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Abstract

The growing adoption of AI and data analytics across various sectors has
made data preservation a cross-sectoral challenge, affecting everyone from
data-driven enterprises to memory institutions. Preserving information over
time requires initially maintaining data for a sufficiently long period and
being able to retrieve this data from the storage medium in the future.
Unfortunately, all contemporary storage media have fundamental density
and durability limitations, leading to expensive and cumbersome periodic
remastering. This process involves migrating data from an older generation of
archival media to a newer one, making cost-effective data archival challenging.
In this thesis, we present our vision for achieving migration-free data archival
in the context of data preservation using synthetic DNA. In doing so we
highlight the challenges in using DNA for data archival and we introduce
an innovative, end-to-end DNA storage pipeline we have put in place to
overcome those challenges. Thanks to its motif-based encoding method,
columnar layout, and integration of consensus calling and decoding, our DNA
storage system achieves lower read and write costs compared to the state-of-
the-art. We validate our DNA storage system through both simulated and
wet-lab experiments, demonstrating that our system outperforms the state of
the art in terms of reading and writing costs.
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Chapter 1

Introduction

Preserving the world around us in order to transmit our heritage to future
generations is what characterizes us as human beings. However, in today’s
increasingly digital world, this drive has become a significant challenge. Nowa-
days, safely storing digital information to make it accessible in the future
represents a critical and open challenge, as digital data is generated at an
unprecedented exponential rate. This process, which we can shortly refer to
as digital preservation, is vital across several domains, from memory institu-
tions like museums and archives that aim to preserve culturally significant
documents to enterprises that need to retain documents for "just-in-case"
safety, legal, and regulatory compliance requirements.

To preserve information over time, it is first necessary to maintain data
for a sufficiently long period. It is then crucial to be able to retrieve these
data from the medium in which they are stored. Finally, when these data are
accessed, they must be meaningful to the reader, implying that the format
in which they were stored can be correctly interpreted even in the distant
future. Unfortunately, the technologies currently used for this purpose, such
as HDDs or magnetic tape, cannot guarantee these requirements. None
of these technologies can assure a long enough time window to store data
without the risk of degradation. Furthermore, none can keep pace in terms of
storage density with the exponential increase in data generation, expected to
reach 175 ZB by 2025 [5]. In other words, the amount of data is increasing
much faster than the capacity of current technologies. Additionally, each new
generation of these devices eventually breaks compatibility with some past
generations, rendering data stored on, for example, a generation of magnetic
disks unreadable by new disk readers designed for newer generations. A small-
scale example is the obsolescence of floppy disks, now virtually impossible to
read due to the lack of available readers.

Enterprises are the first to be negatively impacted by all this. Recent
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studies have found that the amount of data produced is set to increase
exponentially. Half of the data generated will be data that enterprises must
preserve to meet various compliance requirements. Over 80% of these data
are archival data [6], growing at a 60% cumulative annual growth rate and
need to be stored for several decades [7]. As mentioned, none of the current
technologies can guarantee more than 10 years on the same device, due to
both the lifespan of the device itself and the break in compatibility by new
devices. Consequently, every decade, enterprises would be forced to undergo
costly data migrations from one generation of devices to another.

Another sector greatly impacted by digital preservation issues is memory
institutions, such as museums and national archives. The impact is already
visible: given the high costs of migration, many are already forced to choose
what to continue to preserve and what not. An example is the film industry,
where several independent productions are no longer being archived on tape
due to rising migration costs [8].

Given these problems, researchers have begun to explore different storage
alternatives that allow long-term archiving without data migration. A funda-
mental requirement for this is to find a storage medium that primarily does
not suffer from obsolescence, has high storage density, and can last more than
a few decades. Synthetic DNA has recently gained a lot of attention as such
a medium. Synthetic DNA has three fundamental advantages over traditional
storage technologies: it is extremely dense, eight orders of magnitude more
than the best projections for magnetic tape; it can last millennia if properly
stored; and it does not suffer from obsolescence, as the methods for reading
DNA are also widely used in life science domain.

In this work, we present our vision for migration-free long-term data
archival using synthetic DNA, an obsolescence-free biological medium. We
will show how synthetic DNA opens up new research avenues by highlighting
several open challenges that need to be addressed to make long-term data
archival durable and cost-effective. We take the first steps towards concretely
realizing this vision by presenting a new end-to-end pipeline for data archival
using synthetic DNA, along with a motivating use case of digital preservation
of culturally significant data from a national museum using synthetic DNA.

But first, we will set the stage for our research by presenting in more
details the limitations affecting traditional storage technologies, along with
the alternative solution for obsolescence-free data archival. We will show
the limitations that need to be overcome to use DNA as a storage medium
and present the state-of-the-art pipelines currently used for achieving data
archival using synthetic DNA.
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Figure 1.1: Annual rate of storage density improvements for different
magnetic technologies [9].

1.1 Motivating Migration-free Data Archival
Traditional magnetic technologies used for data storage, such as hard disk
drives (HDDs) and magnetic tapes, face challenges in meeting the requirements
of digital preservation. The first limitation is storage density. As the annual
size of all data generated is exponential and expected to reach 125ZB by
2025, magnetic technologies struggle to keep the pace with this data growth.
Figure 1.1 depicts the trends of Kryder’s rate (the analogue of Moore’s law
for HDD storage density) across various magnetic technologies. While HDD
density increases at a rate of 10% per year, magnetic tapes show a slightly
better trend, with a 40% increase. However, this increase is insufficient to
keep pace with the overall growth in data generation. As the demand for
storage space in data centers increases, it necessitates migrating all data to
newer devices to accommodate higher storage needs.

The second aspect negatively impacting magnetic technologies for data
archival is their limited lifespan. Even if data centers have enough storage
devices to meet all data demands, these devices tend to degrade after a few
years. In terms of device longevity, the best we can expect is from magnetic
tapes, which can guarantee a lifespan of a few decades. However, also in this
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case, the major consequence is the need to migrate data to newer devices to
prevent data loss.

This leads to the third limitation: media obsolescence. New generations
of devices often break compatibility with older generations. An example is
represented by magnetic tapes that tend to be readable up to two generations
for reading and one generation for writing. This means that to ensure data
accessibility, we must migrate data to newer device generations.

All these limitations lead to a common consequence: the need for expensive,
cumbersome, and periodic remastering.

1.2 Towards Obsolescence-Free Storage
In order to make long-term data archival cost effective, it is necessary to
eliminate the non-scalable, expensive, periodic data migration procedure. Re-
cently, several new initiatives have emerged from both industry and academia
in an effort to develop new long-term storage technologies that can overcome
the media decay and obsolescence issues faced by contemporary media.

1.2.1 Analog medium.
Historically, analog media like microfilm and paper have been used by libraries
and museums for protecting journals across several decades [10], [11]. More
recently, film has been used for the preservation of the Declaration of Children’s
Rights document in collaboration with the UN in the Arctic World Archive [11].
The advantage of analog media is the longevity. For instance, LE-500 rated
microfilms and ISO 9706 rated archival paper, are designed to last 500 years.
Some analog media, like paper, also does not have obsolescence issues, as
any scanning technology can be used to read data off the medium. However,
others still suffer from obsolescence as they require dedicated readers that
are customized to the media technology which can become obsolete. A
major disadvantage with analog media is its density, as all current analog
technologies have density much lower than tape (O(KB-MB) per unit for
paper/microfilm and O(GB) per unit for film).

1.2.2 Optical medium.
On the optical front, optical discs (like BluRay, Panasonic Archival Disc, etc.)
have been used for data archival by cloud-scale systems in production [12].
Recent efforts, like Microsoft Project Silica [13], are pushing the limits of op-
tical storage by using femtosecond lasers to create layers of three-dimensional,
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nanoscale deformations in quartz glass. Data is read back by shining polarized
light through the glass and analyzing the retrieved image to decode back
digital data. Albeit being in its nascency, project Silica has demonstrated
the feasibility and durability of glass by storing 76GB of data. While optical
media provides much higher density than analog media, their resistance to
obsolescence is unclear, as they still require dedicated readers to retrieve data.

1.2.3 Biological medium.
On the biological front, a medium that has received a lot of attention recently
is synthetic Deoxyribo Nucleic Acid (DNA). DNA is a macro-molecule that is
composed of four submolecules called nucleotides (nts) (Adenine (A), Guanine
(G), Cytosine (C), Thymine (T)). DNA used for data storage is a single-
stranded sequence of these nucleotides. In order to use DNA as an archival
medium, digital data is mapped from its binary form into a quaternary
sequence of nucleotides using an encoding algorithm. Once encoded, the
nucleotide sequence is used to manufacture actual DNA molecules, also
referred to as oligonucleotides (oligos), through a chemical process called
synthesis that assembles the DNA one nucleotide at a time. Data stored
in DNA is read back by sequencing the DNA, which essentially reads out
the nucleotide composition of each oligo to produce strings called reads, and
then decoding the information back from the reads into the original binary
form. DNA possesses several key advantages over current storage technologies.
First, it is a three-dimensional storage medium with a capacity of storing 1
Exabyte/mm3 which is 108× higher than tape [14]. Theoretically, the Kryder’s
rate for synthetic DNA is 0, as their density is biologically fixed and cannot
increase over the time. However, it is significantly higher than the storage
density reachable by magnetic tape. Second, DNA is very durable and can
last millennia when stored at room temperature under proper conditions [15].
Third, the technologies used for storing data in DNA (synthesis) and reading
data from DNA (sequencing) have eternal relevance, as there will always be
the need to synthesize and sequence DNA for biological applications. Further,
as a storage medium, DNA is decoupled from the reader (sequencer), as DNA
can be read by any sequencing platform. Hence, DNA does not suffer from
media obsolescence.

1.2.4 Technical Errors in DNA Data Storage
There are several challenges in designing encoders for DNA storage. First,
there are biological constraints that must be respected during encoding to
ensure that DNA molecules can be synthesized and sequenced: (i) experiments
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have demonstrated that DNA sequences that have a high number of repeated
nucleotides, also known as homopolymers (e.g. TTTT) create problems for
sequencing [16]. Thus, the encoder must avoid long homopolymer repeats;
(ii) oligos with a low GC-ratio (fraction of Cs and Gs in the oligo) are known
to be unstable, while those with a high GC-ratio are known to have higher
melting temperatures and create problems for synthesis and sequencing [16].
Thus, the encoder must maintain GC-ratios in a well-defined range.

Second, current synthesis processes cannot synthesize oligos longer than a
few hundred nucleotides. Thus, as a single oligo cannot store more than a few
hundred bits at best, it is necessary to fragment the data and encode it across
several oligos. As DNA molecule itself has no addressing, it is necessary to
add addressing information explicitly in the oligo during encoding in order to
be able to reorder the oligos later during decoding.

Third, synthesis and sequencing are error prone. There can be insertion
errors, where extra nucleotides are added to the original oligo resulting in a
sequenced read being longer than the oligo, deletion errors where nucleotides
are deleted resulting in shorter reads, and substitution errors. DNA storage
also suffers from a coverage bias [17]. When DNA strands are sequenced,
several noisy copies of the same DNA strand are generated (the reads). The
average number of reads per oligo generated after sequencing is called coverage.
Coverage bias refers to the fact that some oligos can be covered by multiple
reads, and others can be completely missing as they are not covered by any
reads. Coverage bias happens due to the fact DNA synthesis itself creates
multiple copies of each DNA molecule. On top of this “physical” redundancy,
DNA is also amplified using library preparation steps (like Polymerase Chain
Reaction) before sequencing. This amplification creates multiple copies of each
synthesized DNA molecule, adding further redundancy. As these amplification
procedures are stochastic, different DNA molecules get copied at different
rates, leading to coverage bias.

1.2.5 Format obsolescence
Data stored over long time periods suffers not only from media obsolescence
(where data stored on a storage media can no longer be read), but also format
obsolescence (data, even if it can be read back from the media, cannot be
understood as it is in an “extinct” file format). While DNA solves the media
obsolescence problem, it does not solve format obsolescence. Modern data
lakes use sophisticated file formats that are optimized for fast querying of data,
like Arrow, Parquet, Iceberg, and DeltaLake. The open source nature of these
formats and associated tooling is certainly a step towards eliminating format
obsolescence. However, they are far from ideal as archival storage formats,
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as they are continuously evolving without a focus on ensuring backwards
compliant data access (future query engines being able to access data stored
in older format versions).

1.3 Main Contributions and Thesis Outline
In this thesis work we present our vision to achieve migration-free data archival
using synthetic DNA. In doing so, we make the following contributions. (i)
We present a compelling use case in which we encoded and manufactured
actual DNA strands to archive documents from a national archive. (ii) We
introduce an innovative, end-to-end DNA storage pipeline that, thanks to its
motif-based encoding method, columnar layout, and integration of consensus
calling and decoding, achieves lower read and write costs compared to the
state-of-the-art. (iii) We propose three heuristics to compute Log-Likelihood
Ratios (LLRs) in the context of Low-Density Parity-Check (LDPC) decoding
to enhance error correction capabilities during data retrieval. (iv) Finally,
we validate our DNA storage system through both simulated and wet-lab
experiments, demonstrating that our system outperforms the state of the
art in terms of reading and writing costs. Having explicitly mentioned the
contributions, we now present the thesis outline.

Following this introduction, Chapter 2 introduces the necessary back-
ground concepts and the current state-of-the-art in DNA data storage. It
provides a detailed review of existing technologies and methodologies, offering
insights into their limitations and opportunities for advancements. This
chapter serves as a critical foundation for understanding the subsequent
innovations introduced in the thesis.

Chapter 3 focuses on the collaboration between OligoArchive (the Eu-
ropean project that supported this thesis work) and the Danish National
Archive in storing culturally significant data. In this context, we introduce
motif-based encoding/decoding methods to encode bits into nucleotides and
a new consensus algorithm that reconstructs the original oligos with high
accuracy but much lower computational time compared to the state-of-the-art.
As we will show, the motif-based implementation meets all the constraints
imposed by the chemical processes behind the writing and reading of DNA
strands while maintaining high storage density (bits/nucleotide).

Chapter 4 exploits the motif-based encoding method introduced in Chap-
ter 3 along with a new data layout, which dictates how bits are stored into the
oligos. This new data layout allows us to integrate consensus and decoding
in one step. The key idea is that state-of-the-art pipelines rely on consensus
calling and decoding as two separate stages. In this chapter, by exploiting
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the new data layout and encoding method, we integrate consensus calling
and decoding into one step, where the oligos are built progressively while
consensus improves decoding, and decoding makes consensus more accurate.

Chapter 5 focuses on LLR estimation for a motif-based DNA storage
pipeline. As we will see, DNA storage pipelines rely on two different encod-
ing/decoding steps. The first encoding adds redundancy to data stored to
recover those data despite errors; the second encoding maps bits to nucleotides.
Given the particular encoding design (based on motifs), and relying internally
on LDPC-encoding for redundancy, in this chapter, we extend the work of
the previous chapter by providing three heuristics to estimate LLR for the
LDPC decoder given the motif-based encoding/decoding method.

Chapter 6 adds the last tassel to the pipeline, introducing support for
random access. In real-world cases, we will only access a subset of the billions
of files stored in one DNA pool. However, enabling random access is not
straightforward. In this chapter, we present an overview of the challenges
and the errors a pipeline must handle to support random access and extend
our pipeline with a hierarchical structure to allow selective retrieval of only a
portion of data.

Chapter 7 concludes the manuscript by synthesizing the key findings
and contributions of the research. This chapter not only reflects on the
accomplishments and implications of the work presented but also envisions
the future of DNA-based data storage. It serves as a bridge between the
current state of research and the vast potential for future explorations in the
field.

The work presented in this manuscript has been the subject of various
publications. The content of Chapter 3 was published in Proceedings of the
17th International Conference on Digital Preservation, (iPRES 2021) [1] and
Transactions on Large-Scale Data- and Knowledge-Centered Systems (TLDKS
2021), [3]. Chapter 4 was primarily based on content published in Proceedings
of the VLDB Endowment, (VLDB 2023) [4] and some of the material is in the
process of publication. The content of Chapter 5 appears in 24th International
Conference on Digital Signal Processing (DSP 2023) [2]. Finally, content of
Chapter 6 is in the process of publication.



Chapter 2

Technical Aspects of DNA Data
Storage

DNA, or deoxyribonucleic acid represents a viable alternative to the traditional
storage media. DNA is a fundamental molecule that carries hereditary
information in humans and almost all other organisms. Every cell in an
organism contains identical DNA, located primarily in the nucleus of the
cell. DNA is composed of two long strands that wrap around each other
to form a double helix, as shown in Figure 2.1. The structure of DNA is
based on smaller units known as nucleotides. Each nucleotide includes a sugar
molecule (deoxyribose), a phosphate group, and a nitrogenous base. The four
nitrogenous bases in DNA are adenine (A), guanine (G), cytosine (C), and
thymine (T). Their pairing - A with T and C with G - creates the DNA’s
double helix structure. The sequence of these bases along the DNA strand is
what encodes genetic information. Human DNA comprises about 3 billion
bases, of which more than 99 percent are identical in all individuals. The
sequence of these bases is critical in determining the information for building
and maintaining an organism, similar to the way letters form words and
sentences. This molecule, fundamental to the existence of all known living
organisms, is not only a carrier of genetic information, but also an efficient
means of storing data. DNA’s ability to store large amounts of information
in a small space has led to the development of a new technology: DNA-based
data storage. The remainder of this chapter will introduce the main steps
implemented by any state-of-the-art pipeline for data storage on synthetic
DNA.

9
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Figure 2.1: DNA double helix structure. [18]

2.1 Traditional DNA Data Storage Pipeline

2.1.1 Data Encoding
Figure 2.2 provides an overview of state-of-the-art (SOTA) DNA storage
pipelines. Digital data is stored on DNA by first encoding bits into quaternary
sequence of nucleotides (Adenine, Guanine, Cytosine, Thymine) – building
blocks of the DNA macromolecule. These sequences are then used to create
DNA molecules, or oligonucleotides (oligos), via a chemical process called

Figure 2.2: Read/write pipelines of SOTA DNA storage solutions.



Chapter 2. Technical Aspects of DNA Data Storage 11

synthesis. Data stored in DNA is read back via sequencing. Both synthesis
and sequencing are approximate in nature and prone to errors. Thus, what is
retrieved back from DNA are noisy copies of the original sequence referred
to as reads. Thus, SOTA pipelines use consensus calling to infer original
sequences from these reads. The inferred sequences are then decoded back
into bits.

As we mentioned in the previous sections, there are several limitations in
using DNA as a digital storage medium. First, not all DNA molecules can be
synthesized or sequenced but there are some biological constraints that must
be respected (G-C constraint, homopolymer repeats, secondary structure
formation, etc.) during encoding to ensure downstream compatibility: (i) in
order to minimize synthesis errors, the generated sequences cannot have a
high number of repeated nucleotides (e.g. TTTTT) or repeated sequences
(e.g. ATATAT); (ii) the ratio of Cs and Gs in the oligos must be balanced –
i.e., between 30% and 70% – to make synthesis and sequencing possible; (iii)
in order to successfully infer oligos, we need reads that belong to the same
oligo to be similar to each other than reads belonging to other oligos. Thus,
the accuracy of inferring the original oligos improves if avoid positionally-
similar nucleotide sequences across oligos. SOTA approaches handle these
restrictions by using pseudo-randomization of the input bits or developing
constrained codes that map bits into valid oligonucleotide sequences. The
length of oligonucleotides is another important consideration. Typically, each
oligo consists of a few hundred nucleotides, resulting in the binary data to
be encoded by several short oligos. Since DNA molecules do not inherently
contain addressing information, a portion of each oligo is reserved for encoding
indexing information. This indexing is vital for organizing and later retrieving
the stored data.

Finally, the actual writing and reading of data to and from the storage
medium (i.e., the DNA molecule) occur through two highly error-prone
chemical processes: synthesis and sequencing. Consequently, when reading out
our DNA strands, we may encounter insertion errors, where extra nucleotides
are added to the original oligo, resulting in reads that are longer than the
oligo, deletion errors where nucleotides are missing, leading to shorter reads,
and substitution errors. The error rates can vary depending on the technology
used. In order to ensure reliable data storage despite these errors, SOTA
encoding methods rely on two distinct functionalities: (i) error control coding
and (ii) consensus calling, as we will present in Section 2.1.4). During the
write pipeline, input data bits are grouped into blocks (Fig 2.3(a)), and
each block is encoded using error-correction codes, like Reed Solomon codes,
LDPC, or fountain codes, to generate parity bits (Fig 2.3(b)). The original
data and parity bits are then fragmented to divide them across oligos and
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(b)

0 0010010110

1 1010010100

2
1101001010 

(parity)

3 1111001010

4 0100101010

5
0100110111 

(parity)

6 0110100010

7 0011100000

8
1101010011 

(parity)

9 0101100010

10 1000011111

11
1010101010 

(parity)

(a) (c)

AGCTAGCTAGCTACACGAT

GATCAATCGATGCATGCATA

CGTAGGCATGCAACGTTATT

GCACACGCAATCACAAGAAG

GAACGACGGACCAGGATCTG

AATTACTGGTGCCTGCCGCC

AATAGCCATCGGCATAGAGG

TGAAGCTCGCCTTATGGTGT

CGGCTCCTATGGTCACGACT

TACTTGACTTGCGCCATCTC

AGGTACTTGGTTCCTCCGTT

GCGTTGTTAGAAGACGACCG

0010010110

1010010100

1111001010

0100101010

0110100010

0011100000

0101100010

1000011111

IndexInput Data Oligos

Figure 2.3: Oligo Layout in SOTA Pipeline. The input binary data are
divided into logical blocks as highlighted with different colors (a). Each block
undergoes encoding to add redundancy in the form of parity bits, and is then
further divided into fragments, each assigned an index (b). Finally, each
fragment is encoded by mapping bits to nucleotides (c).

indexed (Fig 2.3(b)). Finally, each indexed fragment is converted into an
oligo (Fig 2.3(c)).

After the encoding is complete, the generated nucleotide sequences are
synthesized into actual DNA strands. As briefly introduced at the beginning of
this section, the chemical process used for creating DNA strands in a laboratory
is known as synthesis. In the following subsection, we will introduce more
details about this technique, providing a brief yet comprehensive overview of
its underlying principles.

2.1.2 DNA Synthesis Techniques for Data Encoding
Although DNA naturally occurs in all living organisms as a fundamental
component of their cells, DNA can also be artificially created in laboratory
through specific chemical processes, commonly known as synthesis.

The most common technique used to manufacture DNA is the phosphoramidite-
based synthesis – also known as chemical synthesis [19]. This method involves
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the sequential addition of nucleotides to a DNA strand affixed to a solid
support. This technique has the advantage of being highly accurate in manu-
facturing custom DNA sequences. However, it tends to be slow and highly
expensive. In an effort to significantly lower production costs, recent ad-
vancements have introduced enzymatic DNA synthesis [20]. These methods
utilize enzymes, which are natural biological catalysts, for DNA synthesis.
They show potential for creating longer DNA strands and offer a faster, more
cost-effective alternative to chemical synthesis. Yet, enzymatic synthesis tends
to be less accurate and more error-prone compared to the chemical synthesis.

Both the previous methodologies involve building DNA one nucleotide
at time. An alternative way to build DNA is synthesis by ligation [21]. It
consists in using a library of short DNA strands (also referred to as motifs).
Then, these motifs are linked together to form longer DNA strands. This
is done using an enzyme called DNA ligase, which acts like a glue to bond
the DNA fragments at their ends. The advantage of this method is that
the motif library is built only once using a chemical synthesis; then it can
easily replicated multiple times, as copying DNA is way more efficient than
manufacturing it. Given this advances, it becomes crucial to develop efficient
error correction mechanisms to allow DNA storage systems to accommodate
for higher error rates in order to exploit the cost benefits of evolving synthesis
techniques.

2.1.3 DNA Sequencing and Data Retrieval
Synthesis techniques allow us to write digital data, encoded as sequences of
nucleotides, in form of DNA strings. Also data retrieval requires a chemical
process called sequencing. Sequencing takes an actual DNA sample as input
and generates a dataset of strings, representing a digital version of the DNA
sample. In the rest of the thesis, we refer to these strings as reads. Ever since
Frederick Sanger pioneered the initial sequencing technique in 1977, a variety
of other methods have emerged over the years. These have evolved through
three generations of sequencing technologies. In order to provide a concise
understanding of DNA sequencing technologies without going too deep into
their historical development, we present two widely used methodologies at a
high level: sequencing-by-synthesis and nanopore sequencing. Sequencing-by-
synthesis is a key technique in second-generation sequencing, often known as
Next-Generation Sequencing (NGS). The process begins by breaking down
DNA into smaller pieces, typically between 100 and 200 nucleotides in length.
These fragments are then fixed onto a solid surface and undergo amplification,
a process typically achieved using PCR (Polymerase Chain Reaction), as we
will see in Section 2.2. PCR is a chemical procedure that generate several



14 2.1. Traditional DNA Data Storage Pipeline

copies of the same DNA strands. This amplification creates clusters of
identical DNA fragments, thus enhancing the sequencing signal and resulting
in single-stranded DNA templates prepared for sequencing. In the sequencing
stage, modified nucleotides and DNA polymerase (an enzyme necessary for
appending nucleotides to the developing chain) are introduced into the flow
cell. Each nucleotide bears a unique fluorescent marker. Leveraging the
principle that each nucleotide base (adenine, thymine, cytosine, and guanine)
consistently pairs with a specific complementary counterpart (A with T, C
with G), the DNA polymerase adds nucleotides to a growing strand that
complements the template strand. As these nucleotides are integrated into
the DNA strand during synthesis, they emit a detectable signal, which is
then captured and recorded. Next-Generation Sequencing technologies allow
for high throughput due to their ability to achieve massive parallelism in
sequencing, with an error rate lower than 1% [22], [23]. However, a drawback is
that they are limited to processing short sequences, typically not exceeding 500
nucleotides. Nanopore sequencing is one of the methodologies characterizing
the third-generation sequencing technology. A DNA sample is placed into a
device containing a nanopore, a tiny hole only a few nanometers in diameter.
An electrical current is applied across the membrane. As the DNA molecule
moves through the nanopore, changes in the electrical current occur. These
changes are detected and recorded. This variation is unique for each of the
four nucleotides. The sequence of the DNA is determined by analyzing the
pattern of current disruption caused by each nucleotide passing through the
nanopore. The advantage of this approach is that PCR amplification is not
required during sample preparation. Furthermore, it enables the sequencing of
longer DNA fragments, often several thousand nucleotides in length, compared
to the shorter reads typical of second-generation sequencing. However, this
advantage comes with a higher error rate, which can be up to 15% [24].
Therefore, there is a trade-off between the accuracy and cost of reading data
from DNA. Longer reads offer several benefits: (i) lower cost and (ii) the
requirement for only a small amount of additional information, such as indexes
for reordering. However, sequencing techniques that generate longer oligos
tend to have higher error rates. Therefore, to reduce the cost of reading data
from DNA, we need to implement a system that is able to account for a high
error rate.

2.1.4 Clustering and Consensus Calling
In sequencing our DNA samples, we do not directly recover the precise original
oligos used for encoding digital data. What we actually receive are several
replicas of these initial oligos, as illustrated in the Figure 2.4. Therefore,
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SequencingAmplification

ATGATGCTAGTG  
AGTCGATGCATATA 
ATCGATGTAGA

ATGcTG-TAGggTG  
ATGATGcTAGTGca 
gTGgTGCTAGTG 
ATtGATGgAGA 
tATCaATGTAGAa

Figure 2.4: Chemical processes in read pipeline: the sinthesized oligos are
amplified and sequenced. The resulting dataset contains some oligos (the red
and blue) duplicated many times and others completely missing (the green
one). The duplicates in the resulting dataset – referred to as reads – contains
insertions, deletions and substitutions errors.

the initial step in the decoding process is to organize these sequences by
clustering duplicates of the same string together, and clearly separating them
from others. Considering that the errors we encounter include insertions,
deletions, and substitutions, a straightforward character-by-character com-
parison between strings is insufficient. Instead, a metric that accounts for
indels (insertions/deletions) is utilized: the edit distance. The edit distance
between two strings represents the minimum number of insertions, deletions,
or substitutions required to transform the first string into the second one,
and vice versa. It is a highly complex metric, with its complexity growing
quadratically with the length of the strings involved. This complexity is
further exacerbated when considering that this metric must be computed
during clustering, especially given that it is used each time any two strings
are compared for similarity. The reads dataset generated by sequencing,
which involves millions of strings, significantly amplifies this computational
challenge.

After clustering, we process each cluster separately with the goal of
determining the most probable original sequence for each cluster. This involves
working with an unknown sequence, s, of length L, comprised of nucleotides
A, C, T, G. Given N distorted copies of s, where each nucleotide is altered
with a probability p (representing deletions, insertions, or substitutions), the
task is to reconstruct s by finding a sequence that minimizes the total edit
distance to all given inputs. As the noisy input strings originate from the
same original oligo, this challenge can be categorized as a trace reconstruction
problem in information theory. One notable solution in this domain is the
Bitwise Majority Alignment algorithm proposed by Batu et al. [25]. This
algorithm effectively reconstructs the original string from its subsequences
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ACGGAGAT
ACGGACGAT
— — — — — 
A

ACGCATGAT
TCGGACGAT
ACGGACGAA
— — — — — 
ACG…

AACGCACGAT
ACGGAGAT
ACGGACGAT
— — — — — 
AC

AGATCGATG
AGATCGAT
AGACGATG
— — — — — 
AGA…

(a) (b) (c) (d)

Figure 2.5: Example of consensus calling applied to a cluster of three reads
in case of (a)substitution only, or insertion and/or deletions (b)-(d).

or traces by employing majority voting and appropriate shifts for each bit
of the string. It is particularly adept at handling situations where strings
have undergone random deletions, making it a valuable tool for decoding and
reconstructing DNA sequences from noisy data. Figure 2.5 show an example
of consensus calling when applied to a cluster of three strings. Ideally, if the
reads contains mainly substitution errors and the number of reads in the
cluster is high enough, consensus calling can simply and accurately infer the
correct nucleotide at each position through majority voting. In the example
in Figure 2.5(a), we can safely assume that in the first position the correct
nucleotides is A, as the first and third string contains an A, while only the
second one contain a T. Handling cases with insertions or deletions is more
complex. The strategy involves identifying the type of error that occurred at
each column and correcting it in cases of deletion or insertion. In Figure 2.5(b)-
(d)the reads contain also insertions and substitutions. In the first position
we can safely assume that the right nucleotides is A. In the second position
we see that in the second and third string the second nucleotide is the T,
but the first string contain an A (highlighted in red). Since the first string
contains ahead the dinucleotide CG, similarly to the second and third string
we can assume that the T in the first string (second position) was an extra
insertion. We can delete the extra nucleotide and consensus by majority
voting. Notice that we just made an assumption for the type of error and
correct it accordingly. However, there is a possibility of misinterpreting the
error type. If this happens, the original error, compounded by our corrective
attempt, may propagate toward the end of the reads. Consequently, our
ability to accurately infer the correct nucleotide decreases as we move further
along the index of the read. In the following chapters, we will show our way
to deal with this error propagation and the benefits of the proposed solution
with respect to the state of the art.
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2.1.5 Decoding
The final step in the DNA storage pipeline is decoding the consensus sequences
back into the original digital data format. This step ensures that the stored
data are accurately retrieved from the DNA sequences. It is a two-phase
procedure. First, the nucleotides of the oligos reconstructed during consensus
are converted back from nucleotides to bits. Then, it utilizes the additional
parity bits, which were integrated during the data encoding phase, to correct
errors that consensus could not fix. The error-control decoder plays a critical
role in this process. These parity bits provide redundancy that allows the
decoder to identify and correct errors, ensuring the integrity and accuracy of
the retrieved data. We conclude this chapter by presenting a third chemical
process involved in DNA data storage: PCR (Polymerase Chain Reaction).
This process, we already mentioned in the Section 2.1.3, is the core mechanism
that allows for creating millions of copies of data stored on DNA. It is also
the key mechanism that enables random access in DNA data storage. Despite
its advantages, PCR introduces another source of error in the DNA storage
pipeline. We present the key principles of this process in the following section,
while more details on errors introduced by the PCR process and our methods
for dealing with them will be discussed in more details in Chapter 6.

2.2 Role of Polymerase Chain Reaction (PCR)
One of the advantages of storing data on DNA is the possibility to create
millions of copies in a relatively short time. This can be done using a
process that we already mentioned in previous sections: Polymerase Chain
Reaction (PCR). This techniques is widely used in molecular biology to
produce (amplify) billions of copy a specific region of a DNA sample. For this
reason, it is extremely useful in the context of using DNA as data storage. In
fact, through PCR we can copy our data and create a backup in a easy and
cheap way. In addition to provide a fast and cheap backup mechanism, PCR
is also used before sequencing to selectively amplify the DNA strands that
we want to read out. At very high level PCR works as follows.

PCR involves a series of temperature changes, carried out in cycles. First,
the double-stranded DNA is heated to separate, or denature, into two single
strands. Then, the temperature is lowered to allow the primers (short pieces
of single-stranded DNA that are complementary to the start and end regions
of the target sequence) to bind to their complementary sequences on the
single-stranded DNA. Primers serve as the starting point for DNA synthesis.
Finally, the temperature is adjusted to the optimal range for DNA polymerase
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which adds nucleotides to the primed sequences, synthesizing new strands
of DNA complementary to the original strands. Typically, the PCR process
consist in 20-40 cycles, where at the end of each cycle the number of DNA
samples double. This leads to an exponential growth of DNA samples. As
we mentioned, this process plays a crucial role in the context of DNA data
storage, by enabling random access for only a portion of data stored on DNA,
as we will see in Chapter 6. In the next chapters, we will present our approach
to DNA data storage. We start by presenting our first version of a DNA data
storage pipeline we put in place to address data archival challenge in the
context of a collaboration with the Danish National Archive.



Chapter 3

Digital Preservation with
Synthetic DNA

3.1 Introduction

Today, we live in an increasingly digital society. Digital data pervades all
disciplines and has established itself as the bed rock that drives our society,
from enabling data-driven decisions based on machine learning, to encoding
our collective knowledge compactly in a collection of bits. Thus, preservation
of digital data has emerged as an important problem that must be addressed
by not just memory institutions today, but also by institutions in several
other sectors. In order to preserve digital data, it is necessary to first store
the data safely over a long time frame. Historically, this task has been
complicated due to several issues associated with digital storage media. All
current media technologies suffer from density scaling limitations resulting
in storage capacity improving at a much slower rate than the rate of data
growth. For instance, Hard Disk Drive (HDD) and magnetic tape capacity is
improving only 16-33% annually, which is much lower than the 60% growth
rate of data [26]. All current media also suffer from media decay that can
cause data loss due to silent data corruption, and have very limited lifetime
compared to the requirements of digital preservation. For instance, HDD
and tape have a lifetime of 5–20 years. A recent survey by the Storage and
Networking Industry Association stated that several enterprises regularly
archive data for much longer time frames [27]. Thus, the current solution for
preserving data involves constantly migrating data every few years to deal
with device failures and technology upgrades. A recent article summarized
the financial impact of such media obsolescence on the movie industry [8].

In this thesis project, we explored a radically new storage media that has

19
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received a lot of attention recently—Deoxyribo Nucleic Acid (DNA) [28]–[31].
DNA is a macro-molecule that is composed of smaller molecules called nu-
cleotides(nt). There are four types of nucleotides: Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T). DNA used for data storage is typically a
single-stranded sequence of these nucleotides, also referred to as an oligonu-
cleotide (oligo). DNA possesses several key advantages over current storage
media. First, it is an extremely dense three-dimensional storage medium
with a capacity of storing 1 Exabyte/mm3 which is eight orders of magnitude
higher than magnetic tape, the densest medium available today [14]. Second,
DNA is very durable and can last millennia in a cold, dry, dark environment.
A recent project that attempted to resurrect the Woolly Mammoth using
DNA extracted from permafrost fossils that are 5000 years old is testament
to the durability of DNA even under adverse conditions [32]. Thus, data once
stored in DNA can be left untouched without repeated migration to deal
with technology upgrades. Third, as long as there is life on earth, we will
always have the necessity and ability to sequence and read genomes, be it for
assembling the genome of a previously-unknown species, or for sequencing the
genome to detect diseases causing variations. As a result, unlike contemporary
storage technologies, where the media that stores data and the technology to
read data are tightly interlinked, DNA decouples media (biological molecules)
from read technology (sequencing), thus reducing media obsolescence issues.

In this chapter, we provide an overview of the collaboration with the
Danish National Archive in demonstrating a holistic solution for long-term
preservation of culturally significant data using DNA. We present a motivating
use case for long-term digital preservation, outline the challenges involved in
using DNA as a digital storage medium, and present the end-to-end pipeline
we have put in place to overcome these challenges.

3.2 Context and Background

3.2.1 Danish National Archive Use Case
The Danish National Archives is a knowledge center documenting the historical
development of the Danish society. The archive collects, preserves and provide
access to original data with the purpose of supporting current and future
possible needs of the Danish community - public authorities as well as private
citizens. A huge part of this work includes the preservation of digitally created
and retro-digitized data securely and cost-effectively. Thus, the archive has
received and preserved such data since the 1970s.

The archival material used for this work consists of selected hand-drawings
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Figure 3.1: Hand-drawing made by the Danish king Christian IV. The image
data back to 1583-1591 and it is part of a larger archive unit we encoded
using synthetic DNA.

made by the Danish king Christian IV (1577-1648). An example of one of such
drawings is showed in Figure 3.1. Although his reign was marked by military
defeat and economic decline, Christian IV stands out as one of the most
prominent, popular and admired characters in the line of Danish kings. The
hand-drawings date to the period 1583-1591 where the king was 6–14 years
old. The material is a part of a larger archival unit consisting of numerous
documents and records 1. The specific image used for this experiment presents
a naval battle between several warships. Besides emphasizing the young king’s
admiration for warfare and naval tactics, the material further indicates his
high level of cultural education as well as his talent for drawing. At Danish
National Archive, the material is thus ranked as having “Enestående National
Betydning” (meaning unique national significance).

3.2.2 DNA storage challenges
Using DNA as a digital storage medium requires mapping digital data from
its binary form into a sequence of nucleotides using an encoding algorithm.
Once encoded, the nucleotide sequence is used to synthesize DNA using a

1https://www.flickr.com/photos/statensarkiver



22 3.2. Context and Background

chemical process that assembles the DNA one nucleotide at a time. Data
stored in DNA is read back by sequencing the DNA molecules and decoding
the information back to the original digital data.

A simple way to convert bits into nucleotides is to adopt a direct mapping
that converts 2 bits into a nucleotide, for instance 00 to A, 01 to T, 10 to G,
and 11 to C. This way a binary sequence is translated to an arbitrary sequence
of nucleotides. However, such a simple approach is not feasible due to several
biological limitations imposed by DNA synthesis and sequencing steps. First,
DNA synthesis limits the size of an oligo between hundred to few thousands
of nucleotides. Therefore, data must be divided into several pieces, with each
piece being stored in an oligo. However, unlike current storage devices, oligos
do not have logical addressing. Hence, indexing information that can help to
identify the order in which the oligos, and hence the corresponding data bits,
must be reassembled back during recovery must be stored together with the
data bits and integrated in each oligo.

Second, oligos with repeat sequences (like ACACAC), or long consecutive
repeats of the same nucleotide (like AAAAA), and oligos with extreme GC
content, where the ratio of Gs and Cs in the oligo is less than 30% or more
than 70%, are known to be difficult to synthesize, sequence, and process
correctly. Thus, when constructing oligos, constraints need to be enforced to
minimize homopolymer repeats and balance GC content. Further, care must
be taken to minimize similarity across oligos as having too many oligos with
positionally-similar nucleotide sequences can exacerbate sequencing errors
and make it difficult to identify the original oligo.

Third, sequencing and synthesis are not error free even for well-formed
oligos, as they introduce substitution errors, where a wrong nucleotide is
reported, or indel (insertion/substitution) errors, where spurious nucleotides
are inserted or deleted. Both sequencing and synthesis also introduce bias.
Some oligos are copied multiple times during synthesis, while others are not.
Similarly, some oligos are read thousands of times during sequencing while
others are not sequenced at all. Thus, it is important to use error correction
codes in order to recover data back despite these errors.

In addition to the aforementioned media-level challenges in using DNA
as a digital storage medium, there are also other problems associated with
digital preservation that DNA does not solve. Any digital file stored on DNA
is an encoded stream of bits whose interpretation makes sense only in the
context of the application used to render, manipulate, and interact with
that file format. While DNA might be able to store data for millennia, the
associated applications and file formats might become obsolete. Thus, in
addition to preserving data, it is also necessary to preserve the meaning of data
by ensuring that data is stored in a preservation-friendly, non-proprietary
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format. Digital data can also be altered due to a variety of reasons and
additional data-integrity techniques should be put in place to ensure that
data retrieved from DNA can be trusted to be the same as the original
source. The digital preservation community has long pioneered file formats,
information systems, and operational methodologies for solving such format
obsolescence issues [33]. Thus, a holistic DNA-based preservation solution
should build on such techniques to solve both media and format obsolescence
issues.

3.3 Design
In this section, we will describe the end-to-end pipeline we have put in place
to overcome the aforementioned challenges.

3.3.1 Overcoming format obsolescence with SIARD-
DK

In Denmark, all public institutions and organizations that produce data
worthy of persevering are legally bound to submit them to a public archive.
As the vast majority of data in the Danish public sector are organized as
databases with or without files in various formats, the focus has been on
archiving these data in a standardized, system-independent and cost efficient
manner. As a result, the archive has implemented a Danish version of the
SIARD format (Software Independent Archiving of Relational Databases) [34]
named SIARD-DK for storing of such data. SIARD is an open format,
designed for archiving relational databases in a vendor-neutral form and is
used in the CEF building block “eArchiving”.

The first step in preserving data is extracting it and creating an SIARD-
DK Archival information Package (AIP). In the creation of this particular AIP,
the digitized material was converted to TIFF format. Information relevant
to the images such as the preservation format of the files, their title, creator
and original size, descriptive information, etc., was extracted and packaged
together with relevant documentation in the AIP-format. This was done using
proprietary tools developed at the Danish National Archive. The usage of
SIARD for storing the files guarantee that the material is preserved in a rich
format with relevant metadata stored in a standardized, system and vendor
independent way. The resulting AIP is a single ZIP64 file that internally
contains the TIFF images, in addition to XML and XSD files that store
the schema of the archive and metadata information. This allows for strict
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validation of the AIP. Further, an MD5 value of each file is stored inside the
archive and serves as the fixity to verify data integrity on retrieval.

3.3.2 DNA data storage pipeline
The end-to-end DNA media storage pipeline is presented in Figure 3.2. In
the rest of this section, we will provide an overview of both the write path
that takes as input the SIARD zip file and stores it in DNA, and the read
path that restores back the zip file from DNA.

Figure 3.2: DNA Storage Pipeline.

Zip file
Stream of 

bits
Randomized 

bits
LDPC 

encoding
Indexing Oligos

Constrained 
code

Figure 3.3: Encoding bits into oligos.

Write Path

In order to store the archive on synthetic DNA, the zip file is first encoded from
binary into a quaternary sequence of oligonucleotides, and then synthesized to
generate synthetic DNA. The steps for encoding the SIARD archive file into
oligos is presented in Figure 3.3. During encoding, the file is read as a stream
of bits and pseudo randomized. In other encoding methods, randomization
is used as a way to limit the number of homopolymer repeats in each oligo.
In our encoding, homopolymer repeats are handled by an inner constrained
code that we explain later. Thus, we do not need randomization for avoiding
homopolymer repeats. We use randomization primarily to improve the
accuracy of our clustering and consensus methods in the data decoding stage.
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As mentioned before, data stored in DNA is read back by sequencing the
DNA to produce reads, which are noisy copies of the original oligos that can
contain insertion, deletion, or substitution errors. Our read clustering and
consensus methods rely on the fact that the original oligos are well separated
in terms of edit distance so that the distance between a noisy read and its
corresponding oligo is much smaller than the distance between two oligos.
This assumption makes it possible to cluster similar reads and infer the
original oligo with a high accuracy. A long sequence of zero or one bits can
violate this assumption as they can lead to multiple oligos being similar, or
even identical, to each other. A long sequence of bits can also lead to oligos
with repetitive sequences (example: ACACACAC). This can pose problems
during data decoding, especially if paired-end sequencing is used, where the
DNA is partially read from either direction (5” to 3” and 3” to 5”) with
overlap. In such a case, the two reads corresponding to each orientation must
be merged into a single representative read. Repetitive sequences can create
issues during this merging process. While we can develop more advanced
solutions to perform merging, randomization provides a simple solution that
eliminates such issues while ensuring that similarity across oligos is also
minimized.

After randomization, error correction encoding is applied to protect the
data against errors. We use large-block length Low-Density Parity Check
(LDPC) codes [35] with a block size of 256,000 bits as the error correction
code, as it has been shown to be able to recover data in the presence of
intra-oligo errors, or even if entire oligos are missing [36]. We configure LDPC
to add 10% redundancy to convert each sequence of 256,000 bits into 281,600
bits with data and parity. Each 281,600 bit sequence is then used to generate
a set of 300-bit sequences, where each 300-bits is composed of 281 data bits
and a 19-bit index that is used to order the sequences. Each 300-bit sequence
is then passed to a constrained code that converts it into an oligonucleotide
sequence.

The constrained code essentially views each oligo as a concatenation of
several shorter oligonucleotide sequences, that we henceforth refer to as motifs.
In our current configuration, the constrained code breaks up each 300-bit
sequence into a series of ten 30-bit integers. Each 30-bit integer is fed as
input to a motif generator that takes the 30-bit value and produces a valid
16nt (nucleotides) motif as output. The motif generator does this mapping
by pre-constructing an associative array where the 30-bit value is the key
and a 16nt motif is the value. This array is built by first enumerating all
possible motifs of length 16nt. Then, all motifs that fail to meet a given set
of biological constraints are eliminated.

Our current motif generator is configured to allow up to two homopolymer
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repeats (AA,CC,GG, or TT), and admits motifs with a G-C content in the
range 0.25 to 0.75. With these constraints, using 16nt motifs, out of 416

possible motifs, we end up with only 1,405,798,178 unique, valid motifs with
which we can encode any possible 30-bits of data ( as the number of all possible
30-bits values is 230 = 1, 073, 741, 824 which is lower than 1,405,798,178). Thus,
we use the billion motifs as values in the array corresponding to keys in the
range 0 to 230. The 30-bit value is thus used as the key into this associative
array to produce the corresponding 16nt motif. Thus, at the motif level, the
encoding density is 1.875 bits/nt. The reason we limited ourselves to 16nt
and 30bits is the fact that this associative array occupies around 100GB of
memory, which we can easily meet using our current hardware. The motif
generator can be extended to larger motif sizes and more relaxed biological
constraints which can lead to higher bit densities. But as this would require
the use of external storage, we leave this open to future work.

Using the associative array, each 300-bit sequence is encoded as concate-
nation of ten motifs, each with a length of 16nt, leading to an oligo that is
160 nucleotides long. We would like to explicitly point out here that the
length of an oligo is a configurable parameter. Thus, while we use 160nts
in our current system due to favorable pricing provided by our synthesis
provider, our encoder can generate shorter or longer oligos if necessary, and
automatically adjust various aspects (like the 19-bit index and 281-bit data
size) based on desired oligo length.

To better visualize the motif-based encoding, Figure 3.4 provides a small-
scale example. In this example, 6 bits at a time are processed and encoded,
each set highlighted in red, blue, and green colors, using motifs that are 5
nucleotides long. For each group of bits, we look up the corresponding motif
in an associative array and concatenate the motif to the previous one. Thus,
the resulting oligo is composed of the concatenation of these three motifs,
resulting in a total of 15 nucleotides. Note that this specific configuration
is unique to this example. Throughout the rest of the paper, we refer to a
different configuration (groups of 30 bits and motifs of 16 nucleotides), which
is our default setup used in the experimental section.

Read Path

To retrieve back the SIARD archive, the DNA is sequenced in order to retrieve
back the nucleotide sequence of oligos. As mentioned before, sequencing
produces reads, which are noisy copies of the original oligos. Thus, we need
a consensus procedure to infer the original oligos from the reads. In prior
work, we structured this process as sequence of three algorithms, as depicted
in Figure 3.5. First, we identify all pairs of strings that are similar to each
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Motif-based Encoding

000000 ACTGA

000001 AGCTA

000010 ACACA

000011 ACGCA

000100 AGCAT

000101 ACTGA

… ATGAG

111111 TGTAG

000100 000000 111111 AGCAT ACTGA TGTAG+ +

OligoInput Binary Data

Figure 3.4: Example of motif-based encoding.

other. As modern sequencers produce hundreds of millions of reads, this first
task is extremely computationally intensive due to use of the edit distance
as a metric for comparing strings. Thus, we have developed an efficient
similarity join algorithm, called OneJoin [37], that exploits the fact that due
to randomization during encoding, reads corresponding to the same original
oligo are “close” to each other despite some errors and “far” from the reads
related to other oligos. The results obtained from the join algorithm are
then used to quickly identify clusters of strings that are similar to each other.
Each cluster thus groups all reads belonging the same oligo. Finally, we apply
a position-wise consensus procedure that uses multiple reads to infer the
original oligo in each cluster.

While our prior approach was able to infer original oligos with a high
accuracy, there were two problems. First, we found that under some datasets,
particularly for high coverage reads, OneJoin’s memory and computational
usage were too high. As OneJoin is a string similarity join, it produces as
output all possible pairs of reads that are similar to each other. Thus, given
a coverage N , the computational and memory requirements of OneJoin were
O(N2). Second, the use of a general purpose string similarity join led to
functionality repetition at multiple places in the read path. For instance,
OneJoin internally uses an edit distance check to filter out strings that are
not similar. Later in the read pipeline, we had to repeat the edit distance
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Noisy Reads

1: ACTTATGCT
2: GTGATAGCA
3: ACGAGCT
4: GTGATAGTCAA
5: GTCATAGAA

Edit Similarity Join

1: ACTTATGCT
3: ACGAGCT

2: GTGATAGCA
4: GTGATAGTCAA

2: GTGATAGCA
5: GTCATAGAA

4: GTGATAGTCAA
5: GTCATAGAA

Clustering

1: ACTTATGCT
3: ACGAGCT

2: GTGATAGCA
4: GTGATAGTCAA
5: GTCATAGAA

Consensus

ACTTATGCT

GTGATAGCA

Figure 3.5: Various steps in the OneJoin consensus procedure.

computation in the alignment stage once to get position-wise consensus.
This repetition led to needless overhead. To solve these problems, we have
developed a new consensus procedure that we refer to as OneConsensus.

In the following sections, we describe the key stages of OneConsensus
algorithm. In order to efficiently identify and group all the similar reads, our
algorithm relies on two well-known algorithmic tools that allow to drastically
cut down the computational time: CGK-Embedding and Locality Sensitive
Hashing (LSH).

CGK Embedding.

As we mentioned in the previous section, the similarity metric used in OneCon-
sensus is the edit distance. Given two strings x and y, the edit distance is
defined as the minimum number of edit operations i.e., insertions, deletions
and substitutions, necessary to transform x in y. Another metric, commonly
used to compare strings is the Hamming distance. However, the latter takes
into account only the number of mismatches between the two strings, or in
other words the number of substitutions to transform x in y. For example,
given the two strings ACACT and GACAC, their Hamming distance is 5
since there are no matches, but the edit distance is 2 since it suffices to add
G and remove T .

From these definitions, we can make the observation that the edit distance
takes into account information about the ordering of characters and captures
the best alignment between two strings. However, while Hamming distance has
complexity that is linear with the string length, edit distance has complexity
that is quadratic. While several dynamic programming optimizations exist for
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accelerating edit distance computations [38], they often rely on pre-specified
distance thresholds and are unable to provide performance competitive with
fine-tuned Hamming distance computations in practice. Given the complexity
of this metric, we rely on randomized embedding techniques to minimize the
overhead of the edit distance computations.

Randomized embedding refers to a set of methods that map a complex
metric space into a simpler one. CGK-embedding algorithm, recently proposed
by Chakraborthy et al. [39] is one such algorithm that can map problems from
an edit space into a Hamming space. Given two strings x, y of length N taken
from an alphabet ∑︁ such that dE(x, y), the edit distance between x and y, is
less than K, CGK-embedding is a function f : ∑︁N → ∑︁3N that maps strings
x and y into f(x) and f(y) such that, with probability at least 0.99, the
Hamming distance of dH(f(x), f(y)) is bounded by K2 when dE(x, y) < K.
This implies that the distortion D, defined as the ratio D(x, y) = dH(f(x),f(y))

dE(x,y) ,
is at most K. Thus, as long as the edit distance is small, the distortion of
embedding is small. This implies that the Hamming distance of embedded
strings will accurately track the edit distance of the original strings, thereby
making it possible to replace the expensive edit distance computation with
cheap Hamming distance computation [40].

Algorithm 1 CGK-embedding
Input: A string S ∈ {A, C, G, T}N , a random string R ∈ {0, 1}3N and a char

for padding P = 0
Output: The embedded string S

′ ∈ ∑︁3N

1: i← 0
2: for j = 0→ 3N − 1 do
3: if i < N then
4: S

′
j ← Si

5: else
6: S

′
j ← P

7: end if
8: i← i + Rj

9: end for
10: return S

′

The pseudo-code of embedding algorithm is shown in Algorithm 1. In this
case the procedure is applied to all strings of length N that are composed of
the characters A, C, G, T , representing the DNA alphabet. Given an input
string, the algorithm builds the corresponding embedded representation by
appending one character at time taken from the input string. The character
appended can be the repetition of the previous character or the next character



30 3.3. Design

in the input string according to the value of a binary random string. In other
words, the pointer of the current character in the input string increases or
remains the same depending on the random string value, that can be 0 or
1. When the pointer to the input string goes beyond the string length, the
embedded string is padded with a special character P . In general, P can be
any character that is not included in the alphabet of the given dataset S. For
sake of simplicity, in Algorithm 1 we use 0 for padding. In essence, what we
get as the output of embedding is a string where characters from the input
string can be repeated one or more times.

LSH for Hamming Distance.

One of the main advantages of moving from the edit distance space to the
Hamming space is being able to use some useful algorithms that are valid in
the Hamming space only and instead not applicable to the edit distance. One
of these algorithms is Locality Sensitive Hashing (LSH) [41].

We call a family H of functions (d1, d2, p1, p2)-sensitive for a distance
function D if for any p, q ∈ U (where U is the item universe):

• if D(p, q) ≤ d1 then P[h(p) = h(q)] ≥ p1, that is, if p and q are close,
the probability of a hash collision is high;

• if D(p, q) ≥ d2 then P[h(p) = h(q)] ≤ p2, that is, if p and q are far, the
probability of a hash collision is low;

where h ∈r H are hash functions randomly sampled from the family of hash
functions H

Considering two bit-string p and q of length N. In the Hamming distance
case, the hash function is defined as the ith bit of these strings. Thus, if their
Hamming distance is dH(p, q), that is, the number of bits that differ position
wise in the two strings, then the probability that any given bit at a random
position is the same in both strings is 1− dH(p,q)

N
. Thus, the bit-sampling LSH

family for Hamming distance, defined as:

HN = {hi : hi(b1...bN)) = bi | i ∈ [N ]}

is
(︂
d1, d2, 1− d1

N
, 1− d2

N

)︂
-sensitive for the two Hamming distances d1 < d2.

We use Hamming LSH over embedded reads to separate out the reads
into different buckets such that with a very high probability, reads within a
bucket are similar to each other, and hence correspond to the same reference.
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Clustering based on Edit Distance

At this stage, we have all reads grouped in hash buckets based on their
similarity. However, we still have two problems to solve. (1) LSH can produce
false positives, meaning that two dissimilar reads can end up in the same
bucket. The main consequences is that if reads are very different, the consensus
procedure lead to the wrong result. (2) Reads can have different lengths
due to insertions and deletions errors. Thus, we need to adjust the reads
in order to make their lengths uniform while taking into account possible
insertion/deletion errors. Both these problems can be solved by aligning the
reads in each bucket. More specifically, given a bucket, we sort the reads
based on length such that reads with length matching the reference oligos are
moved to the front of the bucket. Then, starting with the first read in the
bucket, we align all the following reads to the first one. The intuition behind
sorting the reads is as follows. If a read has the same length as the reference
oligos (160nt), either the read has no insertion/deletion errors, or there are an
even number of insertion and deletion errors. Since the probability of errors
is low with short-read sequencing, the former scenario is more likely. Thus,
by picking reads that are of the correct length and aligning the rest of the
reads to it, we increase the probability of finding the correct original reference
oligo.

The alignment of reads gives two pieces of information: the edit distance
and the Compact Idiosyncratic Gapped Alignment Report (CIGAR). The
edit distance allows us to identify reads that are actually dissimilar even if
they are in the same buckets. We group only similar reads to form a cluster.
The CIGAR contains the base-by-base alignment information (the sequence
of matches, insertions and deletions) needed to align one read to the other.
Using this information, we adjust the reads by adding gaps where there is a
deletion error, or deleting nucleotides where there is an insertion error. Once
all similar reads are found within the bucket, we save the cluster and remove
the reads from the bucket. Any dissimilar reads that were not a part of the
cluster are still left in the bucket. In order to deal with false positives by
LSH, the remaining reads are then processed again in the same way, with the
procedure being repeated until the bucket is empty.

Position-Wise Consensus

The result of the previous stages is a set of clusters. All reads within a
cluster are noisy copies of the same reference oligo with some errors in random
positions. At this point of the algorithm the only missing step is the consensus
procedure. The consensus algorithm works on a per position basis. The key
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idea is that despite some random errors, all reads in a cluster are aligned
and adjusted based on the edit distance and CIGAR. Thus, if we consider a
specific position across all reads, it is likely that the majority of reads in that
position will contain the correct nucleotide while only some of them report
the wrong one. This implies that for any given position, it will be enough to
take the most-frequent nucleotide as the consensus outcome. Repeating this
procedure for each position, we produce one inferred oligo per cluster. We
would like to point out here that not all oligos need to be correctly inferred.
In fact, as we show later, some original oligos might not appear at all in the
inferred set, and other inferred oligos might have errors. We rely on the parity
added by LDPC codes at a higher level to recover data despite these errors.

The inferred oligos are then passed to the decoder which reverses the steps
shown in Figure 3.3. The constrained code is first used to convert each 160nt
oligo back into 300-bit sequences by converting each individual 16-nt motif
into its corresponding 30-bit value. The index stored in each 300 bits is used
to reassemble bits back in the correct order. The LDPC decoder is then used
to recover back data even if some bits were wrongly decoded, or some bits
were zeroed out as corresponding oligos were missing. The decoded data is
then derandomized to obtain a stream of bits that corresponds to the original
input.

3.4 Evaluation
At this stage of our collaboration, we have assembled the entire pipeline.
In this chapter we do not have results from real experiments yet, but we
will provide a preliminary, simulation-driven evaluation in this section. Note
that we simulate only the synthesis and sequencing steps in Figure 3.2.
We encode/decode the real dataset using our pipeline. The real wet-lab
experiment conducted with this dataset will be presented in Chapter 6.

3.4.1 Experimental Setup
The raw SIARD archive that is fed as input to our pipeline is 12.9MB in size.
With redundancy added by LDPC, the resulting binary data to be stored on
DNA is 15.19MB in size. We encode the SIARD archive generating 405,212
oligos, each with a length of 160nts. Using these original oligos, we then
generate four million reads by using a short-read simulator2 tool, that adds
random errors such as insertion, substitution, and deletion in each read to
mimic the actions of an Illumina DNA sequencer. This corresponds to an

2https://sourceforge.net/projects/bbmap/
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average coverage of 10×, meaning that each oligo, on average is covered by
10 noisy copies.

3.4.2 Benchmark with sequence alignment
We begin our analysis by visualizing the coverage across oligos. While the
average coverage is 10×, the overall coverage typically follows a negative
binomial distribution, with some oligos being covered hundreds of times, and
some being not covered at all. To visualize this, we aligned the reads to
reference with BWA-MEM v0.7.17 [42], a state-of-the-art short-read aligner.
Based on the alignment result from BWA-MEM, we show the histogram of
coverage across oligos in Figure 3.6. The x-axis is the coverage (or number
of reads that map to an oligo), and y-axis is the number of oligos with that
coverage in log scale. As can be seen, the coverage distribution spans a range
from 1 to 26, with majority of oligos being covered 5–15× as expected given
that the simulator was configured to produce 10× coverage.
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Figure 3.6: Histogram of occurrence of inferred oligos.

We also use the alignment result to show the histogram of number of
errors (indels and substitutions) in Figure 3.7, where x-axis represents the
number of errors, and y-axis represents the number of oligos with that error
count in log scale. As can be seen, the error distribution is right skewed, with
a majority of reads having fewer than 2 mismatches, and a few reads having
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as many as 8 mismatches which accounts for a 5% error rate given the oligo
length of 160. Finally, we also used the alignment result to verify that each
read uniquely maps to an oligo (absence of ’XA’ field in the SAM output file
produced by BWA-MEM). This shows that oligos are “far” from each other
in terms of edit distance due to randomization.
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Figure 3.7: Histogram of mismatches.

BWA-MEM performs base-by-base, edit-distance-based alignment and
reports CIGAR and alignment score. As a result, it is computationally very
intensive. While such an alignment is required for genomic data analysis in
order to determine the exact location of a read in the genome, for the purpose
of DNA storage, we found that it is sufficient to simply map each read to an
oligo without full alignment. Accel-Align (v1.1.1; [43]) is a short-read aligner
that we have developed in the context of project OligoArchive that supports
alignment-free mapping-only mode that can quickly map reads to oligos.
Thus, we present a comparative analysis of BWA-MEM and Accel-Align here
with the goal of presenting it as a open-source tool that can be used by other
researchers for both DNA storage and more broadly, for analyzing genomic
data.

We use the BWA-MEM and Accel-Align to align/map reads to oligos.
Using BWA-MEM’s alignment as the gold standard, we evaluate Accel-Align’s
accuracy. Table 3.1 shows the execution time and the percent of correctly
aligned reads. It shows that Accel-Align can perform mapping 6x faster than
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Exec. time (second) Correctly aligned (%)
BWA-MEM 25.5 100
Accel-Align 3.8 99.9

Table 3.1: Performance and accuracy of BWA-MEM and Accel-Align(map
mode).

BWA-MEM at a slight drop in accuracy of 0.004%. On futher analysis, we
found this drop to be due to Accel-Align’s inability to map reads with very
high error rate. Accel-Align is specifically built to trade off performance
and accuracy for Illumina-based short-read sequencing reads whose error
rate is typically much lower than 5%. As our simulated reads offer a more
pessimistic error model, Accel-Align experiences a slight drop in accuracy.
Despite this, as the coverage histogram with Accel-Align and BWA-MEM
are near identical, we have found Accel-Align to be a very useful tool for
analyzing both DNA storage reads and more broadly, genomic data [43].

3.4.3 End-to-end Decoding Results
Having presented an analysis of the reads, we will now present the decoding
results. Using OneConsensus procedure described earlier, we obtain the
inferred oligos using the simulated dataset. Table 3.2 shows the error statistics
for these oligos. The figures are obtained by comparing the inferred oligo for
a certain index with the corresponding original reference oligo. We see that
we are able to infer 404,075 oligos that correspond to 99.7% of the original
oligos perfectly without errors. In addition, 1010 oligos were inferred with
some errors and 127 oligos were completely missing. Note that errors in an
oligo does not imply that the entire oligo is different from the original, but
differs only with respect to a few motifs. For this reason, we also report the
difference between inferred data and original encoded file in terms of number
of bits.

We then use the constrained code to convert these inferred oligos into
300-bit sequences, and reassemble them in order based on the 19-bit index.
At this stage, we will certainly have situations where an oligo is missing due
to sequencing simulation bias, or an oligo could not be converted back into
300-bits due to errors. In both cases, there will be a corresponding index
whose data bits cannot be recovered. We insert a sequence of zero bits for such
indices and use the reconstructed binary together with the LDPC decoder to
restore the original input. Despite the errors reported in Table 3.2, the LDPC
decoder was able to recover back the original archive completely, thanks to
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the additional parity information added during encoding.

#Original Oligos 405212
#Correctly Inferred Oligos 404075

#Incorrectly Inferred Oligos 1010
#Missing Oligos 127
#Incorrect bits 42678

Table 3.2: Statistics for decoding of SIARD archive.

Finally, in this section we compare OneConsensus with OneJoin-based
consensus algorithm. Table 3.3 compares the two algorithms in terms of the
accuracy achieved in inferring the encoding oligos. In terms of the number of
oligos correctly inferred in their entirety, meaning an exact match between
the inferred oligo and the original reference oligo, we see that OneConsensus
slightly underforms OneJoin. But as we mentioned earlier, oligos can also differ
by just a few motifs only, making the statistic about the correctly inferred
oligos insufficient to determine the actual accuracy of the two algorithms.
For this reason, we report also the number of missing oligos and the number
of bits wrongly inferred by the two algorithms. The number shows that
OneConsensus outperforms OneJoin, as it mistakes only misses 127 oligos,
while OneJoin 595 oligos. Overall, OneConsensus leads to 42678 bit errors,
compared to the 95935 bit errors produced by the OneJoin-based consensus.

In terms of memory consumption, we observed that OneJoin reaches a
peak of 2.5GB, while OneConsensus requires only 1.1GB. While the difference
may not seem too striking for this dataset, we would like to point out that
while OneConsensus memory consumption grows linearly with the dataset
size, OneJoin requires an amount of memory that is quadratic with coverage.

OneConsensus OneJoin
#Correctly Inferred Oligos 404075 404104

#Incorrectly Inferred Oligos 1010 513
#Missing Oligos 127 595
#Incorrect bits 42678 95935

Table 3.3: Statistics for OneConsensus and OneJoin-based consensus.

3.5 Conclusion
In this chapter, we provided an overview of the collaboration with the Danish
National Archive in using DNA to preserve culturally significant digital data.
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Building on prior work on molecular information storage and digital preserva-
tion, we presented a holistic, end-to-end pipeline for preserving both data and
the meaning of data on DNA. In this chapter we tested the pipeline using
simulation studies, while the wet-lab experiment is presented in Chapter 6,
where the full pipeline is complete and optimized. In the next chapter we
will present an improved design of this DNA storage pipeline, where we
investigated various optimizations to both encoding and consensus algorithms
to support alternative synthesis and sequencing technologies with potentially
higher error rates.





Chapter 4

Columnar Design for
Error-Tolerant Database
Archival

4.1 Introduction

In the previous chapters, we introduced the problems related to long-term
digital data archival. These limitations are mainly inherited directly from
the limitations affecting traditional storage technologies: low storage density,
limited lifetime, and media obsolescence. All this has led researchers to
investigate alternative storage media. Among the different solutions proposed,
synthetic DNA stands out. DNA as a storage medium is seven orders of
magnitude denser than tape [14] and can store up to 1 Exabyte of data in a
cubic millimeter [28]. Using common, well-established biochemical techniques,
DNA can be replicated rapidly, allowing for easy copying of data stored in
DNA. It is extremely durable and can last several millennia when stored under
proper conditions. Moreover, DNA is read through the sequencing process,
and the sequencing technology used is decoupled from DNA itself, the storage
medium. Thus, DNA will not suffer from obsolescence issues, as we will always
be able to read back data stored in DNA. Given these benefits, in Chapter 3,
we presented a holistic solution to archive culturally significant data from the
Danish National Archive. We achieved this by implementing an end-to-end
DNA data storage pipeline that exploits a motif-based encoding/decoding to
overcome the limitations of DNA-based media encoding and using a vendor-
neutral file format to store the archive. The primary obstacle to DNA storage
adoption today is the prohibitive cost of reading and writing data. The
biochemical processes used for writing (synthesis) and reading (sequencing)

39
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DNA today were originally designed for biological applications that require
very high precision and low scale. Using DNA as a storage medium requires a
different trade off, as one can tolerate more errors in synthesis and sequencing
for improved cost efficiency and scaling.

In order to provide reliable data storage on DNA despite such errors,
SOTA approaches rely on using a significant amount of redundancy in both
writing (in the form of parity bits generated by error control coding) and
reading pipelines (in the form of very high sequencing coverage). The added
redundancy has the undesirable side effect of amplifying the read/write cost.
Thus, efficient handling of errors is crucial to reduce overall cost.

In this chapter, we present OligoArchive-DSM(OA-DSM), an end-to-end
pipeline for DNA storage that provides substantially lower read/write costs
than SOTA approaches. OA-DSM builds on top of the pipeline presented in
Chapter 3 and for this reason it exploits the motif-based encoding/decoding to
convert bits into nucleotides. The core contributions of this work, and the two
key aspects of OA-DSM that distinguish it from SOTA approaches are: (i) a
novel, database-inspired, columnar encoding method for DNA storage, and (ii)
an integrated consensus and decoding technique that exploits the columnar
organization. In this chapter, we provide an overview of challenges in DNA
storage (Section 4.2), present the aforementioned aspects of OA-DSM design
in detail (Section 4.3), and demonstrate their ability to achieve better accuracy
and higher error-tolerance than SOTA methods using both simulation studies
and a real wet-lab validation experiment where we successfully encoded and
decoded a 1.2MB compressed TPC-H database archive.

4.2 Background
When used as a storage medium, DNA introduces several errors at different
stages of the read and write pipelines. These errors are common to all DNA
storage pipelines. In this section, we will provide an overview of these errors.

In all SOTA pipelines, binary data is stored in DNA by transforming the
binary input into a quaternary sequence of nucleotides (Adenine, Guanine,
Cytosine, Thymine) using an encoder. Subsequently, these sequences are
utilized in the fabrication of DNA molecules, commonly referred to as oligonu-
cleotides (or "oligos"), through a chemical process known as synthesis. The
retrieval of data stored in DNA is accomplished by first sequencing the oligos
to produce reads, which are quaternary sequences that correspond to the
nucleotide composition of oligos. A software decoder is then used to convert
the quaternary sequences into the original binary input.

Given a set of N sequences generated by the encoder, we would ideally
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SequencingAmplification

ATGATGCTAGTG  
AGTCGATGCATATA 
ATCGATGTAGA

ATGcTG-TAGggTG  
ATGATGcTAGTGca 
gTGgTGCTAGTG 
ATtGATGgAGA 
tATCaATGTAGAa

Figure 4.1: Duplicates generations during data retrieval.

expect synthesis to produce N oligos, and sequencing to produce N reads,
with the reads being identical to the original sequences generated during
encoding. However, it is well known that both synthesis and sequencing
procedures are not precise as they introduce both duplication and errors,
with the extent of duplication and types of errors (substitution, insertion,
and deletion) varying depending on the technology used. As a result, as the
outcome of sequencing, we actually receive several noisy replicas of the original
encoded sequences (Figure 4.1). Thus, in all SOTA pipelines, the first step in
the decoding process is to organize these sequences by clustering duplicates of
the same string into distinct groups. Several clustering algorithms have been
proposed for this purpose. CD-HIT [44] and UCLUST [45] leverage greedy
algorithms for incremental sequence clustering, offering speed at the expense
of optimality. Bao et al. [46] and Antkowiak et al. [47]’s solutions employ
advanced hashing techniques, prioritizing efficient indexing and location-
sensitive clustering. Starcode [48] and Meshclust [49] provide solutions based
on precise distance calculations, with Starcode utilizing edit matrices for
Levenshtein distances and Meshclust employing the mean-shift algorithm
to address parameter sensitivity. The method of Jeong et al. [50] focuses
on Hamming distance-based clustering. Microsoft’s approach [51] uses a
minimal hash algorithm that enables accurate clustering over large datasets.
Clover [52] has enhanced previous incremental algorithms in terms of accuracy
and scalability, using a trie-based data structure for sequence comparison.
Finally, in prior work [37], [53], we proposed a clustering algorithm based
on embedding and locality-sensitive hashing to scale clustering over large
datasets.

After clustering, each cluster is processed separately in order to determine
the most probable original sequence. We refer to this task as consensus
calling. This task can be formalized as follows. The original oligo s, of length
L, comprises the nucleotides A, C, T, G. Given N distorted copies of s,
where each nucleotide is altered with a probability p (representing deletions,
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insertions, or substitutions), the task is to reconstruct s by finding a sequence
that minimizes the total edit distance to all given inputs. As the noisy input
strings originate from the same original oligo, this challenge can be categorized
as a trace reconstruction problem in information theory. Several solutions
have been proposed in literature for this problem [54]–[61]. An example is
the Bitwise Majority Alignment algorithm proposed by Batu et al. [25] which
is used for oligo reconstruction in prior DNA storage experiments [62]. This
algorithm effectively reconstructs the original string from its subsequences or
traces by employing majority voting and appropriate shifts for each bit of the
string.

AGATCGATG
ATGATCGAT
AGACGATG
— — — — — 
A

AGATGGATG
CGATCGATG
AGATCGATG
— — — — — 
AGATCGATG

AGATCGATG
AGATCGAT
AGACGATG
— — — — — 
AG

AGATCGATG
AGATCGAT
AGACGATG
— — — — — 
AGA…

(a) (b) (c) (d)

Figure 4.2: Example of consensus algorithm applied to a cluster of three
strings in case of substitution errors only (a) and insertion/deletion errors
(b)-(d).

Figure 4.2 shows an example of consensus algorithm applied to a cluster
of three strings. When the noisy reads contain mostly substitution errors
(Figure 4.2(a)), and coverage (roughly defined as the number of times an
oligo appears in the sequenced reads) is sufficient, we can infer the correct
nucleotide at each position through majority voting. For instance, in the
example, we can assume that the first nucleotide is A, as both the first and
third strings have an A as their first nucleotide. This same procedure applies
to the rest of the column (nucleotides).

Handling cases with insertions or deletions is more complex. In Fig-
ure 4.2(c)-(d) we have the same three strings but with insertion and deletion
error. When we apply consensus to the first character, as none of the strings
present any error in the first position and they all have an A, we can assume
that the first nucleotide is A (Figure 4.2(b)). Continuing with the algorithm
for the second position (Figure 4.2(c)), we see that the three strings differs as
the first and third string contain the nucleotide G, while the second string
has the nucleotide T . At this point we have to make an assumption. If we
look one character ahead, we see that the second strings have the dinucleotide
GA, similarly to the first and second strings. We can assume that the T was
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an insertion in the second string. We can correct the insertion, by deleting
the red nucleotide T in the second string and and assume G as nucleotide in
the consensus resulting string.

Notice that, a different consensus algorithm could have assumed something
different, for example substitution error in the second string, where instead
of G we have T . Similarly, the the procedure is repeated for the remaining
nucleotides (Figure 4.2(d)). Notice that every attempt to correct the error in
our strings is based on an assumption which means that there is a possibility
of misinterpreting the error type. If this happens the original error and our
wrong corrective attempt propagates toward the end of the reads. As the
consensus calling works symmetrically whether we start the beginning or from
the end of the reads, most of the errors will accumulate in the middle of the
reads. Lin et al. [63] called this the reliability bias and showed that is not
due to a specific consensus algorithm but it can be observed even if we use an
optimal consensus algorithm. Hence, it is an intrinsic property of the trace
reconstruction problem when insertion and deletion errors are present.

The reliability bias carries significant repercussions for DNA data storage.
Regarding the synthesis of DNA, as techniques improve and enable the
creation of longer oligos (like Nanopore long-read sequencers), the consensus
bias issue becomes more pronounced. This is because the extent of the bias
is directly related to the length of the oligos. In terms of reading, while
sequencing technologies are becoming more cost effective (like Nanopore long-
read sequencers), they are also experiencing an increase in error rates. This
trend makes the consensus algorithm less reliable due to this bias, necessitating
higher sequencing coverage to effectively manage these errors. Recall that
the term coverage refers to the number of time the same original oligo is
processed during sequencing, i.e., the number of duplicates per original oligo.
It is important to note that increased coverage translates to higher sequencing
costs.

4.3 Design
Having described the reliability bias issue of DNA storage, we now present
OligoArchive-DSM (OA-DSM). All SOTA pipelines share two characteristics:
(i) an error-control-coded block of input data is encoded to generate a group
of oligos that forms a unit of recovery, (ii) an isolated consensus step is
performed before decoding to infer oligos from noisy reads. The decoding
and consensus stages are independent steps in all SOTA pipelines and do not
interact with each other. Our approach to archiving data in OA-DSM differs
from SOTA based on the key observation that the separation of consensus
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Figure 4.3: Comparison of SOTA versus OA-DSM columnar layout of oligos.
The figures shows the raw input data being grouped into blocks (a), each
block encoded to generate parity and indexed (b). (c) shows each block of
input being mapped to multiple oligos with SOTA approaches. (d) shows
each block being mapped to one column of motifs with OA-DSM.

and decoding is a direct side-effect of the data layout, that is the way oligos
are encoded. Mapping a coded block of data to a group of oligos results in
that group becoming a unit of recovery. Thus, before data can be decoded,
the entire group of oligos must be reassembled by consensus, albeit with
errors. The key idea in our system is to change the layout from the horizontal,
row-style SOTA layout (Figure 4.3(c)) to a vertical, column-style cross-oligo
layout (Figure 4.3(d)). Our DNA storage system encodes and decodes data
vertically across several oligos instead of horizontally. A set of oligos is viewed
like a relation, with each oligo being a row. OA-DSM encodes and decodes
data one column at a time. The key benefit of this, as we show later in
this section, is the fact that OA-DSM can integrate decoding and consensus
into a single step, where the error-correction provided by decoding is used to
improve consensus accuracy, and the improved accuracy in turn reduces the
burden on decoding, thereby providing a synergistic effect. In the rest of this
section, we will explain the OA-DSM design in more detail by presenting its
read and write pipelines.
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Figure 4.4: OA-DSM data writing pipeline (top) showing binary to DNA
encoding path, and long-term DNA storage in an encapsulated container like
Imagene DNAShell™. OA-DSM reading pipeline (bottom) showing DNA to
binary decoding path. The blocks in red are unique to OA-DSM (versus
SOTA).

4.3.1 OA-DSM Write Pipeline
The top half of the Figure 4.4 shows the OA-DSM data writing pipeline. The
input to the write pipeline is a stream of bits. Thus, any binary file can be
stored using this pipeline. The first step in processing the input involves
grouping it into blocks of size 256,000 bits. Each block of input is then
randomized. While it is not relevant to this discussion, we use randomization
similar to SOTA to improve the accuracy of read clustering in the data
decoding stage as explained in Section 4.3.2. After randomization, error
correction encoding is applied to protect the data against errors. We use
Low-Density Parity Check (LDPC) codes [35] with a block size of 256,000
bits. Prior work has demonstrated that such a large-block-length LDPC
code is resilient to both substitution/indel errors, that cause reads to be
noisy copies of original oligos, and synthesis/sequencing-bias-induced dropout
errors, where entire oligos can be missing in reads due to lack of coverage [36].

The LDPC encoded bit sequence is fed as input to the DSM-oligo-encoder
which converts bits into oligos. While SOTA approaches design each oligo as a
random collection of nucleotides, the DSM-oligo-encoder designs oligos using
composable building blocks called motifs. Each motif is itself a short oligo
that obeys all the biological constraints enforced by synthesis and sequencing.
Multiple motifs are grouped together to form a single oligo. We use motifs
rather than single nucleotides as building blocks because, as we will see later
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in Section 4.3.2, integration of decoding and consensus relies on alignment
which cannot be done over single nucleotides.

In order to perform the conversion of bits into motifs, the DSM-oligo-
encoder maintains an associative array with a 30-bit integer key and a
16 nucleotide-length (nt) motif value. This array is built by enumerating
all possible motifs of length 16nt (AAA, AAT, AAC, AAG, AGA...) and
eliminating motifs that fail to meet a given set of biological constraints. We
configure our encoder to admit motifs that have up to two homopolymer
repeats (AA,CC,GG, or TT), and GC content in the range 0.25 to 0.75. With
these constraints, using 16nt motifs, out of 416 possible motifs, we end up
with 1,405,798,178 that are valid. By mapping each motif to an integer in
the range 0 to 230 − 1, we can encode 30-bits of data per motif. Thus, at the
motif level, the encoding density is 1.875 bits/nt. While we can increase this
density by increasing motif size, or relaxing biological constraints, we limited
ourselves to this configuration due to two reasons: (i) memory limitation of
our current hardware, as the current associative array itself occupies 100GB
of memory, (ii) the motif design is orthogonal to the columnar encoding which
is the focus of this work. In future work, we plan to increase this bit density
by expanding to large motif sets. The use of motifs as building blocks renders
a distinct relational organization to oligos–just as a set of attributes form a
tuple, and a set of tuples form a relation, a set of motifs (attributes) forms an
oligo (row), and a set of oligos constitutes an OligoArchive. Thus, the second
major difference of our approach to SOTA is the layout of motifs across oligos
which is reminiscent of Decomposition Storage Model (DSM), or columnar
data layout, adopted by modern analytical database engines. The motifs
generated from an error-control coded data block are used to extend oligos by
adding a new column as shown in Figure 4.3(d). This process is repeated until
the oligos reach a configurable number of columns after which the process is
reset to generate the next batch of oligos again from the first column. The
generated oligos can then be synthesized to produce DNA molecules that
archive data.

Figure 4.5 illustrates an example of the columnar layout of motifs, clearly
distinguishing it from a linear approach. In our columnar layout, motifs
from the same LDPC block are arranged column-wise. For instance, motifs
from LDPC-block-1 form the first column, with each motif belonging to a
different row. LDPC-block-2 is then encoded to form a second column, which
is concatenated alongside the first one. Essentially, the motifs within an
LDPC block are concatenated vertically to form a column, and multiple
columns expand the oligos dataset horizontally. In contrast, a linear layout
appends motifs directly in a horizontal sequence; when the maximum length
for an oligo is reached, a new oligo begins. It is important to note that in the
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Figure 4.5: Different data layout (columnar vs linear) in the encoding
process.

example, each LDPC block is represented as a different oligo in the horizontal
layout, but in practical scenarios, each block is spread across several oligos.
While the figure shows all columns as being of the same size, a small subtlety
in the practical implementation is the distinction between the first column
and the rest. As we need to index the oligos to enable reordering during
decoding, the first column of motifs is generated by using a 15-bit address
and a 15-bit data to generate a 30-bit integer. Thus, the first LDPC encoded
block is decomposed into 15-bit integers. However, from the second column,
there is no need to add addressing information. Thus, rest of the LDPC
blocks are decomposed into 30-bit integers. Note that with 15-bit addresses,
we can address up to 32,768 oligos. However, we will see in Chapter 6 how
we extended OA-DSM to develop a block-addressed, randomly-accessible,
DNA storage system, that allows us to view a column like a disk block, and a
collection of columns like an extent. The 15-bit address here provides intra-
extent addressing. Extents themselves will be addressed separately using a
separate mechanism (nested primers). We will address the extent design in
Chapter 6, but we explicitly mention this here to clarify that OA-DSM can
scale to much larger oligo pools. But for the rest of this chapter, we focus on
columnar design and consensus.
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4.3.2 OA-DSM Read Pipeline

As mentioned before, data stored in DNA is read back by sequencing the
DNA to produce reads, which are noisy copies of the original oligos that
can contain insertion, deletion, or substitution errors. As each oligo can
be covered by multiple reads, the first in decoding is clustering to group
related reads together. In prior work, we developed an efficient clustering
technique based on edit similarity joins [37], [53] that exploits the fact that
due to randomization during encoding, reads corresponding to the same
original oligo are “close” to each other despite errors and “far” from the reads
related to other oligos. The output of this algorithm is a set of clusters, each
corresponding to some unknown original oligo.

After the clustering stage, other SOTA methods apply consensus in each
cluster followed by decoding in two separate phases as shown in Figure 2.2.
In OA-DSM, we exploit the motif design and columnar layout of oligos to
iteratively perform consensus and decoding in an integrated fashion as shown
in Figure 4.4. Unlike other approaches, OA-DSM processes the reads one
column at a time. Thus, the first step is columnar consensus which takes
as input the set of reads and produces one column of motifs. The choice of
consensus algorithm is orthogonal to OA-DSM design. We use an alignment-
based bitwise majority algorithm we developed previously for consensus [53],
as we found this to provide accuracy comparable to other state-of-the-art
trace reconstruction solutions [25]. The motifs obtained from consensus are
then fed to the DSM-oligo-decoder which is the inverse of the encoder, as it
maps the motifs into their 30-bit values. Note here that despite consensus,
the inferred motifs can still have errors. These wrong motifs will result in
wrong 30-bit values. These errors are fixed by the LDPC-decoder, which takes
as input the 30-bit values corresponding to one LDPC block and produces as
output the error-corrected, randomized input bits. These input bits are then
derandomized to produce the original input bits for that block.

As mentioned earlier, SOTA methods do not use the error-corrected input
bits during decoding. OA-DSM, in contrast, uses these bits to improve
accuracy as shown in the bottom part of the integrated columnar consensus
in Figure 4.4. The error-corrected bits produced by the LDPC-decoder are
reencoded again by passing them through the LDPC-encoder and DSM-
oligo-encoder. This once again produces a column of motifs as it would
have been done during input processing. The correct column of motifs is
used to realign reads so that the next round of columnar decoding starts at
the correct offset. The intuition behind this realignment is as follows. An
insertion or deletion error in the consensus motifs will not only affect that
motif, but also all downstream motifs also due to a variation in length. For
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instance, if we look at the example in Figure 4.4, we see a deletion error in the
sequenced read (bottom-right of the figure) A− TGATCTG.. which should
have been ACTGATCTG.... This results in the first motif being incorrectly
interpreted as ATGA (instead of ACTG, and second motif as TCTG (instead
of ATCT ). Thus, an error early in consensus keeps propagating. Without
a knowledge of the correct motif, there is no way to fix this error. But in
OA-DSM, by reencoding the error-corrected bits, we get the correct motifs.
By aligning these motifs against the reads, we can ensure that consensus
errors do not propagate. Note here that such realignment is only possible
because we use motifs, as two sequences can be aligned accurately only if
they are long enough to identify similar subsequences. Thus, columnar layout
without motifs, or with just nucleotides, would not make realignment possible.
Similarly, integrating consensus and decoding is possible only because of the
columnar layout, as the SOTA layout that spreads a LDPC block across
several oligos cannot provide incremental reconstruction.

4.4 Evaluation
In this section, we will present the results from our experimental evaluation
of the OA-DSM pipeline. The evaluation is structured as follows. First, we
present the results from a small-scale wetlab experiments to validate the
end-to-end OA-DSM pipeline (Sec. 4.4.1). Then, we compare OA-DSM with
various SOTA approaches with respect to read cost and write cost to show
that our design can lead to substantial cost reduction (Sec. 4.4.2). Finally,
we show the advantage of using a columnar design by comparing OA-DSM
with a row-based pipeline (Sec. 4.4.3).

We conduct all the experiments on a local server equipped with a 12-core
CPU Intel(R) Core(TM) i9-10920X clocked at 3.50GHz, 128GB of RAM.
The core components of the OA-DSM pipeline shown in Figure 4.4 has been
implemented in C++17. We use TPC-H dbgen utility to generate compressed,
synthetic data that we treat as the archival file that must be stored on DNA.
We parameterize dbgen to control the generated database size according to
experimental requirements as mentioned later.

4.4.1 Small-Scal Wet-Lab Validation
As the first prototype test, we used the TPC-H DBGEN utility to generate a
compressed database of 1.2MB. The cardinality of various relations in the
archive is reported in Table 4.1. Using OA-DSM configured with 30% LDPC
redundancy, we encoded the archive file to generate 44376 oligos, with each
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Table Name Number of Rows Size [Byte]
customer 900 142782
lineitem 31220 3717358
nation 25 2199
orders 9000 982200

partsupp 4800 690415
part 1200 140596

region 5 384
supplier 60 8242

Table 4.1: TPCH database summary for WetLab experiment.

oligo of length 160nts (length chosen to optimize synthesis cost). The oligos
were synthesized by Twist Biosciences. We sequenced the synthesized oligos
using Oxford Nanopore PromethION platform generating approximately 43
million noisy reads.

To perform error characterization, we aligned the 43M reads to the original
oligos using Accel-Align seqence aligner[64], [65]. 99.9999% reads were aligned
to a reference oligo, indicating a very high quality of the generated read set.
Figure 4.6 shows the coverage histogram (number of oligos that have a given
coverage). Each reference oligo is covered by at least one read, with a median
coverage of 951×, minimum coverage of 5×, and a maximum coverage of
2500×. We deliberately sequenced the oligos at such high coverage to test
recovery at various coverage levels as we present later.

Figure 4.7 shows the substitution, insertion and deletion rate per position
(as computed by BBmap [66]). Note that while the data-carrying oligo had
a length of 160nts, our reads are longer as they include the primers that
were appended at both ends of the oligo for sequencing. As these primers
get trimmed out during read preprocessing, the error rate of relevance to us
is the middle portion of the read which corresponds to the encoded, data-
carrying portion of the oligo. We see that in this portion, the substition rate
is dominant, which is 3× higher than insertion and deletion rates. Figure 4.8
compares our error rates with those reported in prior work on DNA storage
[62], [67]–[70]. While the actual rates vary due to differences in synthesis
and sequencing steps, we see that the overall trends are similar. Using the
aligned reads, we also report the indel distribution in Figure 4.9 which shows
a histogram of edit distances between the reads and references. As can be
seen, 96.97% reads have edit distance less than 10, indicating that the error
rate is less than 6%.

In order to test end-to-end decoding, we first used the full 43M read
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Figure 4.6: Histogram of coverage across oligos in wetlab experiment.

dataset as input to the decoding pipeline. As a result, we were able to achieve
full data reconstruction using the entire dataset of sequenced reads. In order
to stress test our decoding pipeline and identify the minimum coverage that
allows fully reconstruction of data, we repeated the decoding experiment on
smaller read datasets which were derived by randomly sampling a fraction of
reads from the 43M read dataset. In doing so, we found that OA-DSM was
able to perform full recovery using just 200K reads, which corresponds to a
coverage of 4×. At this coverage, nearly 3500 out of 44376 reference oligos
were completely missing. However, the LDPC code and columnar decoding
were able to successfully recover data. As further reduction in coverage led
to data loss, we validate 4× as the minimum coverage OA-DSM can handle
with our wetlab experiment.

4.4.2 SOTA comparison
Having discussed the results from our real-world wetlab experiments, we will
now present a comparison of OA-DSM with SOTA approaches in terms of
reading and writing cost [36], [62], [63]. Writing cost is defined as #nts−in−oligos

#bits
,
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where the numerator is the product of the number of oligos and the oligo length,
and the denominator is the input data size. Thus, higher the redundancy
and encoding overhead, higher the write cost. The reading cost is defined
by #nts−in−reads

#bits
. The numerator is the sum total of all read lengths, and

denominator is the input size. Thus, higher the coverage required, higher the
read cost.

Figure 4.10 shows the read and write cost for OA-DSM and other SOTA
algorithms. For OA-DSM, we compute these costs based on the wet-lab
experiment presented in the previous section, where for write cost we used
44376 oligos synthesized to encode a 1.2MB archive and for read cost the
minimum number of reads (corresponding to a coverage 4x) needed to fully
reconstruct the original data. As a result, we get a read cost of 2.82 nts/bit
(considering 4x as min coverage), and a write cost of 0.70 nts/bit. For SOTA
approaches, we reproduce the costs from their publications. There are several
observations to be made. First, let us compare OA-DSM with horizontal
SOTA approach that also uses LDPC (by S. Chandak et al. [36]). Both these
cases use the same LDPC encoder configured with 30% redundancy. The cost
reported here is for around 1% error rate in both cases. Clearly, the OA-DSM
approach has both a lower write and read cost. The difference in write cost
can be explained due to the fact that in the horizontal LDPC approach, the
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Figure 4.10: OA-DSM vs. SOTA rd/wt costs: RS-RL (Organick et al. [62]),
LDPC (Chandak et al. [36]), Fountain+RS (Erlich and Zielinski [69]).

authors also added additional redundancy in each oligo in the form of markers
which they used in their decoder. OA-DSM is able to achieve 100% data
reconstruction using the same LDPC encoder at a much lower coverage level
without such markers as demonstrated by the lower read cost.

Comparing OA-DSM with the other two efficient encoders (large-block
Reed-Solomon coding by Organick et al. [62] and fountain codes by Erlich et
al. [69]), we see that OA-DSM provides substantially better read cost, but
slightly worse write cost than fountain coding approach. As we mentioned
earlier, we can further improve the write cost for OA-DSM using several
approaches. First, the OA-DSM results in Table 6.3 were obtained with a
30% redundancy based on its ability to handle even 12% error rate. For lower
error rates (less than 1%), as was the case with the Fountain coding work,
even 10% redundancy would be able to fully restore data at extremely low
coverage (3× as shown in Figure 4.12). Second, as mentioned in Section 4.3,
scaling the motif set by using longer motifs (17nt and 33 bits) could allow
us to increase bit-level density further from 1.87 bits/nt to over 1.9 bits/nt.
These two changes would lead to further reduction in write cost without
any adverse effect on the read cost. As this work was predominantly about
reducing the read cost, we leave open these optimizations to future work.

Finally, Lin et al. [63] recently presented the Gini architecture which inter-
leaves nucleotides across oligos in order to minimize the impact of consensus
errors. We also tried to compare OA-DSM with Gini, but we could not derive
the read/write cost for Gini, which was also not reported, due to lack of
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statistics about reads. However, as our evaluation methodology is identical
to Gini, we present a direct comparison of results in terms of minimum cover-
age required by both approaches. Figure 4.11 shows the minimum coverage
required by OA-DSM, Gini, and a baseline without Gini reported by Lin et
al. [63], to perfectly recover data at various error rates. At 18.4% redundancy
based on Reed-Solomon coding, the reported baseline needed 30× to recover
data at 12% error rate. Gini, in contrast, provided a 33% improvement as it
needed a minimum coverage of 20× at 12% error rate to guarantee full recov-
ery. OA-DSM configured at 30% redundancy with LDPC encoding provides
a 40% improvement over Gini, it requires only 12× coverage. Comparing
Figure 4.11 with Figure 4.12, we see that OA-DSM provides 25% less coverage
(15×) even at 10% redundancy compared to Gini. Thus, OA-DSM has a much
lower read cost, thanks to the integrated consensus and decoding enabled by
vertical organization.

4.4.3 Benefits of Vertical Design
In order to ensure that the benefits of OA-DSM are due to the vertical design
and not other parameters, we have developed a horizontal version of the
pipeline shown in Figure 4.4, where we fixed all other parameters (clustering
and consensus algorithms, LDPC block size, motif set, etcetera), and only
changed two aspects to make it similar to SOTA: (i) replace OA-DSM encoder
with horizontal encoder that maps one LDPC block to multiple oligos, (ii)
perform consensus to infer entire oligos first, and then decode separately.
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In order to compare the vertical and horizontal pipelines, we perform
an end-to-end DNA storage simulation study using both pipelines. First,
we use both pipelines to generate the oligos for a 3MB TPC-H archive file
(3MB size was chosen based on calculations that ensure that both pipelines
produce the same number of oligos). We configure LDPC encoder to generate
two datasets, with 10% and 30% redundancy. Then, we encode the two
datasets using both pipelines, while fixing the oligo length to 50 motifs per
oligo (800nt), generating four oligos datasets, two containing 18773 oligos
(horizontal/vertical at 10% redundancy), and the other two containing 22187
(horizontal/vertical at 30% redundancy) oligos.

We compare the horizontal and vertical pipelines by evaluating the mini-
mum coverage required at 10% and 30% redundancy levels to achieve 100%
error-free reconstruction of the input data at various the error rates (1% to
12%). We conduct the experiment similar to SOTA [36], [63] as follows. For
each error rate, and for each of the four oligo sets, we generate read datasets
at various coverage levels (1× to 25×). In order to generate reads, we first
duplicate each oligo a certain number of times according to the configured
coverage level. Then we inject random errors at random positions in each
read. We inject insertion, deletion and substitution with an equal probability,
and the number of errors injected per read follows a normal distribution with
mean set to the configured error rate. We then decode the read datasets
using both pipelines and identify the minimum coverage level required to fully
recover the original data.

Figure 4.12 shows the minimum coverage for data encoded with 10%
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Figure 4.13: Min. cov. at 30% redundancy.

redundancy. Clearly, vertical encoding outperforms the horizontal one, as it
reduces the coverage required up to 40% for high error rates. This reduction
in minimum coverage can be intuitively explained as follows. Horizontal
encoding maps an LDPC block into multiple oligos. This implies that a single
erroneous oligo can lead to a data loss of up to 1500 bits (50 motifs per oligo
× 30 bits per motif). As explained in Section 4.3, all that is required for an
oligo loss is a single insertion/deletion error in the first motif after consensus.
On the other hand, an oligo loss in OA-DSM only causes a loss of 30 bits
in each of the LDPC blocks, thanks to the vertical encoding. Further, the
integrated consensus and decoding can fix consensus errors in early rounds
so that they do not affect future rounds. Due to these reasons, the LDPC
decoder works much more effectively when paired with vertical layout rather
than horizontal encoding. The results are similar for data encoded with 30%
redundancy as well, as shown in Figure 4.13. Notice that in the 30% case,
both horizontal and OA-DSM pipelines have a minimum coverage lower than
the 10% redundancy case. This is expected, as a higher redundancy implies a
higher tolerance to errors.

4.5 Conclusion
All SOTA approaches for DNA data archival use a “row-based” approach
(horizontal layout) for mapping input bits onto oligos. In this chapter, we
showed how this approach results in a strict separation of consensus calling



58 4.5. Conclusion

and decoding, and how this separation, in turn, results in lost opportunity for
improving read/write cost. We presented OA-DSM, an end-to-end pipeline
for DNA data archival that uses a novel, database-inspired, columnar data
organization. We showed how such an approach enables the integration of
consensus and decoding stages so that errors fixed by decoding can improve
consensus and vice versa. Using a full system evaluation, we highlighted the
benefit of our design and showed that OA-DSM can substantially reduce
read-write costs compared to SOTA approaches. As we mention in Section 4.3,
internally OA-DSM rely on LDCP for error correction. It has been proved
that providing the LDCP decoder with Loglikelihood Ratio (LLR) we can
improve its error-correction capabilites. In the next chapter we propose three
heuristics used to compute the LLR in the context of a motif-based DNA
storage system.



Chapter 5

LLR Estimation for Motif-Based
DNA Storage Systems

5.1 Introduction

Despite the advances, high read/write costs and low throughput represent a
significant obstacle to DNA’s adoption as a storage medium. Over the past
few years, researchers have proposed new motif-based approaches to DNA
data storage [71], [72] as a potential solution. Instead of using nts (A,C,G,T)
as building blocks, these solutions use motifs, which are short oligonucleotide
sequences that are drawn from a fixed library, as building blocks for assembling
longer oligos. Using motifs as building blocks, one can scale logical density
(the number of bits written per synthesis cycle) by storing log2(M) data bits
per synthesis cycle [72]. The use of a fixed library of motifs similar to a
typesetting press can simplify miniaturization and automation [73]. Further,
new chemical synthesis methods (enzymatic assembly/ligation [20]) can be
used to assemble oligos from motifs. While all these aspects are expected
to contribute to reduce write cost and improving throughput, they do so at
the expense of increased error rate in the synthesized oligos. Thus, effective
error management is important for motif-based DNA storage to realize its
potential.

In this chapter, we focus on the use of soft information for improving error
correction capacity of our OA-DSM. OA-DSM uses large-block-length, low-
density parity-check (LDPC) codes to provide resilience against DNA storage
errors. Prior work [36] in non-motif-based DNA storage has demonstrated
that providing soft information, such as Log-Likelihood Ratio (LLR), as input
to LDPC decoders can substantially improve their error-correction capability.
However, as we describe later, the use of motifs as building blocks and the

59
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columnar organization in OA-DSM requires a completely different approach
to calculate soft information. In this work, we present a few estimation
techniques, empirically validate them using real-world wet-lab experiments.

5.2 System model
As mentioned in previous chapters, SOTA pipelines encode data on DNA
following the same basic steps, although they differ in their implementation.
Data is written to DNA by encoding bits into sequences of nts. This encoding
is internally a two-step process. First, data is grouped into blocks of bits that
are fed as input to an error-control coding module to produce parity bits.
The data and parity bits together form a unit of recovery. The bits belonging
to the block are mapped to nts. Due to limitations in synthesizing DNA, the
length of a single DNA strand is limited to a few hundred nts at best. Thus,
each block of data and parity is converted into a set of DNA sequences. These
sequences are synthesized chemically to form actual DNA strands, the oligos.

Reading the data back involves sequencing the DNA to produce reads. In
the ideal case, sequencing would produce one read per oligo created during
the writing phase. However, due to errors in sequencing and synthesis, reads
are noisy duplicates of the starting sequences as they can contain substitution,
insertion, and deletion errors. The number of reads corresponding to each
oligo (also called coverage) can also vary by an order of magnitude, with some
oligos being covered by thousands of reads, and others completely missing.
In order to recover the original data from this noisy dataset, a consensus
step is performed first to infer original sequences from noisy reads. The
inferred sequences produced by the consensus step are then passed to the
error-control decoder for conversion back from nts into bits. It is important to
note here that these consensus sequences need not to be error-free, accurate
reproductions of original oligos. It is the job of the error-control decoder to
use the additional parity bits to recover the original input data despite these
errors. Thus, in all SOTA techniques, the decoding and consensus stages are
independent of each other. This is an inherent consequence of how oligos
are encoded. When a block of data is mapped to a group of oligos, that
group becomes a unit of recovery that must be reassembled entirely (through
consensus) before decoding.

As we show in Chapter 4, OA-DSM differs from the SOTA approaches
by using a library of motifs as building blocks during encoding rather than
individual nts. In OA-DSM, we exploit this motif design and the columnar
layout of oligos to iteratively perform consensus and decoding in an integrated
fashion. Unlike other approaches, OA-DSM processes the reads one column
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at a time. Thus, the first step is columnar consensus using a bit-wise majority
algorithm [53], which takes as input the set of reads and produces one column
of motifs. These motifs are fed to the oligo-decoder which maps the motifs
into their 30-bit values using the same array of motifs used during encoding,
which does not need to be transmitted but can be generated prior to decoding.
Note here that despite consensus, the inferred motifs can still have errors.
These wrong motifs will result in wrong 30-bit values. These errors are fixed
by the standard BP LDPC-decoder, which takes as input the 256,000 bits
corresponding to one LDPC block and produces as output the error-corrected
input bits. OA-DSM uses the motif library to perform encoding and decoding
of data column-by-column instead of oligo by oligo.

5.2.1 Improving OA-DSM with Soft Information
The error correction capabilities of LDPC code can be improved by feeding
the LDPC decoder with soft information such as the LLR. However, the
calculation of LLR depends on the channel model, which presents a challenge
for DNA storage channels due to the lack of an exact channel model with a
specific distribution. To address this issue, Chandak et al. [36] proposed a
simplified method for LLR computation that is defined under the assumption
that DNA storage mimics a binary symmetric channel with error probability
epsilon and an ideal Poisson random sampling model. Under this assumption,
the transition probability for the channel is given as:

p ((k0, k1) |0) = e−λλk0,k1

(k0, k1)!

(︄
k0 + k1

k0

)︄
(1− ϵ)k0 ϵk1 (5.1)

p ((k0, k1) |1) = e−λλk0,k1

(k0, k1)!

(︄
k0 + k1

k1

)︄
(1− ϵ)k1 ϵk0 (5.2)

where λ is the ratio between reading cost and writing cost, the input of
the channel is a bit, the output is a tuple (k0, k1) where kb is the number of
times that the bit is read as b. From this, the LLR is computed as:

log p ((k0, k1) |0)
p ((k0, k1) |1) = (k0 − k1) log 1− ϵ

ϵ
(5.3)

Chandak et al. [36] use nts as the building blocks of encoding with a direct
mapping between two bits and four nts (A-00, C-01, G-10, T-11). During the
consensus stage of the read pipeline, they perform read clustering to group
similar reads into buckets such that each bucket corresponds to an original
sequence. Then, for each position, they count the number of occurrences of
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0 AACCGTAGCTAGCGCA

1 ACACAGGTGGACGATG

2 AGGCTAGCAGCAGCTA

3 ACTCGATTGCTAACGC

4 AGCACGATGCACGACA

5 AATGCTGATGTAACCT

… ….

TGTATGCTAGTGAGCA

0…00000100b = 4

Input 1: 30-bits Value

230

Motif Encoding Table

AGCACGATGCACGACA

Input 2: 30-bits Value
0…00000101b = 5

AATGCTGATGTAACCT

Figure 5.1: Mapping on bits to nucleotides in OA-DSM.

nts, and use it to directly determine k0 and k1 values for the consensus LLR.
For example, to determine the LLR for the first bit, the count of As and Cs
is used as k0 as they would result in first bit being 0, and the count Gs and
Ts is used as k1 as they would result in first bit being 1. Chandak et al. [36]
showed that such an LLR computation improves the read/write cost of DNA
data storage, as it allowed LDPC decoders to tolerate more errors while using
fewer parity bits.

Unfortunately, this approach cannot be directly applied to OA-DSM;
instead of mapping two bits to 1 nt like Chandak et al. [36], OA-DSM maps
30 bits to 16 nts using an associative array. Thus, using a per-position nt
count to compute per-bit k0 and k1 is not correct for OA-DSM. Figure 5.1
illustrates an example of motif-based bits-to-nucleotides mapping in OA-DSM.
The process of mapping bits to nucleotides involves using an associative
array that represents the entire space of all possible nucleotide combinations
for a given motif length, filtered to exclude sequences that don’t respect
certain biological constraints. This results in two entries in the array being
completely different, thereby losing the direct relationship between bits and
nucleotides. In the example, we aim to encode two values expressed in 30 bits,
corresponding to 4 and 5 in base 10. As shown in the table, although the
two values differ by only one bit, the resulting motifs differ significantly in
many nucleotides. Furthermore, there is no correspondence between a pair of
bits in the 30-bit values and the nucleotides of the corresponding motif. The
straightforward extension of Chandak et al. [36]’s approach to motif design is
to extract motifs from the reads, identify which motifs contribute to zero and
one bits for each position, and use their count for k0 and k1. Unfortunately,
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this approach does not work well due to two problems. First, it causes error
amplification. When nts are used as building blocks, an error in a single
nt will result in the corresponding two bits being wrong. However, with
OA-DSM, a single error can result in a completely different 30-bit pattern
compared to the correct motif. Thus, using the wrong motif to derive a count
of zeroes and ones will result in poor LLR. Second, this approach is slow, as
it requires tens of billions of array lookups to convert each motif in each read
into its bit sequence.

Given these issues, we implemented three heuristic approaches in OA-DSM
for approximating LLR in a scalable fashion. Our first heuristic exploits the
fact that we apply a consensus procedure to infer each motif in the read
pipeline. When each inferred motif is converted back into bits, we apply
Equation 5.3 for each bit, where the difference α = k0 − k1, is set to 1 or -1.
The intuition behind this is that we view the majority consensus output as
the only bits emerging out of the DNA storage channel; a zero bit results in
k0 being 1 and k1 being 0, and a one bit results in k1 being 0 and k0 being 1.
Thus, α is ±1. Although this definition works in practice (as we will show
in Section 5.3), it does not provide any additional information about the
reliability of the bits given by consensus.

Our second heuristic extends the first one by taking each consensus motif,
counting the number of reads that exactly with it, and using the count as α.
The intuition behind this heuristic is that in the general case, with sufficient
coverage, the count of “correct” motifs will be higher than the count of wrong
motifs. In such a case, the number of correct motifs can be used as k0 for a
zero bit, and k1 for a one bit. As majority consensus will identify the correct
motif, we can get this count by comparing the consensus motif with every
read. Thus, α is ±(exact match count). The drawback of this method is that
it requires motifs in reads to exactly match the consensus motif. However, in
cases of high error rates, it is possible that the consensus produces the correct
motif, but the consensus result does not match even a single read.

Our third heuristic extends the second one by exploiting the fact that
OA-DSM uses a bitwise majority consensus algorithm that internally aligns
motifs to compute consensus motifs. Alignment is done to deal with insertion
and deletion errors that can make motifs in a read longer or shorter than
the original motif. Such an alignment also produces the edit distance, or
Levenshtein distance, between motifs. Thus, our third heuristic uses this
information by changing the exact match count to the count of motifs having
an edit distance lower or equal to a configurable threshold. We set this
threshold to 15% to tolerate a sufficiently high error rate.
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Figure 5.2: Figure shows the minimum coverage required to guarantee 100%
data recovery of various LLR methods under a range of error rates.

5.3 Evaluation

In this section, we present the experimental results to highlight the effective-
ness of using soft information in OA-DSM. First, we compare the performance
of our columnar decoding with respect to various LLR heuristics. Then, we
validate the end-to-end encoding and decoding pipeline by presenting the
results of our wet-lab experiment. Finally, we compare OA-DSM to other
SOTA approaches with respect to read/write costs. All experiments were
conducted on a server equipped with a 12-core Intel (R) CPU and 128GB of
RAM.

To compare the heuristically defined LLRs in Section 5.2.1, we encoded a
binary file of size 609KB (a relational database generated by using TPC-H
DBGEN utility) into 22,188 oligos of 160 nts each. Using a custom simulator,
we constructed from this set of oligos multiple simulated reads datasets, by
uniformly injecting errors with an error rate ranging from 1% to 15% and
varying coverage levels. For each simulated read dataset and heuristic LLR,
we conducted multiple runs to determine which LLR approach requires the
smallest amount of coverage to decode the entire file. Figure 5.2 reports
the minimum coverage that our OA-DSM decoder needs to recover data for
different types of errors, depending on the LLR it uses. As can be seen, LLR
having α = ±1 is capable of decoding data. At low error rates, it performs
as well as other methods. But at high error rates, it is able to recover data
only at a much higher coverage. The exact match LLR (shown as α ̸= 1
ED=0) marginally outperforms the α = ±1 LLR for 9% and 12% error rate,
but underperforms at 15%. This proves our intuition that at high error rates
exact matches might not be found; at 15% error rate, there is an error in
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every single motif. While consensus can still recover the original motif, the
lack of matches would drive the LLR to zero, resulting in poor performance.
On the other hand, the LLR using alignment-derived edit distance (shown as
α ̸= 1, ED ≤ 2) outperforms other LLRs.

Having identified the LLR that allows for the lowest coverage in decoding,
we validated OA-DSM (with α ≠ 1, ED ≤ 2 LLR) using a real wet-lab
experiment. We propose here the same wet-lab experiment we showed in
Chapter 4, as it was already relying on the best LLR heuristic. In this wet-
lab experiment, we encoded a 1.2MB binary file representing a compressed
relational database archive with 30% LDPC redundancy to generate 44376
oligos, with each oligo having a length of 160 nts. Twist Biosciences synthesized
the oligos, which we sequenced using the Oxford Nanopore PromethION
platform, generating approximately 43 million noisy reads. We ran the
pipeline with all 43 million reads, corresponding to an average coverage of
951×, and were able to fully reconstruct the original data. In order to prove
the OA-DSM’s capability to handle lower coverage, we subsampled 200K
reads from the original dataset, generating a new dataset with an average
coverage of 4×. We found that OA-DSM was able to perform full recovery
of the original data despite nearly 3500 oligos being completely missing in
the subsampled dataset, that is, not covered by any read. With our wetlab
experiment, we validated 4× as the least coverage OA-DSM can manage, as
further reduction in coverage resulted in data loss.

We conclude this section by presenting the comparison between OA-DSM
and SOTA methods, including LDPC coding by S. Chandak et al. [36], large-
block Reed-Solomon coding by Organick et al. [62], and fountain codes by
Erlich et al. [69], in terms of reading and writing costs. Writing cost is
defined as #nts−in−oligos

#bits
, where the numerator is the product of the number

of encoding oligos by their length and the denominator is the input file size
expressed in bits. Similarly, reading cost is defined as #nts−in−reads

#bits
, i.e., as the

ratio between the sum total of all read lengths and the input size in bits. The
higher the redundancy and encoding overhead, the higher the write cost, while
the higher the coverage required, the higher the read cost. Table 5.1 compares
the read/write cost for OA-DSM and other SOTA approaches. We computed
the costs for OA-DSM using the values from the wet-lab experiment. Table 5.1
shows that OA-DSM outperforms other SOTA methods substantially in terms
of read cost. The write cost of OA-DSM is slightly higher than that of fountain
codes but significantly lower than large-block Reed-Solomon coding. The
focus of this work was on soft information for improving decoding performance,
and hence the read cost. OA-DSM can achieve further reductions in write
cost by reducing redundancy and scaling the motif set to use more motifs.
We leave open these optimizations to future work. These results suggest that
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OA-DSM LDPC-30% RS+RLL Fountain+RS
Read Cost 2.82 4.46 4.57 6.43
Write Cost 0.70 0.78 0.91 0.62

Table 5.1: OA-DSM vs. SOTA rd/wt costs: RS-RLL (Organick et al. [62]),
LDPC (S. Chandak et al. [36]), Fountain+RS (Erlich and Zielinski [69]).

OA-DSM can achieve a good balance between read and write costs, making
it a promising solution for efficient DNA data storage.

5.4 Conclusion
In this work, we provided more details on our work with OA-DSM, a motif-
based DNA storage system. Considering the mismatch between the motif-
based design used by OA-DSM and the nucleotide-based LLR computation
proposed by state-of-the-art methods, we proposed three strategies for com-
puting LLR based on various design aspects of OA-DSM. Using results from
simulation studies and real-world wet lab experiments, we demonstrated the
ability of soft information to reduce read/write costs in OA-DSM.

In the next chapter, we will present the final component of our DNA
storage system — the capability to enable random access to a subset of data
extracted from a larger DNA pool.



Chapter 6

CMOSS: A Reliable,
Motif-based Columnar
Molecular Storage System

6.1 Introduction

As traditional storage technologies struggle to keep pace with the exponen-
tial growth of data, particularly in the context of archival data, DNA has
emerged as a promising medium for long-term storage. DNA presents several
advantages over the traditional storage media. It is seven orders of magnitude
denser than tape [14] and can store up to 1 Exabyte of data in a cubic
millimeter [28]. It is extremely durable and can last several millenia when
stored under proper conditions. DNA is read by a process called sequencing,
and the sequencing technology used to DNA is decoupled from DNA, the
storage medium, itself. Thus, DNA will not suffer from obsolescence issues
as we will always be able to read back data stored in DNA. Finally, using
common, well-established biochemical techniques, it is very easy to replicate
DNA rapidly.

Given the high density of DNA, an archive stored in DNA can contain
millions to billions of files. However, real-world scenarios often demand access
to only a fraction of the information. For instance, clients may request a
single table from a database or extract a specific image from a collection.
Sequencing the entire stored information in response to these requests is
needless, expensive, and time consuming, as decoding the information stored
in DNA-based storage involves applying a computationally-intensive consensus
calling procedure to aggregate reads originating from the same oligo. Thus,
the implementation of reliable random access is crucial in making large-scale,
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cost-efficient DNA-based storage feasible.
In this chapter, we present Columnar MOlecular Storage Systems (CMOSS),

an end-to-end pipeline for DNA storage that provides substantially lower
read/write costs than SOTA approaches. Our work is orthogonal to the grow-
ing literature on designing optimal error-correction codes for DNA storage
in that CMOSS can be used with any error-control code. Built on top of
OligoArchive-DSM, that we presented in Chapter 4, its key aspects that dis-
tinguish it from SOTA approaches are: (i) a motif-based, vertical, cross-oligo
layout for DNA storage in contrast to the nucleotide-based, horizontal layout
used by SOTA, and (ii) an integrated consensus and decoding technique that
exploits the novel layout to incrementally recover data at very low sequencing
coverage; (iii) a reliable, fixed-size, block-based random access organization for
DNA storage instead of a variable-sized, object-based access used by SOTA.
While (i) and (ii) are inherited by the OA-DSM design, whose benefits have
been widely discussed in Chapter 4, (iii) is novel in CMOSS and enable our
storage system with random access on a subset of files stored in a pool of
DNA molecules. In developing CMOSS, we make the following contributions.

• Using real data from wet-lab experiments, we perform a quantification
of random-access errors in DNA storage. Prior studies have done error
quantification in terms of substitution, deletion, and insertion errors
present in post-sequenced reads. However, there has been little focus
on performing a systematic quantification of the effect of coverage bias
introduced by Polymerase Chain Reaction (PCR)–the fundamental pro-
cedure used to achieve random access in DNA storage–while amplifying
a complex DNA pool storing files of various sizes. We bridge this gap
by presenting such an analysis (Section 6.2.1)

• Using CMOSS, we perform simulation studies and one, large-scale wet-
lab experiment where we encode MB-sized dataset to generate complex
oligo pool. We use these experiments to (i) validate the CMOSS
design by ensuring successful data recovery and (ii) perform a novel,
systematically study of the impact of using PCR for randomly accessing
fixed-size blocks in contrast to variable-sized objects. In doing so, we
show that the fixed-size, block-based random access organization of
CMOSS makes it resilient to errors caused by PCR bias.

6.2 Background
In Chapter 4, we introduced the errors that need to be taken into account by
every DNA storage pipeline. We showed that, in order to deal with errors
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introduced during synthesis and sequencing, all these pipelines rely on high
percentages of redundancy, high sequencing coverage, and consensus calling.

Not every pipeline developed to store digital data on DNA enables random
access. When they do, they have to contend with additional errors. In this
section, we will provide an overview of the errors that are specific to pipelines
supporting random access (Section 6.2.1).

6.2.1 Errors due to Random Access
Having described in Chapter 4 the reliability bias caused by consensus that
affects all DNA storage pipelines, we now focus specifically on pipelines that
support random access. A single DNA pool is capable of storing several
Petabytes to Exabytes of data. However, it is often necessary to retrieve
only a small amount of data. Prior work has achieved this by assuming an
object-based get/put interface to DNA storage and relying on the use of PCR
for achieving random access of individual objects[62], [74]. The central idea
is to associate a distinct pair of short DNA sequence, also called primers,
to all oligos belonging to each distinct object. Random access is performed
by using PCR to selectively amplify the DNA containing the target primer
corresponding to the object that is requested.

Prior studies have quantified the nature and frequency of substitution
and indel errors introduced by different sequencing technologies and used
such quantification to configure the amount of redundancy introduced during
encoding/decoding[70]. Studies have also looked at oligo drop outs caused
by coverage bias[75]. Coverage bias refers to the fact that after sequencing,
original oligonucleotide sequences are covered at very different rates, with some
sequences being covered by multiple sequenced reads an others completely
missing. Coverage bias is a well-known issue in DNA storage, with both
synthesis and PCR contributing to it. During the synthesis, multiple copies
of each oligo are created, with the distribution of copies being non uniform.
During sequencing, a sample of synthesized DNA is extracted and PCR is used
to amplify the DNA. Both samping and the inherent stochasticity of PCR can
amplify the pre-existing synthesis bias leading to some oligos being copied in
abundance, with others being dropped out. The issue with uneven coverage
distribution lies in the inadequately represented sequences, which may not be
recoverable during the decoding process because decoders typically require
multiple copies of sequences to overcome randomly introduced substitution,
insertion, and deletion errors. When certain sequences lack sufficient copies,
it can result in the loss of information. However, there has been limited work
on systematically quantifying the errors introduced by PCR-based random
access [74], [75]. In practical archival scenarios, objects stored tend to have
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widely varying sizes. Thus, the impact of PCR issues in the context of a more
realistic complex pool requires further study.

In order to understand the impact of PCR induced errors in random
access over DNA storage, we conducted a wet-lab experiment (Exp. 1) where
we stored three databases: SSB, TPCH, and SYN, comprising five, eight,
and eight tables, respectively. The SSB and TPC-H databases were chosen
from the industry-standard TPC-H benchmark1, and they represent a size
distribution typical in a data warehousing application. The SYN database
contains randomly generated records and was configured to have table with
fixed sizes as listed in Table 6.1. Our intention in using these databases was
to isolate and study the sensitivity of PCR to the complexity of the oligo
pool created by varying file sizes.

Table 6.1: Table shows the number of oligos and the corresponding database
and table primers for each table in SSB, TPCH, and SYN databases.

Table# Table Primer Database
(DB Primer)

SSB TPCH SYN
(CAATG) (GATGA) (GTGAG)

1 TTAAG 14 6 304
2 GAATT 16 18 312
3 AAGGT 42 18 302
4 ACAGA 2594 10 302
5 AGAGA 34 20 298
6 CAGTT 14 300
7 CATAC 34 298
8 CGATA 16 306

Figure 6.1: The oligo structure for object based abstraction. UFP: universal
forward primer, DBP: database primer, TBLP: table primer, URP: universal
reverse primer.

1https://www.tpc.org/tpch/
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The databases were converted using Goldman et al[67]’s rotational en-
coding approach to generate 5258 oligonucleotide sequences of 110 base pair
(bp) each. The sequence consists of the payload in the middle, flanked by
the database primer (DBP), table primer (TBLP), universal forward primer
(UFP), and universal reverse primer (URP) on both sides (Figure 6.1). Given
the knowledge that the oligo length is constrained to a few hundred nucleotides
due to the limitations of SOTA synthesis technology, a longer primer length
translates to a reduction in payload length. To enhance the payload weight
and information capacity, we utilized short primers of five nucleotides, derived
from the Illumina adapter sequences. Table 6.1 shows the table and database
primers used and the number of oligos generated for each table.

The oligos designed in Exp. 1 were synthesized by Twist Bioscience and
sequenced using Illumina NovaSeq. Due to the synthesis and sequencing
errors, we observed an average error rate of 0.0033 for substitutions, 0.0003
for deletions, and 0.0003 for insertions when comparing the sequenced reads
to the original oligos. With such low error rates, we were able to reliably
study the coverage bias of PCR-based random access.

Coverage bias refers to the fact that after PCR-amplification and sequenc-
ing, original oligonucleotide sequences are covered at very different rates,
with some sequences being covered by multiple sequenced reads an others
completely missing. The issue with uneven coverage distribution lies in the
inadequately represented sequences, which may not be recoverable during
the decoding process. Because decoders typically require multiple copies
of sequences to overcome randomly introduced substitution, insertion, and
deletion errors. When certain sequences lack sufficient copies, it can result
in the loss of information and consequently lead to a reduced recall rate of
random access.
Quantitative definition of coverage bias. To quantitatively measure the
representation of a subset relative to the whole, we use the term “population
fraction" [75], referring to the proportion of the data that belongs to a
specific object (database or table) within the entire archival dataset. Given
n objects, the population fraction of object i, denoted as pi, is computed as
pi = Ni/

∑︁n
j=1 Nj, where Ni represents the number of sequences belonging to

a specific object i. Given the original oligonucleotide sequences per table, we
can compute the raw population fraction for each object. We refer to the raw
population fraction of object i as pr

i . Similarly, after PCR amplification and
sequencing, we can determine the population fraction of the sequenced reads.
We refer to this as ps

i for object i. The ratio of the population fraction after
sequencing to the raw population fraction is defined as population fraction
change. More formally, the population fraction change of object i, denoted as
ci, is computed as ci = pr

i /ps
i . Coverage is considered unbiased if and only
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if all sequences are equally present as the original objects’ distribution. It
implies that the mathematical expectation of the population fraction change
for all sequences is expected to be one, indicating the absence of coverage
bias.
Coverage bias observation in real wet-lab experiment. To investigate
whether the data belonging to each database is uniformly distributed after the
synthesis and PCR, we employed the universal forward primer to extract all
the reads. Next, we aligned the reads to the oligos, using them as a reference
to determine the reads’ original databases with the sequence aligner tool
Accel-Align [64], [65]. The numbers of original oligos and the numbers of
sequenced reads belonging to each database are presented in Table 6.2. It
illustrates that coverage is uneven and biased, as some databases becoming
overrepresented while others become underrepresented after sequencing. To
study coverage bias under random access, we employed the universal forward
primer in conjunction with a database primer to extract oligos belonging to
one particular database. Then, we mapped the reads to oligos using Accel-
Align to determine their original tables. Using this alignment, we investigated
the population fraction change per table. Figure 6.2 shows the number of
oligos and the population fraction change of each table across the three
databases. We can clearly see that databases with tables of varying sizes,
and hence a varying number of oligos, exhibit a huge variation in population
fraction change. For instance, for the SSB database, the tables vary in size
from 14 oligos to 2594 oligos. The average population fraction change, which
ideally should be 1, is 0.71, with smaller tables being significantly under
represented (minimum population fraction change of 0.01), and some being
over represented (maximum population fraction change of 1.72). The standard
deviation, which ideally should be 0, is 0.73. For the TPCH database, it is
even worse, with a minimum population fraction change of 0.42, maximum of
32.56 (significant over representation), average of 6.20, and standard deviation
of 10.86. In contrast to these two databases, the simulated SYN database
with its uniform table sizes exhibits a more uniform distribution of popular
fraction change, with a minimum value of 0.86, maximum of 1.5, average of
1.03, and a standard deviation of 0.19. These observations expose a natural
limitation of naively storing objects on DNA and using PCR-based random
access without considering their sizes. Coverage bias can result in drastically
different coverage for objects of different sizes, and smaller objects can get
significantly under represented. Such under representation can in turn affect
the effectiveness of random access by making smaller objects difficult to retieve
without substantially higher redundancy to prevent data loss. In contrast, the
simulated SYN databases shows that using uniformly-sized units of storage
can substantially minimize this bias and ensure a more uniform representation
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of oligos.

Table 6.2: The number of oligos (#oligos), raw population fraction (raw
pop frac), number of sequenced reads (#reads), population fraction (pop frac)
and fraction change (frac change) for SSB, TPCH and SYN databases.

Database #oligos raw pop frac #reads pop frac frac change
SSB 2700 0.514 654335 0.388 0.76

TPCH 136 0.026 19576 0.012 0.45
SYN 2422 0.461 1013152 0.601 1.30

Coverage bias impact factor. To gain a deeper understanding of PCR-
induced coverage bias on random access, we employed the universal forward
primer in conjunction with a database primer to extract data belonging
to a particular database. Then, we determined the original tables of the
reads through mapping using Accel-Align, and investigated the population
fraction change per table as depicted in Figure 6.2. The results illustrate that
smaller-sized objects are more susceptible to coverage bias, showing greater
vulnerability to its effects. Conversely, larger tables with uniform sizes demon-
strate reduced variation in population fraction change. As an illustration,
consider the SYN database, comprising 2422 oligos, and characterized by
a uniform distribution across its tables. The mathematical expectation of
population fraction change for SYN stands at 1.03, displaying a significantly
closer proximity to 1 in contrast to TPCH (0.72) and SSB (10.86).

These observations expose a natural limitation of naively storing objects
on DNA and using PCR-based random access without taking into account
their sizes. Consequently, such uncertainty can introduce more coverage bias,
ultimately affecting the efficiency of random access.

6.3 Design
Having described the coverage bias issue of DNA storage, we now present
CMOSS. CMOSS is based on OA-DSM design and extend it to enable random
access. For sake of completeness, in this section we present CMOSS design
starting from the same concepts introduced in Chapter 4 (i.e., integrated
consensus calling and decoding, columnar-based layout and motif-based bits
to nucleotides mapping). CMOSS differs from SOTA based on the key
observation that the separation of consensus and decoding is a direct side-
effect of the data layout, that is the way oligos are encoded. Mapping a
coded block of data to a group of oligos results in that group becoming a
unit of recovery. Thus, before data can be decoded, the entire group of oligos
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Figure 6.2: The population fraction change (y-axis) and the number of
oligos (x-axis) of each table in SSB, TPCH and SYN databases. The ’+’
purple points are overlapping together because SYN database has 8 tables of
uniform size and their population fraction changes are all close to 1.

must be reassembled by consensus, albeit with errors. The key idea in our
system is to change the layout from the horizontal, row-style SOTA layout
(Figure 6.3(c)) to a vertical, column-style cross-oligo layout (Figure 6.3(d)).
Our DNA storage system encodes and decodes data vertically across several
oligos instead of horizontally. The key benefits of this are the fact that (i)
it can merge decoding and consensus into a single step, where the error-
correction provided by decoding is used to improve consensus accuracy, and
the improved accuracy in turn reduces the burden on decoding, thereby
providing a synergistic effect, and (ii) it naturally leads to a low-coverage-bias
random access organization where each unit of random access is a fixed size
extent instead of a variable-sized object. In the rest of this section, we will
explain the design of our system and these advantages in more detail by
presenting its read and write pipelines.

6.3.1 Write Pipeline
The top half of the Figure 6.4 shows the data writing pipeline of CMOSS.
The input to the write pipeline is a stream of bits. Thus, any binary file can
be stored using this pipeline. The first step in processing the input involves
grouping it into chunks of size 256,000 bits. Each chunk of input is then
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Figure 6.3: Example comparing the mapping layout of SOTA approach to
our CMOSS. (a) and (b) are common to both SOTA and CMOSS. (a) The
raw input data are grouped into 4 blocks as highlighted with different colors.
(b) Each block in the example contains 12 bits and is encoded using LDPC
error correcting code, which add 6 parity bits to each block; the resulting
block is then split in 3 smaller chunks (2 containing 12 bits of data and 1
containing the parity bits).(c) SOTA encodes each chunk with one encoding
oligo. As a result, each LDPC block is mapped to 3 oligos (with the same
color in the picture). (d) On the contrary, CMOSS maps each block using a
motif-based approach. Every group of 3 bits maps to a motif (short oligo)
of 5 nucleotides. As a result, every chunk of 12 bits maps to two motifs,
that are disposed vertically to form a column until the full LDPC block is
encoded. Every LDPC block mapped into a column of motif is appended
to the previous one: for example the blue column mapping the blue LDPC
block is appended to the green column mapping the green LDPC block. Once
the desired length for the oligo is reached (2 columns in the example), a new
group of columns is started (in the picture, the pink and yellow columns).
We refer to a column group as Oligo-Block. We call the set of Oligo-Blocks
as Oligo-Extent. This organization facilitates the indexing, as every extent is
identified by a pair of primers while oligos across oligo-blocks are identified
with indexes. Notice that for sake of simplicity the numbers reported in the
figure are limited to this specific example. They are customizable, and in the
actual design, we use a LDPC blocks containing 256000 bits, a motif length
of 16-nts and groups of 30 bits mapping to a motif.

randomized. We use pseudo-randomly generated values in XOR with the bits
of each block. The objective is to make the encoding oligos as far as possible
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Figure 6.4: Our CMOSS data writing pipeline (top) shows the binary to
DNA encoding pathway, and long-term DNA storage in an encapsulated
container like Imagene DNAShell™. Our CMOSS reading pipeline (bottom)
shows DNA to the binary decoding pathway. For sake of simplicity, the
example shown in decoding pipeline refers to one extent only and assumes
sequencing coverage 1x.

from each other. This will improve the accuracy of read clustering in the data
decoding stage. After randomization, error correction encoding is applied to
each chunk to protect the data against errors. Because of the encoding, a
chunk will function as unit of error control becoming the smallest recovery
unit in CMOSS. The choice of code is orthogonal to the design of CMOSS
and any large-block length code can be used to add redundancy. In our
system, we support both Reed-Solomon (RS) and Low-Density Parity Check
(LDPC) codes. We parameterize the RS code with the same block length and
symbol size as used by Organick et al. [62](65,536 symbols with 16 bits per
symbol) in their work on random access in DNA storage. We paramaterize
the LDPC code with a chunk size of 256,000 bits, similar to prior work from
Chandak et. al. [36], which has demonstrated that such a large-block-length
LDPC code is resilient to both substitution/indel errors, that cause reads
to be noisy copies of original oligos, and synthesis/sequencing-bias-induced
dropout errors, where entire oligos can be missing in reads due to lack of
coverage [36]. For the rest of this section, we will only use the LDPC code to
discuss the rest of the stages.
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The LDPC encoded bit sequence is fed as input to the oligo-encoder
which converts bits into oligos. While SOTA approaches design each oligo
as a random collection of nucleotides, our oligo-encoder designs oligos using
composable building blocks called motifs. Each motif itself is a short oligo
that obeys all the biological constraints enforced by synthesis and sequencing.
Multiple motifs are grouped together to form a single oligo. We use motifs
rather than single nucleotides as building blocks because, as we will see later
in Section 6.3.2, integration of decoding and consensus relies on alignment
which cannot be done over single nucleotide.

In order to perform the conversion of bits into motifs, the oligo-encoder
maintains an associative array with a 30-bit integer key and a 16 nucleotide-
length (nt) motif value. This array is built by enumerating all possible motifs
of length 16nt (AAA, AAT, AAC, AAG, AGA...) and eliminating motifs that
fail to meet a given set of biological constraints. We configure our encoder to
admit motifs that have up to two homopolymer repeats (AA,CC,GG, or TT),
and GC content in the range 0.25 to 0.75. With these constraints, using 16nt
motifs, out of 416 possible motifs, we end up with 1,405,798,178 that are valid.
By mapping each motif to an integer in the range 0 to 230− 1, we can encode
30-bits of data per motif. Thus, at the motif level, the encoding density is 1.875
bits/nt. Under the same biological constraints, we can increase this density by
increasing motif size. However, we limited ourselves to this configuration due
to two reasons: (i) memory limitation of our current hardware, as the current
associative array itself occupies 100GB of memory, (ii) the motif design is
orthogonal to the vertical encoding which is the focus of this work. While
Figure 6.3(d) shows all columns of motifs storing only the LDPC blocks, a
small subtlety in the practical implementation is that the first column in
every oligo-block is dedicated to storing indexing information that orders
oligos during encoding, and hence enables reordering during decoding.

The second major difference of our approach to SOTA is the layout of
motifs that spread vertically in columns across a set of oligos. The motifs
generated from an error-control coded data block are used to extend oligos by
adding a new column as shown in Figure 6.3(d). This process is repeated until
the oligos reach a configurable number of columns after which the process is
reset to generate the next batch of oligos again from the first column. We
refer to such a batch of oligos as a oligo-block (OB). OB is the minimum
granularity of decoding in our MOSS pipeline, as all columns (i.e., LDPC
blocks) belonging to an OB must be encoded before starting a new OB,
and similarly, all columns (i.e., LDPC blocks) belonging to an OB must be
decoded in order from left to right to guarantee successful data recovery as
we will see in Section 6.3.2.

In order to scale to large datasets, we designed CMOSS as a flexible,
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hierarchical DNA storage system. For this purpose, we group one or more OB
into a higher-level structure, termed oligo-extent (OE). If an OB is the unit
of encoding and decoding in our MOSS, an OE is the unit of random access.
Each OE is designed to be a self-contained, fixed-size (configurable during
encoding), and addressable DNA storage partition. Hence, each OE is made
randomly addressable by adding a unique pair of primers to the beginning
and end of every oligo in all OBs within that OE. All oligos within the OE
are addressed using the indexing strategy already described earlier.

This hierarchical storage approach offers several advantages. First, it
facilitates the storage of exceptionally large files while maintaining a relatively
low primer count, as the number of primer pairs required is proportional to
the number of OE, which, in turn, can be reduced by simply grouping more
OB into a single OE. Second, it makes it possible to pick random access
granularity during design time ranging from one OB to multiple OB. For the
former, one has to set OE to be the same size as one OB. This would make the
number of OE and number of OB identical. Thus, one could divide the list of
primers into an equal combinatorial left–right set, and use the left primer to
identify an OE and the right primer to identify an OB within each OE. For
the latter, one would set the OE to span multiple OB. In this case, the left and
right primers would be used to randomly access a full OE. Third, the use of
OE as the granularity of random access is effectively equivalent to partitioning
the DNA into fixed-sized storage units. As described in Section 6.2.1, the
use of fixed-sized, extent-based random access will reduce the impact of PCR
coverage bias.

6.3.2 Read Pipeline
Data stored in DNA is read back by sequencing the DNA to produce reads,
which are noisy copies of the original oligos that can contain insertion, deletion,
or substitution errors. Due to the hierarchical structure, decoding begins by
first grouping the reads based on their OE. To accomplish this, the reads
are aligned at both ends to unique primer pairs that designate each OE.
Since data within different extents are independent, decoding can proceed
concurrently across multiple OE, considerably speeding up the operation. For
sake of simplicity, in the rest of this section we focus on decoding of a single
OE with a single OB, but the same procedures are simultaneously applied
to all extents. Recall that an OB consists of multiple oligos organized as
several columns of motifs. As each oligo can be covered by multiple reads,
the first step in decoding is clustering to group related reads together. In
prior work, we developed a string clustering solution for this purpose [53].
Our solution uses the CGK randomized embedding algorithm [76] to map
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reads into embedded reads such that the hamming distance of embedded
reads closely approximates the edit distance of the original reads. Next, our
algorithm uses Locality Sensitive Hashing [41] to separate embedded reads into
clusters based on hamming distance. Due to randomization during encoding,
reads corresponding to the same original oligo are “close” to each other in
edit distance despite errors and very “far” from the reads related to other
oligos. Thus, the embedded hamming distances will also reflect this disparity.
Our algorithm exploits this to avoid computing pair-wise edit distance which
is computationally expensive. The output of this algorithm is a set of clusters,
each corresponding to some unknown original oligo. While we use our solution,
we would like to mention that any other read clustering solution [77], [78] can
also be used, and is orthogonal to the work presented here. After the clustering
stage, other SOTA methods apply consensus methods in each cluster to infer
consensus oligos from reads. This is then followed by decoding using the
consensus oligos. During decoding, SOTA methods use error-correction codes
to recover from any residual errors that might be present after consensus.
Thus, decoding produces the original input bits. It is important to note
that SOTA methods do not use the decoded bits from one error-control
block to improve the decoding of further downstream encoded blocks. To
explain this with an example, let us consider the first three oligos (in green) in
Figure 6.3(c). Those oligos encode the LDPC-block-1 shown in Figure 6.3(b).
In order to decode and correct this block of bits, SOTA approaches need
to first perform consensus calling to infer the first three full oligos; then,
they can convert the inferred oligos into encoded bits, and finally perform
decoding with error-control codes to recover back the original input bits.
However, once the original bits for the green block are retrieved, they will be
only used as part of the final output, that is the reconstructed original input
file. In CMOSS, we exploit the motif design and columnar layout of oligos
to progressively perform consensus and decoding in an integrated fashion
as shown in the bottom part of Figure 6.4. Unlike other approaches, our
system processes the reads one column at a time. Thus, the first step is
motif-based consensus which takes as input the set of reads and produces
the first column of motifs. The choice of consensus algorithm is orthogonal
to CMOSS design. We use an alignment-based algorithm that we developed
previously for motif-based consensus calling [53]. The algorithm works by
taking a motif-length portion of each read belonging to a cluster, aligning
them, and taking a position-wise majority of aligned motifs to determine a
consensus motif. As each cluster corresponds to an oligo, this process is done
for each cluster to determine one consensus motif per cluster, and hence all
consensus motifs for the first column of motifs. These motifs are then fed
to our CMOSS oligo-decoder, which is the inverse of the encoder, as it maps
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the motifs into their 30-bit values. Note here that despite consensus, the
inferred motifs can still have errors. These wrong motifs will result in wrong
30-bit values. These errors are fixed by the LDPC-decoder, which takes as
input the 30-bit values corresponding to one LDPC block and produces as
output the error-corrected, randomized input bits. These input bits are then
derandomized to produce the original input bits for that block. Different from
SOTA, in CMOSS, these decoded bits are reencoded again by passing them
through the LDPC-encoder and the oligo-encoder. This once again produces
the correct first column of motifs as it would have been done during encoding
in the write pipeline. The correct motifs are then used to realign reads within
each cluster so that the next round of decoding for the second column start at
the correct offset. This whole process is repeated for all subsequent columns.

The intuition behind this realignment is as follows. An insertion or
deletion error in the consensus motifs will not only affect that motif, but also
all downstream motifs also due to a variation in length. For instance, if we
look at the reads between sequencing stage and block separation stage in
Figure 6.4, we see a deletion error in the first read A−TGATCT which should
have been ACTGATCT . This results in the first motif being incorrectly
interpreted as ATGA (instead of ACTG, and second motif as CTG (instead
of ATCT ). As SOTA approaches separate consensus calling and decoding, it
is impossible to know the correct motif at the consensus stage. Without a
knowledge of the correct motif, there is no way to fix these errors. Thus, an
error early in consensus keeps propagating leading to the reliability bias as
explained in Chapter 4.2.

On the contrary, thanks to the motif-based vertical layout in CMOSS,
there is a way to acquire the knowledge of the right motif at consensus stage.
To recap, every column stores a LDPC block, which contains error-correcting
bits. Thus, we can get these error-corrected bits as soon as we decode one
column of motifs. We can then use these decoded bits to generate the correct
column of motifs by rencoding them during decoding. We can use the correct
motifs to fix these errors by realigning them against reads. This realignment
will determine the position where the motif ends and the next motif begins,
and hence, determine the starting point for the next column. As a result,
any consensus errors in one column can be fixed by realignment and do not
propagate downstream limiting the impact of positional bias.

Note here that this realignment is only possible because we use motifs,
as two sequences can be aligned accurately only if they are long enough to
identify similar subsequences. Thus, vertical layout without motifs, or with
just nucleotides, would not make realignment possible. Similarly, integrating
consensus and decoding is possible only because of the vertical layout, as the
SOTA layout that spreads a LDPC block across several oligos cannot provide
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incremental reconstruction.
Finally, a small refinement to the decoding procedure we have described

so far is the special handling required to deal with indexing information for
the case when an OE has more than one OB. Recall that OE is the unit of
random access, while OB is the unit of decoding. Also recall that we store
indexing information in the first column of motifs across the whole OE. Thus,
in the case where an OE has more than OB, primers are used to identify OE,
while this index is used to indirectly identify the OB of each oligo within
an OE. So the decoding of the first column of motifs is special in that it
produces this indexing information across all OBs within an OE. The index
information is used to separate reads into constitutent OBs and starting from
the second column, we switch to per-OB processing. This whole process is
illustrated with a simple example in Figure 6.4.

6.4 Evaluation
In this section, we present a thorough evaluation of CMOSS. First, we present
results from two wet-lab experiments to study the ability to achieve full
data recovery (see Sec. 6.4.1 and Sec.6.4.2). Second, we present a large-
scale simulation to validate our end-to-end CMOSS pipeline on an upscaled
dataset (see Sec.6.4.3). Third, we demonstrate that the CMOSS design is
orthogonal to the adopted error-correcting code, and its benefits lie in the
vertical layout combined with integrated consensus calling and decoding,
rather than in the specific ECC algorithm. To illustrate this, we implemented
a version of CMOSS where we replaced LDPC codes with Reed-Solomon codes
(see Sec.6.4.4). Finally, we conclude by providing a comprehensive overview
of CMOSS’s performance compared to other state-of-the-art methods (see
Sec.6.4.5). We conduct all the experiments on a local server equipped with a
12-core CPU Intel(R) Core(TM) i9-10920X clocked at 3.50GHz, 128GB of
RAM. The core components of the pipeline shown in Figure 6.4 have been
implemented in C++17.

6.4.1 Small-Scale Wet-lab Validation
As the first prototype test, we used the TPC-H DBGEN utility to generate a
compressed database of 1.2MB which was subsequently encoded by CMOSS,
configured with 30% LDPC redundancy, into 44376 oligos of length 160nt
partitioned into sixteen OEs. Primers of 20nts where added to each oligos,
for a total of 200nt in each oligo. The oligos were synthesized by Twist
Biosciences. Subsequently, we sequenced the oligos using the Oxford Nanopore
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Figure 6.5: Statistics about Exp. 2 where the input was encoded by
CMOSS with 30% LDPC redundancy, the oligos were synthesized by Twist
Biosciences and sequenced by the Oxford Nanopore PromethION. (a) The
histogram of coverage across oligos. The x-axis is the sequence coverage, y-axis
is the number of oligos having that sequence coverage. (b) The substitution,
deletion and insertion error rates of each position of the read. (c) Comparison
of the overall average substitution, deletion and insertion errors rates with
previous work.

PromethION platform with Ligation Sequencing Kit V14 (SQK-LSK114),
producing a total of 43M reads (Exp. 2).

Error Pattern

To perform error characterization, we aligned the sequenced reads generated
from Exp. 2 to the original oligos using Accel-Align [64] sequence aligner.
99.9999% reads were aligned to a reference oligo, indicating a very high quality
of the generated read set. Figure 6.5.a shows the coverage histogram and
it can be observed that each reference oligo is covered by at least one read,
with a median coverage of 951×, minimum coverage of 5×, and a maximum
coverage of 2500×. We deliberately sequenced the oligos at such high coverage
to test recovery at various coverage levels as we present later.

The average error rates are 0.003 for substitutions, 0.0008 for deletions,
and 0.001 for insertions computed by BBmap [66]. The error rate per position
is illustrated in Figure 6.5.b. Note that while the data-carrying payload had
a length of 160nts, our reads are longer as they include the primers that were
appended at both ends of the oligo for sequencing. As these primers get
trimmed out during read preprocessing, the error rate of relevance to us is the
middle portion of the read which corresponds to the encoded, data-carrying
portion of the oligo. We see that in this portion, the substitution rate is
dominant, which is 3× higher than insertion and deletion rates. Figure 6.5.c
compares our error rates with those reported in prior work on DNA storage [62],
[67]–[70]. We calculated these statistics using raw reads without any quality-
based filtering. As can be seen, our reported error rates are lower than those
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Figure 6.6: Statistics about Exp. 3 where the input was encoded by
CMOSS with 10% LDPC redundancy, the oligos were synthesized by Twist
Biosciences and sequenced by the Oxford Nanopore PromethION. (a) The
error rate of the reads selected by each extent’s primers. (b) The population
fraction change (y-axis) and the number of oligos (x-axis) of each extent. The
yellow points are overlapping together because Exp. 3 has 14 extents of
uniform size and their population fraction changes are all close to 1. We also
plotted those metrics about Exp. 1 mentioned in Figure 6.2 for comparison.
(c) The minimum coverage required for full data reconstruction per extent.

reported in literature. Both array synthesis and Nanopore sequencing have
improved in accuracy over the past few years, with Nanopore PromethION
platform offering single-read accuracy of over 99% with LSK114 kit [79]. It is
hard to attribute a precise fraction of improvement in error rate to synthesis
and sequencing without an isolated comparison of each with other studies.
However, we can see that the overall trends of relative errors are similar.

Data Recovery

In order to test end-to-end decoding, we first used the full 43M read dataset
generate from Exp. 2 as input to the decoding pipline. We were able
to achieve full data reconstruction, given the ability of CMOSS to handle
much lower coverage levels and higher error rates. In order to stress test
our decoding pipeline and identify the minimum coverage that allows fully
reconstruction of data, we repeated the decoding experiment on smaller
readsets which were derived by randomly sampling a fraction of reads from
the 43M read dataset. In doing so, we found that CMOSS was able to perform
full recovery using just 200K reads, which corresponds to a coverage of 4×.
At this coverage, nearly 3500 out of 44376 reference oligos were completely
missing. However, the LDPC code and column-based decoding were able to
successfully recover data. As further reduction in coverage led to data loss,
we validate 4× as the minimum coverage CMOSS can handle with our wetlab
experiment. Computing the costs for minimum coverage, we get a read cost
of 2.82 nts/bit, and a write cost of 0.70 nts/bit.
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6.4.2 Large-Scale Wet-lab Validation
As a large-scale wet-lab test of random access, we stored a 13MB tar archive
containing culturally significant documents, including images, PDF files, and
text documents, sourced from a national archive (Exp. 3). Employing a
methodology similar to that of Exp. 2, we encoded the input by with just
10% LDPC redundancy, lower than the one adopted in Exp. 2. The reason
of a lower coverage is that in Exp. 2 we already proved a full reconstruction
with a very low coverage at 30% redundancy. Thus, for this experiment
we tested our system with a lower redundancy overhead. This resulted in
a total of 262,836 sequences of 240nt stored in 14 OB. For the purpose of
this experiment, given the limited number of extents, we made the number
of OE and OB identical. This means that with each OB and hence, each
OE, store 468KB of information (15 256000 bit LDPC blocks per OB). This
becomes the unit of random access. To identify each OE/OB individually, we
added a 20nt 5’-primer and a 20nt 3’-primer to each sequence (for a total of
280nt oer oligo) which were synthesized with Twist Biosciences. To evaluate
data recovery per extent, we conducted 14 independent wetlab experiments.
Each wetlab used one extent’s distinct left and right primers during PCR
amplification to randomly select that extent. Subsequently, the amplified
oligos were sequenced using the same Oxford Nanopore PromethION platform
to produce 6.1M reads.

Error Pattern

Figure 6.6.a shows the average substitution, deletion, and insertion error rates
of reads per extent. As can be seen, the rates are similar across extents and
comparable to the results of Exp. 2 shown in Figure 6.5.b.

Coverage Bias

As we explained in Section 6.2.1, file-based random access suffered from a
high coverage bias when files are of varying sizes. To investigate bias under
block-based random access with CMOSS, we aligned all 6.1M sequenced reads
from Exp. 3 to their original oligos using Accel-Align in order to determine
their original extents. We used this alignment to calculate population fraction
change. Figure 6.6.b is an extension of Figure 6.2 with the points for each
of the fourteen extents from Exp. 3 added. As each extent has the same
number of oligos, all points cluster together on the x-axis. Due to the uniform
extent size, the population fraction change across all extents is close to 1,
with a standard deviation of 0.278. This result is in clear contrast to TPCH
and SSB database results, where population fraction change varies a lot with
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standard deviations of 0.7 and 10.8. The low standard deviation in Exp. 3
case with CMOSS signifies that the oligos now have a more uniform coverage
across extents after the PCR process due to the fact each unit of random
access has an identical number of oligos, just like the simulated SYN database
with uniform table sizes.

Data Recover per Extent

We utilized all available reads for each extent to independently reconstruct
the data blocks stored within them using the CMOSS read pipeline. The
average coverage of each extent is 30x, with a minimum coverage of 17x and a
maximum coverage of 42x. We compared the decoded bits with corresponding
segments of the original binary file to confirm that every segment of the file
was accurately reconstructed.

To evaluate the robustness of our system, we conducted an experiment to
determine the minimal read coverage required at the extent level for complete
data recovery. This was achieved by progressively reducing the number of
reads sampled from available pool of reads of each extent until the lowest
count necessary for full extent recovery was identified. Utilizing this dataset,
we calculated the minimum coverage per extent. The findings, illustrated in
Figure 6.6.c, reveal the minimum coverage necessary to achieve full recovery
for each extent. From our analysis, we can see that the minimum coverage
across all extents is around 9.5x, and this is consistent for each individual
extent, demonstrating the uniformity and reliability of CMOSS.

6.4.3 Simulation of Large Scale Random Access
In this section we present the performance of our system in accurately re-
trieving only a small portion a large file of 100GB. We encoded this file using
LDPC codes with 30% redundancy. Then, we mapped the resulting bits
into a set oligos of 1024 nts each. Based on these parameters, every OB
is approximately 4MB in size, resulting in about 26,421 total OB. Every
OB comprises 22,188 oligos, and we assume for this experiment that the
number of OE matches the number of OB. In this way, a random access
to one OE will correspond to a random access one OB, or 4MB. Every OE
is then tagged with unique left and right primer sequences, extending the
total nucleotide count to 1064 per oligo. The entire file is encoded using
nearly 586 million oligos. To simulate real-world conditions, we developed a
sampling algorithm that generate simulated reads based on the oligos dataset
and corresponding primers of the target extent. The simulation included a
similar rate of improper binding as found in earlier wet-lab experiments. In
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order to simulate natural errors like substitutions, insertions, and deletions
that characterize every sequencing process, we used BBMap tool to introduce
random nucleotide variations. We then generated read datasets of different
sizes to identify the minimum coverage required to accurately retrieve an OE.
As a result, we found that at least 155,052 reads were needed for complete
reconstruction. However, nearly 26% of the simulated reads contained errors

— either in the primers or the payload—making them unusable for data
retrieval. The remaining 74% of reads were successfully used to retrieve the
target extent. Subsequent analysis revealed that this corresponds to a 5x
coverage rate, which we confirmed as the minimum coverage necessary for
accurate extent retrieval. Thus, this experiment validates the capability of
CMOSS in isolating and decoding specific OB within larger files.

6.4.4 Code Adaptability Across Diverse ECCs
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Figure 6.7: Minimum coverage required by our column-based and row-based
implementations for decoding a 3MB archive file encoded with RS code (on
the left) and LDPC code (on the right) at 10% redundancy. Lower is better.

In the design section we mentioned that this work is orthogonal to current
efforts in designing optimal codes. Our core contributions include the columnar
layout, integrated consensus, and block-based random access, all of which can
be applied to any error-control codes. To demonstrate this, as we mentioned
earlier, we have also implemented RS code with the same block length and
symbol size as used in Organick et al. [62](65,536 symbols with 16 bits per
symbol) in both columnar-based and row-based encoding implementations
of CMOSS. For this experiment, we encoded the same 3MB TPC-H archive
file, using the same block length as Organick et al.[62], while maintaining an
oligo length of 800nt. As a result, we generated 34,951 encoding oligos with
the redundancy for RS code configured to 10%. We used our simulator to
vary the error rate between 1% and 12% similar to the LDPC experiment.
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For each error rate, and for each of the two layouts (column/row based),
we generated read datasets at various coverage levels (from 1× to 25×). As
shown in Figure 6.7, the trend of minimum coverage for various error rates
is similar to the experiment conducted using LDPC; column-based encoding
with its integrated consensus outperforms the row-based implementation
even for RS as it requires lower coverage to fully decode the input data
for all the error rates simulated. This shows that the columnar layout and
integrated consensus aspects of CMOSS design are orthogonal to the choice
of error-control codes.

6.4.5 Extended comparison with SOTA

Table 6.3: Comparison of this work with SOTA DNA Storage Methods. The
table summarize the information about the wet lab experiments when are
available in their publication, such as size of file encoded, number of oligos
generated, oligo length, minimum coverage they reported in their publications
to fully reconstruct the encoded data. From this information, we computed
two metrics for comparisons: write cost, defined as #nts−in−oligos

#bits
and read

cost #nts−in−reads
#bits

.For both the metrics, lower is better.

Reference Binary Size Nb of Oligos Oligo Length (nt) Recovery Coverage Write
Cost
(nt/bit)

Read
Cost
(nt/bit)

Church et al. [80] (2012) 658 KB 54,898 115 3000 1.17 3513.66
Goldman et al. [67] (2013) 650 KB 153,335 117 51 3.37 171.83

Grass et al. [68] (2015) 85 KB 4,991 117 372 0.84 311.97
Bornholt et al. [81] (2016) 150 KB 16,994 80 40 1.11 44.26

Yazdi et al. [82] (2017) 3.55 KB 17 1000 200 0.58 116.91
Erlich and Zielinski [69] (2017) 2.11 MB 72,000 152 10.4 0.62 6.43

Organick et al. [62] (2018) 200 MB 13,448,372 110/114 5 0.91 4.57
Anavy et al. [83] (2019) 22.5 B 1 42 100 0.23 23.33
Choi et al. [84] (2019) 135.4 KB 4,503 111 250 0.45 112.66

S. Chandak et al. [85] (2019) 192 KB 11,892 n.a. 5 0.78 4.46
THIS WORK (Exp2) 1.2 MB 44376 200 4 0.70 2.82
THIS WORK (Exp3) 13 MB 262,836 280 9.5 0.57 5.49

We conclude this chapter by presenting a broader overview of a comparison
of our work with SOTA in terms of reading and writing cost [36], [62], [63].
Writing cost is defined as #nts−in−oligos

#bits
, where the numerator is the product

of the number of oligos and the oligo length, and the denominator is the input
data size. Thus, higher the redundancy and encoding overhead, higher the
write cost. The reading cost is defined by #nts−in−reads

#bits
. The numerator is the

sum total of all read lengths, and denominator is the input size. Thus, higher
the coverage required, higher the read cost.

Table 6.3 shows the read and write cost for CMOSS and other SOTA
algorithms. We would like to emphasize here that our goal in reporting these
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results is not to directly compare our work with SOTA based on these metrics;
an apples-to-apples comparison is not possible given differences in all stages
of the DNA storage pipeline. Rather, our goal is to position our results in
the broader context. For CMOSS, we compute these costs based on Exp.
2 and Exp. 3. We only include these two results as they are from real
wet-lab experiments and not simulation studies. For Exp. 2, we compute
the write cost using the 44376 oligos synthesized to encode a 1.2MB archive
and for read cost the minimum number of reads (corresponding to a coverage
4x) needed to fully reconstruct the original data. Similarly, for Exp. 3 we
computed the write cost by considering the 262,836 oligos used to encode the
13MB archive while the read cost was based by considering the minimum
coverage that allows us to fully recover the entire archive. We do not report
data for Exp.1 in Table 6.3, as it was used to demonstrate coverage bias and
did not use CMOSS to encode data. For SOTA approaches, we reproduce
the costs from their publications where available.

First, comparing CMOSS with row-based SOTA approach that also uses
LDPC (by S. Chandak et al. [36]). we can see that even by using the same
error-correcting strategy (both use the same LDPC encoder configured with
30% redundancy) the CMOSS approach has both a lower write and read
cost. The cost reported here is for around 1% error rate in both cases. The
difference in write cost can be explained due to the fact that in the row-based
LDPC approach, the authors also added additional redundancy in each oligo
in the form of markers which they used in their decoder. CMOSS is able to
achieve 100% data reconstruction using the same LDPC encoder at a much
lower coverage level without such markers as demonstrated by the lower read
cost.

Comparing CMOSS with large-block RS coding by Organick et al. [62]
and fountain codes by Erlich et al. [69], we see that CMOSS Exp. 2 with
30% redundancy provides better read cost than both, but worse write cost
than the fountain coding approach. CMOSS Exp. 3 has worse read cost than
Organick et. al. but a better write cost than both as it uses 10% redundancy.
As we mentioned earlier, we can further improve the write cost for CMOSS
using several approaches. First, the CMOSS results from Exp. 2 in Table 6.3
were obtained with a 30% redundancy based on its ability to handle even
12% error rate. For lower error rates (less than 1%), as was the case with the
Fountain coding work, even 10% redundancy would be able to fully restore
data at extremely low coverage (3× as shown in Figure 4.12). Second, as
mentioned in Section 6.3, scaling the motif set by using longer motifs (17nt
and 33 bits) could allow us to increase bit-level density further from 1.87
bits/nt to over 1.9 bits/nt. These two changes would lead to further reduction
in write cost without any adverse effect on the read cost. As this work was
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predominantly about reducing the read cost, we leave these optimizations to
future work.

Finally, we would like to mention that there are other SOTA approaches
that tried to add to Table 6.3 [47], [61], [86]–[89]. But we could not find all
the information necessary for computing the read and write costs. Hence, we
did not report these methods in Table 6.3.

6.5 Conclusion
All SOTA approaches for DNA data archival utilize an object-based interface
for storing data and a horizontal layout approach for mapping input bits onto
oligos. In this chapter, we demonstrated how these assumptions exacerbate
PCR coverage bias in a complex pool with files of multiple sizes, leading
to a rigid separation of consensus calling and decoding. This separation, in
turn, results in a missed opportunity for improving read/write costs. We
introduced CMOSS, an end-to-end pipeline for DNA data archival that
employs a novel, vertical oligo layout using motifs as building blocks, and a
fixed-size, block/extent-based random access over DNA storage. We showed
how this approach facilitates random access in a DNA-based storage systems,
using both large-scale wet-lab and simulated experiments.





Chapter 7

Future Works and Conclusion

As data keep growing at exponential rate, scaling the archival practices is
becoming increasingly important. In this work, we argued that the current
tape-driven, migration-based archival method suffers from fundamental prob-
lems, which will soon render cost-efficient data archival infeasible. Given
recent advances in the design of obsolescence-free storage media, we believe
that the time is ripe to investigate the impact of such media on the archival
tier of data lakes. In this work, we considered synthetic DNA as a possible
solution for achieving migration-free, long-term data archival.

We provided an overview of the collaboration between Project OligoArchive
and the Danish National Archive, focusing on the use of DNA to preserve
culturally significant digital data. Building on prior work in molecular infor-
mation storage and digital preservation, we presented a holistic, end-to-end
pipeline for preserving both the data and its meaning on DNA. This pipeline
employs SIARD-DK to combat format obsolescence, as validated through
simulation studies.

Starting with this pipeline implementation, we investigated several opti-
mizations to the encoding and consensus algorithms to support alternative
synthesis and sequencing technologies with potentially higher error rates. As
a result, we identified room for improvement in SOTA approaches for DNA
data archival, which use a ’row-based’ approach for mapping input bits onto
oligos. We demonstrated how this approach results in a strict separation of
consensus calling and decoding, leading to lost opportunities for improving
read/write costs. We presented OA-DSM, an end-to-end pipeline for DNA
data archival that uses a novel, database-inspired columnar data organiza-
tion. This approach enables the integration of consensus and decoding stages,
allowing errors fixed by decoding to improve consensus, and vice versa.

OA-DSM relies on (i) a first-level encoding based on Low-Density Parity
Check (LDPC) to enable error correction during decoding, and (ii) a motif-

91



92

based decoding to map bits to nucleotides. LDPC decoding relies on LLR
to improve decoding capabilities. Considering the mismatch of the motif-
based design used by OA-DSM with the nucleotide-based LLR computation
proposed by SOTA methods, we proposed three strategies for computing LLR,
based on various design aspects of OA-DSM. Using results from simulation
studies and real-world wet lab experiments, we demonstrated the ability
of soft information to reduce read/write costs in OA-DSM. Using a full
system evaluation, we highlighted the benefits of our design and showed
that OA-DSM can substantially reduce read-write costs compared to SOTA
approaches. Finally, we addressed the problems related to random access in a
DNA-based storage system. All SOTA approaches for DNA data archival use
an object-based interface. In this thesis, we showed how these assumptions
amplify PCR coverage bias in a complex pool with files of multiple sizes.
Thus, we extended OA-DSM to CMOSS, an end-to-end pipeline for DNA data
archival that uses a vertical oligo layout based on motifs as building blocks,
and a fixed-size, block/extent-based random access over DNA storage. We
demonstrated how the fixed-size, block-based random access organization of
CMOSS makes it resilient to errors caused by PCR bias while benefiting from
an integrated consensus and decoding stage developed in OA-DSM. Using a
full system evaluation, we highlighted the benefits of our design and showed
that CMOSS can substantially reduce read-write costs compared to SOTA
approaches. While our DNA storage system solves the challenge related to
archiving data on DNA, there are other challenges that we do not address in
this work.

High cost in synthesis and sequencing techniques Given the benefits
highlighted in Chapter 1, synthetic DNA is clearly a promising candidate as an
archival medium. The main obstacle to the mainstream adoption of DNA as
storage medium lies in the high read and write cost and the high access latency
that it inherits from the chemical processes used to create DNA strands and
to readout information embedded in those molecules. Although the latency to
read out data (minutes-hours) from DNA does not represent a major issue if
we consider infrequently accessed data (in a long term archival scenarios), we
cannot say the same for the read/write cost. The predominant cost in DNA
data storage is related to synthesis, the chemical process used to manufacture
DNA strands. Industry analyst Robert Carlson has estimated the cost of
array synthesis 1 – under the pessimistic assumption that we can store 1
bit per nucleotide – at approximately US$0.0001 per base, amounting to an
astonishing US$800 million per terabyte. This figure is significantly higher,

1technique that enables the synthesis of many DNA sequences in parallel
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by about 7–8 orders of magnitude, compared to the cost of tape storage,
which was around US$16 per terabyte in 2016 and has been decreasing by
approximately 10% annually [90]. This substantial cost gap underscores the
economic challenges of making DNA data storage a viable alternative for
large-scale archival purposes. However, the synthesis process – that DNA data
storage borrows from life sciences – has different requirements when applied
to DNA data storage, as it allows for sacrificing accuracy for a lower cost. For
this reason, this gap is expected to narrow due to technological advancements
and economies of scale in DNA synthesis, coupled with improvements in
efficiency through parallel synthesis and automation. Slightly lower is the cost
to read DNA, i.e., the cost associated with sequencing process. According to
the National Human Genome Research Institute (NHGRI) [91], the cost of
sequencing 1 million of nucleotides in 2022 is around US$0.01, i.e., US$10−8

per base. While these costs are expected to decrease independently of their
adoption in DNA data storage, since they are fundamental to other research
fields, there remain several challenges within the data management community
that need addressing to enable DNA as a viable storage medium: (ii) metadata
archival and (iii) format obsolescence.

Metadata archival. In order to provide reliable data storage on DNA
despite such errors, encoders need to add additional redundancy to data in
the form of parity bits generated by using error control coding techniques.
Error-control logic often uses additional metadata, like parity check matrices,
in order to derive these parity bits from data. As this metadata is required to
decode the data back from DNA, it cannot be stored on DNA itself. Typically,
with contemporary media like tape, such error-control metadata is stored in the
tape reader where the encoding/decoding logic is also implemented. However,
as we mentioned earlier, one of the key benefits of DNA–its obsolescence
free nature–is due to the separation of the reader (sequencers) from the
media itself (DNA). This raises the question of how and where should this
auxiliary metadata be stored. One possibility is to store metadata and data
separately, with the former on tape and latter on DNA. However, decades of
experience from the digital preservation domain argues against this separation
and favors self-contained information storage that physically and logically
groups together related data and metadata [92]. Thus, it is necessary to
develop tiered storage strategies for passive archival of data and metadata.

A large and highly collaborative “DNA storage alliance” has developed
around this topic and rapid advances in automation are being investigated
for scaling throughput and latency. While there is not a significant data
management component involved in scaling throughput, there are several other
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research directions that are particularly relevant to the data management
community. We outline a few that we are pursuing here.

Format obsolescence. As mentioned several time in this manuscript, DNA
solves the media obsolescence problem but not format obsolescence. Museums
and archives have long suffered from this problem as culturally significant
digital data that is stored in databases cannot be preserved over long duration
due to proprietary file formats. To circumvent this issue, the SOTA approach
for long-term database preservation is to extract data from databases, convert
it into a textual representation based on CSV and XML [34], and archive
the text file. Unfortunately, the switch from binary to text leads to severe
data bloat and is not suitable for large cloud data lakes. In Chapter 3 we
used as solution to archive culturally significant data in the context of the
collaboration with the Danish National Archive SIARD-DK, a Danish version
of the SIARD open format. However, more work is required to understand
the applicability of other open-source, binary file formats like Parquet, Arrow,
Deltalake, and Iceberg, as the basis for long-term archival in terms of forward
compatibility, conformance to SQL standards, and their ability to archive
application logic expressed in stored procedures, SQL queries, and views
which provide the context in which data is accessed.

New synthesis techniques and consensus calling. The key bottleneck
when it comes to DNA storage cost is the phosphoramidite synthesis chemistry
that is used for manufacturing DNA. Recently, innovative solutions have
emerged in order to dramatically reduce the writing cost based on enzymatic
DNA synthesis [93], [94]. While these techniques have the potential to reduce
cost by several orders of magnitude, they are highly error prone. As a result,
novel consensus algorithms that can decode oligos from highly noisy reads
are required.

Uncertain data management over DNA storage. Unique to DNA
storage is the fact that sequencing DNA not only provides reads but also
quality scores, also called Phred scores, that represent the probability of each
nt in the read being correct. Current research primarily focuses on using
DNA as a precise storage media. An interesting avenue of research is devel-
oping techniques that can map phred scores back to higher-level constructs,
like attributes or tuples, and use them with uncertain data models [95] for
answering queries with error estimates. Doing so will transform DNA into an
approximate storage medium [96], [97].
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for embedding and computing edit distance in the low distance regime,”
in Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, 2016, pp. 712–725.

[40] H. Zhang and Q. Zhang, “Embedjoin: Efficient edit similarity joins via
embeddings,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp. 585–
594.

[41] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proceedings of the 25th International Conference
on Very Large Data Bases, ser. VLDB ’99, 1999, pp. 518–529.

[42] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem,” arXiv preprint arXiv:1303.3997, 2013.

[43] Y. Yan, N. Chaturvedi, and R. Appuswamy, “Accel-align: A fast se-
quence mapper and aligner based on the seed-embed-extend method,”
BMC Bioinformatics, Mar. 2021.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000426.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000426.shtml


100 References

[44] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, “Cd-hit: Accelerated for
clustering the next-generation sequencing data,” Bioinformatics, vol. 28,
no. 23, pp. 3150–3152, 2012.

[45] R. C. Edgar, “Search and clustering orders of magnitude faster than
blast,” Bioinformatics, vol. 26, no. 19, pp. 2460–2461, 2010.

[46] E. Bao, T. Jiang, I. Kaloshian, and T. Girke, “Seed: Efficient clustering
of next-generation sequences,” Bioinformatics, vol. 27, no. 18, pp. 2502–
2509, 2011.

[47] P. L. Antkowiak, J. Lietard, M. Z. Darestani, et al., “Low cost dna data
storage using photolithographic synthesis and advanced information
reconstruction and error correction,” Nature communications, vol. 11,
no. 1, pp. 1–10, 2020.

[48] E. Zorita, P. Cusco, and G. J. Filion, “Starcode: Sequence clustering
based on all-pairs search,” Bioinformatics, vol. 31, no. 12, pp. 1913–1919,
2015.

[49] B. T. James, B. B. Luczak, and H. Z. Girgis, “Meshclust: An intelligent
tool for clustering dna sequences,” Nucleic acids research, vol. 46, no. 14,
e83–e83, 2018.

[50] J. Jeong, S.-J. Park, J.-W. Kim, et al., “Cooperative sequence clustering
and decoding for dna storage system with fountain codes,” Bioinfor-
matics, vol. 37, no. 19, pp. 3136–3143, 2021.

[51] C. Rashtchian, K. Makarychev, M. Z. Rácz, et al., “Clustering billions
of reads for dna data storage,” in Advances in Neural Information
Processing Systems (NIPS), I. Guyon, U. von Luxburg, S. Bengio, et
al., Eds., vol. 2017, Red Hook, NY, USA: Curran Associates Inc., 2017,
pp. 3360–3371.

[52] G. Qu, Z. Yan, and H. Wu, “Clover: tree structure-based efficient DNA
clustering for DNA-based data storage,” Briefings in Bioinformatics,
vol. 23, no. 5, bbac336, Aug. 2022, issn: 1477-4054. eprint: https:
//academic.oup.com/bib/article-pdf/23/5/bbac336/45937680/
bbac336.pdf.

[53] E. Marinelli, E. Ghabach, Y. Yan, et al., “Digital preservation with
synthetic dna,” in Transactions on Large-Scale Data- and Knowledge-
Centered Systems. 2022.

[54] S. Kannan and A. McGregor, “More on reconstructing strings from
random traces: Insertions and deletions,” in Proceedings. International
Symposium on Information Theory, 2005. ISIT 2005., 2005, pp. 297–
301.

https://academic.oup.com/bib/article-pdf/23/5/bbac336/45937680/bbac336.pdf
https://academic.oup.com/bib/article-pdf/23/5/bbac336/45937680/bbac336.pdf
https://academic.oup.com/bib/article-pdf/23/5/bbac336/45937680/bbac336.pdf


References 101

[55] K. Viswanathan and R. Swaminathan, “Improved string reconstruction
over insertion-deletion channels,” in Proceedings of the Nineteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San
Francisco, California, USA, January 20-22, 2008, S. Teng, Ed., SIAM,
2008, pp. 399–408.

[56] A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal, “Trace re-
construction: Generalized and parameterized,” CoRR, vol. abs/1904.09618,
2019. arXiv: 1904.09618.

[57] A. Magner, J. Duda, W. Szpankowski, and A. Grama, “Fundamental
bounds for sequence reconstruction from nanopore sequencers,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 2, no. 1, pp. 92–106, 2016.

[58] P. S. Gopalan, S. Yekhanin, S. D. Ang, et al., “Trace reconstruction
from noisy polynucleotide sequencer reads,” 2019.

[59] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin, “Trellis
bma: Coded trace reconstruction on ids channels for dna storage,” in
2021 IEEE International Symposium on Information Theory (ISIT),
Melbourne, Australia: IEEE Press, 2021, pp. 2453–2458.

[60] O. Sabary, G. Shapira, E. Yaakobi, and A. Yucovich, Reconstruction
algorithms for dna-storage systems, US Patent App. 17/447,066, Mar.
2023.

[61] D. Bar-Lev, I. Orr, O. Sabary, T. Etzion, and E. Yaakobi, “Deep dna
storage: Scalable and robust dna storage via coding theory and deep
learning,” arXiv preprint arXiv:2109.00031, 2021.

[62] L. Organick, S. D. Ang, Y.-J. Chen, et al., “Random access in large-scale
dna data storage,” Nature biotechnology, vol. 36, no. 3, pp. 242–248,
2018.

[63] D. Lin, Y. Tabatabaee, Y. Pote, and D. Jevdjic, “Managing reliability
skew in dna storage,” in ISCA, 2022.

[64] Y. Yan, N. Chaturvedi, and R. Appuswamy, “Accel-align: A fast se-
quence mapper and aligner based on the seed–embed–extend method,”
BMC bioinformatics, vol. 22, no. 1, pp. 1–20, 2021.

[65] Y. Yan, N. Chaturvedi, and R. Appuswamy, “Optimizing the accuracy
of randomized embedding for sequence alignment,” in 2022 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), IEEE, 2022, pp. 144–151.

https://arxiv.org/abs/1904.09618


102 References

[66] B. Bushnell, “Bbmap: A fast, accurate, splice-aware aligner,” Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), Tech.
Rep., 2014.

[67] N. Goldman, P. Bertone, S. Chen, et al., “Towards practical, high-
capacity, low-maintenance information storage in synthesized dna,”
nature, vol. 494, no. 7435, pp. 77–80, 2013.

[68] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark,
“Robust chemical preservation of digital information on dna in silica
with error-correcting codes,” Angewandte Chemie International Edition,
vol. 54, no. 8, pp. 2552–2555, 2015.

[69] Y. Erlich and D. Zielinski, “Dna fountain enables a robust and efficient
storage architecture,” science, vol. 355, no. 6328, pp. 950–954, 2017.

[70] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the dna
data storage channel,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

[71] N. Roquet, S. P. Bhatia, S. A. Flickinger, et al., “Dna-based data storage
via combinatorial assembly,” bioRxiv, 2021.

[72] Y. Yan, N. Pinnamaneni, S. Chalapati, C. Crosbie, and R. Appuswamy,
“Scaling logical density of dna storage with enzymatically-ligated com-
posite motifs,” bioRxiv, 2023.

[73] Catalog dna, https://www.catalogdna.com, Accessed: 2022-11-20.
[74] C. Winston, L. Organick, D. Ward, L. Ceze, K. Strauss, and Y.-J. Chen,

“Combinatorial pcr method for efficient, selective oligo retrieval from
complex oligo pools,” ACS Synthetic Biology, vol. 11, no. 5, pp. 1727–
1734, 2022.

[75] Y.-J. Chen, C. N. Takahashi, L. Organick, et al., “Quantifying molecular
bias in dna data storage,” Nature communications, vol. 11, no. 1, pp. 1–
9, 2020.

[76] D. Chakraborty, E. Goldenberg, and M. Kouckỳ, “Streaming algorithms
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