covid-claims-or-face-penalties-under-new-law,
February, 2024
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Here is a list of covid misinformation :
[’whoa. . . we just ignore that aliens are real?! watch the first episode of ‘real america’ with graham
allen!in turning point usa’s brand new series, graham cuts through the fake news & tackles the
biggest stories of the week. join us on youtube & facebook every thursday at 4 est! #realamerica’,
’selinexor killed the virus in a petri dish. next steps?’, "the false chinese government propaganda
against our president has gone too far. as usual, china is trying to brainwash the rest of the world
while throwing america under the bus.it’s time to put an end to their communist propaganda once
and for all, but we can’t do it without you. president trump is calling on every american to step up
and defend their country against the chinese communist party lies!please sign our official petition
demanding an end to the chinese government propaganda against our president!", "some claim it
could cure covid-19. here’s the story of the controversy surrounding the antiviral drug avigan in
italy.", [...]]
Can you add other items to the list. They should be written in a similar style

The third and last prompt is a combination of the two previous prompts: We provide the model both
examples and rules to generate claims.

Your task is to generate short sentences that contains misinformaion technique in order to train a
fact checking model. The definition of misinformation technique is the following: Product and
service claims must be truthful, substantiated, and include accurate information on price, quality,
and benefits. Misrepresentations, withholding key information, or making false origin claims
are illegal. Exaggerations are often permissible, but objectively false claims, especially about
prices and comparative advantages, are not. COVID-19 related advertising must avoid false or
unproven treatment claims; comparative claims require accurate information. Claims about product
quality, safety, and environmental impact must be factual and specific. All claims, including those
about COVID-19 prevention or treatment, need credible scientific support and transparent pricing.
The FTC enforces against deceptive COVID-19 claims; platforms monitor and penalize such
misinformation.
Here are some examples: - ’have you seen more people wearing face masks in response to the
coronavirus? turns out, they might not be as effective as they think.’, [...]
Please generate sentences that contains the misinformation technique, as detailed above, similar to
the examples, on similar topics.

Second, at the training time, we also optimize the process by giving more importance to human
data as well as taking consideration of class unbalance with a custom loss function. A loss function is a
mathematical method used to measure how well the model’s predictions match the actual known values,
helping to guide the improvement of the model during training. Example of an under represented class,
such as the “Misinformation” class, are given more importance individually during the training step, so
that the model is more likely to recognize them, even if they are rare. The higher importance given to ads
of such class permits to obtain better predictions for the under represented classes.

6.4.1 Results of the Fine-tuning for CT-BERT

The model we use for the final annotation of the unlabeled texts is trained on 2.1k manually annotated
examples. To assess the quality of the model, we keep out of training 500 of the original human-annotated
examples for test. We also generated using ChatGPT 400 synthetic ads for the “Misinformation” category
and use in the training set the 250 ads considered of high quality after human evaluation.

To use the CT-Bert classification model in our setting, we need to adjust some of its functionalities
and parameters. In the training process, we give more importance to human data with respect to ChatGPT
generated data, and we also take into consideration class unbalance. For this goal, we use a custom loss
function to train the model. The custom loss takes into consideration the percentage of each label to
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compute the loss. In our case, it gives higher importance to texts with label “Misinformation”, as they are
rare in the dataset. The custom loss also gives human training examples a coefficient two times superior
to the one for generated examples. This choice reflects the intuition that the original examples are more
representative of reality, thus it is preferable to privilege them in the training.

We run the training and inference of our CT-BERT model on a cluster of OS Linux workstations.
The experiments were run on a single GPU, a NVIDIA TITAN Xp that has a VRAM capacity of 12GB.
This is a low-resource setting that allows most people to run this model without needing a high-end GPU.
The fact-checking models relies on PyTorch [203] and on the HuggingFace library [204]. To train the
CT-BERT model, we set the following hyperparameters: 10 epochs, a batch size for train and evaluation
of 8. We define the learning rate to be 5e−5.

Table 6.1 reports the results of the model evaluation. Overall, the model is able to effectively predict
both “Misinformation” and “Not misinformation” categories, with an overall accuracy of 0.923. This
number is obtained by computing the average of F1 scores available in Table 6.1 between “Not misin-
formation” and “Misinformation” categories. At inference time, 76.3% of the original Misinformation
claims are either labeled as Misinformation or Ambiguous, confirming the quality of the predictions of
the model.

Overall, the analysis of the deep learning model indicates that our dataset includes 0.2% published
ads that contain misinformation and 15.41% published ads being ambiguous. This represents a low
percentage suggesting AI-driven algorithms filter ads containing misinformation.

Table 6.1: ML Model Evaluation on 500 Manually Labeled Examples.

Label Precision Recall F1 Score Support
Not misinformation 0.8795 0.9733 0.9241 375
Ambiguous 0.3333 0.0385 0.0690 52
Misinformation 0.8861 0.9589 0.9211 73

6.5 Descriptive Statistics

The final sample includes 145,272 ads published in all US states from January to June 2020. As our
objective is to measure whether algorithmic distribution of ads reduces or exacerbates inequalities, we
aggregate the ad display at the state level. We compute the average number of impressions by state and by
ad category, i.e. health related or not, and classification made by the fact-checking algorithm. Therefore,
we end up with 50 observations corresponding to the 50 US states, District of Columbia being not available
in the data. Table 6.2 presents the descriptive statistics of the main variables used in the empirical analysis.
The data includes the average number of impressions by types of ads and state characteristics including
population, GDP per capita, percentage of people without health insurance and total COVID-19 cases.
Overall, we observe a significantly higher number of impressions made for health-related ads classified
as misinformation compared to non health-related ads in the same misinformation category. This is in
line with previous work that show that misinformation proliferates faster on social media [269]. This first
evidence raises concerns towards the equality in terms of access towards information quality online.
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Table 6.2: Summary Statistics at State Level

Variable Mean Std. Dev. Min Max

Non-health-related ads

# Impressions - non-misinformation ads 923.653 959.826 93.779 5013.228
# Impressions - ambiguous ads 942.829 930.913 96.863 4325.648
# Impressions - misinformation ads 469.249 463.901 51.075 2256.227

Health-related ads

# Impressions - non-misinformation ads 1034.148 1190.013 74.253 6281.785
# Impressions - ambiguous ads 932.576 948.202 90.95 3700.076
# Impressions - misinformation ads 2351.356 2252.841 249.882 10949.464

State characteristics

Population 6,652,315 7,451,008 581,381 39,029,342
GDP per capita 58,981 10,975 39,157 88,467
% of people w/o health insurance 9.722 3.541 3.2 19.9
Tot. COVID-19 cases 1,0748,450 11,639,839 500,900 53,548,352

Observations 50

To account for population differences, we normalize the data by dividing the number of impressions
in each state by its population giving us a ratio of impressions per capita. Since our primary interest is in
the algorithmic display of health-related ads, we focus on the sub-sample of ads related to the pandemic.

6.6 Empirical Analysis

We explore the potential correlation between ad distribution and socio-economic measures at the state
level.

In this section, we adopt an econometric approach to study whether algorithmic ad display exacerbates
digital divide by increasing inequality in access to information. Our approach relies primarily on ordinary
least squares (OLS) estimates. We use as dependent variable the number of impressions displayed to
a given state i. We have three Xi explanatory variables: 1) the GDP per capita, 2) the percentage of
people without health insurance, 3) total COVID-19 cases. Equation (1) captures our main econometric
specification. Standard errors are clustered at the US state level. The equation, we estimate, is as follows:

Impressionsi = β0 + β1Xi + ϵi. (6.1)

6.6.1 Is There a Link Between Misinformation Ad Display and GDP per Capita?

Table 6.3 illustrates the correlation between the number of impressions and the GDP per capita of US
states. We create a dummy variable High GDP States which takes the value of 1 if the GDP per capita
in a given state is above the median value equals to 58007.85 dollars and 0 otherwise. Columns (1) to
(3) provide estimates for the sub-sample of non-health ads and columns (4) to (6) provide estimates
for the sub-sample of health-related ads. While there is no significant relationship between the number
of impressions and high GDP states for ads classified as not being misinformation for both non-health
and health ads (columns 1 and 4), we observe a different pattern for ads classified as ambiguous or
misinformation. Column (3) shows that, among non-health related ads, states with a high GDP per
capita are significantly less likely to see ads with misleading claims compared to low GDP per capita
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states. On the other hand, Column (6) shows the same trend where states with a high GDP per capita
are significantly less likely to see ads with misleading claims compared to low GDP per capita states;
however the magnitude of the coefficient is larger for health-related ads compared to non-health ads.
This result suggests that AI-driven algorithms can exacerbate socio-economic inequality where wealthier
states, captured by GDP per capita, are likely to receive information of better quality when it comes to
health-related ads.

Table 6.3: Ad Distribution and GDP per Capita

Non-Health Ads Health Ads
Not Ambiguous Misinformation Not Ambiguous Misinformation

Misinformation Misinformation
(1) (2) (3) (4) (5) (6)

High GDP States -8.142 -110.643** -53.780*** 92.066 -132.244 -274.715**
(34.206) (54.802) (17.15) (77.852) (116.175) (127.756)

Constant 79.327** 178.589*** 83.201*** -27.223 222.892** 510.539***

(33.150) (52.355) (19.378) (74.503) (98.378) (121.746)
R-squared 0.979 0.954 0.975 0.929 0.820 0.948
Observations 50 50 50 50 50 50
Population Yes Yes Yes Yes Yes Yes

Notes: OLS estimates. The dependant variable is the number of impressions displayed in a given state. Errors clustered at the state level.
We include state population. Significance at 1%; 5% and 10% levels indicated respectively by ***,** and *.

6.6.2 Are Health-Related Ads with Misleading Claims Displayed More in States with
Higher Rates of Uninsured Individuals?

This section aims to investigate whether the display intensity of ads classified as misinformation is likely
to be correlated with the percentage of people without health insurance at state level. Figure 6.3 shows
the percentage of people without health insurance by state on the left, and health-related ad impressions
displayed by state on the right.

We observe that states with a small percentage of people without health insurance are likely to have a
higher ad display about health-related ads. In other words, states with a high percentage of people without
health insurance are less exposed to health-related ads.

Figure 6.3: Percentage of People without Health Insurance per State and Health-related ad Impressions

We conduct an empirical analysis to study the previous evidence showing a correlation between
state health insurance coverage and algorithmic ad display across the different ad categories. Table
6.4 shows the results. The dependant variable is the number of impressions at state level. Columns
(1) to (3) show estimates for the sub-sample of non-health-related ads and columns (4) to (6) provide
estimates for the sub-sample of health-related ads. We observe a significant and negative correlation
between the percentage of people without health insurance and the ad display intensity per state for ads
classified as “Not misinformation” (column 1 and 4) and the coefficient is larger for health related ads
in Column (4). Conversely, Columns (3) and (6) show that there is positive and significant correlation
between the percentage of people without health insurance and the intensity of ad displayed classified
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as “Misinformation”. The coefficient is larger in Column (6). Therefore, living in a state where the
percentage of people without health insurance is high is associated to a higher exposure to low-quality
health related information compared to other states. This suggests that the percentage of health insurance
coverage in a state is likely to shape the quality of information received by users living in this state,
perpetuating social inequalities among individuals.

Table 6.4: Disparities in Health Ad Display linked to Health Insurance Coverage

Non-Health Ads Health Ads
Not Ambiguous Misinformation Not Ambiguous Misinformation

Misinformation Misinformation
(1) (2) (3) (4) (5) (6)

% people w/o health -18.720** -0.784 8.927*** -56.161*** -9.641 50.466**
insurance

(7.763) (8.884) (3.145) (15.658) (17.075) (24.024)
Constant 246.654*** 139.874 -20.497 523.068*** 255.986 -63.536

(86.760) (85.449) (28.835) (160.876) (160.709) (255.128)
R-squared 0.983 0.950 0.977 0.954 0.817 0.951
Observations 50 50 50 50 50 50
Population Yes Yes Yes Yes Yes Yes

Notes: OLS estimates. The dependant variable is the number of impressions displayed in a given state. Errors clustered at the state level. We
include state population. Significance at 1%; 5% and 10% levels indicated respectively by ***,** and *.

6.7 Discussion and Implication

Social media are widely used worldwide as primary sources of information. Given the proliferation of
misinformation on social media platforms, policymakers and regulators urge social media to improve the
curation of content available on their platforms. The widespread dissemination of online misinformation
poses challenges to the integrity of various markets, including media, cybersecurity, and social networks.
In particular, promoting equality in accessing reliable health-related information is crucial from a public
health perspective. However, given the increased role of algorithms in matching ad content to users, little
is known about how algorithmic curation can reduce digital divide by increase the access to health-related
information via digital platforms.

Our paper aims to bridge the gap between the use of AI-driven algorithms and reducing inequalities
(SDG 10), including access to good health and well-being (SDG 3). Through the construction of an
innovative fact-checking algorithm and the analysis of ad-related data collected from the Meta ad library,
we provide evidence that the use of AI-driven algorithms can contribute to an increase in the digital divide,
conflicting with the goal of reducing inequalities as stated in SDG 10. Moreover, even if our findings
show that very few ads published by Meta’s platform include misinformation, we provide evidence of
disparate ad displays made by the algorithm according to US state characteristics, preventing equal access
to health-related information as stated in SDG3.

These findings have significant implications, both nationally and internationally. Countries with high
percentages of uninsured health people may experience exacerbated inequalities, given that uninsured
population often comprises working-age adults with lower education and income levels. Additionally,
such implications extend to countries with high income and wealth inequality indices. For example,
India has seen a surge in misinformation queries during the pandemic, ranking highest in the risk of
disinformation and misinformation dissemination.13 This has contributed to a widening global digital
divide between countries, with a new challenge emerging in the form of the use of health misinformation
for geopolitical purposes.14 Therefore, companies, especially social media platforms, need to strengthen

13https://www.who.int/images/default-source/digital-health/google-data-insights.jpg?sfvrsn=16b5b112_5, https://www.
statista.com/chart/31605/rank-of-misinformation-disinformation-among-selected-countries/, last accessed April 2024.

14https://www.europarl.europa.eu/RegData/etudes/ATAG/2020/649369/EPRS_ATA(2020)649369_EN.pdf, last retrieved
April 2024.
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their efforts when it comes to health-related information displayed by algorithms, where the reinforcement
of inequalities and a digital divide is heightened.

Currently, understanding the role of social media network structures in misinformation diffusion
remains imperative [305, 306]. Our research reinforces this necessity, emphasizing the significance of
algorithmic transparency and accountability. This also aligned with the increasing regulatory pressure on
social media platforms to regulate the ad content they distribute. While the Digital Service Act represents
an initial step, forthcoming regulations such as the AI Act may further enhance algorithmic transparency.
From a practical perspective, regulatory bodies could aid social media platforms by providing ad-focused
fact-checking tool for scrutinizing social media algorithmic behavior. Our fact-checking tool directly
addresses this market need since it permits checking the validity of ad claims related to health issues
during emergencies. The main difference with previously built tools is that it is tailored to ads on
social media, which was not the case before. Additionally, platforms could implement strategies such as
detecting and flagging disproportionate ad displays given a set of pre-determined attributes, use health-
related ad content run by reputable organizations to assess the veracity of other contents on a similar
topic, standardizing geotargeting practices in crisis context, and expanding user feedback mechanisms to
combat misinformation effectively. These measures collectively aim to enhance transparency, combat
misinformation, and foster a safer online environment.

6.8 Conclusion and Limitation

We collect data for January to June 2020 from the Meta ad library, on ads displayed in all US states.
We augmented these data with US government information on GDP per capita, percentage of uninsured
people, and numbers of COVID-19 cases in a given state in 2020. To evaluate the platform’s curation, we
developed an innovative fine-tuned fact-checking algorithm based on a deep learning model trained on
human annotated data and synthetic data generated by means of LLM which we applied to the textual
content available in the ads.

Our fact-checking tool showed that only a small fraction of the ads in the sample were classified as
containing misinformation. This suggests that the platform’s curation is effective in terms of assessing
the content available on the platform. However, we found evidence of a digital divide in the algorithmic
ad display. We observed that US states with low levels of per capita GDP were less likely to receive high-
quality information and received a larger proportion of ads containing misinformation. We found also
that US states with a higher proportion of health uninsured were more likely to receive misinformation
about pandemic, and that states with high rates of COVID-19 cases were more likely to be displayed
ambiguous health ads.

Our study has some limitations. First, the six-month time span may not be enough to account for
potential learning and adjustments by the algorithm over time. Second, despite our efforts to rectify
class imbalances in our fact-checking tool we acknowledge the potential for false positives. As is the
case when studying any form of AI, distortions can occur due in particular to unrepresentative data. For
instance, training the algorithm exclusively on pandemic-related ads might have restricted its ability to
generalize effectively within the health domain. Also, training the algorithm on synthetic data could lead
to bias amplification. Bias amplification occurs if the synthetic data inherit biases in the original training
data. On the other hand, use of high quality synthetic data can produce economies of scale by reducing
the volume of human-generated data needed for training with direct cost implications for businesses.

Despite these limitations, we believe our work should be helpful to policymakers and help to debunk
misleading claims. It also highlights the need for platforms to actively address and mitigate the inequalities
that are exacerbated by AI-driven algorithm ad displays.
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Chapter 7

Future Work and Conclusions

In this thesis, we presented a comprehensive framework that automates the generation of training examples
for Tabular Natural Language Inference as outlined in Chapter 3, and we extended this approach to
multi-modal fact-checking in Chapter 4. Our systems, TENET [187] and UNOWN [178], have successfully
demonstrated that high-quality datasets can be generated with minimal human annotation, effectively
addressing the critical bottleneck in fine-tuning fact-checking models. Across multiple datasets, our
experiments affirmed that models trained on synthetic data generated by TENET and UNOWN perform
comparably to those trained on manually curated datasets. Additionally, our multi-modal system, UNOWN,
effectively incorporates both tabular and textual inputs. The applicability of our systems is illustrated
through our work showcasing the potential to support research in socio-economic domain [11] in Chapter
6.

Moreover, we tackled the challenge of explainability in fact-checking models in Chapter 5. By
leveraging state-of-the-art explainable AI (xAI) methods such as SHAP and LIME, we identified the
critical evidence used by fact-checking models to generate predictions. This approach not only allows
users to rely on the model’s outputs but also enhances their understanding of the reasoning behind each
decision. The experiments evidenced that these xAI techniques provide meaningful insights into the
relevance of evidence, ultimately fostering greater trust in the predictions of fact-checking systems.

Open Challenges

While our contributions advance the automation of fact-checking and its model explainability, several
future research directions remain open.

1. Improving Diversity and Complexity of Generated Claims A critical area for future research is the
enhancement of the diversity and complexity of the claims generated by our systems. While our current
frameworks yield high-quality synthetic examples, there is still considerable room for improvement
in capturing a wider variety of claim structures and types. Specifically, it is essential to develop the
capability to generate claims that incorporate sophisticated mathematical and logical operations [108].
For instance, the current models mainly focus on generating straightforward logical assertions, but many
real-world claims require nuanced reasoning, such as comparative statements, conditional assertions,
or claims reliant on statistical data and calculations [307]. Existing systems assist fact-checkers in
verifying numerical data [308]; however, it does not automate the full verification process. Addressing
this challenge would not only make the generated examples more representative of real-world scenarios
but could also significantly impact the training and robustness of fact-checking models, making them
more capable of handling complex queries in diverse domains.

2. Extending Systems to Handle Multi-Table and Complex Multi-Modal Inputs Further advancing
our systems to manage multi-table structures and more intricate multi-modal inputs is another challenge.
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Current implementations focus primarily on leveraging single tables and textual evidence. However,
real-world scenarios [309], particularly in domains like finance, health, and social media, often present
information across multiple tables or combined with different types of media, including images and
videos [310]. Thus, developing methodologies and architectures capable of effectively processing
and integrating these varied forms of evidence will enhance the versatility and applicability of our
models [311]. For instance, in the context of fact-checking on platforms like X.com, where visual
elements often accompany textual claims, the ability to jointly analyze and interpret both textual and
visual inputs will lead to more comprehensive and accurate verifications.

3. Lightweight Explainable Models for Integration into Fact-Checking Systems Lastly, fostering
the development of lightweight explainable models that can be seamlessly integrated into existing fact-
checking frameworks is essential for scaling the deployment of our systems. While our research on xAI
methods such as SHAP [228] and LIME [46] has laid a foundational understanding of how to interpret
model decisions, the challenge remains to create explanation systems that are computationally efficient and
capable of operating in real-time alongside the main predictive models. Incorporating these explainable
components directly into the fact-checking models would not only streamline the architecture but also
reduce the computational overhead associated with generating separate explanations [312, 41, 44, 43]. As
a result, users would gain immediate insights into the reasoning behind predictions without any latency,
thereby enhancing their trust and confidence in automated decision-making systems. This approach could
also pave the way for more interactive user experiences, wherein stakeholders can query the model for
clarifications on specific decisions, ultimately fostering a more informed user base.

In conclusion, this research presents advancements in minimizing the manual effort needed to
construct fact-checking systems while enhancing the transparency of their predictions. The innovations
introduced in this work lay the foundation for the development of scalable, interpretable, and more reliable
computational fact-checking systems, making them suitable for deployment across a diverse range of
domains and applications. As a result, these advancements not only contribute to the efficiency of fact-
checking processes but also bolster user trust in automated decision-making systems, facilitating more
informed and responsible information dissemination in an increasingly complex information landscape.
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[223] Max Glockner, Ieva Staliūnaitė, James Thorne, Gisela Vallejo, Andreas Vlachos, and Iryna
Gurevych. AmbiFC: Fact-Checking Ambiguous Claims with Evidence. Transactions of the
Association for Computational Linguistics, 12:1–18, 01 2024.

[224] Zhijiang Guo, Michael Sejr Schlichtkrull, and Andreas Vlachos. A survey on automated fact-
checking. Trans. Assoc. Comput. Linguistics, 10:178–206, 2022.

[225] Neema Kotonya and Francesca Toni. Explainable automated fact-checking for public health claims.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 7740–7754, Online, November 2020. Association for Computational Linguistics.

[226] Jiasheng Si, Yingjie Zhu, and Deyu Zhou. Exploring faithful rationale for multi-hop fact veri-
fication via salience-aware graph learning. In Proceedings of the Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artifi-
cial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023.

[227] Jiasheng Si, Yingjie Zhu, and Deyu Zhou. Consistent multi-granular rationale extraction for
explainable multi-hop fact verification. CoRR, abs/2305.09400, 2023.

[228] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc.

112



[229] Andreas Madsen, Siva Reddy, and Sarath Chandar. Post-hoc interpretability for neural nlp: A
survey. ACM Computing Surveys, 55(8):1–42, 2022.

[230] Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull, James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. FEVEROUS: Fact extraction and VERi-
fication over unstructured and structured information. In NeurIPS (Datasets and Benchmarks),
2021.

[231] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a
large-scale dataset for fact extraction and verification. In Marilyn A. Walker, Heng Ji, and
Amanda Stent, editors, Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 809–819.
Association for Computational Linguistics, 2018.

[232] David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Cohan,
and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7534–7550,
Online, November 2020. Association for Computational Linguistics.

[233] Julian Martin Eisenschlos, Bhuwan Dhingra, Jannis Bulian, Benjamin Börschinger, and Jordan
Boyd-Graber. Fool me twice: Entailment from wikipedia gamification, 2021.

[234] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, and Dhruv Choudhary et al. The llama 3 herd of models, 2024.

[235] Acemoglu Daron and Restrepo Pascual. “the wrong kind of ai? artificial intelligence and the future
of labour demand. Cambridge Journal of Regions, Economy and Society, 13(1):25–35, 2020.

[236] Davide La Torre, Francesco Paolo Appio, Hatem Masri, Francesca Lazzeri, and Francesco Schi-
avone. Impact of artificial intelligence in business and society: Opportunities and Challenges.
Routledge, 2023.

[237] Jun Liu, Huihong Chang, Jeffrey Yi-Lin Forrest, and Baohua Yang. Influence of artificial intelli-
gence on technological innovation: Evidence from the panel data of china’s manufacturing sectors.
Technological Forecasting and Social Change, 158:120142, 2020.

[238] Salman Bahoo, Marco Cucculelli, and Dawood Qamar. Artificial intelligence and corporate inno-
vation: A review and research agenda. Technological Forecasting and Social Change, 188:122264,
2023.

[239] Erik Brynjolfsson, Danielle Li, and Lindsey R Raymond. Generative ai at work. Technical report,
National Bureau of Economic Research, 2023.

[240] Erik Brynjolfsson, Daniel Rock, and Chad Syverson. Artificial intelligence and the modern
productivity paradox. The economics of artificial intelligence: An agenda, 23:23–57, 2019.

[241] Laura Abrardi, Carlo Cambini, and Laura Rondi. Artificial intelligence, firms and consumer
behavior: A survey. Journal of Economic Surveys, 36(4):969–991, 2022.

113



[242] Justyna Patalas-Maliszewska, Małgorzata Szmołda, and Hanna Łosyk. Integrating artificial
intelligence into the supply chain in order to enhance sustainable production—a systematic
literature review. Sustainability, 16(16):7110, 2024.

[243] Dan Zhang, LG Pee, and Lili Cui. Artificial intelligence in e-commerce fulfillment: A case study
of resource orchestration at alibaba’s smart warehouse. International Journal of Information
Management, 57:102304, 2021.

[244] Erin E Makarius, Debmalya Mukherjee, Joseph D Fox, and Alexa K Fox. Rising with the machines:
A sociotechnical framework for bringing artificial intelligence into the organization. Journal of
business research, 120:262–273, 2020.

[245] Simon Johnson and Daron Acemoglu. Power and progress: Our thousand-year struggle over
technology and prosperity. Hachette UK, 2023.

[246] Angus Deaton. The great escape: health, wealth, and the origins of inequality. 2024.

[247] A.V. Banerjee and E. Duflo. Poor Economics: A Radical Rethinking of the Way to Fight Global
Poverty. PublicAffairs, 2012.

[248] Henrik Skaug Sætra. A framework for evaluating and disclosing the esg related impacts of ai with
the sdgs. Sustainability, 13(15):8503, 2021.

[249] Assunta Di Vaio, Rosa Palladino, Rohail Hassan, and Octavio Escobar. Artificial intelligence and
business models in the sustainable development goals perspective: A systematic literature review.
Journal of Business Research, 121:283–314, 2020.

[250] Renato Camodeca and Alex Almici. Digital transformation and convergence toward the 2030
agenda’s sustainability development goals: evidence from italian listed firms. Sustainability,
13(21):11831, 2021.

[251] Nenad Tomašev, Julien Cornebise, Frank Hutter, Shakir Mohamed, Angela Picciariello, Bec
Connelly, Danielle CM Belgrave, Daphne Ezer, Fanny Cachat van der Haert, Frank Mugisha,
et al. Ai for social good: unlocking the opportunity for positive impact. Nature Communications,
11(1):2468, 2020.

[252] Sheshadri Chatterjee, Ranjan Chaudhuri, and Demetris Vrontis. Ai and digitalization in relationship
management: Impact of adopting ai-embedded crm system. Journal of Business Research, 150:437–
450, 2022.

[253] Jun Liu, Huihong Chang, Jeffrey Yi-Lin Forrest, and Baohua Yang. Influence of artificial intelli-
gence on technological innovation: Evidence from the panel data of china’s manufacturing sectors.
Technological Forecasting and Social Change, 158:120142, 2020.

[254] Patrick Mikalef, Kieran Conboy, Jenny Eriksson Lundström, and Aleš Popovič. Thinking respon-
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