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Abstract—This paper establishes the exact distribution of the
signal-to-interference-plus-noise ratio (SINR) under matched-filter
(MF) precoding. Specifically, we derive the exact expressions for
the cumulative distribution function (CDF) and the probability
density function (PDF) of SINR under MF precoding over
Rayleigh fading channels. Based on our exact analysis, we
then rigorously prove that the SINR converges to some specific
distributions separately in high SNR and in the large MIMO
regimes. To simplify the exact result in general cases, we provide
a simple approximation based on modelling the interference to
follow the Beta distribution. We then shift to the exact analysis of
the communication rate, and answer the fundamental question of
how the exact rate converges to the well-known asymptotic rate in
massive MIMO. After that, we propose a novel approximation for
the ergodic rate, which is shown to outperform various existing
approximations. Finally, we present some numerical results to
demonstrate the accuracy of the derived analytical models.

Index Terms—Matched-filter precoding, and multi-user MIMO

I. INTRODUCTION

In multiuser multiple-input multiple-output (MU-MIMO)
systems, a base station (BS) equipped with multiple antennas
simultaneously serves several users, each requesting differ-
ent/same messages, in the same time-frequency resource. Some
processing techniques on the original data signal need to be
implemented at the BS (i.e., precoding) to manage the inter-
user interference at each receiver in such spatial multiplexing
systems. While very considerable research has focused on a
variety of advanced precoding schemes, the workhorses are
linear precoders such as matched filtering (MF) [1]. These linear
precoders maintain low complexity while achieving spectral
efficiencies often close to the non-linear Dirty-Paper Coding [2],
especially in large-scale antenna arrays [3]. However, there are
some fundamental questions about linear precoding, especially
about MF, that remain unanswered.

It is the case though that the exact distribution of the signal-
to-interference-plus-noise ratio (SINR) under MF precoding
has been not revealed due to i) the correlation between the
interference and the useful signal and ii) the correlation among
the interference terms. This also makes the exact analysis of
the ergodic rate intractable in the fast-fading scenario. For that,
various approximations of the ergodic rate under MF precoding
have been developed in some special cases, especially in the
massive MIMO regime. For example, the authors of [3], [4]
applied Jensen’s Inequality to derive a lower bound of the
ergodic rate, while the so-called “near deterministic" method is
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proposed in [5], [6] to approximate the ergodic rate, especially
in high and low signal-to-noise ratio (SNR) regimes. The
authors of [7]–[9] developed a good approximation method
for the ergodic rate though with the requirement of large
numbers of both transmit antennas and served users. Again in
the massive MIMO regime, some works (e.g., [10]–[12]) treated
the interference as noise to alternatively analyze an achievable
rate so that the asymptotic deterministic equivalence of this
achievable rate can be derived. Although the aforementioned
various approximations have provided us with good analytical
models for performance evaluation of MF, none of them tells us
about the answer to the fundamental question: To what extent
does the exact rate converge to the approximations, e.g., the
convergence type? It is also the case that few works analyze
the SINR randomness to investigate the outage performance
of MF precoding in slow-fading [13]. We note that the authors
of [13] also assumed a large-scale antenna array to ignore the
correlation between the useful signal and the interference to
simplify the SINR analysis.

In this paper, we will present an exact analysis of the
SINR distribution under MF precoding for the first time,
as well as various simplified results in some special cases,
including high SNR and massive MIMO. More importantly,
we will rigorously prove that the exact SINR converges to
these simplified distributions associated with the corresponding
special cases. We will also develop a good approximation to
simplify the SINR analysis in general cases. Based on the
exact SINR analysis, we will rigorously prove that the exact
transmit rate converges to the well-known asymptotic rate in
massive MIMO (cf. [1]) almost surely. Finally, a novel and
simple approximation for the ergodic rate will be presented,
which is shown to be more accurate than various existing
approximations.1

II. SYSTEM MODEL AND EXACT SINR ANALYSIS

In a downlink MU-MIMO system, a BS equipped with L
antennas adopts MF precoding to serve K single-antenna users
at a time. For the channel matrix H ∈ CL×K , the MF precoder
is of the form

W =

[
h∗
1

||h∗
1||

,
h∗
2

||h∗
2||

, · · · , h∗
K

||h∗
K ||

]
∈ CL×K , (1)

1Notations: || · || denotes the norm-2 of a vector, while | · | denotes the
magnitude of a complex number. For a matrix A, we use AH , A∗ and AT

to denote its conjugate transpose, conjugate part and non-conjugate transpose
respectively. Exp(·), Gamma(·, ·), Inv-Gamma(·, ·), Beta(·, ·) and CN (·, ·)
denote the exponential distribution, the Gamma distribution, the inverse Gamma
distribution, the Beta distribution and the complex Gaussian distribution
respectively. d.−→,

p.−→ and a.s.−→ denote the convergence in distribution, the
convergence in probability and the almost sure convergence respectively.



where hk ∈ CL×1, the k-th column of H, denotes the channel
vector from the BS to the k-th user. Then, under the transmit
power constraint Pt, the signal transmitted at the BS is s =√
Pt/KWx, where the k-th element xk of x ∈ CK×1 is the

data signal intended by the k-th user. Under the usual Gaussian
signalling assumption, the SINR at the k-th user for decoding
xk takes the form

SINRk =
Pt

K ||hk||2

σ2
k + Pt

K

∑K
i=1,i̸=k

|hT
k h∗

i |2
||h∗

i ||2
, (2)

where σ2
k denotes the power of the additive Gaussian white

noise (AWGN) at the k-th user. The transmission rate for the
k-th user then takes the form

Rk = ln
(
1 + SINRk

)
nats/s/Hz. (3)

The ergodic rate R̄k is defined as the mean of Rk averaged
over channel states.

We will henceforth consider Rayleigh fading channels,
where the elements in H are independently complex Gaussian
distributed with zero-mean and unit-variance. To facilitate the
analysis, we rewrite SINRk in (2) as

SINRk =
(
Y +

∑K

i=1,i̸=k
Xi

)−1

, (4)

where Y ≜ Kσ2
k

Pt||hk||2 , Xi ≜ 1
||h∗

i ||2
∣∣uT

k h
∗
i

∣∣2, and uk ≜ hk

||hk||
with unit-norm. It is easy to prove that ||hk||2 follows a
Gamma distribution with the shape parameter L and the scale
parameter 1, denoted by ||hk||2 ∼ Gamma(L, 1). So we have
that Y ∼ Inv-Gamma(L, Kσ2

k

Pt
). According to Cauchy–Schwarz

Inequality, we know that Xi ≤ 1. In the following, we analyze
the distribution of Xi in Lemma 1, where the cumulative
distribution function (CDF) and the probability density function
(PDF) are derived.

Lemma 1: The random variable Xi ≜ 1
||h∗

i ||2
∣∣uT

k h
∗
i

∣∣2 ∈
[0, 1] has a Beta distribution with the first shape parameter
1 and the second shape parameter L − 1, denoted by Xi ∼
Beta(1, L− 1). The CDF and PDF of Xi are respectively

FXi
(x) = 1− (1− x)L−1, (5)

fXi
(x) = (L− 1)(1− x)L−2. (6)

Furthermore, Xi is independent of hk, and {Xi}Ki=1,i̸=k are
independent of each other.
Proof: The proof is relegated to Appendix A.2 ■

Let Im{·} denote the imaginary part of a complex number,
and let ȷ ≜

√
−1 represent the imaginary unit. We use

K·(·), Γ(·) and Υ(·, ·) to respectively denote the modified
Bessel function of the 2nd kind, the Gamma function and the
lower incomplete Gamma function [14]. Now, we present the
distribution of SINRk in Theorem 1, which is derived based
on the characteristic function (CF) of Y +

∑K
i=1,i̸=k Xi.

Theorem 1: The CDF and PDF of SINRk under MF
precoding are given by (7) and (8) respectively, shown at
the top of the next page.

2Lemma 1 can be easily extended to the case of imperfect CSIT and varying
pathloss by following a similar proof paradigm, which will be our future work.

Proof: Utilizing Lemma 1 and applying the inverse CF
transform, we can readily deduce Theorem 1. For further details,
please refer to the online version [15]. ■

III. SIMPLIFIED RESULTS OF SINR DISTRIBUTION

In this section, we will perform some analysis to simplify
the results of the SINR distribution.

A. High SNR Regime

We first consider the high SNR regime where Pt goes to
infinity. Let X ′ ≜ 1

K−1

∑K
i=1,i̸=k Xi ∈ [0, 1]. Now, we have

the following result.
Lemma 2: In high SNR, we have the convergence result:

1

(K − 1)SINRk

d.−→ X ′, as Pt → ∞ (9)

Proof: We first write the CDF of SINRk as (10), shown at
the top of the next page, where (a) follows from the CDF of
Y which follows an inverse Gamma distribution, and where
fX′(x) denotes the PDF of X ′. In (10), ξ ≜ min

{
1

(K−1)γ , 1
}

for any γ > 0, and Γ(·, ·) denotes the upper incomplete Gamma
function [14]. As x → 0, we have that limx→0

Γ(L,x)
Γ(L) = 1.

Then the limit CDF of SINRk in (10) is of the form

lim
Pt→∞

FSINRk
(γ) = 1− FX′(ξ), (11)

where the exchange of the limit and the integral is allowable
because the integral is bounded regardless of Pt and the
integrand is non-negative, and where FX′(x) denotes the CDF
of X ′. We can derive the limit CDF of ((K − 1)SINRk)

−1 as

lim
Pt→∞

Pr

{
1

(K − 1)SINRk
≤ x

}
= 1− lim

Pt→∞
FSINRk

(
1

x(K − 1)

)
(a)
= FX′(x), (12)

where (a) follows from (11) after considering X ′ ∈ [0, 1]. The
above directly leads to the convergence result in (9). ■

B. Massive MIMO Regime

In what follows, we consider the massive MIMO regime
where L goes to infinity while K keeps finite3.

Lemma 3: In massive MIMO, we have that:

SINRk

L

d.−→
(Kσ2

k

Pt
+Θ

)−1

. (13)

where Θ ∼ Gamma(K − 1, 1).
Proof: We first rewrite the expression for SINRk in (4) as

SINRk =
L

Kσ2
k

Pt||hk||2/L +
∑K

i=1,i̸=k LXi

(14)

The Strong Law of Large Numbers (SLLN) [16] tells us that

Kσ2
k

Pt||hk||2/L
a.s.−→ Kσ2

k

Pt
, as L → ∞. (15)

3We note that if L and K go to infinity with a fixed ratio, SINRk will
converge to a constant almost surely (cf. Lemma 5).



FSINRk
(γ) =

1

2
+

2(L− 1)K−1

πΓ(L)

(Kσ2
k

Pt

)L
2

∫ ∞

0

Im
{
ȷL exp

(
ȷt(K − 1− 1

γ )
)

t(ȷt)(L−1)(K−1)−L/2
KL

(√
−4ȷKσ2

kt/Pt

)[
Υ(L− 1, ȷt)

]K−1
}
dt (7)

fSINRk
(γ) =

(L− 1)K−1

γ2πΓ(L)

(Kσ2
k

Pt

)L
2

∫ +∞

−∞

ȷL exp
(
ȷt(K − 1− 1

γ )
)

(ȷt)(L−1)(K−1)−L/2
KL

(√
−4ȷKσ2

kt/Pt

)[
Υ(L− 1, ȷt)

]K−1
dt (8)

FSINRk
(γ)=Pr

{
Y ≥

( 1

γ
− (K − 1)X ′

)}
(a)
= 1− 1

Γ(L)

∫ ξ

0

Γ

(
L,

Kσ2
k

Pt

( 1

γ
− (K − 1)x

)−1
)
fX′(x)dx (10)

For the CDF of LXi, we have that

lim
L→∞

FLXi
(x)

(a)
= 1− lim

L→∞

(
1− x

L

)L−1

I
{ x

L
≤ 1

}
= 1− exp(−x), (16)

where (a) follows from the CDF in Lemma 1, and where
I{·} denotes the well-known indicator function. The above
indicates that LXi converges to an exponentially distributed
random variable X ′

i with unit-mean in distribution.4 The fact
that LXi

d.−→ Exp(1) implies the limit CF of LXi equaling
the CF of Exp(1), i.e., limL→∞ CFLXi(t) = (1− ȷt)−1. Then
due to the independence among {Xi}Ki=1,i̸=k (cf. Lemma 1),
we can derive the limit CF of LX ≜

∑K
i=1,i̸=k LXi as

lim
L→∞

CFLX(t) =
K∏

i=1,i̸=k

lim
L→∞

CFLXi
(t) =

(
1− ȷt

)−(K−1)
,

which exactly equals the CF of Gamma(K−1, 1). So we have
the convergence result:

K∑
i=1,i̸=k

LXi
d.−→ Gamma(K − 1, 1), as L → ∞. (17)

Combining (15) and (17) and using the Continuous Mapping
Theorem [17] finally yields Lemma 3. ■

C. Beta Approximation

As the exact distribution of the sum of multiple i.i.d.
Beta distributed random variables has not yet been revealed,
we alternatively consider a new Beta distributed random
variable to approximate this sum [18]. Specifically, X ′ ≜

1
K−1

∑K
i=1,i̸=k Xi ∈ [0, 1] is approximately modelled by a

Beta distribution with the first shape parameter α and the
second shape parameter β. Then, we use B(·, ·) to denote
the Beta function [14]. A general approximation is shown in
Lemma 4, where ξ ≜ min

{
1

(K−1)γ , 1
}

for any γ > 0.
Lemma 4: The CDF of SINRk can be approximated as

FSINRk
(γ) ≈ 1− 1

Γ(L)B(α, β)

∫ ξ

0

xα−1(1− x)β−1

× Γ

(
L,

Kσ2
k

Pt

( 1

γ
− (K − 1)x

)−1
)
dx, (18)

4However, LXi does not converge to X′
i in probability. We refer to [15]

for the proof. We note that the fact of Xn
d.−→ X∞ and Yn

d.−→ Y∞ does
not generally imply that Xn + Yn

d.−→ X∞ + Y∞.

where α and β respectively take the forms

α =
(K − 1)(L+ 1)− 1

L
, β = α(L− 1). (19)

Proof: To approximately model X ′ as a Beta distribution, we
need to match the first two moments of X ′. For that, we can
derive α and β by the following:

E{X ′} = E
{ 1

K − 1

∑
i̸=k

Xi

}
=

1

L

Var{X ′} = Var
{ 1

K − 1

∑
i̸=k

Xi

}
=

(L− 1)

L2(K − 1)(L+ 1)
,

which easily leads to the expressions for α and β in (19).
By approximately modelling X ′ as Beta(α, β) and substi-

tuting the corresponding PDF into (10), we can finally derive
(18), which concludes the proof. ■

Remark 1: The integral in (18) is finite and the integrand
is continuous and real-valued over [0, ξ]. Furthermore, as
L is a positive integer, we can express Γ(L, x)/Γ(L) as
exp(−x)

∑L−1
ϑ=0

xϑ

ϑ! (elementary functions). Therefore, we can
find the numerical solution of (18) very efficiently.

Remark 2: When we approximately model X ′ as a Beta
distribution in Lemma 2, a direct approximation for FSINRk

(γ)
in high SNR is derived as

FSINRk
(γ) ≈ 1− Iξ(α, β), (20)

where I·(·, ·) denotes the regularized incomplete Beta function
[14], which is used to express the CDF of Beta distribution.

IV. ERGODIC RATE ANALYSIS

In this section, we analyze the ergodic rate under MF
precoding. Due to the space limitation, we only present two
main results: i) a convergence result in massive MIMO, and
ii) a robust approximation.

Let us consider the massive MIMO regime where L,K → ∞
and the ratio c = L

K is fixed.
Lemma 5: As L,K → ∞ with a fixed ratio c, we have the

convergence result:

Rk
a.s.−→ ln

(
1 +

c Pt

Pt + σ2
k

)
. (21)

Proof: First of all, we rewrite SINRk in (4) as

SINRk =
PtL

K

(
σ2
k

||hk||2/L
+

Pt

K

∑K

i=1,i̸=k
LXi

)−1

. (22)



Thanks to Lemma 1, we can easily have that {LXi}Ki=1,i̸=k are
i.i.d. random variables, each with unit-mean and finite variance.
Then, as L,K → ∞, we can use the SLLN to derive that

1

K − 1

∑K

i=1,i̸=k
LXi

a.s.−→ 1, and
||hk||2

L

a.s.−→ 1. (23)

Using the Continuous Mapping Theorem finally yields (21). ■
Remark 3: The convergence result in (21) equals the well-

known asymptotic rate under MF precoding in massive MIMO
(cf. [1]). It is indeed the first time to rigorously prove how the
exact rate converges to the asymptotic rate.5

Next, we propose a robust approximation in general cases.
Let µZ and σ2

Z denote the mean and the variance of Z ≜
Y +

∑K
i=1,i̸=k Xi respectively. With the help of Lemma 1, we

can easily derive that

µZ =
Kσ2

k

Pt(L− 1)
+

K − 1

L
(24)

σ2
Z =

K2σ4
k

P 2
t (L− 1)2(L− 2)

+
(K − 1)(L− 1)

L2(L+ 1)
(25)

Lemma 6: Once µZ and σ2
Z are derived, irrespective of the

distribution of Z, we can robustly approximate R̄k as

R̄k ≈ ln
(
1 +

1

µZ

)
+

σ2
Z

2

2µZ + 1

µ2
Z(µZ + 1)2

, for L > 2. (26)

Proof: The proof follows from the approximation method in
[19]–[21] by considering that R̄k = E{ln(1 + 1

Z )}. ■

V. NUMERICAL RESULTS

In this section, we will present some numerical results to
demonstrate the accuracy of the developed analytical models.

Fig. 1 plots the outage probability at the k-th user for
different numbers of transmit antennas. As expected, the outage
probability first decreases and then arrives at a floor as Pt

increases because MF precoding is interference-limited. The
increase in the number of transmit antennas improves the outage
performance due to more spatial diversity brought about by
a larger-scale antenna array. Importantly, both the exact and
approximate results derived separately from Theorem 1 and
Lemma 4 always match the simulated results very well.

Fig. 2 (left) plots the CDF of ((K−1)SINRk)
−1 for different

transmit powers, where the red dashed line represents the
CDF of X ′ in Lemma 2. It is obvious that as Pt increases,
((K − 1)SINRk)

−1 finally converges to the distribution of X ′,
which exactly obeys the convergence statement in Lemma 2. We
plot the CDF of SINRk/L by varying the number of transmit
antennas in Fig. 2 (right), where the red dashed line represents
the limit distribution in Lemma 3. The convergence of the blue
symbol lines to the red dashed line becomes apparent as L
increases, which demonstrates the accuracy of Lemma 3.

The ergodic rate for the k-th user is plotted in Fig. 3. We note
that the green triangle line and the red dashed line respectively

5This asymptotic rate was previously derived from various approximation
methods, e.g., treating either the useful signal or the interference to be
deterministic (cf. [5], [13]), or separately taking their expectations regardless
of the correlations (cf. [7]). Interestingly, using Jensen’s Inequality (cf. [3],
[4]) can also lead to this asymptotic rate.
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stand for the results separately derived from Lemmas 5 and
6, while the result in the black star line represents a lower
bound of the ergodic rate derived by using Jensen’s Inequality,
given by ln(1 + 1/E{SINR−1

k }). We can observe that all the
kinds of approximations perform well in low SNR, while both
the Jensen’s bound and the asymptotic rate fail to match the
simulated result in the medium to high SNR regime, even when
we increase the number of antennas from 8 to 12. In contrast,
the robust approximation in Lemma 6 always presents a high
accuracy to the simulation in the whole SNR regime.

VI. CONCLUSION

The work establishes, for the first time, the exact SINR
distribution under MF precoding. Additionally, we presented
various approximations that provide insight, showing the
SINR converging distribution in the high SNR and large
MIMO regimes. We then analyzed the ergodic rate, deriving
a robust approximation as well as analyzing the large MIMO
convergence properties that reveal almost-sure convergence.



Finally, numerical results have demonstrated the accuracy of
the analytical models.

APPENDIX A: PROOF OF LEMMA 1

The CDF of Xi ∈ [0, 1] can be written as

FXi
(x) = Pr

{
1

||h∗
i ||2

∣∣uT
k h

∗
i

∣∣2 ≤ x

}
= Pr

{
hT
i

(
IL − 1

x
u∗
ku

T
k

)
h∗
i ≥ 0

}
. (27)

We note that Rank
{

1
xu

∗
ku

T
k

}
= 1 and Trace{ 1

xu
∗
ku

T
k } = 1

x .
We then eigen-decompose IL − 1

xu
∗
ku

T
k (Hermitian matrix) as

IL − 1

x
u∗
ku

T
k = VkΩVH

k , (28)

where the columns of Vk (each with unit-norm) are the eigen-
vectors of IL − 1

xu
∗
ku

T
k , and the diagonal matrix Ω ∈ CL×L

is of the form Ω = Diag
{
1− 1

x , 1, 1, · · · , 1
}
, whose diagonal

elements are the eigenvalues of IL − 1
xu

∗
ku

T
k . Obviously,

Ω is independent of hk. As Vk is a unitary matrix, the
columns of Vk can span the linear space of CL×1. Therefore,
for any h∗

i ∈ CL×1, we can always find a unique vector
ai = [a1, a2, · · · , aL]T ∈ CL×1 such that h∗

i = Vkai, where
Vk and h∗

i are independent. As Vk = [v1,v2, · · · ,vL] is a
unitary matrix, we can derive ai as ai = VH

k h∗
i . Given that

h∗
i ∼ CN (0, IL), each element aℓ = vH

ℓ h∗
i of ai will be also

Gaussian distributed with zero-mean and unit-variance. We
note that ai is statistically independent of Vk (or equivalently,
hk) because Vk does not affect the probability distribution of
ai as long as Vk is always a unitary matrix. Furthermore, as
vH
1 ,vH

2 , · · · ,vH
L are orthonormal to each other, the elements

of ai are independent. This can be easily proved. For any
ℓ′ ̸= ℓ, we have that

E{aℓ′a∗ℓ} = vH
ℓ′ E{h∗

ih
T
i }vℓ = vH

ℓ′ vℓ = 0. (29)

So aℓ and aℓ′ are uncorrelated. As aℓ and aℓ′ are both Gaussian
distributed, they are independent.

By doing so, we can rewrite hT
i

(
IL − 1

xu
∗
ku

T
k

)
h∗
i as

hT
i

(
IL − 1

x
u∗
ku

T
k

)
h∗
i = aHi VH

k

(
IL − 1

x
u∗
ku

T
k

)
Vkai

= aHi Ωai = |a1|2
(
1− 1

x

)
+

L∑
ℓ=2

|aℓ|2. (30)

We note that |aℓ|2 follows an exponential distribution with unit-
mean given that aℓ ∼ CN (0, 1). Therefore, we can rewrite the
CDF of Xi in (27) as

FXi
(x) = Pr

{
|a1|2

|a1|2 +
∑L

ℓ=2 |aℓ|2
≤ x

}
. (31)

As the probability of Pr{Xi ≤ x} is determined solely
by ai which is independent of hk, we can conclude that
Xi is also independent of hk. It is easy to derive that∑L

ℓ=2 |aℓ|2 ∼ Gamma(L − 1, 1), and then |a1|2

|a1|2+
∑L

ℓ=2 |aℓ|2

has a beta distribution with the first shape parameter 1 and the
second shape parameter L− 1, which leads to the CDF and
PDF of Xi in Lemma 1.

For any j ∈ {1, 2, · · · ,K} and j ̸= k, i, the Gaussian
distributed vectors ai = VH

k h∗
i and aj = VH

k h∗
j are

independent because h∗
i and h∗

j are independently Gaussian
distributed where E{h∗

ih
T
j } = 0. This can be observed by

the fact that E{aiaHj } = E{VH
k E{h∗

ih
T
j }Vk} = 0. This also

indicates that Xi and Xj are independent.
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