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A B S T R A C T
The advent of Industry 5.0, driven by cutting-edge 6G technologies such as immersive cloud eXtended
Reality (XR), Autonomous vehicles, holographic communication, and Digital Twin (DT), is set to
trigger a substantial upswing in the deployment of the Industrial Internet of Things (IIoT) devices
interconnected within networks. This expansion of IIoT devices will create a wider attack surface
and increase the risk of data breaches, privacy violations, and system disruptions. Therefore, it is
essential to design innovative mechanisms to ensure the reliability and security of these advanced
6G applications, as well as the IIoT devices that support them. In this context, we propose a
novel Software-defined Networking (SDN)-based Ensemble Learning (EL) Framework for Secure
IIoT applications in 6G and beyond, called AdaptSDN. The proposed framework leverages SDN
technology to dynamically allocate network resources and deploy security measures on demand. It
also leverages EL techniques to improve the intrusion detection system’s accuracy. By isolating IIoT
devices into network slices, the framework limits the impact of attacks and reduces the potential for
cascading failures. Digital twins are used for creating a virtual replica of the IIoT network, allowing for
a real-time security threat detection. In particular, AdaptSDN includes three main modules: (1) A novel
digital Twin (DT)-enabled data gathering and selection of informative features module to achieve two
main objectives: reducing computational complexity and improving detection performance; (2) An
SDN-based lightweight adaptive boosting module that uses an advanced boosting EL techniques to
dynamically adjust weights and to effectively identify and respond to IIoT attacks in real-time; and (3)
A zero-touch resources provisioning module that employs a non-cooperative game theory approach.
This approach allows for automatically provisioning various resources in a network to efficiently
mitigate network attacks; it enables SDN nodes to obtain the required virtual resources, 𝑖.𝑒., storage,
computing, and bandwidth, from the main orchestrator with respect to IIoT attack type. We carried
out comprehensive experiments to assess the effectiveness of our proposed framework in detecting
real-world IIoT attacks. The numerical results confirm that AdaptSDN has the potential to enable
secure and reliable IIoT applications in 6G and beyond, meeting the stringent service requirements of
the new emerging applications.

1. Introduction
The advent of Industry 5.0, driven by cutting-edge 6G

technologies such as immersive cloud XR, autonomous ve-
hicles, holographic communication, and digital twins will
require networks with extremely high data speeds, low la-
tency, and high bandwidth. This is because these applica-
tions rely on real-time data transmission and processing, as
well as large amounts of data transfer [1, 2, 3]. To achieve
this, 6G networks will need to employ new technologies
such as millimeter-wave communication, terahertz frequen-
cies, and advanced antenna systems. These technologies will
enable faster and more efficient data transfer, as well as
greater network capacity and coverage. In addition to these
technological advancements, the emergence of advanced
6G applications is also expected to lead to an increase in
the number of Industrial Internet of Things (IIoT) devices
connected to networks. This will require the development of
new data processing and storage technologies, such as edge
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computing and distributed cloud computing [3]. These tech-
nologies will enable data to be processed and stored closer to
the source, reducing latency and improving response times.
Also, the increase in the number of IIoT devices connected
to networks raises concerns about security and privacy.

The emergence of advanced 6G applications is expected
to create even greater security risks than those associated
with 5G or earlier generations of wireless technology [4].
Some of the potential security issues of 6G networks include
(1) increased attack surface: 6G networks are expected to
have a vast number of interconnected devices, which means
that the attack surface for cybercriminals will also be much
larger. With more devices connected to the network, there
will be more potential entry points for attackers to exploit;
(2) greater complexity: 6G networks will be more complex
than previous generations of wireless technology, with more
advanced features and capabilities. This increased complex-
ity could make it more difficult to detect and mitigate new
security threats; (3) privacy concerns: with more devices
connected to the network and transmitting data, there will be
a greater risk of data breaches and privacy violations. It will
be important to ensure that the security measures in place
are sufficient to protect user data privacy; (4) insider threats:
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as with any network, there will always be the risk of insider
threats. This includes malicious insiders who may attempt to
exploit vulnerabilities or steal sensitive information; and (5)
new attack vectors: 6G networks will introduce new attack
vectors that were not present in previous generations of wire-
less technology. For example, the use of edge computing and
distributed cloud computing could introduce new security
risks [5].

SDN and NFV are two key technologies that have been
widely used in the telecommunications industry for several
years. As we move towards the development of 6G networks,
it is expected that these technologies will play an even more
significant role in shaping the future of network architecture
and design. Securing IIoT applications in 6G and beyond
can be challenging due to the large number of connected
devices and the complexity of the network architecture.
Thus, the implementation of SDN and Digital twins has
the potential to enhance the security of IIoT applications.
Specifically, intrusion detection systems (IDSs) are essential
for safeguarding 6G networks in the context of SDN. SDN
allows for centralized control of network resources, which
can make it easier to deploy and manage IDSs across the
network.

However, current IDSs may not be effective against zero-
day attacks, while adaptive IDSs may suffer from high false
positive rates. A possible strategy involves leveraging Arti-
ficial Intelligence (AI) to create intrusion detection systems
that are more resilient, enabling them to promptly detect
security breaches. By analyzing network traffic patterns and
identifying anomalies, AI systems could be used to identify
potential threats and alert network administrators to take
appropriate action. Another potential use for AI in securing
6G networks is to enhance authentication and access con-
trol mechanisms. Additionally, AI systems could be used
to detect and block unauthorized access attempts in real-
time. AI could also be used to enhance encryption and data
protection mechanisms. By analyzing patterns in data usage
and identifying potential vulnerabilities, AI systems could
be used to develop more robust encryption algorithms and
protect against data breaches. On the other side, Digital twins
can be used for real-time monitoring. Digital twins can be
used to create a virtual replica of the IIoT network, allowing
operators to monitor the network in real-time and detect
potential security threats. By using digital twins, operators
can quickly respond to security incidents and prevent them
from causing damage. Also, Digital twins can be used to
predict when equipment or software may fail, allowing for
maintenance to be carried out before a security breach can
occur. This helps to prevent security breaches and minimize
their impact[6, 7].

EL can be used to enhance the detection capability of
individual models and improve the security of 6G networks.
One possible approach to using ensemble learning for IIoT
attack detection in 6G is to build a system that incorporates
multiple machine learning algorithms and models, each
designed to detect different types of attacks. The output of
each model can then be combined using a weighted average,

majority voting, or other ensemble methods to generate
a final prediction. For example, Boosting, as a machine
learning technique, can be leveraged to improve the relia-
bility of IDSs. Boosting combines a set of weak learners to
become strong learners, by combining their outputs through
weighted majority voting. This helps in reducing the under-
fitting and over-fitting issues and makes the IDS more robust
against different types of attacks. Boosting can be used to
improve the accuracy of IDSs by enhancing the detection
of malicious network traffic. By analyzing the patterns of
network traffic, the IDS can identify suspicious behavior
and flag potential threats. Boosting can help to improve
the accuracy of this process by enabling the IDS to better
distinguish between normal and malicious traffic.

In this context, we introduce a novel EL framework,
which encompasses three separate modules: (1) A novel
digital twin (DT)-enabled data gathering and selection of the
most informative features module to achieve two main ob-
jectives: reducing computational complexity and improving
detection performance. The data collection module can be
designed to collect data from various sources within the IIoT
network, such as network traffic, system logs, and device be-
havior; (2) A novel SDN-based lightweight adaptive boost-
ing module that uses advanced boosting EL techniques to
dynamically adjust its boosting algorithm and to effectively
identify and respond to IIoT attacks in real-time; and (3) A
non-cooperative game theory-based module for mitigating
IIoT attacks. This module allows SDN controllers, at the
edge level or MEC (Multi-Access Edge Computing), to ef-
ficiently access virtual resources from the resources orches-
trator to effectively combat different types of IIoT attacks.
This approach considers the competition between SDN con-
trollers to obtain virtual resources and optimize their ob-
jectives, while also contributing to the overall security of
the IIoT network. The concept of Zero-Touch Multi-resource
Provisioning (ZSP) involves the automatic allocation and
management of resources within the network infrastructure
to detect and mitigate attacks without human intervention. It
leverages advanced technologies and intelligent algorithms
to dynamically allocate computing, storage, and networking
resources based on the current attack patterns, network con-
ditions, and security requirements. The proposed framework
is designed to consider various factors, such as the types of
attacks, the available virtual resources, and the objectives
of the MEC nodes. By optimizing the allocation of virtual
resources and considering the competition between SDN
controllers, the framework can improve the efficiency and
effectiveness of IIoT attack mitigation, leading to better
overall network security and performance.

The paper is structured as follows: Section 2 provides
a review of related work, while Section 3 details our pro-
posed framework in terms of its main modules. Section 4
focuses on the zero-touch resources provisioning module,
while Section 5 evaluates the effectiveness of our proposed
framework. We conclude the paper in Section 6.
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2. Related Work
The new emergence of IIoT botnets poses increasing

security issues, demanding robust defense mechanisms. IDS,
as a crucial component, plays a pivotal role in monitoring
and analyzing network activities to identify and respond
to potential security threats promptly. IDS-based AI has
become an increasingly popular approach for detecting and
responding to security threats. In the following, we will
examine some of the most notable AI-based IDSs and the
associated security issues they face.

AI has been used extensively to enhance the detection ca-
pabilities of IDSs. These algorithms learn patterns from his-
torical data and use them to detect new attacks in real time.
Advanced AI techniques [8, 9, 10, 11, 12] have emerged as
a powerful tool for intrusion detection due to their ability
to learn complex patterns and features from data. On the
other side, Hybrid approaches [13] that combine multiple AI
techniques have been shown to outperform individual tech-
niques in detecting network attacks. Hybrid approaches can
also be used to improve the robustness of intrusion detection
systems against adversarial attacks. Adversarial machine
learning has been leveraged to improve the security of IDSs.
This approach involves generating adversarial examples that
can evade detection by the intrusion detection system. How-
ever, one challenge with adversarial machine learning is the
need for large amounts of computing resources and time to
generate adversarial examples. Also, Explainable AI (XAI)
[14] has gained attention in recent years as a way to enhance
the transparency and trustworthiness of AI-based intrusion
detection systems. XAI methods can help users understand
how the system makes decisions and identify potential biases
or errors in the system.

Our analysis indicates that some solutions for detecting
cyber attacks in networks, such as SVM [9] and NN [10],
rely on a single learner. However, these systems are limited
in their ability to identify "zero-day" attacks, and the sheer
volume of data generated can make it challenging to deal
with different types of attacks effectively. To overcome
these limitations, we propose a novel SDN-based Ensemble
Learning Framework for Secure IIoT applications in 6G and
beyond. The proposed framework leverages SDN technol-
ogy to dynamically allocate network resources and deploy
security measures on demand. It also utilizes ensemble
learning techniques to improve the accuracy of intrusion
detection and classification.

3. AdaptSDN: A Lightweight adaptive
Ensemble Learning-based Framework for
IIoT attack detection in SDN
In this section, we describe AdaptSDN. Our proposed

architecture is initially introduced, followed by the presen-
tation of our module for IIoT data gathering and feature se-
lection. Additionally, we present our SDN-based lightweight

adaptive boosting module, which employs advanced boost-
ing EL techniques to promptly detect and counter IIoT at-
tacks in real-time. Finally, we highlight our zero-touch re-
sources provisioning module that employs a non-cooperative
game theory approach to efficiently mitigate IIoT attacks.
3.1. System Architecture

AdaptSDN is designed to enhance the security of IIoT
networks by leveraging SDN (see Figure 1); it comprises
three layers: the IIoT devices layer, the SDN controller layer,
and the cloud-based management layer. The IIoT devices
layer comprises all the IIoT devices in the network, while
the SDN controller layer comprises the SDN controller and
the SDN switches. The cloud-based management layer pro-
vides centralized management and monitoring of the entire
network. The IIoT data collection and optimized feature
selection module are responsible for collecting data from the
IIoT devices in the network and selecting the most relevant
features for attack detection. This module employs machine
learning techniques to analyze the collected data and identify
the most important features that can be used to detect attacks.
The SDN-based lightweight adaptive boosting module is
responsible for detecting attacks in real-time. This module
uses advanced boosting EL techniques to identify attacks
and adaptively adjust the classification thresholds based on
the changing attack patterns. This enables the system to
accurately detect attacks while minimizing false positives.
The zero-touch resources provisioning module employs a
non-cooperative game theory approach to mitigate attacks.
This module uses a game-theoretic model to analyze the
behavior of the attacker and the defender and determine
the optimal mitigation strategy. This approach allows the
system to effectively mitigate attacks while minimizing the
impact on legitimate traffic. Thus, the AdaptSDN framework
provides an effective and efficient approach to enhancing
the security of IIoT networks. The framework’s modular
architecture allows for easy integration and customization
of different modules, making it adaptable to different IIoT
network environments and attack scenarios.

1. IIoT devices plane: comprises all the physical devices
that are connected to the network and may gather data
and transmit it to other devices, to the MEC nodes, or
to the Cloud. These devices include sensors, actuators,
cameras, smart appliances, and other types of devices
that are designed to collect data or interact with the
environment.

2. SDN plane: The SDN controller layer is a key compo-
nent that is responsible for managing and controlling
the network infrastructure and traffic flows by provid-
ing a centralized interface for network administrators
to configure, monitor, and manage the network. The
SDN controller layer includes the SDN controller,
which is a software application that runs on a server
and communicates with the network devices, such as
switches and routers, through a southbound interface
using protocols such as OpenFlow. The SDN con-
troller also communicates with network management
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Figure 1: System Architecture.

and orchestration systems through a northbound inter-
face to enable network automation and programmabil-
ity.

3. Application plane: This layer is typically imple-
mented using cloud-based services that can scale eas-
ily, and provide high availability and robust security
features. One of the primary functions of the cloud-
based management layer is to provide a unified view of
the network and its devices, applications, and services.
This enables network administrators to manage the
network from a single pane of glass, making it easier
to monitor and troubleshoot issues. In addition, the
cloud-based management layer can leverage AI and
machine learning algorithms to analyze network data
and identify patterns or anomalies. This can help
detect and prevent security threats, optimize network
performance, and predict potential issues before they
occur. AdaptSDN is an EL-based framework that can
be used to enhance the security of IIoT devices. At the
application plane, the deployment of AdaptSDN takes
the form of an application. Deploying this framework
at the application plane can provide additional secu-
rity to the SDN system by analyzing network traffic
and detecting potential security threats. The frame-
work can also use historical data to detect patterns and
predict potential security threats.

3.2. Digital Twin (DT)-enabled Data collection and
Optimized Feature Selection Module

Digital twin technology is a virtual model that represents
physical systems, processes, and assets. It can be used to
simulate, predict, and optimize the performance of physical
systems. In recent years, digital twin technology has been

used in various fields, including manufacturing, healthcare,
and transportation, to name a few. To achieve the two main
objectives of reducing computational complexity and im-
proving detection performance, a novel digital twin-enabled
data collection and optimized feature selection module can
be developed. This module can be integrated with the ex-
isting digital twin technology to enhance its capabilities.
The data collection module can be designed to collect real-
time data from physical systems using sensors and other
monitoring devices. The collected data can be fed into the
digital twin model, which can then simulate the behavior of
the physical system. This can help to identify patterns and
anomalies in the data, which can be used to improve the
detection performance.

Data collection Scheme: Data collection and feature se-
lection are important steps in building an effective intrusion
detection framework for an SDN-based system. The goal of
data collection is to gather relevant network data, such as net-
work traffic flows and packet information, that can be used to
train machine learning models for intrusion detection. The
data collection module can be implemented using various
techniques, such as network taps or port mirroring, to collect
data from various points in the network. The collected data
can then be preprocessed to extract relevant features for
intrusion detection. sFlow and OpenFlow are both proto-
cols that can be used for data network collection in SDN
environments. However, they have different functions and
features. sFlow is a packet sampling technology that allows
network administrators to collect traffic data from network
devices, such as switches and routers. It can monitor and
analyze traffic flows in real-time and provides information
on network performance, usage, and security.
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sFlow works by sampling a portion of network traffic and
forwarding it to a collector, where it is analyzed and pro-
cessed. OpenFlow, on the other hand, is a protocol that en-
ables the centralized control of network switches and routers
in SDN environments. It allows network administrators to
define how traffic should be forwarded through the network
by programming the behavior of network devices. OpenFlow
can be used to manage and optimize network traffic flows,
and it can also be used for network security and monitoring.
In terms of data network collection, sFlow is better suited
for monitoring network traffic and collecting data on net-
work performance and usage. It provides a detailed view of
network activity and can be used to troubleshoot network
issues. sFlow is designed for network traffic monitoring and
analysis, and it uses packet sampling to collect data from
network devices. sFlow is capable of being implemented
on a vast scale and acquiring data from numerous network
devices without causing any negative effects on network
performance. Because sFlow only samples a portion of the
traffic, it can handle high-speed traffic and can scale to meet
the needs of even the largest networks.

For the attack traffic, we used real-world datasets such as
NSW-NB15 and NSL-KDD to simulate attack traffic. These
datasets include a variety of IIoT-based attacks, including
fuzzers, DDoS, analysis, reconnaissance, backdoors, and
others, which can be used to train and test ML models.
NSL-KDD is a widely used dataset for evaluating intrusion
detection systems in a network environment. This dataset
represents an upgrade to the first version of the KDD Cup 99
dataset, which was proposed in 1999, as a standard measure
to assess the efficacy of intrusion detection systems. The
NSL-KDD dataset was created to address some of the lim-
itations of the original KDD Cup 99 dataset and to provide
a more realistic evaluation of intrusion detection systems.
The NSL-KDD dataset contains both normal and attack
traffic data, and includes a total of 41 features extracted
from network traffic flows, including protocol types, source
and destination IP addresses, source and destination port
numbers, and other network traffic attributes.

The NSW-NB15 dataset includes both normal and attack
traffic data and contains a total of 49 features extracted
from network traffic flows. The dataset includes six differ-
ent types of attacks, including fuzzers, analysis, backdoors,
DoS, exploits, and reconnaissance. The NSL-KDD dataset
has been widely used in research to develop and evaluate
intrusion detection systems for network-based systems. By
using this dataset, researchers can train and test machine
learning models to accurately detect and respond to various
types of attacks in a network-based system, leading to better
security for the system. Using real-world datasets such as
NSW-NB15 and NSL-KDD can provide a more realistic
evaluation of the effectiveness of the intrusion detection
framework for an IIoT-based system. The data preprocessing
step consists of cleaning data and making them suitable
for analysis. One common data preprocessing technique is
normalization, which scales the values of a feature to a

specified range. Normalization can help optimize the perfor-
mance of machine learning algorithms. The formula for data
normalization is as follows:

�̂� =
𝑋 −𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

(1)

where 𝑋 denotes the original collected value of the feature,
while𝑋𝑚𝑖𝑛 and𝑋𝑚𝑎𝑥 represent the lowest and highest values
of the original feature, respectively.

Feature Selection Scheme: In this paper, we have consid-
ered two common techniques: (1) Correlation-based Feature
Selection that selects the most significant/relevant features
based on their high correlation score with the target; and (2)
Boosting-based Feature Selection, described as follows:

Boosting Feature Selection is an ensemble-based fea-
ture selection algorithm that aims to select the most impor-
tant features in a dataset by iteratively assigning weights to
each feature and selecting the top-weighted features. The
algorithm works by training a sequence of weak learners on
the dataset and assigning importance weights to the features
based on how well they perform in the training. The weights
are updated at each iteration based on the performance of the
previous weak learner.

The objective function for Boosting Feature Selection is
defined as follows:

min
𝛽,𝑤

𝑛
∑

𝑖=1
𝑤𝑖𝑒

−𝑦𝑖𝑓 (𝑥𝑖) + 𝜆
𝑝
∑

𝑗=1
𝛽𝑗 (2)

where 𝑛 is the number of samples, 𝑝 is the number of
features, 𝑦𝑖 is the binary label for sample 𝑖, 𝑓 (𝑥𝑖) is the
current prediction for sample 𝑖, 𝑤𝑖 is the weight assigned
to sample 𝑖, lambda is the regularization parameter, 𝑏𝑒𝑡𝑎𝑗 is
the weight assigned to feature 𝑗.

At each iteration of Boosting, a weak learner ℎ𝑚(𝑥𝑖) is
trained on the dataset using the weights assigned to each
sample. The weights are updated for each sample 𝑖 as fol-
lows:

𝑤(𝑚+1)
𝑖 = 𝑤(𝑚)

𝑖 𝑒−𝛼𝑚𝑦𝑖ℎ𝑚(𝑥𝑖) (3)
where 𝑤(𝑚)

𝑖 is the weight assigned to sample 𝑖 at iteration 𝑚,
𝑎𝑙𝑝ℎ𝑎𝑚 is the learning rate at iteration 𝑚.

The feature importance weights 𝑆𝑗 are updated for each
feature 𝑗 as follows:

𝑆(𝑚+1)
𝑗 = 𝑆(𝑚)

𝑗 +
𝛼𝑚
𝑍

𝑛
∑

𝑖=1
𝑤(𝑚)
𝑖 𝑦𝑖ℎ𝑚(𝑥𝑖)𝟙(𝑥𝑖𝑗) (4)

where 𝑆(𝑚)
𝑗 is the feature importance weight for feature 𝑗 at

iteration 𝑚, 𝑍 is a normalization factor, 𝑥𝑖𝑗 is the value of
feature 𝑗 for sample 𝑖, and 𝑚𝑎𝑡ℎ𝑏𝑏1 is the indicator function
that equals 1 if 𝑥𝑖𝑗 is non-zero and 0 otherwise.

The final feature importance weights are obtained by
averaging the weights over all iterations:

𝑆𝑗 =
1
𝑀

𝑀
∑

𝑚=1
𝑆(𝑚)
𝑗 (5)
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where 𝑀 is the total number of iterations.
Hyperparameter Selection Scheme: Hyperparameter

optimization is a crucial step in machine learning model
development. Optimizing the hyperparameters of a model
can yield substantial enhancements in its performance since
the model’s efficacy is contingent on the values assigned to
its hyperparameters. Here is an example of a hyperparameter
optimization scheme using grid search: Let  be a machine
learning model with hyperparameters 𝜽. We want to find the
values of 𝜽 that optimize the model’s performance on a given
dataset . We define a grid of hyperparameter values 𝚯 as
follows:

𝚯 = {𝜽1,𝜽2, ...,𝜽𝑛} (6)
where each 𝜽𝑖 is a vector of hyperparameter values.

We then evaluate the model’s performance for each com-
bination of hyperparameters in 𝚯 using cross-validation. Let
𝐿(,𝜽𝑖,) be the performance metric for the model 
with hyperparameters 𝜽𝑖 on the dataset , obtained using
cross-validation. We can then find the optimal hyperparam-
eters 𝜽∗ as follows:

𝜽∗ = argmax
𝜽𝑖∈𝚯

𝐿(,𝜽𝑖,) (7)

This optimization scheme is known as grid search, and it
involves searching over a discrete grid of hyperparameter
values. Other optimization schemes, such as random search
and Bayesian optimization, involve searching over continu-
ous or probabilistic distributions of hyperparameters.
3.3. A Lightweight adaptive Ensemble

Learning-enabled Scheme for IIoT attack
detection

AdaptSDN is a novel variation of boosting methods that
employs the process of gradient descent to optimize the
values of �̂�, and thus reduce a specified loss function. In the
AdaptSDN, the gradient descent process is used to optimize
the weights of the weak classifiers used in the ensemble.
The weak classifiers are combined using a weighted majority
voting scheme to make the final decision on whether a
network traffic flow is normal or malicious. AdaptSDN’s loss
function is defined as follows:

 = − 1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑦𝑖) (8)

where 𝑁 is the number of data, 𝑦𝑖 represents the ground
truth vector (𝑖.𝑒., observed values) for the 𝑖𝑡ℎ class and 𝑦𝑖represents the predicted value for the 𝑖𝑡ℎ class.

Assuming a dataset 𝐷 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑘, 𝑦𝑘)where 𝑥𝑘 represents the 𝑘𝑡ℎ input feature vector and 𝑦𝑖 is the
corresponding binary label, either 0 (normal) or 1 (attack).
The goal is to learn a classification model 𝑓 (𝑥) that can
accurately predict whether an input is normal or attacked.
AdaptSDN initializes the model with a constant value:

𝑓0(𝑥) = argmin
𝛾

𝑛
∑

𝑖=1
𝐿(𝑦𝑖, 𝛾) (9)

where 𝐿 is the loss function, and 𝛾 is a constant value.
Next, the computation of pseudo-residuals for the 𝑘𝑡ℎ

data sample at iteration 𝑀 is carried out in the following
manner:

𝑟𝑘𝑚 = −[
𝜕(𝑦𝑘,𝐻(𝑋𝑘))
𝜕(𝐻(𝑋𝑘))

]𝐻(𝑋)=𝐻𝑚−1(𝑥) (10)

Then, we fit a regression tree to the pseudo-residuals:

𝛾𝑚 = argmin
𝛾

𝐾
∑

𝑘=1
(𝑦𝑘,𝐻𝑚−1(𝑥𝑘) + 𝛾𝑓𝑚(𝑥𝑘)) (11)

Then, we compute the optimal weights for the regression
tree:

(𝑦𝑘,𝐻𝑚−1(𝑥𝑘)+𝛾𝑓𝑚(𝑥𝑘)) ≃
𝐾
∑

𝑘=1
[(𝑦𝑘,𝐻𝑚−1(𝑥𝑘))+𝑔𝑘

𝛾𝑓𝑚(𝑥𝑘) +
1
2
ℎ𝑘𝛾

2𝑓𝑚(𝑥𝑘)] (12)
where 𝑔𝑘 and ℎ𝑘 represent the first and second order gradi-

ents of (𝑦𝑘,𝐻(𝑥𝑘)) with respect to (𝐻(𝑥𝑘)), respectively.
Next, we calculate the loss function derivative concern-

ing 𝛾 in the following manner:

𝜕(𝑦𝑘,𝐻𝑚−1(𝑥𝑘)+𝛾𝑓𝑚(𝑥𝑘)) ≃
𝐾
∑

𝑘=1
[𝑔𝑘𝑓𝑚(𝑥𝑘)+ℎ𝑘𝛾𝑓𝑚(𝑥𝑘)]

(13)
We determine the optimal value of 𝛾 at iteration 𝑡 by:

𝛾𝑚 = −
∑𝐾
𝑘=1 𝑔𝑘𝑓𝑚(𝑥𝑘)

∑𝐾
𝑘=1 ℎ𝑘𝑓𝑚(𝑥𝑘)

(14)

Lastly, we update the final model at iteration 𝑡 in the
following manner:

𝐻𝑚(𝑥) = 𝐻𝑚−1(𝑥) + 𝛾𝑚𝑓𝑚(𝑥𝑘) (15)
While AdaptSDN shares similarities with gradient boost-

ing, it incorporates some minor improvements in its regular-
ization strategy. In gradient boosting, the optimization func-
tion at each iteration 𝑚 is defined as the sum of the previous
predictions 𝐻𝑚−1(𝑥𝑘) and a new model ℎ𝑚(𝑥𝑘), where 𝑥𝑘is the 𝑘-th data sample and 𝐻𝑚−1(𝑥𝑘) is the prediction of
the model up to the previous iteration. The objective is to
minimize the loss function (𝑦𝑘,𝐻𝑚(𝑥𝑘)) between the true
labels 𝑦𝑘 and the current prediction 𝐻𝑚(𝑥𝑘).
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However, this approach can lead to over-fitting issues as
the model may learn the training data too well, resulting
in degraded performance on unseen data. To address this,
AdaptSDN uses a more sophisticated regularization strat-
egy that penalizes the model complexity. Specifically, the
optimization function in AdaptSDN at iteration 𝑡 is defined
as the sum of the previous predictions 𝐻𝑚−1(𝑥𝑘), a new
model ℎ𝑚(𝑥𝑘), and a regularization term𝑅(𝛾). The objective
is to minimize the loss function (𝑦𝑖,𝐻𝑚(𝑥𝑘)) between the
true labels 𝑦𝑘 and the current prediction 𝐻𝑚(𝑥𝑘), while also
minimizing the regularization term𝑅(𝛾). The regularization
term 𝑅(𝛾) can take many forms, depending on the specific
problem being solved. In general, it encourages the model
to have simpler structures that are less likely to over-fit
the training data. This helps to improve the generalization
performance of the model on unseen data. The optimization
function at iteration 𝑚 is modified as follows:

𝑚 ≃
𝐾
∑

𝑘=1
(𝑦𝑘,𝐻𝑚−1(𝑥𝑘) + 𝑓𝑚(𝑥𝑘)) + Ω(𝑓𝑚) (16)

where Ω(𝑓𝑚) =
1
2𝜆 ∣∣ 𝜉 ∣∣, 𝜆 is a regularization parameter.

To improve the loss function, AdaptSDN employs a
Taylor polynomial of second-order approximation, which
can be expressed as follows:

𝑚 ≃
𝑁
∑

𝑖=1
[(𝑦𝑘,𝐻𝑡−1(𝑥𝑘)) + 𝑔𝑘𝑓𝑚(𝑥𝑘)

+ 1
2
ℎ𝑘𝑓𝑚(𝑥𝑘)2] +

1
2
𝜆

𝑚
∑

𝑗=1
𝜉2𝑗

where 𝑇 is the number of tree’s leaves, and 𝐼(𝑥𝑘 ∈ 𝑅𝑘)is an indicator function that takes the value 1 if the 𝑘-th data
sample belongs to the 𝑘-th leaf node, and 0 otherwise.

By optimizing this approximation using gradient de-
scent, AdaptSDN can improve the performance of the model
and avoid over-fitting issues.

4. Zero-touch resources provisioning module
The AdaptSDN algorithm comprises two integral phases:

detection and mitigation, with a specific focus on efficient at-
tack response through a Zero-touch Resources Provisioning
Module. Upon detecting an IIoT attack, SDN controllers at
the MEC level engage in a competition to acquire additional
resources from the resource orchestrator (𝑅𝑂𝑟𝑐ℎ𝑒), to be
able then in mitigating the detected attack. The needed
amount of virtual resources, including bandwidth, CPU, and
storage, is primarily determined by the attack type and the
critical applications already running on each MEC node. For
example, dealing with a DDoS attack requires more vCPU
(virtual Central Processing Unit) resources than handling
scanning attacks such as a User to Root Attack (U2R).
To address this challenge, we propose a non-cooperative
game model for SDN controllers to scale down or up

their virtual resources with respect to the attack type and
running critical applications. Although our focus is mainly
on vCPU resources, our approach can consider other types
of resources such as bandwidth and storage.
4.1. Non-cooperative game formulation

To obtain the needed vCPU resources, we design a non-
cooperative game, denoted as 𝐺 =

(

𝑃 , 𝑆𝑖,Φ𝑖
)

𝑖∈𝑃 , which
models the competitive behavior of SDN controllers as
follows:

1. We consider a set 𝑃 of 𝑚 SDN controllers players,
denoted as 𝑝1,… , 𝑝𝑖,… , 𝑝𝑚, connected to a common
virtual resource orchestrator, 𝑅𝑂𝑟𝑐ℎ𝑒𝑗 .

2. SDN Controllers’ strategies, 𝑆𝑖: reflects the available
actions for each SDN controller 𝑝𝑖 in the game, where 𝑖
belongs to the set of players 𝑃 , it is possible for players
to request vCPU resources within the range of zero to
a maximum value of 𝜂𝑚𝑎𝑥.

3. Each player 𝑝𝑖 in 𝑃 has a set of strategies, denoted as
𝑆𝑖, which correspond to the actions that they can take
during the game. Specifically, each SDN controller
player 𝑝𝑖 may request a certain amount of vCPU
resources, ranging from zero up to a maximum value
of 𝜂𝑚𝑎𝑥. Thus, the strategy profile for all players of
SDN controllers can be represented as 𝑆𝑖 =

[

0, 𝜂𝑚𝑎𝑥𝑖
]

and 𝑆 =
∏𝑚

𝑖=1 𝑆𝑖 =
[

0, 𝜂𝑚𝑎𝑥1
]

×⋯ ×
[

0, 𝜂𝑚𝑎𝑥𝑖
]

×⋯ ×
[

0, 𝜂𝑚𝑎𝑥𝑚
].

4. For each player 𝑝𝑖 of the SDN controllers, a payoff
function Φ𝑖 ∶ 𝑆𝑖 → ℝ is defined. The goal of each
player is to maximize their payoff functionΦ, which in
turn will increase their profit by obtaining more vCPU
(𝜂𝑖).

In addition, the SDN controllers’ payoff function is designed
to incorporate three primary components: (1) the objective
of the SDN controllers to increase the vCPU resources
allocated by the main orchestrator; (2) the attack priority
cost is determined to prioritize identified attacks; and (3) the
critical applications running on each SDN controller. The
following is a definition of these functions:

1. Utility: the utility function represents the profit gained
by the SDN controllers as they receive more vCPU re-
sources. Various functions can be used as utility func-
tions, including exponential, logarithmic, sigmoidal,
square root, and linear functions [15]. For each player
𝑝𝑖, we choose the square root function as the utility
function because of its strictly concave nature:

𝜐𝑖
(

𝜂𝑖
)

=
√

𝜂𝑖 + 1, 𝑤𝑖𝑡ℎ 𝑖 = 1,… , 𝑚 (17)
2. Cost of Attack Priority: the cost of attack priority takes

into account both the number of attackers carrying out
the attack and the priority of each attack 𝑗. To each
attack type, we give a priority value 𝑃𝑟𝑖𝑗 = ]0, 1] with
respect to the required amount of vCPU resources.
Furthermore, the attack priority cost is affected by
the number of attackers involved, as attacks with the
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higher number of attackers have a greater impact on
the network and hence need more vCPU resources to
be mitigated. The cost function is defined as follows:

Υ𝑖
(

𝜂𝑖, 𝑗
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜂𝑖 ∗
(

1
𝑃𝑟𝑖𝑗∗𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑠

)

,Case of attack

1,No Attack
(18)

3. Cost of Critical Applications: When assigning vCPU
resources to SDN controllers, it is important to con-
sider the impact on other MEC applications. Our
classification of IIoT applications includes two cat-
egories: (i) critical applications, which have strict
latency requirements and are crucial for safety, such as
collision detection and avoidance in industrial mobile
robot systems, and (ii) non-critical applications, which
encompass other types of applications like entertain-
ment and advertising. Our model prioritizes the allo-
cation of more resources to MEC nodes that support
critical applications (𝐶𝑟𝑖𝐴𝑝𝑝) to ensure their smooth
operation. Therefore, we define the cost of critical
applications for each SDN controller as:

𝜚𝑖
(

𝜂𝑖, 𝐶𝑟𝑖_𝐴𝑝𝑝𝑖
)

= 𝜂𝑖 ∗
(

1 −
𝐶𝑟𝑖_𝐴𝑝𝑝𝑖
𝑇 𝑜𝑡𝑎𝑙_𝐴𝑝𝑝𝑠𝑖

)

,∀𝑖 ∈ 𝑃

(19)
The variable 𝐶𝑟𝑖_𝐴𝑝𝑝𝑖 represents the count of criti-
cal applications being run on MEC node 𝑖, whereas
𝑇 𝑜𝑡𝑎𝑙_𝐴𝑝𝑝𝑠𝑖 denotes the overall number of applica-
tions (both critical and non-critical) operating on the
same MEC node.

Therefore, the payoff function for player 𝑝𝑖, who is an
SDN controller deployed at a specific MEC node, can be
expressed as follows:
Φ𝑖

(

𝜂𝑖, 𝜂−𝑖
)

= 𝛼𝑖𝜐𝑖
(

𝜂𝑖
)

−𝛽𝑖Υ𝑖
(

𝜂𝑖, 𝑗
)

−𝜓𝑖𝜚𝑖
(

𝜂𝑖, 𝐶𝑟𝑖_𝐴𝑝𝑝𝑖
)

(20)
4.2. Proof of Nash equilibrium (NE)

NE corresponds to the situation when no SDN controller
can improve their outcome by modifying its strategy, while
the SDN controllers maintain their current strategies, the
game has reached an NE. In this case, the game has a
solution.
In our case, a set of asked vCPU resources, 𝑠∗ ∈ 𝑆 with
𝑠∗ =

[

𝜂∗1 ,… , 𝜂∗𝑖 ,… , 𝜂∗𝑚
], corresponds to a NE state if no

SDN controller player can increase their payoff by changing
their action. Nash equilibrium is represented by an N-tuple
{

𝜂∗𝑖
}, which guarantees:
Φ
(

𝜂∗𝑖 , 𝜂
∗
−𝑖
)

≥ Φ
(

𝜂𝑖, 𝜂
∗
−𝑖
)

,∀𝑖 ∈ 𝑃 , 𝜂∗𝑖 ≠ 𝜂𝑖 (21)
This subsection demonstrates that there is both a unique and
a possible Nash equilibrium for our game 𝐺.

Nash Equilibrium Existence:

theorem 1 (Nikaido-Isoda). We rely on the Nikaido-Isoda
theorem to demonstrate the existence of a NE state in our
game 𝐺 =

(

𝑃 , 𝑆𝑖,Φ𝑖
)

𝑖 ∈ 𝑃 . The theorem states that an
NE state exists if and only if certain conditions are met.
Specifically, the set of SDN controllers’ strategies 𝑆𝑖 must
be both compact and convex, and their payoff function
Φ
(

𝜂𝑖, 𝜂−𝑖
)

must be continuous across all strategies 𝑠 ∈ 𝑆
and concave in 𝑆𝑖.

• Because the range of values for 𝑆𝑖 is from 0 to 𝜂𝑚𝑎𝑥𝑖 ,
for all 𝑖 ∈ 𝑃 , the strategies of the SDN controllers
are bounded and closed, making 𝑆𝑖 a compact set. In
addition, for any 𝑎1 and 𝑎2 in 𝑆𝑖 and 𝜁 ranging from
0 to 1, it is evident that 0 ≤ (1 − 𝜁 )𝑎2 + 𝜁𝑎1 ≤ 𝜂𝑚𝑎𝑥𝑖 .
Since 𝜁𝑎1+(1−𝜁 )𝑎2 is also in 𝑆𝑖, the set of strategies,
𝑆𝑖 for all 𝑖 ∈ 𝑃 , is convex.

• We rely on the payoff function’s Hessian matrix to
demonstrate its property of concavity.

𝐻 (𝑠) =

⎡

⎢

⎢

⎢

⎣

ℎ11 ℎ12 ⋯ ℎ1𝑚
ℎ21 ℎ22 ⋯ ℎ2𝑚
⋮ ⋮ ⋱ ⋮
ℎ𝑚1 ℎ𝑚2 ⋯ ℎ𝑚𝑚

⎤

⎥

⎥

⎥

⎦

(22)

Noting that ℎ𝑘𝑙 =
(

𝜕2Φ𝑘
𝜕𝜂𝑘𝜕𝜂𝑙

)

,∀𝑘, 𝑙 ∈ 𝑃 . Thus, we
have:

ℎ𝑘𝑙 =

⎧

⎪

⎨

⎪

⎩

− 𝛼𝑘
(

2
√

𝜂𝑘+1
)2 < 0 if𝑘 = 𝑙; ∀𝑘, 𝑙 ∈ 𝑃

0 if𝑘 ≠ 𝑙; ∀𝑘, 𝑙 ∈ 𝑃
(23)

It is evident that the Hessian matrix 𝐻(𝑠) is negative
definite for every strategy 𝑠 ∈ 𝑆. Therefore, using the
leading principal minor of𝐻(𝑠), we can conclude that
Φ(𝜂𝑖, 𝜂−𝑖) is strictly concave in 𝑆𝑖. The application
of the Nikaido-Isoda theorem leads to the conclusion
that there is at least one Nash Equilibrium state in the
game 𝐺.

Uniqueness of Nash Equilibrium (NE):
Considering a random values sequence 𝑟 = (𝑟1, 𝑟2,… , 𝑟𝑚)that are all positive. Rosen theorem [16] defines the positive
weighted sum of Φ(𝜂𝑖, 𝜂−𝑖) for all 𝑖 ∈ 𝑃 as follows:

𝛿
(

𝜂𝑖, 𝜂−𝑖; 𝑟
)

=
𝑚
∑

𝑖=1
𝑟𝑖Φ𝑖

(

𝜂𝑖, 𝜂−𝑖
)

, 𝑟𝑖 ≥ 0,∀𝑖 ∈ 𝑃 . (24)

The pseudo-gradient of 𝛿 (𝜂𝑖, 𝜂−𝑖; 𝑟
) is:

𝑔
(

𝜂𝑖, 𝜂−𝑖; 𝑟
)

=

⎡

⎢

⎢

⎢

⎣

𝑟1∇Φ1
(

𝜂1, 𝜂−1
)

𝑟2∇Φ2
(

𝜂2, 𝜂−2
)

⋮
𝑟𝑚∇Φ𝑚

(

𝜂𝑚, 𝜂−𝑚
)

⎤

⎥

⎥

⎥

⎦

(25)
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Noting that ∇Φ𝑖
(

𝜂𝑖, 𝜂−𝑖
)

= 𝛼𝑖
2
√

𝜂𝑖+1
− 𝛽𝑖

(

1
𝑃𝑟𝑖𝑗∗𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑠

)

−

𝜓𝑖
(

1 − 𝐶𝑟𝑖_𝐴𝑝𝑝𝑖
𝑇 𝑜𝑡𝑎𝑙_𝐴𝑝𝑝𝑠𝑖

)

Then, we calculate the Jacobian matrix of 𝑔:

𝐽
(

𝜂𝑖, 𝜂−𝑖, 𝑟
)

=

⎡

⎢

⎢

⎢

⎣

𝑏11 𝑏12 ⋯ 𝑏1𝑚
𝑏21 𝑏22 ⋯ 𝑏2𝑚
⋮ ⋮ ⋱ ⋮
𝑏𝑚1 𝑏𝑚2 ⋯ 𝑏𝑚𝑚

⎤

⎥

⎥

⎥

⎦

(26)

With 𝑏𝑖𝑗 = 𝑟𝑖ℎ𝑖𝑗 ; ∀𝑖, 𝑗 ∈ 𝑃 .
So, we can infer that for all (𝜂𝑖, 𝜂−𝑖) ∈ 𝑆, the symmetric

matrix [

𝐽 + 𝐽𝑇
] is negative definite. As a result, the game

𝐺 has a unique NE by virtue of Rosen’s theorem [16], with
𝛿(𝜂𝑖, 𝜂−𝑖; 𝑟) being diagonally strictly concave.

The main process of our AdaptSDN framework, which is
an Ensemble Learning-based IIoT Attack Detection system,
is summarized in the following pseudo-algorithm.

Algorithm 1: AdaptSDN Algorithm
1 Input: Training dataset

𝐷 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑘, 𝑦𝑘), where 𝑥𝑘 is the
𝑘 − 𝑡ℎ data sample and 𝑦𝑘 is the corresponding
label
A differentiable cost/loss function (𝑦,𝐻(𝑥))
Initialize𝐻0(𝑥) and set the number of iterations𝑀
𝐻0(𝑥) = argmin𝛾

∑𝐾
𝑘=1 (𝑦𝑘, 𝛾)

for 𝑚←1 to M do
2 Compute 𝑟𝑖𝑚 = −[ 𝜕(𝑦𝑘,𝐻(𝑥𝑘))

𝜕(𝐻(𝑥𝑘))
]𝐻(𝑥)=𝐻𝑚−1(𝑥)

Fit a regression tree 𝑓𝑚(𝑥) with 𝑀 leaves to
the pseudo-residuals {(𝑥𝑘, 𝑟𝑘𝑚)}𝐾𝑘=1
Compute optimal 𝛾𝑚 by solving:
𝛾𝑚 =
argmin𝛾

∑𝐾
𝑘=1 (𝑦𝑘,𝐻𝑚−1(𝑥𝑚) + 𝛾𝑓𝑚(𝑥𝑘)

Update the model as follows:
𝐻𝑚(𝑥) = 𝐻𝑚−1(𝑥) + 𝛾𝑚𝑓𝑚(𝑥𝑘)

3 end
4 return 𝐻(𝑥) = sign(𝐻𝑀 (𝑥))
5 Mitigation Phase: Design a non-cooperative game

for SDN controllers to obtain vCPU resources,
considering attack type and critical applications.
for each SDN controller do

6 Detect IIoT attack Acquire additional resources
based on attack type and critical applications

7 Scale up or down virtual resources (CPU,
bandwidth, storage) based on the type of attack

8 end
9

5. Evaluation of AdaptBoost
This section outlines the evaluation of AdaptBoost, start-

ing with a description of the experimental environment. Sub-
sequently, the experimental results are presented, followed
by an assessment of AdaptBoost’s performance.

5.1. Experimental Environment
AdaptBoost was implemented using scikit-learn library

[17]. Our three modules were implemented as REST ap-
plications on top of the SDN controller in the application
layer. This allows for easy integration and communication
between the modules and the controller. REST, or Represen-
tational State Transfer, is an architectural style that provides
a standard for creating web services. By using RESTful
APIs, the modules can interact with the SDN controller
in a standardized way, making it easier to develop, test,
and maintain the code. Furthermore, by implementing the
modules in the application layer rather than the lower layers
of the SDN architecture, it allows for greater flexibility and
easier modification in the future. The application layer is
responsible for providing high-level functionality to the end
user, while the lower layers are responsible for more basic
functions such as forwarding and routing. This separation of
concerns allows for easier maintenance and development of
the system as a whole.

To simulate a realistic scenario, we employed Mininet[18],
a widely used SDN emulator that utilizes virtual Open-
Flow switches such as OpenVswitch[19] and OpenFlow
Switch[20] within containers to create a virtual network
environment. Using Mininet, we can create a variety of
network topologies and configurations, and simulate traffic
flow and network behavior to evaluate the performance and
effectiveness of our SDN-based solutions in a controlled
and reproducible environment. This allows us to identify
potential issues or bottlenecks in the network and test various
strategies for optimizing network performance. By utiliz-
ing virtual OpenFlow switches within containers, Mininet
provides a lightweight and efficient way to emulate network
behavior, while also allowing for flexibility and scalability
in creating complex network topologies. This makes it a
popular tool for researchers and network engineers who want
to test and evaluate SDN-based solutions in a simulated
environment before deploying them in a production network.

Our test environment comprises four SDN controllers,
specifically Floodlight[21], which are responsible for in-
stalling OpenFlow rules to detect and block malicious data
samples. The use of multiple SDN controllers in our test
environment allows for increased scalability and fault tol-
erance in our network. By distributing the control plane
across multiple controllers, we can reduce the likelihood of
a central node of failure and improve the overall reliability
of the network. Floodlight is a popular open-source SDN
controller that provides a modular and extensible platform
for building SDN applications. It supports a range of network
protocols, including OpenFlow, and provides a RESTful API
for easy integration with other network applications.

To monitor and collect network features, we utilized
sFlow-RT[22], which is a popular network monitoring tool
that supports real-time network telemetry and analysis.
sFlow-RT uses the sFlow protocol, which is a network moni-
toring protocol based on sampling. This enables us to gather
real-time network data without causing excessive network
traffic. By sampling a small percentage of network traffic, we
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Figure 2: Correlation Feature importance scores on: (a) NSL-KDD, (b) UNSW-NB15.

can gather valuable information about the network’s behav-
ior, including flow statistics, packet headers, and application-
layer metrics. With sFlow-RT, we can monitor our network
and gather a wide range of features, including network
traffic patterns, protocol usage, and device performance.
This allows us to identify potential security threats, optimize
network performance, and troubleshoot issues as they arise.
Moreover, sFlow-RT provides a RESTful API that enables
easy integration with other network applications, including
SDN controllers. This allows us to utilize the data gathered
by sFlow-RT to inform the decisions made by our SDN
controllers, such as installing OpenFlow rules to block
malicious traffic or adjusting network policies to improve
performance.

To evaluate the effectiveness of our SDN-based solutions
in detecting and mitigating security threats, we simulated
attack traffic by employing two widely recognized public
network security datasets, specifically UNSW-NB15 and
NSL-KDD. It contains over 40 different types of attacks,
including DoS, probing, and user-to-root attacks. UNSW-
NB15 is a more recent dataset including a wider range of
attack types and more complex attack scenarios. It contains
different types of attacks, including DDoS attacks, as well as
a variety of evasion techniques. By utilizing these datasets to
simulate attack traffic in our test environment, we can evalu-
ate the effectiveness of our SDN-based solutions in detecting
and mitigating various types of security threats. This allows
us to identify potential weaknesses or vulnerabilities in our
network and develop strategies to improve its overall security
and performance.
5.2. Experimental Results

AdaptSDN’s performance evaluation was carried out on
two publicly available network security datasets, namely
NSL-KDD and UNSW-NB15. NSL-KDD comprises 22 dif-
ferent types of attacks, whereas UNSW-NB15 has 37 types
of attacks, including nine new types not found in NSL-
KDD. NSL-KDD’s input features include 41 variables, three
of which are non-numeric/categorical. On the other hand,
UNSW-NB15 has 49 input features, four of which are cate-
gorical. To prepare the data for analysis, categorical input

features in NSL-KDD were encoded into numeric values
using the one-hot encoding technique, while UNSW-NB15’s
input features were encoded using the label encoder method.
The input features in both datasets exhibit varying data
distributions, which could impact the results. To address this
issue, a standardization technique was utilized to rescale the
input feature values, standardization was applied to ensure
that the input feature values are on a comparable scale. This
is important because some input features in these datasets
have larger values than others, and without standardization,
the larger values could have a disproportionate impact on
the model’s training process. To standardize the input feature
values, the mean and standard deviation of each feature was
computed across the entire dataset. Then, each feature value
was transformed by subtracting the mean of the feature and
dividing it by its standard deviation.

After pre-processing, we applied our feature selection
module to eliminate redundant and irrelevant features that
could hinder the training process and affect the accuracy
of the EL model, particularly in large-scale and high-
dimensional data systems. To accomplish this, AdaptSDN
utilized non-linear and linear techniques such as correlation
and boosting to select the most important features. The
correlation measure was applied to both datasets. Feature
selection is a critical step in the development of an ef-
fective machine-learning model. When working with high-
dimensional datasets, it is essential to identify and select the
most informative features to avoid overfitting and improve
the model’s performance.

AdaptSDN employs a feature selection technique to
identify important features that can easily distinguish mali-
cious and normal traffic. Linear feature selection techniques
involve selecting a subset of input features based on their
correlation with the output variable using linear methods
such as Pearson correlation coefficient or linear regression.
These techniques are effective when there is a linear rela-
tionship between the input features and the output variable.
Non-linear feature selection techniques, on the other hand,
use non-linear methods such as mutual information, chi-
squared tests, or decision trees to identify the most infor-
mative input features. These techniques are useful when
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Figure 3: Feature importance scores on (a) UNSW-NB15 and (b) NSL-KDD.
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Figure 5: Model loss of AdaptSDN for: (a) UNSW-NB15 dataset, (b) NSL-KDD dataset.
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Figure 6: Confusion matrices of AdaptSDN for: (a) UNSW-NB15 dataset, (b) NSL-KDD dataset.
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Figure 7: ROC curves of AdaptSDN for: (a) UNSW-NB15 dataset, (b) NSL-KDD dataset.

the correlation between the input and outcome features is
non-linear. AdaptSDN combines both linear and non-linear
feature selection techniques to achieve a more comprehen-
sive selection of the most promising input features. This
approach helps to reduce the dimensionality of the input
feature space, which can improve the model’s training time
and accuracy. By removing redundant or irrelevant input
features, the selected features can provide a more accurate
representation of the underlying patterns and relationships
in the data, leading to better predictive performance.

Figures 2(a) and 2(b) illustrate the most correlated input
features with the output feature on top of, respectively, NSL-
KDD and UNSW-NB15 datasets. For the NSL-KDD, the re-
sults depicted in Figure 2(b) indicate that the promising input
features are the ones representing the percentage of connec-
tions and having ’SYN’ errors and ’dst_host_diff_srv_rate’.
These features have a strong positive correlation with the
target class, which suggests that they are critical indicators
of network security attacks in the NSL-KDD dataset. The
’SYN’ error percentage is related to the SYN attack, as the
DoS attack. The ’dst_host_diff_srv_rate’ feature represents
the percentage of connections to different services from the
same destination host, which is a crucial feature in detecting
network scanning attacks. Therefore, these two features are

of great importance in identifying and preventing network
security attacks in the NSL-KDD dataset. These features
provide insight into the likelihood of a connection being
flagged as an attack, making them essential in predicting
network attacks accurately. However, in the case of UNSW-
NB15, it is worth noting that the time to live values, specif-
ically ’ct_state_ttl’ and ’sttl’, appear to be the most signif-
icant features. These features represent the duration of the
connection and are crucial in identifying potential network
attacks. By selecting these highly informative features, the
AdaptSDN model can efficiently learn the patterns and re-
lationships between the input features and the target class,
leading to improved classification accuracy.

To further refine the feature selection process, we used
the boosting technique to score the features based on their
importance in predicting the target class. Figures 3(a), 3(b),
and 4 show the highly scoring features for, respectively,
UNSW-NB15 and NSL-KDD datasets. For UNSW-NB15,
we observe that the most highly scoring feature is ’sttl’,
which represents the time to live value of the source.
For NSL-KDD, the most highly scoring features are ’ser-
vice_ecr’, ’hot’, ’logged_in’, and ’dst_host_same_src_port_rate’.
These features represent, respectively, the error control
scheme of the service, the number of hot indicators, whether
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the user is logged in or not, and the rate of connections
having the same destination host and source port. The
selected features are then used to train and evaluate the
EL models. Our feature selection module has successfully
identified the most informative features and eliminated the
redundant/irrelevant ones for both NSL-KDD and UNSW-
NB15 datasets. As a result, we can observe that a significant
percentage of features in both datasets are not contributing
to making accurate decisions. This indicates that the feature
selection module can greatly reduce the computational
complexity and improve the efficiency of the EL model.

It is common in machine learning to monitor the per-
formance of a model during training by plotting its learning
curves, which typically show the training and validation loss
over epochs. In this context, the negative log-likelihood loss
is a commonly used metric to evaluate the performance of
classification models, such as the EL model. In the case
of the NSL-KDD and UNSW-NB15 datasets, Figures 5(a)
and 5(b) respectively show the learning curves of the EL
model during training and testing. The training loss corre-
sponds to the loss calculated on the training data during
each epoch, while the testing loss corresponds to the loss
calculated during the validation step on top of the test
dataset. The given description suggests that the training and
testing losses for both datasets decrease over epochs, imply-
ing that the model is acquiring knowledge and enhancing
its effectiveness. The minimum training loss represents the
best performance achieved on the training data, while the
point of stability for the NSL-KDD dataset and almost zero
testing loss for the UNSW-NB15 dataset represent the best
performance achieved on the validation data.
5.3. Performance Evaluation

We evaluate our proposed framework, AdaptSDN, using
various performance metrics, including accuracy, F1 score,
and Area Under the ROC Curve (AUC). The AUC is a
metric that represents the area under the ROC curve and
is used to compare the performance of different models.
A higher AUC value indicates better performance. More-
over, confusion matrices are used to evaluate the complete
performance of AdaptSDN. A confusion matrix is a table
that summarizes the predictions made by a model against
the actual labels. From a confusion matrix, various metrics
can be calculated, such as Accuracy, Precision, and TPR.
AdaptSDN’s performance is evaluated using the following
metrics:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(27)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(28)

𝐷𝑅 = 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(29)

Table 1
AdaptSDN Performance.

Dataset Accuracy Precision Recall F1 Time(s)
UNSW-
NB15

99% 99% 99% 99% 37.44

NSL-
KDDTest

88% 96% 88% 88% 7.80

𝐹1 = 2
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
1

𝑅𝑒𝑐𝑎𝑙𝑙

= 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(30)

Figures 6(a) and 6(b) display the confusion matrices
for the 𝑁𝑆𝐿 − 𝐾𝐷𝐷𝑇𝑒𝑠𝑡+ and UNSW-NB15 datasets,
respectively. On the𝑁𝑆𝐿−𝐾𝐷𝐷𝑇𝑒𝑠𝑡+ dataset, AdaptSDN
achieves an accuracy of 88%, indicating that the model
correctly classified 88% of the instances. The model also ob-
tained high precision, recall, and F1 scores of 96%, 88%, and
88%, respectively, demonstrating the overall effectiveness of
AdaptSDN on this dataset. Furthermore, the model achieved
this level of performance with a relatively short training time
of 7.80 seconds, making it a fast and efficient solution for
intrusion detection. Similarly, on the UNSW-NB15 dataset,
AdaptSDN achieves excellent performance with accuracy,
precision, recall, and F1 score values of 99%, 99%, 99%, and
99%, respectively. The model correctly identified almost all
of the instances, demonstrating its ability to handle complex
network traffic scenarios. Furthermore, the training time
required to achieve this level of performance was only 58.08
seconds, which is a reasonable amount of time given the size
and complexity of the dataset.

Table 1 provides AdaptSDN performance metrics on
both datasets. The model performs consistently well across
different metrics and datasets, highlighting its robustness
and reliability for intrusion detection. Overall, the results
demonstrate that AdaptSDN is an effective and efficient
solution for intrusion detection in the 6G network traffic sce-
narios. The AUC metric gauges the level of distinctiveness
between the output categories and provides a single scalar
value to compare different models. A higher AUC score,
closer to 1, indicates a better ability to distinguish between
abnormal and normal data. Figures 7(a) and 7(b) depict the
ROC curves for AdaptSDN on the 𝑁𝑆𝐿 − 𝐾𝐷𝐷𝑇𝑒𝑠𝑡+
and UNSW-NB15 datasets, respectively. The ROC curve for
𝑁𝑆𝐿 − 𝐾𝐷𝐷𝑇𝑒𝑠𝑡+ has an AUC of 0.9, while the curve
for UNSW-NB15 has an AUC of 1, indicating excellent per-
formance in both cases. The experiment results demonstrate
that AdaptSDN has good performance on both datasets, with
a high degree of separability between normal and abnormal
data samples.

Besides, we examine a virtual resource orchestrator,
denoted by𝑅𝑂𝑟𝑐ℎ𝑒𝑗 , which distributes 500 vCPU resources
among four SDN controllers situated at the four MEC nodes.
Critical applications that each MEC node supports vary
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(a) (b)

(c) (d)

Figure 8: AdaptSDN’s Security evaluation (a) SDN A: DDoS attack; (b) SDN B: an analysis attack; (c) SDN C: a fuzzer attack;
(d) SDN D: a backdoor attack.

from 10 to 50. A non-cooperative game involving the SDN
controllers and the𝑅𝑂𝑟𝑐ℎ𝑒𝑗 node is initiated when an attack
is observed within a MEC domain, and it continues until a
NE state is reached. Our game-based strategy is compared
to two other approaches: (i) Selfish strategy, where each
SDN controller strives to obtain the maximum number of
vCPU resources without considering the performance of the
centralized 𝑅𝑂𝑟𝑐ℎ𝑒𝑗 or other SDN controllers, and as a re-
sult, 𝑅𝑂𝑟𝑐ℎ𝑒𝑗 maximizes the vCPU instances to each SDN
controller. (ii) Minimum vCPUs, where the 𝑅𝑂𝑟𝑐ℎ𝑒𝑗 node
minimizes the number of vCPUs to each SDN controller.

Figure 8 illustrates the distribution of vCPUs among
the SDN controllers for a duration of 600s. We carried out
various IIoT attacks, including DDoS, analysis, fuzzers, and
backdoors, on specific MEC nodes A, B, C, and D, at time
𝑡 = 180s. Figure8 shows that the number of allocated vCPUs
to the corresponding SDN controller increased following
the attack, while it remained constant for the other SDN
controllers. However, the number of vCPUs assigned to each
SDN controller differed, with SDN controller A receiving
100 vCPUs, SDN controller B receiving 75 vCPUs, SDN
controller C receiving 70 vCPUs, and SDN controller D
receiving 65 vCPUs. This discrepancy was mainly due to
the type of attack that was launched in each MEC domain.
Our vCPUs allocation strategy, which is based on the
attack priority and the number of attackers (as indicated in

Equation 18), strongly influenced the vCPUs assignment.
Additionally, our results revealed that DDoS attacks required
more vCPUs compared to other types of attacks. Overall,
our approach ensured that the compromised MEC nodes
received the necessary vCPUs resources while maintaining
a stable minimum allocation of vCPUs to the other MEC
nodes to meet the requirements of their respective applica-
tions.

Figure 9 shows a performance comparison of our scheme,
Selfish, and Min vCPU in assigning vCPUs to the SDN
controller B for 600 seconds. As demonstrated in Fig-
ure 9(a), our scheme may experience fluctuations in the
allocated vCPUs, while Selfish and Min vCPU schemes
exhibit mostly constant allocation throughout the period.
This is because the number of critical applications can
fluctuate, and unexpected IIoT attacks may occur. To address
this issue, our scheme is designed to dynamically adjust the
allocated vCPUs. Figure 9(b) illustrates how our scheme
responds to an increase in the number of critical applications
by increasing the allocation of vCPUs. In contrast, the
number of vCPUs assigned is constant for both Min vCPU
and Selfish schemes, irrespective of the number of running
applications. When assigning vCPU instances to MECs, our
scheme considers the number of critical applications, as
shown in Equation 19. In Figure 9(c), a comparison of the
three schemes is presented on top of two different attacks
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Figure 9: Comparison between Min vCPUs, selfish, and AdaptSDN approaches.

DDoS and analysis attacks at t=180𝑠 and at t=480𝑠, respec-
tively. At t=180𝑠, the number of assigned vCPUs reaches its
highest point of 100 before dropping to 80 vCPUs due to the
DDoS attack. After the DDoS attack, the number of vCPUs
instances recovers and achieves 85 (t=480𝑠), due to the
analysis attack. The Min vCPU and Selfish schemes exhibit
consistent assignment behavior, notably by not factoring in
IIoT attacks or critical applications during vCPU allocation.
While the Selfish scheme can allocate sufficient vCPUs to
address IIoT attacks, a substantial portion of the allocated
vCPUs remains unused, particularly in the absence of attacks
and critical applications. This can negatively impact the
overall system performance. In contrast, our scheme guaran-
tees a dynamic and efficient allocation of virtual resources
to SDN controllers when an attack is detected. It considers
both the priority of the attack, the critical applications of the
MECs, and the performance of the whole system, resulting
in optimal resource allocation. In the following sections,
we compare AdaptSDN with recent AI models on these
datasets. By doing so, we can evaluate the effectiveness
of AdaptSDN in detecting network intrusion and assess its
competitiveness compared to other approaches.
5.4. Comparative Analysis

In this section, a comparison is made between the results
obtained by AdaptSDN and AI models using both datasets.
AdaptSDN is a type of AI model designed for intrusion

detection, and it has been evaluated on both NSL-KDD
and UNSW-NB15 datasets, along with other AI models.
The performance metrics are presented in Tables 2 and 3.
These metrics provide a quantitative measure of the perfor-
mance of different AI models on the given datasets, allowing
researchers to compare and evaluate the effectiveness of
different models for intrusion detection.

Tavallaee et al. [23] conducted a detailed analysis of five
ML models (𝑖.𝑒., SVM, RF, J48, NB, and MLP). In addition
to these models, we compare AdaptSDN’s performance with
several recent DL models. In [24], the authors propose a new
approach that uses CNNs to detect intrusions at the charac-
ter level, which can capture more fine-grained information
about the traffic data. In [25], the authors propose a CNN-
based IDS that uses network traffic data as input to learn a
set of discriminative features that can distinguish between
normal and malicious traffic. The system is composed of
three main components: preprocessing, feature extraction,
and classification. The preprocessing step involves convert-
ing the raw network traffic data into a suitable format for
the feature extraction step. The feature extraction step uses
a CNN to learn a set of features that can represent the input
data in a discriminative manner. The authors modified the
(ResNet50, GoogLeNet) architectures, which is a type of
CNN, for the feature extraction step. They used a variant
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of SVM known as the C-Support Vector Classification (C-
SVC) algorithm for classification.

In [26], the authors use a long short-term memory
(LSTM) RNN to learn a temporal representation of network
traffic data. The proposed system consists of two main
components: feature extraction and classification. In the
feature extraction step, the LSTM RNN is used to learn
a temporal representation of the input data. In the classi-
fication step, a softmax layer is used to classify the input
data as either normal or anomalous. In [27], the authors
propose a novel scheme (Filter) that focuses on feature
selection and proposes a filter-based approach to identify
relevant features for intrusion detection. In [28], the authors
propose a deep learning approach that combines a sparse
autoencoder with SVMs to improve the accuracy of IDSs.
In [29], the authors propose an adaptive ensemble machine
learning model that combines multiple classifiers, to detect
network intrusions. The model adjusts the weights of each
classifier dynamically to improve its performance. For the
UNSW-NB15 dataset, we compared the performance of
AdaptSDN with recent state-of-the-art AI models, including
SSL [30], RF [31], Feed [32], OGM [33], and MHMM [34].
AdaptSDN demonstrates superior performance compared
to the current solutions, achieving accuracy and F1 score
that are 12% higher on the NSL-KDD dataset, with the
highest accuracy and F1 score of 88%. On the UNSW-
NB15 dataset, AdaptSDN outperforms the other schemes
by providing accuracy and a true positive rate of 99%, with
a remarkably short training time of only 37.44 seconds.
Notably, AdaptSDN achieves these results with reduced
computational complexity, with a training time of only 7.80
seconds on the NSL-KDDTest+ dataset, significantly lower
than the reported training times for other models. These
findings demonstrate the potential for AdaptSDN to be
deployed practically in real-world scenarios, highlighting its
effectiveness in detecting network security attacks.

6. Conclusion
In this paper, we proposed a novel framework that in-

cludes three modules: (1) A novel module for data collec-
tion and optimized feature selection to achieve two main
objectives: reducing computational complexity and improv-
ing detection performance; (2) An SDN-based lightweight
adaptive boosting module that uses advanced boosting EL
techniques to dynamically adjust weights and to effectively
identify and respond to IIoT attacks in real-time; and (3) a
zero-touch resources provisioning module that employs a
non-cooperative game theory approach. We evaluated our
proposed framework’s performance, assessing accuracy, F1
score, and computational complexity. We compared our
framework’s performance to state-of-the-art solutions and
utilized real-world attack scenarios in our experiments. The
numerical results confirm that AdaptSDN has the potential
to enable secure and reliable IIoT applications in 6G and
beyond, meeting the stringent service requirements of the
new emerging applications.

Table 2
Performance metrics of AdaptSDN and AI models on 𝑁𝑆𝐿 −
𝐾𝐷𝐷𝑇𝑒𝑠𝑡+

Methods Accuracy Precision Recall F1 Time
(sec-
ond)

J48 0.81 NA NA NA NA
Naive Bayes 0.76 NA NA NA NA
Random For-
est

0.80 NA NA NA NA

Multi-layer
Perceptron

0.77 NA NA NA NA

Support Vec-
tor Machine

0.70 NA NA NA NA

CharCNN 0.85 0.91 0.81 0.86 NA
ResNet50 0.79 0.91 0.69 0.79 NA
GoogleNet 0.77 0.91 0.65 0.76 NA
Deep Neural
Networks

0.75 0.83 0.75 0.74 NA

recurrent neu-
ral networks

0.83 NA 0.83 NA 5516

Filter 0.78 NA 0.78 NA NA
Autoencoder 0.84 0.96 0.76 0.85 673.031
Adaboost 0.85 0.86 0.85 0.84 NA
AdaptSDN 0.88 0.96 0.88 0.88 7.80

Table 3
Performance metrics of AdaptSDN and AI models on UNSW-
NB15

Schemes Accuracy TPR Time (second)
SSL 0.86 0.85 NA
RF 0.93 0.92 NA
Feed 0.92 0.91 NA
OGM 0.95 0.94 NA
MHMM 0.96 0.95 NA
AdaptSDN 0.99 0.99 37.44
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