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Abstract

The emerging 5G networks and beyond promise to support new advanced use cases such as the
immersive holographic communication, the Internet of Skills, and the 4D Interactive mapping
[1]. These use cases require stringent requirements in terms of Quality of Service (QoS), such
as low latency, high Downlink (DL)/Uplink (UL) data rates and low energy consumption. The
3rd Generation Partnership Project (3GPP) specifications introduced many features in 5G New
Radio (NR) to improve the physical efficiency of 5G to meet the stringent and heterogeneous
requirements of the beyond 5G use cases. Among the key 5G NR features, wemention the
numerology, the BandWidth Part (BWP), the dynamic Time Duplex Division (TDD) and the
Connected-mode Discontinuous Reception (C-DRX). However, the 3GPP specifications does not
provide how to configure the next Generation Node B (gNB)/User Equipment (UE) in order to
optimize the use of the 5G NR features. We configure the latter by applying Machine Learn-
ing (ML), particularly Deep Reinforcement Learning (DRL), to fill this gap. Indeed, Artificial
Intelligence (AI)/ML is playing a vital role in communications and networking [2] thanks to its
ability to provide self-configuring and self-optimizing networks.

In this thesis, we propose novel solutions to enable a smart and autonomous configuration of
the Radio Access Network (RAN). We divided the solutions into three different parts. The
first part concerns RAN slicing featuring numerology and BWPs. In contrast, the second part
tackles dynamic TDD, and the last part goes through different RAN optimizations to support
Ultra-Reliable and Low-Latency Communication (URLLC) services.

In the first part, we propose two contributions. First, we introduce NRflex, a RAN slicing
framework aligned with Open RAN (O-RAN) architecture. NRflex dynamically assigns BWPs
to the running slices and their associated UEs, aiming to fulfill the slices’ required QoS. Simula-
tion results show the superiority of NRflex to meet network slice requirements while optimizing
the 5G RAN resources compared to other existing solutions. Then, we model the RAN slicing
problem as a Mixed-Integer Linear Programming (MILP) problem. To our best knowledge, this
is the first MILP modeling of the radio resource management featuring network slicing, taking
into account (i) Mixed-numerology, (ii) both latency and throughput requirements (iii) multiple
slices attach per UE (iv) Inter-Numerology Interference (INI). After showing that solving the
problem takes an exponential time, we consider a new approach to solve it in a polynomial
time, which is highly required when scheduling radio resources. The new approach consists
of formalizing this problem using a DRL-based solver. We evaluate the use of DRL to solve
the problem for different network configurations and compare its performance with the optimal
solution obtained by solving the MILP problem.

In the second part of this thesis, we propose a DRL-based solution to enable dynamic TDD in
a single 5G NR cell. The proposed DRL algorithm monitors UL and DL buffers at the gNB to
derive the optimal TDD pattern concerning the current traffic configuration. Simulation results
demonstrate the efficiency of the proposed algorithm to avoid buffer overflow and ensure gener-
ality by reacting to traffic pattern changes. The solution is implemented in OAI and tested using
real UEs. Then, we extend the solution by leveraging Multi-Agent Deep Reinforcement Learn-
ing (MADRL) to support multiple cells, considering cross-link interference between cells. Based
on the simulation results, the algorithm effectively prevents buffer overflows, avoids cross-link
interference, and adapts to changes in the traffic pattern, ensuring its versatility. We compare
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our solution with the optimal solution and different static TDD configurations. We found that
our solution outperforms the static TDD configurations. We finally discuss the algorithm’s lim-
itations in terms of the number of cells, traffic variance, and cross-link interference probability.

In the last part, we propose three different solutions to optimize the RAN to support URLLC
services. First, we propose a two-step ML-based solution to predict Radio Link Failure (RLF).
We combine Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) algorithms
to find the correlation between radio measurements and RLF. The RLF prediction model was
trained with real data obtained from a 5G testbed. The validation process of the model showed
an accuracy of 98% when predicting the connection status (i.e., RLF). In the second contribution,
we propose a DRL-based solution to reduce UL latency. Our solution dynamically allocates the
future UL grant by learning from the dynamic traffic pattern. Simulation results demonstrate
the efficiency of the proposed algorithm to reduce the UL latency down to 1 ms and ensure
generality by reacting to different traffic patterns. In the last contribution, we introduce a
DRL-based solution to balance latency and energy consumption by jointly deriving the C-DRX
parameters and the BWP configuration. Simulation results demonstrate the effectiveness of
the proposed methodology in reducing the PC (i.e., 50-95% power gain) while avoiding latency
overflow for a different number of connected UEs (i.e., 1 to 20 UEs).
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Résumé

Les réseaux 5G émergents et au-delà promettent de prendre en charge de nouveaux cas d’uti-
lisation tels que la communication holographique immersive, l’internet des compétences et la
cartographie interactive 4D [1]. Ces cas d’usage ont des exigences strictes en termes de Quality
of Service (QoS), telles qu’une faible latence, un débit Downlink (DL)/Uplink (UL) élevé, ainsi
qu’une faible consommation d’énergie. Les spécifications du groupe de normalisation 3GPP ont
introduit de nombreuses fonctionnalités aux système radio 5G (5G NR), dans le but d’améliorer
l’efficacité de la 5G et de répondre aux exigences strictes et hétérogènes des services de la 5G
et au-delà. Parmi les principales fonctionnalités de la 5G NR, on peut citer la numérologie, les
BandWidth Parts (BWPs), le multiplexage temporel (TDD) dynamique et la Connected-mode
Discontinuous Reception (C-DRX). Toutefois, les spécifications 3GPP n’indiquent pas comment
configurer la next Generation Node B (gNB)/User Equipment (UE) afin d’optimiser l’utilisation
des fonctionnalités 5G NR. Afin de combler ce manque, nous proposons de nouvelles solutions
qui mettent en œuvre des fonctionnalités 5G NR en appliquant les techniques de l’apprentissage
automatique ou Machine Learning (ML), en particulier l’apprentissage profond par renforcement
ou Deep Reinforcement Learning (DRL). En effet, les outils de l’intelligence artificielle jouent
un rôle essentiel dans l’optimisation des systèmes de communication et des réseaux [2] grâce à
leurs capacités à rendre le réseau capable de s’auto-configurer et s’auto-optimiser.

Dans cette thèse, nous proposons plusieurs solutions pour permettre une configuration intelli-
gente du réseau d’accès radio (RAN). Nous avons divisé les solutions en trois parties distinctes.
La première partie couvre le découpage du RAN en tranches (ou slicing en tirant parti des
concepts de numerologie et de BWP. La deuxièmes partie traite le TDD dynamique. Tandis que
la dernière partie passe en revue les plusieurs optimisations du RAN pour prendre en charge les
services Ultra-Reliable and Low-Latency Communication (URLLC).

Dans la première partie, nous proposons deux contributions. Tout d’abord, nous présentons NR-
flex, une solution de découpage du RAN en tranches (ou slicing), aligné sur l’architecture Open
RAN (O-RAN). NRflex attribue dynamiquement des BWP aux tranches en cours d’exécution et
aux UEs qui leur sont associées afin de satisfaire la QoS requise par ces tranches. Les résultats de
la simulation ont démontré la supériorité de NRflex par rapport à d’autres solutions à répondre
aux exigences des tranches de réseau tout en optimisant les ressources radio. Par la suite,
nous modélisons le problème de découpage du RAN en tranches comme un problème Mixed-
Integer Linear Programming (MILP). Au meilleur de notre connaissance, il s’agit de la première
modélisation MILP de la gestion des ressources radio avec découpage du réseau en tenant en
compte (i) de la numérologie mixte, (ii) des exigences en matière de latence et de débit (iii) de
l’association de plusieurs tranches par UE (iv) de Inter-Numerology Interference (INI). Après
avoir montré que la résolution du problème prend un temps exponentiel, nous avons introduit
une nouvelle approche pour le résoudre en un temps polynomial, ce qui est très important pour la
fonction de l’ordonnancement (scheduling) des ressources radio. La nouvelle approche consiste à
formaliser et résoudre ce problème par le biais l’apprentissage par renforcement profond (DRL).
Nous évaluons l’utilisation de DRL pour résoudre le problème pour différentes configurations de
réseau et comparons sa performance avec la solution optimale obtenue en résolvant le problème
MILP.
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Dans la deuxième partie de la thèse, nous proposons une solution basée sur le DRL pour per-
mettre un TDD dynamique dans une seule cellule 5G NR. L’algorithme DRL proposé surveille
les files de trafic UL et DL au niveau de la gNB afin de dériver l’affectation des resources
UL/DL optimal en fonction du trafic. Les résultats de la simulation ont démontré l’efficacité de
l’algorithme proposé pour éviter le débordement des files d’attente et garantir la généralité en
réagissant aux changements du trafic. La solution a été implémentée dans la plateforme Ope-
nAirInterface (OAI) et testée avec des UEs réels. Nous avons ensuite étendu la solution, en
tirant parti de l’algorithme Multi-Agent Deep Reinforcement Learning (MADRL), pour prendre
en charge plusieurs cellules en tenant compte de l’interférence radio entre les liaisons transver-
sales entre les cellules. D’après les résultats de la simulation, l’algorithme évite efficacement les
débordements des files d’attente ainsi que les interférences entre les liaisons. Aussi, l’algorithme
proposé s’adapte aux changements de la dynamique du trafic, ce qui garantit sa polyvalence.
Nous avons comparé notre solution à la solution optimale et à diverses configurations TDD sta-
tiques. Nous avons constaté que notre solution est plus performante que les configurations TDD
statiques. Enfin, nous discutons des limites de l’algorithme en termes de nombre de cellules, de
variance du trafic et de probabilité d’interférence entre les liaisons.

Dans la dernière partie de la thèse, nous avons proposé trois solutions pour optimiser le RAN
afin de prendre en charge les services URLLC. Tout d’abord, nous avons proposé une solution
en deux étapes basées sur l’apprentissage automatique pour prédire les coupures du lien radio
ou Radio Link Failure (RLF). Nous avons combiné les mémoires à long terme (LSTM) et la
machine é vecteur de support (SVM) pour trouver la corrélation entre les mesures radio et le
RLF. Le modèle de prédiction RLF a été entrâıné avec des données réelles obtenues à partir
d’un banc d’essai 5G. Le processus de validation du modèle a montré une précision de 98%
lors de la prédiction de l’état de la connexion. Dans la deuxième contribution, nous avons
proposé une solution basée sur le DRL pour réduire la latence UL. Notre solution alloue (prédit)
dynamiquement les futurs besoins en ressource radio du UL en apprenant du modèle de trafic. Les
résultats de la simulation démontrent clairement l’efficacité de l’algorithme proposé pour réduire
la latence UL jusqu’à 1 ms et garantir la généralité en réagissant à different types de modèles
de trafic. Dans la dernière contribution, nous introduisons une solution basée sur le DRL afin
d’équilibrer la latence et la consommation d’énergie en calculant conjointement les paramètres
C-DRX et la configuration BWP. Les résultats de la simulation démontrent l’efficacité de la
méthode proposée pour réduire la consommation énergétique (c-à-d., un gain de puissance de 50
a 95%) tout en évitant le dépassement de la latence pour un nombre different d’UEs connectés
(c-à-d., de 1 a 20 UE) à la gNB.
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des problèmes m’a aidé à faire mes premiers pas dans le monde de la recherche, et son soutien
constant m’a offert des opportunités dont je suis extrêmement reconnaissant.
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communication et Bagaa Miloud de l’université UQTR.
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Chapter 1

General Introduction

1.1 Context

Fifth wireless Generation (5G) networks are designed to support variant network services, mainly
organized into three categories: Ultra-Reliable and Low-Latency Communication (URLLC),
enhanced Mobile BroadBand (eMBB), and massive Machine-Type Communication (mMTC).
URLLC supports use cases that require high network reliability, more than 99.999%, and ex-
tremely low latency of approximately 1 millisecond for data transmission. For example, au-
tonomous driving requires a very low latency to make decisions, as there is such high risk in-
volved. eMBB supports high bandwidth applications such as Augmented Reality (AR)/Virtual
Reality (VR) and streaming, providing higher Downlink (DL)/Uplink (UL) throughput and im-
proved user experiences. mMTC allows connecting a large number of users while fulfilling their
quality of services.

For the year 2030 and beyond, Our daily lives will be augmented by ultra-high speed and ultra-
reliable wireless connections, native Artificial Intelligence (AI), and advanced sensing technolo-
gies. Even though 5G is still not fully exploited commercially, the research community started
to define the basis of Sixth wireless Generation. Many of the features planned for 6G leverage
5G features, such as dynamic Time Duplex Division (TDD), 5G New Radio (NR) features, and
5G power-saving techniques. Five major categories of usage scenarios, depicted in Figure 1.1,
have been defined, of which eMBB+, URLLC+, and mMTC+ are extensions and combinations
of the usage scenarios defined in 5G, while sensing and AI are two new usage scenarios that will
flourish in the era of 6G [3].

eMBB for human-centric communication use cases has evolved into eMBB+. In eXtended
Reality (XR) applications, it will enable extremely immersive experiences and multi-sensory in-
teractions. Throughput and connection density requirements for eMBB+ are going to be much
higher. Moreover, 6G will accelerate the full-scale digital transformation of vertical industries.
URLLC+ is the next step in the evolution of URLLC for essential machine communication in
Industry 4.0 and beyond. It also applies to new applications made possible by the widespread
use of robotics, Unmanned Aerial Vehicle (UAV), and new Human-Machine Interface (HMI) in
manufacturing, public service, autonomous driving, and household management. 6G will con-
tinue the journey started by 5G to connect everything, but it will do so with a wider variety of
devices, new HMI, and a higher density of connections. mMTC+ is the continuous evolution of
mMTC, which is characterized by the massive number of lightly connected devices with sporadic
traffic in smart cities, healthcare, buildings, transportation, manufacturing, and agriculture. A
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Figure 1.1: 6G new services [3]

key requirement is for sensors to have a long lifetime. Green and sustainable development is the
core requirement and ultimate goal of network and terminal designs in 6G. By introducing the
green design concept and native AI capability, 6G aims to improve the overall energy efficiency
by 100 times across the network while also ensuring optimal service performance and experience.
To fulfill these different requirements, the use of AI becomes very important to optimize the
network, especially the Radio Access Network (RAN), since it is a very dynamic environment
and requires very low execution latency, at the range of milliseconds.

1.2 Motivation

At the present time, AI technologies have matured and are now considered stable, with state-
of-the-art techniques being used to solve many types of hard problems. The latter are problems
that take an exponential time to be solved optimally. Among AI techniques, Machine Learning
(ML) techniques excel in situations where there is inherent randomness and non-determinism.
Indeed, ML is able to capture patterns and correlations in available data, sometimes based on
very complex inputs. Besides, the execution of AI does not take a huge amount of time compared
to solving hard problems using traditional optimization methods such as the Simplex algorithm
[4]. In these situations, ML techniques can be trained on available data, which allows them to
learn, represent, and predict the inherent behavior in the data. In the case of the unavailability
of data, Reinforcement Learning (RL) techniques can be used to train models following the trial
and error concept. The idea is to build models that learn by trying different solutions, and
according to the response of the environment, the model will be able to take good actions.

In the telecom domain, the increasing relevance of AI in several use cases has been observed
for some years now [5]. There are multiple drivers for the adoption of AI-based solutions in
the telecom industry. The 3rd Generation Partnership Project (3GPP) specifications of 5G
and 5G Advanced adopt AI to improve network performance and enable intelligent network
automation. AI applications under consideration are primarily in the RAN, including network
energy saving, load balancing, and mobility optimization. Potential use cases in the RAN are
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so numerous that a small subset has been selected for study in the upcoming 3GPP Release 18
[6], including Channel State Information (CSI) feedback, beam management, and positioning.
It is important to note that 3GPP is not developing AI/ML models. Instead, it seeks to create
common frameworks and evaluation methods for AI/ML models being added to different RAN
functions. Outside of the 3GPP, Open RAN (O-RAN) ALLIANCE [7], an alliance that gathers
telcos together under one vision, “making the RAN open”, explores how AI/ML can improve
the network. For example, O-RAN ALLIANCE has a unique feature in its architecture called
the RAN Intelligent Controller (RIC), designed to host AI/ML optimization applications. The
RIC can host xApps, which run in near real-time, and rApps, which run in non-real-time. xApps
for improving spectral and energy efficiency and rApps for network orchestration that leverage
AI already exist today [8]. More xApps/rApps and applications using AI / ML in the RIC will
become available as the O-RAN ecosystem grows and matures.

1.3 Thesis Challenges and Contributions

Figure 1.2: Thesis story map

This Thesis is part of the transition from 5G to 6G. It uses the actual 5G New Radio (NR) fea-
tures to enhance the RAN functions, enabling more efficient, AI-powered beyond 5G networks
toward 6G. The thesis started with the problem of spectrum slicing. The latter becomes more
challenging with the use of 5G NR features such as numerology and BandWidth Part (BWP).
In this context, we proposed a complete problem formulation of resource allocation taking into
account a mixed numerology environment and BWPs. The problem is formulated as a Mixed-
Integer Linear Programming (MILP) problem. We proved that the problem is NP-hard. Then,
we proposed a DRL-based solution to solve it in linear time. Although, smart and efficient
allocation of resources fulfills different service requirements in terms of throughput and latency,
reliability is a challenging problem when the users are out of coverage or experience a Radio
Link Failure (RLF). Consequently, the next station of the thesis is RLF prediction using ML to
increase the network reliability. Indeed, once the network predicts an RLF, it takes actions to
avoid it either by triggering a handover or sending a notification to the service application that
handles and mitigates the RLF at the application level (e.g., changing drones’ trajectory in the
case of drone control application). The proposed spectrum-slicing solutions work in both UL
and DL directions. However, the UL direction has more challenges to tackle, especially with the
latency. Indeed, the network is not aware of the quantity of data that the user wants to send
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(i.e., in the UL), which makes it difficult to allocate resources efficiently. For this purpose, we
tackle the problem of UL latency reduction by predicting the UL grant of users using DRL. But,
by reducing the latency, the UEs consume more energy. To reduce the UEs’ power consumption,
we proposed a DRL-based solution to find a trade-off between power consumption and latency.
Coming back to the spectrum slicing solutions, we noticed that even if applied to both UL and
DL direction, resources can be better allocated if the number of UL and DL slots are optimized
according to the traffic ratio (UL/DL). For this purpose, we enabled dynamic TDD using DRL
in a single cell first, then in multi-cells scenario by mitigating cross-link interference between
neighboring cells. The proposed solutions in this thesis are used to develop automated control
systems for beyond 5G networks, enabling Self-Organizing Network (SON) and AI-powered 6G
networks. Figure 1.2 summarizes my PhD story using a mind map.

In this thesis, we propose AI/ML and DRL methods to solve complex problems at the RAN.
We tackled the following problems:

1. Enforcing RAN slicing with mixed numerology and multiple BWPs:

(a) Problem description: Network slicing is considered as one of the critical enablers of
5G to support a wide range of applications and use cases with different requirements.
Although network slicing has been widely studied and solutions have started to ap-
pear, particularly at the transport and core network parts, slicing (sharing) the RAN
resources is still challenging. Indeed, with the new features introduced by the 5G
NR, further investigation is needed to enforce network slicing at the RAN. 5G NR
introduces several new features that can be beneficial for slicing the RAN [9]. Among
these new features, we may mention the concept of BWPs. The latter aims to enable
flexible assignment and configuration of Physical Resource Block (PRB). BWPs are
subsets of contiguous PRBs allocated per User Equipment (UE), i.e., the UE expects
to use resources only in a specific part of the bandwidth. Besides, 5G NR introduces
the concept of numerology, which uses a specific physical layer configuration, mainly
Sub-Carrier Spacing (SCS). Unlike 4G, where all the time-slots have the same dura-
tion (1 ms), 5G NR, by adapting SCS, allows reducing the slot-time duration down
to 125 microseconds, which can considerably reduce the RAN latency. Consequently,
each BWP has its own numerology, enabling more efficient sharing of the spectrum
among the heterogeneous services in 5G RAN and, hence, among slices.

(b) Proposed solutions: We introduce NRflex, a novel framework that dynamically en-
forces RAN slices in 5G, relying on the concept of BWPs. NRflex addresses the joint
PRBs scheduling and allocation problem with mixed numerology in 5G NR, in order
to meet the latency requirement of URLLC services while considering the other type
of services (mainly eMBB). NRflex redefines the Life-Cycle Management (LCM) of
the RAN slices by leveraging on the O-RAN architecture [7]. NRflex operates under
a dedicated bandwidth for each numerology. After that, we address the challenging
problem of resource management in 5G NR featuring network slicing by first model-
ing it as a mixed-integer linear program taking into account i) multiple numerology
in the same bandwidth while avoiding the Inter-Numerology Interference (INI); ii)
multiple slices attached per UE; iii) different throughput and latency requirements
per slice. Then, we prove that the problem is NP-hard; i.e., solving it will take a
considerable amount of time, which is not tolerable when scheduling radio resources
in real time. Meanwhile, Reinforcement Learning (RL) that can be seen as a learning
heuristic search strategy when it is applied to optimization problems. Accordingly,
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we formalize this problem in the RL framework and propose a Deep Reinforcement
Learning (DRL)-based approach. The approach aims to select the numerology to
be used and the number of resources allocated per UE at each time slot during a
time window while taking into account the channel quality of the UE. Specifically, we
designed the DRL scheduler to be independent of the number of UEs in the system.
We have modeled the DRL state to make the solution scalable for larger bandwidths
covering both Frequency Range 1 (FR1) and Frequency Range 2 (FR2) frequency
bands. The latter with a bandwidth up to 400 MHz, which corresponds to the usage
of the millimeter Waves (mmW) bands.

(c) Publications:

NRflex: Enforcing network slicing in 5G New Radio
Boutiba, Karim; Ksentini, Adlen; Brik, Bouziane; Challal, Yacine; Balla, Amar
Computer Communications, 13 October 2021, Elsevier

Radio resource management in multi-numerology 5G new radio featuring
network slicing
Boutiba, Karim; Bagaa, Miloud; Ksentini, Adlen
ICC 2022, IEEE 1st International Workshop on Semantic Communications, 16-20
May 2022, Seoul, South Korea

Optimal radio resource management in 5G NR featuring network slicing
Boutiba, Karim ; Bagaa, Miloud; Ksentini, Adlen
Computer Networks, Vol. 234, October 2023, Elsevier

2. Dynamic TDD in a single 5G cell:

(a) Problem description: Emerging 5G and 6G network services are shifting from DL-
dominant traffic to more equilibrate DL and UL traffic, even to more UL-dominant
traffic [10]. Indeed, emerging network services such as AR and VR applications
generate high UL traffic corresponding to offloaded intensive computation to be run
at a remote application sitting at the Edge. Another example is the high-quality
video streaming captured by drones for building surveillance that requires more UL
traffic than DL. One solution to accommodate this new trend in terms of traffic
model is TDD. TDD allows using the entire bandwidth by dividing it into time slots
where some are assigned to UL and some to DL. Long Term Evaluation (LTE) or
4G proposed 7 different configurations of the TDD frame, which allows configuring
the evolved Node B (eNB) according to the traffic patterns. But, one concern with
this solution is that the configuration is fixed in time and cannot be adapted to the
traffic dynamic, i.e., if at a certain moment of time, more DL or UL need to be
accommodated, then there is no possibility to increase the number of UL or DL slots,
without rebooting the eNB. To overcome this issue, 5G NR introduces a more flexible
solution, where the number of UL and DL slots in the TDD frame can be changed
dynamically. This flexibility will allow the next Generation Node B (gNB) to adapt
to the frame configuration according to the traffic pattern by selecting the number
of slots dedicated to UL and DL. However, the 5G NR specifications only cover the
mechanism allowing the gNB to inform the UE about the UL/DL slots pattern in a
TDD frame, leaving the algorithm deriving the pattern UL/DL opens.

5
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(b) Proposed solution: we fill this gap by proposing a novel algorithm, namely DRL-
based 5G RAN TDD Pattern (DRP), which allows deriving the UL/DL pattern of
TDD frames dynamically and accommodating cell traffic, whatever it is DL or UL
dominant. DRP monitors UL and DL traffic periodically and derives the optimal
pattern. DRP uses the Buffer Status Report (BSR) sent by UEs for the UL traffic
and the state of the radio bearer channel queues at gNB, which avoids having an exact
pattern of the traffic. DRP is run by gNB before the Medium Access Channel (MAC)
scheduling process. DRP is particularly efficient for 5G private network deployment,
allowing to deploy of gNB in a plug-and-play mode.

(c) Publication:

On using deep reinforcement learning to dynamically derive 5G new radio
TDD pattern
Bagaa, Miloud; Boutiba, Karim; Ksentini, Adlen
GLOBECOM 2021, IEEE Global Communications Conference, 7-11 December 2021,
Madrid, Spain

3. Dynamic TDD with cross-link interference:

(a) Problem description: In a multi-cell environment, dynamic TDD is more challenging.
Indeed, whereas in a single-cell environment, the only challenge was to find the UL/DL
ratio without knowing the traffic pattern, in a multi-cell environment, the challenge
is twofold: (i) Finding the UL/DL ratio without knowing the traffic pattern; (ii)
Mitigating cross-link interference. The latter is defined as interference that occurs
when one gNB transmits while another receives in the same frequency band (i.e., two
neighboring gNBs that use a different TDD pattern). This usually occurs within the
same operator using the same frequency band for its gNBs.

(b) Proposed solution: we extend DRP to solve the dynamic TDD problem in a multi-cell
environment and introduce the Multi-Agent Deep Reinforcement Learning (MADRL)-
based 5G RAN TDD Pattern (MADRL) framework. The MADRP approach is fully
decentralized, with each MADRP agent located close to the gNB serving a particular
cell. Compared to a centralized approach, MADRP is executed close to the gNB,
which reduces the control latency between the gNB and MADRP. In addition, it re-
duces the signaling overhead normally generated when gNBs send data to a central
entity. Each MADRP agent monitors the gNB’s UL and DL buffers and the number
of edge users with neighboring cells. It then uses this local observation along with
messages from neighboring cells to derive the optimal TDD pattern to accommodate
connected users while avoiding cross-link interference with neighboring cells.

(c) Publication:

Multi-agent deep reinforcement learning to enable dynamic TDD in a
multi-cell environment
Boutiba, Karim; Bagaa, Miloud; Ksentini, Adlen
IEEE Transactions on Mobile Computing, 15 September 2023

4. Radio link failure prediction:
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(a) Problem description: RLF is an important criterion in modern wireless networks,
including 5G. RLF is critical for services requiring high reliability, which is one of
the key features of 5G, such as those supported by URLLC class[11]. RLF impacts
principally network services that involve high-mobile devices, such as vehicles and
flying drones. Indeed, combining highly mobile users at high altitude like UAV [12],
with the current limited number of deployed 5G cells and their small coverage due
to wider frequency bands’ usage [13] (which make the radio link between the UE
and the base station more susceptible to blockage and degradation leading to sudden
interruption of the communication link), may yield to frequent RLF. RLF corresponds
to a disconnection from the network, which strongly impacts sensitive services, such
as UAV safety, where RLF increases the network latency and, in the worst cases, leads
to UAV’s losses and collisions. In this context, it is important that 5G tackles the
RLF issue to improve reliability by, for instance, predicting when a mobile device has
a high probability of seeing a RLF and taking the appropriate action, like anticipating
the Handover or updating the trajectory of the UAVs.

(b) Proposed solution: RLF can be estimated by measuring radio key indicators such as
Reference Signal Receive Power (RSRP), Reference Signal Receive Quality (RSRQ),
Channel Quality Indicator (CQI), and Power HeadRoom (PHR). By combining this
information, it is possible to know the quality of the radio channel, hence the proba-
bility of RLF. However, deriving a closed-form of the RLF distribution probability is
very challenging. To fill this gap, we propose to use ML to predict the RLF relying
on the measurement of RSRP, RSRQ, CQI, and PHR. More specifically, we used a
two-step algorithm based on Long Short Term Memory (LSTM) and Support Victor
Machine (SVM). The first layer (i.e., the set of LSTMs) is used to predict the future
values of RSRQ, CQI and PHR. Then, the SVM layer is used to classify the measure-
ment values (i.e., the predicted RSRQ, CQI and PHR) into connectivity status (i.e.,
connected or not). The output of the ML model will be used as input by third-tier
applications to improve the reliability of 5G networks. Therefore, we will propose
two applications that rely on the RLF prediction model: (1) an application that op-
timizes the handover in the context of O-RAN [14]; (2) an application that adapts
UAVs trajectory to avoid RLF in the context of the European Telecommunications
Standards Institute (ETSI) Multi-access Edge Computing (MEC) framework [15].

(c) Publication:

Radio link failure prediction in 5G networks
Boutiba, Karim; Bagaa, Miloud; Ksentini, Adlen
GLOBECOM 2021, IEEE Global Communications Conference, 7-11 December 2021,
Madrid, Spain

5. UL latency reduction:

(a) Problem description: Emerging URLLC use cases are shifting from DL-dominant
traffic to a more equilibrated DL and UL traffic. Hence, it is crucial to ensure a
low latency in UL and DL directions. However, achieving low latency in UL is more
challenging since the gNB has to be aware of the UE’s queue status to allocate PRBs
according to the UE needs, which results in increasing the latency by the signaling
overhead. Semi-Persistent scheduling (SPS) [16] and Grant Free (GF) [17] schedul-
ing methods are proposed to overcome the signaling overhead, hence reducing the
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UL latency. However, they are less efficient for dynamic traffic patterns (dynamic
inter-arrivals and dynamic data sizes) and less adaptable to quick channel condition
changes, especially in FR2 frequencies (> 6Ghz) and high mobility users. Further-
more, GF may impact the reliability of the services since resource usage can collide
in frequency between users.

(b) Proposed solution: To overcome the aforementioned challenges, we introduce a novel
DRL-based algorithm that reduces the UL latency by predicting the subsequent ar-
rival of data and its size. We dubbed this solution DRL-based Low Latency Scheduler
(DRL-LLS). The latter monitors the BSR sent by UEs and derives the future inter-
arrival time and the grant size that should be allocated to the user in the next UL
opportunity. DRL-LLS is adapted to changes happening in channel conditions very
quickly since it dynamically sends grants to the user before the data arrival. Hence,
when the data is ready to be sent, the UE will find the grant and fully transmit all
the data to gNB, which decreases the overhead signaling latency while adapting to
the channel conditions.

(c) Publication:

On using deep reinforcement learning to reduce uplink latency for URLLC
services
Boutiba, Karim; Bagaa, Miloud; Ksentini, Adlen
GLOBECOM 2022, IEEE Global Communications Conference, 4-8 December 2022,
Rio de Janeiro, Brazil

6. Power consumption and latency trade-off:

(a) Problem description: 5G NR has introduced several features to increase through-
put and decrease latency, mainly numerology, Multiple Input and Multiple Output
(MIMO) and higher bandwidths. These features increase Power Consumption (PC)
for both the network infrastructure and the UE. The latter, which are typically pow-
ered by a limited battery, can suffer from poor Quality of Experience (QoE) [18] due
to the rapid discharge of the battery. The communications industry should, therefore
develop strategies to optimize the energy efficiency of 5G networks without com-
promising Quality of Service (QoS) [19]. Leading wireless equipment vendors have
begun studying UE power-saving schemes in 5G NR [20]. They have investigated
several techniques to reduce PC, such as Connected-mode Discontinuous Reception
(C-DRX) with a new set of parameters introduced by 5G NR and BWP adaptation.
C-DRX allows UEs to periodically enter a sleep state during which the physical layer
functions of UEs become inactive, and thus PC is reduced. However, the latency may
increase as UEs may be in the sleep state when the data arrives at the gNB. On the
other hand, BWP adaptation consists of reducing the BWP size based on the de-
mand of UEs, which decreases the PC when UEs do not ask for high data rates. The
3GPP study, conducted in [20], shows the impact of C-DRX parameters and BWP
adaptation on network performance, mainly on latency and power gain. However,
the 5G NR standard does not provide solutions to derive the C-DRX parameters and
the BWP configuration dynamically.

(b) Proposed solution: To address this shortcoming, we introduce a DRL-based solution,
called DRL-based Latency and Power optimizer (DRL-LP), to jointly derive the C-
DRX parameters and the BWP configuration. The proposed solution is designed to
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be scalable in terms of the number of UEs and traffic patterns. Indeed, The DRL
agent observes UEs’ history of: (i) the experienced latency; (ii) the buffer status,
and (iii) the number of scheduled UEs; during a time window. Then, for each UE,
the DRL agent sets the C-DRX parameters and the BWP size for the next time
window. To the best of our knowledge, no prior work has combined C-DRX and
BWP adaptation to reduce the PC further while ensuring low latency.

(c) Publication:

On using deep reinforcement learning to balance power consumption and
latency in 5G NR
Boutiba, Karim; Ksentini, Adlen
ICC 2023, IEEE International Conference on Communications, 28 May-1 June 2023,
Rome, Italy

1.4 Thesis Structure

This thesis is structured as follows: Chapter 2 is dedicated to the exploration of the state of
the art on several concepts crucial to the research work of this thesis, which can be mainly
grouped into two topics: 5G NR features and ML/RL techniques. Then, we divided the Thesis
into four Parts: In Part 1, we introduce the contributions related to Network Slicing in 5G
NR. Part 1 consists of two chapters: In Chapter 3, we introduce NRFlex, while in Chapter
4, we introduce the optimal solution and the DRL-based solution. In Part 2, we present the
contributions related to Dynamic TDD in 5G NR. We divided Part 2 into two chapters: In
Chapter 5, we introduce our contribution regarding Dynamic TDD in a single cell environment,
while in Chapter 6, we introduce our contribution of Dynamic TDD in multi-cells environments.
In Part 3, we present the RAN optimizations for URLLC: In Chapter 7, we introduce the RLF
prediction contribution while in Chapters 8 and 9, we present the UL latency reduction and the
power-latency trade-off solutions, respectively. Finally, Part 4 contains two chapters: Chapter
10 gives a general conclusion while Chapter 11 introduces the Thesis perspectives.
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Chapter 2

State of The Art

2.1 Introduction

5G wireless technology is the next major evolution of cellular networks. It offers significant
improvements over previous generations in terms of throughput, latency, and connection den-
sity. 5G is revolutionizing many industries and applications, including telecommunications,
healthcare, transportation, manufacturing, and entertainment. ML is playing a crucial role in
communication and networking [2] with the ability to provide a self-configured and self-optimized
network which is a key characteristic of 6G networks. Particularly, DRL is a lightweight frame-
work that enables quick decisions and hence takes real-time actions in the network characterized
by its dynamicity and needs fast decisions. This chapter provides an outline of 5G Networks
and the features of the 5G NR air interface. After that, it introduces the ML/RL techniques
used during this thesis to optimize the RAN leveraging the 5G NR features.

2.2 5G Networks

5G networks are designed to provide higher data rates, lower latency, increased connection
density, and improved reliability compared to their predecessors. The architecture of the 5G
Networks is shown in Figure 2.1. It consists of the Core Network (CN), called the 5G Core
(5GC), and the RAN.
The RAN consists of base stations and UEs. The base stations, previously called eNB in 4G LTE,
are called gNB in 5G NR. Their primary role is to handle all radio-related functions, including
the provision of wireless connectivity to the UEs. The CN is designed with a service-oriented ar-
chitecture called Service-Based Architecture (SBA). The latter divides the CN network function
into multiple logical entities called Network Function (NF). 3GPP defines the interfaces between
NFs to support interoperability between different NF vendors. The NFs can be combined to
create slice-specific CNs, either being dedicated or shared among slices. The 5G CN also fol-
lows the Software-Defined Network (SDN) concept. Indeed, some NFs are dedicated to Control
Plane (CP) functions, whereas one NF is dedicated to User Plane (UP). This NF is called the
User Plane Function (UPF). It is responsible for data forwarding. It acts as a gateway between
the RAN and external data networks, such as the internet or the edge network, and performs
packet forwarding and QoS handling. The latter is achieved through one or more Packet Data
Unit (PDU) sessions per UE. Each PDU session consists of one or many QoS flows, allowing
the overall network to perform differentiated packet treatment. When Internet Protocol (IP)
packets arrive to the UPF, the latter marks them according to the QoS flow requirements and
forwards them to the RAN. The latter will map the QoS flows to Data Radio Bearer (DRB),
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Figure 2.1: 5G Networks architecture [21]

which are logically separated entities at the RAN common between gNB and UE (i.e., both UE
and gNB can identify which DRB the data belongs to). The other NFs are dedicated to CP,
mainly the Access and Mobility Management Function (AMF), responsible of UE’s registration
and mobility, and the Session Management Function (SMF), responsible for session manage-
ment, including IP address assignment. We will not dig into the details of other NFs since it is
not the scope of this thesis. The reader may refer to [22] for more details about the 5GC.

2.3 5G New Radio (NR)

5G NR is the air interface or radio access technology that is at the core of the 5G wireless
communication system. 5G NR is designed to provide the wireless connectivity required for
5G networks, which offer higher data throughput, lower latency, and improved performance
compared to their 4G predecessors. The following sub-chapters will describe the main features
of the 5G NR air interface.

2.3.1 NR stack

The 5G NR protocols stack is depicted in Figure 2.2. The protocol stack is the same for gNB and
UE. However, the functions executed at each layer can be different depending on whether it is
at the UE or the gNB. The 3GPP standards clearly define the functions of UE and gNB at each
layer. The functionalities of the different layers can be divided into a CP and a UP. Moreover,
The layers are divided into two logical entities: (i) Centralized Unit (CU); (ii) Distributed Unit
(DU). The CU is divided into CU-CP and DU-CP. The CU-CP contains the Radio Resource
Control (RRC) and the CP function of the Packet Data Convergence Protocol (PDCP) while
the CU-UP contains the Service Data Adaptation Protocol (SDAP) and the UP of the PDCP
functions (PDCP-U). The RRC layer is responsible for broadcasting system information, man-
agement of UE connections, security, mobility, or measurement reporting in support of mobility
functions. It also forwards CP messages to the AMF via the Next Generation Application Pro-
tocol (NGAP) protocol. The NGAP protocol provides control plane signalling between the RAN
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Figure 2.2: 5G NR protocol stack [23]

nodes and the AMF over the Stream Control Transmission Protocol (SCTP) transport protocol.
The PDCP-U transfers user data, which relies on sequence numbering for retransmission and re-
ordering purposes, header compression, and ciphering. The PDCP-C notably performs integrity
protection and transports control data. The SDAP is responsible for the mapping from QoS
flows to radio bearers and the marking of the corresponding packets in UL and DL. In the UE,
the mapping might be configured explicitly, or reflective QoS is applied, where the UE applies
the same mapping in UL as it appeared in the DL. The GPRS Tunneling Protocol (GTP) layer
encapsulates/decapsulates user data by adding GTP headers and forwarding the UL data to
UPF and SDAP in case of DL data. The DU contains the Radio Link Control (RLC), MAC and
the PHysical Layer (PHY) layers. The RLC layer buffers data received from the PDCP until it
can be sent on the wireless link. It furthermore segments data packets that cannot be sent at
once, and performs retransmissions if configured in the Acknowledged Mode (AM) as opposed
to the Unacknowledged Mode (UM). The MAC layer manages the wireless link by assigning
resources to UEs by means of scheduling. This involves priority handling between multiple UEs
through dynamic scheduling and priority handling between a UE’s radio bearers by prioriti-
zation. Through the corresponding scheduling decisions, it multiplexes the data of a UE into
transport blocks that are sent over the air. Errors in transmissions to/from a UE are handled
by the Hybrid Automatic Repeat Request (HARQ) protocol, which triggers retransmissions of
data. Finally, the PHY encodes data to be sent over the antenna, following the commands of
the MAC. This involves (de-)coding and (de-)modulation of data, mapping to antennas, etc.

2.3.2 Physical Layer features

Radio resources

At the PHY layer, “radio resources” refer to the part of the spectrum, time, and space that
are allocated to support the transmission of data and communication between devices (i.e., UEs
and gNBs). Efficient management and allocation of radio resources are crucial to ensure the
optimal performance of 5G networks. The unit of allocation of radio resources is the PRB. The
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latter exists in both 4G Long Term Evolution LTE and 5G NR air interfaces. A PRB is defined
by a specific amount of frequency spectrum (in Hertz) and a duration of time (in milliseconds).
The LTE PRB (Physical Resource Block) is made up of 12 consecutive subcarriers (with a
fixed SCS of 15 KHz) for a duration of one slot (i.e., 0.5 ms). In contrast, the 5G NR PRB only
defines the frequency domain, i.e., 1 PRB = 12 subcarriers. The spacing between the subcarriers
and the time slot duration are based on the Numerology, which will be introduced in section
2.3.2. It should be noted that the PRB’s shape in 5G NR with numerology 0 is similar to a
4G LTE PRB as depicted in Figure 2.3. The time slot duration is divided into 14 Orthogonal
Frequency-Division Multiplexing (OFDM) symbols. To summarize, a PRB is a two-dimensional
object that takes 12 subcarriers in frequency and 14 OFDM symbols in time. PRBs are used
to carry data in both the UL and DL directions. In the DL, the gNB allocates PRBs to UEs
for receiving data. In the UL, UEs transmit data on assigned PRBs. Both 4G LTE and 5G
NR use the Orthogonal Frequency-Division Multiple Access (OFDMA) as the modulation and
access scheme. OFDMA allows multiple UEs to share the same frequency band and time period
by dividing the available spectrum into PRBs, each serving a single UE or group of UEs. This
division enhances the efficiency and capacity of the network. A PRB is allocated to a UE via
signaling through the Downlink Control Indicator (DCI). The latter provides the UE with the
necessary information, such as the resource allocation dedicated to the UE in UL or/and DL.
The DCI is sent to the UE on the Physical Downlink Control Channel (PDCCH) channel.

Figure 2.3: Physical Resource Block in numerology 0 (similar to 4G LTE)

The amount of data carried by a PRB is computed according to the Modulation and Coding
Scheme (MCS), number of MIMO layers, and the code rate (i.e., the portion of real data without
the Cyclic Redundancy Check (CRC) attachment) [24]. Network operators and gNBs dynam-
ically allocate PRBs to UEs based on factors like the UE’s QoS requirements, traffic demand,
and channel conditions. This allocation is part of the overall radio resource management in
cellular networks, performed by the 5G scheduler, which is the main intelligence of the gNB.

Numerology

The Numerology in 5G refers to the SCS that is used to transmit data. The SCS is the distance
between two adjacent subcarriers, which are the individual frequencies that are used to transmit
data. 5G NR supports a variety of numerologies, which gives it the flexibility to be tailored
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Figure 2.4: Numerology illustration

to different types of devices and applications. For example, lower numerologies can be used to
achieve longer range and lower latency, while higher numerologies can be used to achieve higher
data rates. 5G NR numerologies come to make radio resource allocation more flexible. Indeed,
5G NR numerologies reshape radio units in time and frequency. It reduces the Transmission
Time Interval (TTI) to 2, 4, 8, 16 times smaller than the 4G’s 1 ms. Figure 2.4 illustrates 4
PRBs with different numerology.
In 5G NR, each numerology µ is defined by a SCS, and a cyclic prefix [25]. 5G NR Release-15
[26] specifies five main numerologies (µ) and defines a SCS of 15 ∗ 2µ kHz and a slot duration
of 1/2µ ms, allowing to reduce the access latency considerably at the RAN. The following table
shows the different numerologies that are supported by 5G NR. Numerology is a powerful tool
that allows 5G NR to be tailored to the specific needs of different devices and applications. This
makes 5G a versatile and adaptable technology that can be used for a wide range of purposes.

BandWidth Part (BWP)

In 5G wireless communication systems, ”BWP” stands for Bandwidth Part. A BWP is a concept
introduced to optimize and manage the allocation of available spectrum within the 5G network.
BWPs are subsets of contiguous PRBs allocated per UE, i.e., the UE expects to use resources
only in a specific part of the bandwidth. It is a way to divide and configure the available spectrum
to meet specific communication requirements and adapt to various use cases efficiently. BWP
allows mobile network operators to tailor their networks to the specific needs of their UEs and
applications. For example, an operator can use a small BWP to support a low-power Internet Of
Things (IoT) device or a large BWP to support a UE that is downloading a large file. BWP also
allows mobile network operators to make more efficient use of spectrum resources. For example,
an operator can use a single BWP to support multiple UEs or multiple BWPs to support a
single UE. This flexibility allows operators to maximize the number of UEs that can be served
on a given amount of spectrum. Moreover, each BWP has its own numerology, enabling more
efficient sharing of the spectrum among the heterogeneous services in 5G RAN and hence among
slices. A UE can be configured with up to 4 BWPs in UL and DL, but only one can be used at

14



On enforcing Network Slicing in the new generation of Radio Access Networks

Time

Fr
eq

u
e

n
cy

Numerology 0

Numerology 1

Numerology 2

BWP {µ = 0, 𝑵𝑹𝑩 = 𝟓}
Assigned to user i

BWP {µ = 1, 𝑵𝑹𝑩 = 𝟑}
Assigned to user j

BWP {µ = 0, 𝑵𝑹𝑩 = 𝟖}
Assigned to user j

BWP {µ = 2, 𝑵𝑹𝑩 = 𝟑}
Assigned to user i

1 ms1
8

0
 K

H
z

3
6

0
 K

H
z

7
2

0
 K

H
z

0.5 ms

0.25 ms

Guardband
between BWPs

Waiting time of 
user i

Figure 2.5: BWPs definition in time and frequency domain with mixed numerologies

a given time. Figure 2.5 shows 4 BWP, with different numerologies, defined in the time domain
(x-axis) and frequency domain (y-axis). The BWPs concept with mixed numerology enables
a dynamic allocation of numerology and PRBs. Hence, a UE can benefit from more than one
service with different numerology values. Besides, it will reduce the UE power consumption since
the UE will only operate on a part of the bandwidth instead of processing all the bandwidth,
and the power saving schemes with UE adaptation to BWP bandwidth introduced in 5G NR
standards [27] show 16% - 45% power saving gain. BWP is a key feature of 5G NR that plays
an important role in enabling 5G to meet the demands of the future. It is worth noting that 5G
NR specifications [24] RRC protocol and DCI. However, deciding the size and the numerology
of BWPs and BWPs scheduling decisions are still open problems.

Connected Discontinuous Reception (C-DRX)

Next-generation cellular networks should accommodate the explosive growth in mobile data
traffic and support different heterogeneous services to empower industry verticals and enable
new business models. To achieve this goal, 5G NR has introduced several features to increase
throughput and decrease latency, mainly numerology, massive MIMO, and higher bandwidths.
These features increase PC for both the network infrastructure and the UE. The latter, which are
typically powered by a limited battery, can suffer from poor QoE [18] due to the rapid discharge
of the battery. The communications industry should therefore develop strategies to optimize the
energy efficiency of 5G networks without compromising QoS [19]. Leading wireless equipment
vendors have begun studying UE power-saving schemes in 5G NR [20]. They have investigated
several techniques to reduce PC, such as C-DRX with a new set of parameters introduced by
5G NR and BWP adaptation.
C-DRX is a power-saving technique that is used in 5G NR to reduce the power consumption of
UEs. Without C-DRX in 5G NR, a UE stays awake all the time to decode the DL data. This
consumes a large amount of the UE’s power. C-DRX works by allowing UEs to sleep for certain
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periods of time. When a UE is in sleep mode, it consumes less power than when it is active.
The gNB configures the UE with a set of C-DRX parameters. These C-DRX parameters are
selected based on the type of application to minimize PC. However, they may increase the
latency because the UE may be in a C-DRX sleep state when the data arrives at the gNB,
and the latter should wait for the UE to become active. When C-DRX is activated, the time
is divided into cycles, which can be long or short. Each cycle consists of an ON period and
an OFF period. The ON period, defined in terms of milliseconds, is the period during which
the UE remains awake and decodes the DL data. We consider the C-DRX parameters in 5G
NR, depicted in Figure 2.6, to be (i) the cycle length; (ii) the duration of the ON period; (iii)
the offset between the start of the cycle and the start of the ON period. The latter is a new
parameter introduced by the 5G NR standard in order to shift the ON period since the arrival of
the data is not always aligned with the cycle length, i.e., the data may arrive in the middle or at
the end of the cycle. The ON period can be shifted to the middle or end of the cycle instead of
leaving the UE active for the entire cycle, thus reducing latency while saving maximum power.
C-DRX is a very effective power-saving technique, and it can help to extend the battery life of
UEs significantly. However, it is important to note that C-DRX can also increase latency, as the
UE may not be able to receive data immediately when it is needed. The 3GPP study, conducted
in [20], shows the impact of C-DRX parameters and BWP adaptation on network performance,
mainly on latency and power gain. However, the 5G NR standard does not provide solutions to
derive the C-DRX parameters and the BWP configuration dynamically.

Figure 2.6: C-DRX parameters and BWP

Radio coverage

Radio coverage in 5G is the area in which a 5G radio signal is strong enough to be used by
devices. The coverage of a 5G network depends on a number of factors, including the frequency
bands that are being used, the type of antennas that are being used, and the environment in
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which the network is deployed. RLF is an important criterion in modern wireless networks,
including 5G. RLF is critical for services requiring high reliability, which is one of the key
features of 5G, such as those supported by URLLC class[11]. RLF impacts principally network
services that involve high-mobile devices, such as vehicles and flying drones.
Indeed, combining highly mobile UEs, at high altitude like UAVs [12], with the current limited
number of deployed 5G cells and their small coverage due to wider frequency bands’ usage [13]
(which make the radio link between the UE and the gNB more susceptible to blockage and
degradation leading to sudden interruption of the communication link), may yield to frequent
RLF. RLF corresponds to a disconnection from the network, which strongly impacts sensitive
services, such as UAV safety, where RLF increases the network latency and, in the worst cases,
to UAV’s losses and collisions. In this context, it is important that 5G tackles the RLF issue
to improve reliability by, for instance, predicting when a mobile device has a high probability
of seeing a RLF and taking the appropriate action, like anticipating the Handover or updating
the trajectory of the UAVs.
RLF can be estimated by measuring radio key indicators such as RSRP, RSRQ, CQI, and PHR.
By combining this information, it is possible to know the quality of the radio channel, hence
the probability of RLF. However, deriving a closed form of the RLF distribution probability is
very challenging. Different metrics are considered to measure the radio channel quality; among
these metrics, the most used are:

• Reference Signal Receive Power (RSRP): defined as the linear average received power
(in Watts) of the signals that carry cell-specific Reference Signals (RS) within the frequency
bandwidth. RSRP provides a cell-specific signal strength metric. This measurement is
mainly used for handover decisions. It enables the gNB to rank different candidate cells
according to their signal strength.

• Reference Signal Strength Indicator (RSSI): defined as the total received power
observed by the UE from all sources, including serving and non-serving cells, adjacent
channel interference, and thermal noise within the measurement bandwidth. RSSI is not
reported as a measurement in the 3GPP standard since [28], instead, it is used to compute
the RSRQ measurement.

• Reference Signal Receive Quality (RSRQ): provides a cell-specific signal quality
metric. Similar to RSRP, this metric is used mainly for handover and cell re-selection
decisions. RSRQ enables the gNB to rank different candidate cells according to their
signal quality. It is used in scenarios where RSRP measurements do not provide sufficient
information to perform reliable mobility decisions. RSQR is computed as follows: RSRQ =
N∗RSRP
RSSI

Where N is the number of PRBs of the bandwidth, RSRP indicates the wanted signal
strength, RSRQ enables the combined effect of signal strength and interference to be
reported efficiently.

• Channel Quality Indicator (CQI): It is an indicator carrying the information on how
good/bad the communication channel quality is. It is reported by UEs to indicate to the
gNB the level of modulation and coding the UE could operate (i.e., means choosing the
Transport Block Size (TBS)) [29], which in turn can be directly converted into throughput.

• Power headroom (PHR): indicates how much transmission power is left for a UE to
use in addition to the power being used by the current transmission. If the PHR value
is negative, it indicates that the UE is already transmitting with greater power than it is
allowed to use.
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2.3.3 Radio resource allocation

The DCI is a signaling mechanism that is used in 5G NR to control the DL transmission of
data to UEs and UL transmission of data from the UE to the gNB. DCI is transmitted on the
PDCCH. DCI carries a variety of information, including: (i) The UE(s) that are scheduled to
receive/send DL/UL data; (ii) The PRBs that are allocated to each UE; (iii) The MCS that is
used to transmit the data; (iv) The HARQ process that is used to retransmit lost or corrupted
data; (v) the time slot where data is sent/received. The 5G scheduler is responsible of computing
the different information sent in DCI (mentioned above). The 5G scheduler monitors the data
queues of each UE, then according to the size of the queue, the channel quality, and the scheduler
policy (e.g., fair scheduling between the UEs or with priority), the 5G scheduler computes the
number of PRBs required to transmit the UEs data. After receiving the DCI from the concerned
UE, it will send/receive data on the allocated PRBs using the parameters carried by the DCI
(e.g., the MCS). The gNB can also switch the BWP of a UE using DCI. For instance, the UE
can be scheduled on multiple BWPs.
However, resource allocation in UL is more challenging since the gNB has to be aware of the
UE’s queue status to allocate PRBs according to the UE needs, which results in increasing the
latency by the signaling overhead. SPS [16] and GF [17] scheduling methods are proposed to
overcome the signaling overhead, hence reducing the UL latency. On the one hand, SPS is a
resource allocation scheme that allocates radio resources to users for a semi-persistent period of
time, typically in the order of milliseconds or seconds. The resource allocation in SPS is static
during the whole period. On the other hand, GF is a mechanism that allows UEs to transmit
data without explicitly requesting permission from the gNB. Although these techniques are able
to reduce the latency, they are less efficient for dynamic traffic patterns (dynamic inter-arrivals
and dynamic data sizes) and less adaptable to quick channel condition changes, especially in FR2
frequencies (> 6Ghz) and high mobility UEs. Furthermore, GF may impact the reliability of the
services since resource usage can collide in frequency between UEs. The UL Dynamic Scheduling
(DS) method is widely used among network operators due to its efficiency to allocate PRBs and
high adaptation capability to channel conditions. However, it is inefficient for URLLC services
due to its negative impact on the latency. Indeed, the PRBs are allocated to a UE upon the
gNB receiving a Scheduling Request (SR) on the Physical Uplink Control Channel (PUCCH)
channel. The gNB then assigns PRBs to the UE and sends a DCI to the UE, informing mainly
the MCS, the number of PRBs, and an integer, called the k2 parameter, to be used for that
transmission. The UE will send the data after k2 slots from receiving the DCI. The first DCI
contains a minimum grant in terms of the number of PRBs (since SR is just one bit and does
not inform the gNB about the current queue status of the UE). If the UE needs to send more
data (i.e., the minimum grant is not enough), it piggybacks a BSR with the data to inform the
gNB about the UL UE’s queues status. Then, the gNB will send a DCI with an additional
number of PRBs. Figure 2.7 illustrates the 3GPP-compliant dynamic UL scheduling procedure.
Since SR is sent each time before UE sends data, the dynamic scheduler can adapt to changes
in channel conditions very quickly. However, this method leads to a high latency which consists
of the SR latency (delay between generating the SR and receiving the Physical Uplink Shared
Channel (PUSCH) data) and the BSR delay (delay between sending the BSR and receiving the
last PUSCH of the same transmission).
Basically, the standard dynamic UL scheduling is unsuitable for URLLC services requiring a
latency of less than 1 ms. SPS and GF scheduling methods are proposed to reduce the latency.
The gNB allocates PRBs to the UE without waiting for an SR. The PRBs are reserved for the
UE periodically. However, these methods give a fixed grant size regarding PRBs and periodic
slots, which is unsuitable for dynamic data patterns. Besides, they respond to changing channel
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Figure 2.7: 3GPP dynamic UL scheduling procedure

conditions much slower than dynamic scheduling since the MCS is reported only once at the
activation step. Hence, it reduces the reliability of transmissions, especially in very dynamic
channel conditions like FR2 and high mobility UEs, which is unsuitable for URLLC services.

2.3.4 Network slicing

Network slicing allows the creation of virtual networks on top of the same infrastructure. Each
virtual network is considered as a network slice and tailored to satisfy the service or application
needs. Network slicing can help to reduce CAPital EXpenditures (CAPEX) and OPerating
EXpenses (OPEX) as one physical infrastructure is shared efficiently to fulfill the heterogeneous
communication service requirements of emerging network services. Apart from the research per-
spective, a number of industry consortium and standardization organizations have highlighted
the architectural need for slicing, such as International Telecommunication Union (ITU) [30],
Next Generation Mobile Networks (NGMN) alliance [31], and Global System for Mobile Com-
munications Association (GSMA) [32].
A slice is signalled within a Public Land Mobile Network (PLMN) through the Network Slice Se-
lection Assistance Information (NSSAI) [22], which is sent by a UE after random access in order
to assist the network with slice selection. The NSSAI is further divided into the Slice/Service
Type (SST), which can be either the eMBB, URLLC or mMTC and the Slice Differentiator
(SD) to differentiate slices with the same SST. The SBA architecture allows customizing the CN
for specific slices. The RAN should respect principles of slicing such as the support of QoS and
resource isolation, but slicing is otherwise implementation-specific [33]. It is worth mentioning
that an application or a network service can rely on more than one network slice. A PDU
session is created for each slice per UE, allowing the handling of slices in the core network and
appropriate mapping to the radio bearers in the RAN through the SDAP layer. An example
is the case of autonomous drones for surveillance, which require a eMBB service to stream a
high-quality video stream and a uRLLC service to control the drone. Therefore, from the side
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of the UE, it can be part to parallel network slices, up to 8 different network slices according to
[34].
On the RAN side, enforcing network slicing is more challenging as the radio resources are very
limited, and the new features introduced by 5G NR make the management of radio resources
more complex. Particularly, mixed-numerology is one of the main features of 5G NR. Moreover,
a UE can not use more than one numerology at a given time slot due to physical layer constraints.
Besides, the coexistence of mixed numerology in the same carrier introduces non-orthogonality to
the system and causes INI as subcarriers associated with different numerology will no longer be
orthogonal to each other. In this context, the 5G NR radio management system should cautiously
select the numerology per UE while serving different network slices. While the eMBB slices need
more bandwidth to satisfy the high throughput requirements, the URLLC slices require a shorter
time slot duration to ensure a lower latency requirement, and mMTC slices need better frequency
management to sustain a massive number of connected devices. By adding the network slice
dimension, the radio resource management in 5G NR becomes more complex compared to the
classical resource management (used in 4G and 5G without network slicing). Indeed, it should
consider not only (i) time-domain scheduling, (ii) frequency-domain scheduling but also (iii)
numerology selection and (iv) multiple slice management per UE.

2.3.5 Dynamic Time Division Duplex

In wireless communication systems, TDD is a duplexing method that allows devices to use the
same frequency for both transmitting and receiving, but not at the same time. Instead, it divides
time into alternating time slots for transmitting and receiving data. This is in contrast to Fre-
quency Division Duplexing (FDD), which uses separate frequency bands for UL (transmitting)
and DL (receiving) communications. During one time slot, the device can transmit data, and
during the next, it can receive data. This switching between transmit and receive modes occurs
rapidly, typically in two or three OFDM symbols depending on the hardware capabilities. The
time in 5G systems is divided into frames. A frame is a 10-millisecond period that is divided
into 10 subframes, each of which is 1 millisecond long. The number of slots in a subframe
depends on the numerology (see Section 2.3.2). A frame is divided into periods called TDD
period. In each TDD period, a TDD pattern is followed by both gNB and UE. However, unlike
LTE, which specifies seven predefined TDD patterns for UL and DL allocation in a radio frame,
5G NR allows defining UL/DL patterns more flexibly. Indeed, it is possible that a slot may not
be configured to be fully used for DL or for UL. OFDM symbols in a slot can be classified as
“downlink”, “flexible”, or “uplink”. Flexible symbols can be configured either for UL or for DL
transmissions. Finally, like LTE, a guard period is necessary for the transceiver to switch from
DL to UL and allow timing advance in UL.
The slot configuration, or TDD pattern, is indicated to UE either via Broadcast or RRC (re-
)configuration messages. We distinguish between a common configuration that concerns all
the slots marked as DL or UL, and a dedicated configuration that covers all slots and sym-
bols noted as Flexible. The DL/UL pattern is repeated periodically according to dl − UL −
TransmissionPeriodicity, noted δ. The value of δ depends on the NR numerology (µ). For
instance, δ = 0.625ms can be used only with µ ∈ 3, 4, while δ = 2.5ms can be used for all
numerology expecting µ = 0. Hence, depending on the numerology and δ, the number of slots
(noted Tδ) varies completely. It is derived as follows: Tδ = δ × 2µ. For instance, if δ = 2.5ms
and µ = 2, the number of available slots is equal to 10. If δ = 5ms and µ = 4, the number of
available slots equal to 80. Table 2.1 summarizes the number of slots per subframe/frame per
numerology.
In addition to δ, the common configuration includes the number of slots for DL (dslots) located at
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TDD period of 20 time slots

Number of Downlink slots Number of Uplink slots

Figure 2.8: 5G NR TDD example pattern

Table 2.1: Number of slots in a subframe/frame for each numerology for normal CP

µ SCS No. of slots per subframe No. of slots per radio frame Slot duration

0 15khz 1 10 1

1 30khz 2 20 0.5

2 60khz 4 40 0.25

3 120khz 8 80 0.125

4 240khz 16 160 0.0625

the beginning of the transmission period and for UL (uslots) located at the end of the transmission
period. dsym symbols within the slot immediately following the last full DL slot and last usym
symbols in the slot preceding the first full UL slot are also indicated in the common configuration.
The remaining symbols are considered flexible symbols. These flexible symbols can further be
allocated to either DL or UL by making use of dedicated configuration. Figure 2.8 illustrates a
UL/DL pattern. For more details on TDD pattern management in 5G NR, readers may refer
to [35].
5G networks and beyond are designed to support an extensive range of applications [36][37],
including those requiring high-speed data transfer and low-latency communication, such as im-
mersive holographic communication, Internet of Skills, and 4D Interactive mapping [1]. Com-
pared to previous generations of mobile networks, these emerging applications generate high UL
traffic, corresponding to offloaded intensive computations that must be executed by a remote
application located at the edge of the network. As a result, emerging services in 5G and 6G
networks may be DL dominant, UL dominant or balanced between UL and DL. As a result, dy-
namic TDD has become a key enabler for 5G and beyond, as it allows resources to be allocated
to these applications as needed, ensuring optimal performance and QoS. Dynamic TDD allows
the gNB to change the TDD scheme dynamically without interrupting the UE’s connectivity,
i.e., by changing the number of dedicated UL and DL slots based on the UE’s traffic patterns.
Thus, Dynamic TDD is able to: (i) Improve resource utilization efficiency, e.g., when traffic is
dominant on the UL or DL, allocating more slots on the UL or DL will avoid wasting resources
in the other non-dominant direction; (ii) Reduce the latency since dynamic TDD reduces the
queue buffer size faster than static TDD [38]; (iii) Increase application throughput as more slots
can be allocated to the UL or DL according to various traffic patterns. However, the 5G NR
specifications only cover the mechanism allowing the gNB to inform the UE about the UL/DL
slots pattern in a TDD frame, leaving the algorithm deriving the pattern UL/DL open.
Compared to LTE, a more flexible frame structure in terms of slots ratio (UL/DL) can provide
a greater traffic adaptation gain but also lead to more dynamic cross-link interference. Cross-
link interference occurs when one gNB transmits while another receives in the same frequency
band (i.e., two neighboring gNBs using a different TDD pattern). As shown in Figure 2.9, two
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types of cross-link interference are introduced, namely gNB-to-gNB interference and UE-to-UE
interference, which can significantly degrade system performance and result in decreased UE’s
throughput.

Downlink base station at time t
Uplink base station at time t

gNB-to-gNB interference

UE-to-UE interference

Figure 2.9: Illustration of cross-link interference in dynamic TDD system

The UE-to-UE interference impacts edge UEs, while gNBs are affected by the gNB-to-gNB
interference when they are neighbors with high transmission power gNBs. Generally, gNBs use
high transmission power to accommodate edge UEs. Thus, edge UEs are considered a main factor
for cross-link interference. As a result, we assume that neighboring cells may not experience
cross-link interference if there are no edge UEs.

2.4 Machine Learning (ML)

ML is a subfield of AI that focuses on the development of algorithms and statistical models that
enable computer systems to improve their performance on a specific task through learning from
data. In other words, ML allows computers to learn and make predictions or decisions without
being explicitly programmed for each specific task.
ML is applied in various fields, including Natural Language Processing (NLP), image recognition,
recommendation systems, autonomous vehicles, finance, healthcare, and more. ML is playing a
crucial role in communication and networking [2] with the ability to provide a self-configured
and self-optimized network which is a key characteristic of 6G networks.

2.4.1 Classification of ML

ML implementations are classified into four major categories, depending on the nature of the
learning “signal” or “response” available to a learning system which are as follows:

1. Supervised learning: is the ML task of learning a function that maps an input to an output
based on example input-output pairs. The given data is labeled.

2. Unsupervised learning: is a type of ML algorithm used to draw inferences from datasets
consisting of input data without labeled responses.

3. Reinforcement learning: is the problem of getting an agent to act in the world so as to
maximize its rewards. An agent is not told what actions to take as in most forms of ML
but instead must discover which actions yield the most reward by trying them.
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4. Semi-supervised learning: is an approach to ML that combines small labeled data with a
large amount of unlabeled data during training. Semi-supervised learning falls between
unsupervised learning and supervised learning.

Another categorization of ML tasks arises when one considers the desired output of a machine-
learned system:

1. Classification: When inputs are divided into two or more classes, the learner must produce
a model that assigns unseen inputs to one or more of these classes. This is typically tackled
in a supervised way.

2. Regression: This is also a supervised problem, A case when the outputs are continuous
rather than discrete.

3. Clustering: When a set of inputs is to be divided into groups. Unlike in classification, the
groups are not known beforehand, making this typically an unsupervised task.

2.4.2 ML algorithms

ML algorithms are mathematical models that learn from data and can be used to make predic-
tions or decisions. There are many different types of ML algorithms, each with its own strengths
and weaknesses.
Some of the most common ML algorithms include:

1. Linear Regression (LR): LR is a statistical method for modeling the relationship between
a scalar response variable and one or more explanatory variables (also known as dependent
and independent variables). The case of one explanatory variable is called simple LR; for
more than one, the process is called multiple LR. LR fits a linear equation to the data, with
the slope of the line representing the relationship between the explanatory and response
variables. The goal is to find the best-fitting line that minimizes the difference between
the predicted and actual values of the response variable. Here is an example of a simple
LR model:
y = mx+ b
where: y is the response variable, x is the explanatory variable, m is the slope of the line,
b is the bias. The slope of the line represents the change in the response variable for every
unit change in the explanatory variable. The bias represents the value of the response
variable when the explanatory variable is equal to zero.

2. Support Vector Machine (SVM): It is a supervised ML algorithm that can be used for
both classification and regression tasks. SVMs work by finding a hyperplane in the input
space that separates the data points into classes. The hyperplane is chosen to maximize
the margin between the classes, which is the distance between the hyperplane and the
closest data points from each class.

3. Long Short-Term Memory (LSTM): It is a type of Recurrent Neural Network (RNN)
that is capable of learning long-term dependencies in sequential data. LSTM networks
are particularly well-suited for tasks such as NLP, machine translation, and time series
forecasting. LSTM networks work by using a special type of memory cell that can store
information for long periods of time. This memory cell allows LSTM networks to learn
long-term dependencies in sequential data, which is something that traditional RNNs are
unable to do.
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2.4.3 Deep Reinforcement Learning (DRL)

DRL, a very fast-moving field, is a combination of RL and Deep Learning. It is also the most
trending type of ML because it can solve a wide range of complex decision-making tasks that were
previously out of reach for a machine to solve real-world problems with human-like intelligence.
Reinforcement learning is a generic framework for representing and solving control tasks, but
within this framework, we are free to choose which algorithms we want to apply to a particular
control task. Deep learning algorithms are a natural choice as they are able to process complex
data efficiently. The deep neural network is trained to predict the expected reward of the agent
for taking a given action in a given state. Once the deep neural network is trained, the DRL
agent can use it to select actions that are likely to lead to high rewards. The agent can also use
the deep neural network to learn from its mistakes and improve its performance over time.

Figure 2.10: DRL framework

2.4.4 DRL algorithms

DRL is playing a crucial role in communication and networking [2] with the ability to provide
a self-configured and self-optimized network that easily adapts to network changes. Moreover,
DRL is a lightweight framework that enables quick decisions and hence takes real-time actions
in the network characterized by its dynamicity and needs fast decisions. DRL techniques are
based on the interaction of the DRL Agent with its environment by applying different actions
and receiving rewards according to the actions taken. Let S denotes a set of possible states,
and A denotes a set of actions. The state s ∈ S is a tuple of the environment’s features relevant
to the problem at hand. Also, it describes the agent’s relation with its environment. Assuming
discrete time steps, the agent observes the state of its environment, st ∈ S at time step t. It
then takes action at ∈ A according to a certain policy π. Once the agent takes action at, its
environment moves from the current state st to the next state st+1. As a result of this transition,
the agent gets a reward rt+1 that characterizes its benefit from taking action at at state st. This
scheme forms an experience at time t + 1, hereby defined as et+1 = (st, at, rt+1, st+1), which
describes an interaction with the environment. The set of interactions et ∈ E is called Replay
Buffer, which is used to train the DRL agent in order to derive the optimal policy π∗. The latter
provides the optimal action at, to take in each state st, in a way to maximize future cumulative
discounted reward Gt defined as follows:

Gt .
=

T∑
k=0

γkrt+k+1 = rt+1 + γGt+1 (2.1)

With γ ∈ [0, 1] defined as the discount rate that penalizes the future rewards, and T equal to the
time horizon, which is finite for episodic problems (i.e., problems that end when the environment
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is a final state) and infinite for continuing problems.
DRL algorithms can be broadly categorized into two main types: Markov Decision Process
(MDP)-based and Bandits-based. The MDP-based DRL is when the action impacts the envi-
ronment following predefined MDP transitions, while Bandits-based DRL is when the actions
do not move the environment from one state to another state following predefined MDP tran-
sitions. In this thesis, we focus on MDP-based DRL methods. The latter are divided into two
main types: Model-based and Model-free. Model-based DRL algorithms learn a model of the
environment, which is a function that predicts the next state and reward given the current state
and action. The agent then uses the model to plan its actions, i.e., to select the action that is
most likely to lead to the desired outcome. Model-free DRL algorithms do not learn a model
of the environment. Instead, they learn directly from experience, i.e., by trial and error. The
agent starts by randomly selecting actions and observing the consequences. Over time, the agent
learns to select the actions that are most likely to lead to the desired outcome. In this thesis,
we focus on Model-free methods since it is difficult to create a model for the complex RAN
environment. The Model-free methods are divided into two categories: Value-based methods
and Policy-based methods. Value-based DRL algorithms learn a value function, which estimates
the expected value of taking a given action in a given state. The agent then selects the action
with the highest expected value. Policy-based DRL algorithms learn a policy that directly maps
states to actions. The agent then selects the action specified by the policy.

Figure 2.11: DRL algorithms classification

In this thesis, we mainly used two methods: Deep Q-Network (DQN) [39] and Deep Deterministic
Policy Gradient (DDPG) [40]. DQN is a Value-based method, and DDPG is a Policy-based
method. We also used Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [41], which
is the DDPG extension for multi-agents environments. DQNs are trained using a technique called
experience replay. Experience replay allows the agent to learn from its past experiences without
having to interact with the environment in real-time. This makes DQNs more efficient and less
likely to get stuck in local optima. Here is a simplified example of how a DQN works: (i) The
agent starts in a state and selects an action based on its current policy; (ii) The agent takes
the action and observes the next state and reward; (iii) The agent stores the experience (state,
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action, next state, reward) in its memory; (iv) The agent samples a batch of experiences from its
memory and updates its policy using a Q-learning algorithm.; (v) The agent repeats steps (i)-
(iv) until it reaches the desired level of performance. DDPG is an actor-critic algorithm, which
means that it has two separate neural networks: the actor-network and the critic network. The
actor-network learns the policy, and the critic network learns the value function. It also uses
the Experience replay to learn from its past experiences. Here is a simplified example of how
DDPG works: (i) The agent starts in a state and selects an action based on its current policy;
(ii) The agent takes an action and observes the next state and reward; (iii) The agent stores the
experience (state, action, next state, reward) in its memory; (iv) The agent samples a batch of
experiences from its memory and updates its policy and value function using a policy gradient
algorithm and a Q-learning algorithm, respectively; (v) The agent repeats steps (i)-(iv) until it
reaches the desired level of performance.
Unfortunately, traditional DRL approaches, such as Q-Learning or policy gradient, are poorly
suited to multi-agents environments. One issue is that each agent’s policy changes as training
progresses, and the environment becomes non-stationary from the perspective of any individual
agent (in a way that is not explainable by changes in the agent’s own policy). This presents
learning stability challenges and prevents the straightforward use of past experience replay.
Policy gradient methods, on the other hand, usually exhibit very high variance when coordination
of multiple agents is required [41]. Besides, the state-action space will grow exponentially when
a learning agent keeps track of all agent actions. Hence, MADRL approach was introduced to
address the above issues.
MADRL system can be represented by the tuple of ({Sj}N1 , {Aj}N1 , {πj}N1 , {rj}N1 ). Let G
denotes a set of agents. Each agent j ∈ G observes a state stj ∈ Sj from the environment and
executes an independent action atj from its own set of actions Aj on the basis of its local policy
πj : Sj → Sj . Agents perform joint action at = at1, a

t
2, · · · , atN ∈ A, where A = (A1 × A2 × ·

· · × AN ), which leads the environment to move from state stj ∈ Sj to a new state st+1
j ∈ Sj ,

then the agent j receives a reward rt+1
j . In a centralized reward setting (i.e., the agents are

cooperating), the agents receive a common reward rt+1. The goal of each agent is to learn a
local optimal policy π∗j that forms a central optimal policy π∗ = π∗1, π

∗
2 , · · · , π∗N .

In general, MADRL leverages DRL methods for each agent. DRL methods are classified into
three categories: i) value-based methods, such as DQN; ii) policy-based methods, such as RE-
INFORCE (i.e., Monte-Carlo Policy Gradient); iii) actor-critic methods that combine the two
previous methods, such as A3C and DDPG [42]. In the actor-critic approach, we have mainly
two families, the stochastic policy approach (e.g., A2C and A3C) and the deterministic approach
(e.g., DDPG). In the stochastic policy approach, the actions are selected from the Actor with
different probabilities using the Softmax activation function. The agent should pick the action
that has a high probability. Unfortunately, the main limitation of the stochastic policy approach
is the number of actions that should be limited. In contrast, in the deterministic approach, the
actions are generated directly from the actor-network, enabling continuous actions. In this pa-
per, we are interested in specifying the percentage of UL and DL slots. For this reason, we
have adopted the MADDPG algorithm [41], which is an improved version of DDPG applied in
a multi-agents environment.

2.5 Conclusion

In this chapter, we defined 5G and introduced the key concepts related to 5G NR, the radio
access technology of 5G, as well as the main AI techniques used to optimize prediction and
control tasks. We have alsoidentified the main challenges of slicing and optimizing network

26



On enforcing Network Slicing in the new generation of Radio Access Networks

services at the RAN. In the next chapter, we propose frameworks and solutions to slice the
RAN in order to fulfill different service’s requirements. The different frameworks leverage 5G
NR features such as BWP and numerologies.
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Part I

Network Slicing in 5G NR
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Chapter 3

NRflex: Radio Resources Allocation
in 5G NR in dedicated bandwidths
environment

3.1 Introduction

Network slicing is considered as one of the critical enablers of 5G to support a wide range of
applications and use cases with different requirements [43]. 5G is assumed to support variant
network services that are organized into three main categories: URLLC, eMBB, and mMTC
[44]. Although network slicing has been widely studied and solutions have started to appear,
particularly at the transport and core network parts, slicing (sharing) the RAN resources is still
challenging. Indeed, with the new features introduced by the 5G NR, further investigation is
needed to enforce network slicing at the RAN. 5G NR introduces several new features that can
be beneficial for slicing the RAN [9]. Among these new features, we may mention the concept
of BWPs. The latter aims to enable flexible assignment and configuration of PRBs. BWPs
are subsets of contiguous PRBs allocated per UE, i.e., the UE expects to use resources only
in a specific part of the bandwidth. Besides, 5G NR introduces the concept of numerology,
which uses specific physical layer configuration, mainly SCS. Unlike 4G, where all the slot-time
has the same duration (1 ms), 5G NR by adapting SCS allows reducing the slot-time duration
down to 125 microseconds, which can considerably reduce the RAN latency. Consequently,
each BWP has its own numerology, enabling more efficient sharing of the spectrum among the
heterogeneous services in 5G RAN and hence among slices.
In this first contribution, we introduce NRflex, a novel framework that dynamically enforces
RAN slices in 5G, relying on the concept of BWPs. NRflex addresses the joint PRBs scheduling
and allocation problem with mixed numerology in 5G NR, which allows meeting the latency
requirement of URLLC services while considering the other types of services (mainly eMBB).
NRflex redefines the life-cycle management (LCM) of the RAN slices by leveraging on the
O-RAN architecture [7]. Besides keeping the well-known creation and deletion steps, NRflex
introduces five new steps that enable the RAN resources’ dynamic sharing of running slices. A
preadaptation step runs at the RIC, which dynamically defines the size of a BWP dedicated to
a slice according to gNBs’ feedback. The four other steps run at the gNBs to periodically allow :
(1) deciding which BWP (i.e., slice) a UE has to connect to according to the UE’s buffer status
and the previous active BWP as UEs cannot use two different BWP in parallel; (2) sharing the
BWP of a slice among its UEs according to the UE channel quality and service requirements.
The key contributions of this chapter are:
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• We introduce a novel framework mapped to the O-RAN architecture.

• We introduce a novel definition of RAN slice LCM.

• We propose an algorithm to run at RIC near-time that dynamically computes the size of
BWP dedicated to a RAN slice.

• We propose a multiplexing and scheduling algorithm to run at the gNB that periodically
decides for each UE the active BWP to use and the amount of PRB assigned to it.

3.2 Related works

3.2.1 RAN slicing

Given that flexible numerology plays an important role in network service optimization, es-
pecially to reduce latency, several works have considered combining flexible numerology with
network slicing. The aim is to satisfy URLLC slices’ low-latency requirements while ensuring
eMBB slices throughput requirements. In [45], the authors review the impact of changing nu-
merology on the throughput and end-to-end latency while taking into account the traffic patterns
and the processing delays. Work in [46] explores the potential of optimizing resource allocation
with flexible numerology in the frequency domain and variable frame structures in the time
domain while considering the presence of services with different types of requirements. The
authors used linear programming and Lagrangian duality to design an optimization algorithm
to optimize resource allocation in that case. In [47], the authors study the admission control and
network slicing design for 5G NR systems in which the total bandwidth is sliced (i.e., shared) to
support eMBB and URLLC services. They propose allowing traffic from the eMBB BWP to be
overflowed to the URLLC BWP in a controlled manner by using an efficient iterative algorithm.
In [48], the authors introduce a novel 5G slice resource allocation approach that combines the
utilization of both complete slots (or PRB) and mini-slots with adequate physical layer design
and service requirement constraints. They advocate for a probabilistic characterization that al-
lows estimating feasibility and characterizes the behavior of the constraints. In [49], the authors
propose a self-adaptive flexible TTI scheduling strategy in the eMBB and URLLC coexistence
scenario using ML. They reduce the delay and packet loss rate of the URLLC services while
guaranteeing the eMBB requirements by dynamically selecting TTI according to traffic load and
service requirements.
However, most of the mentioned solutions did not consider a dynamic assignment of BWP as
in NRflex; they use the same numerology throughout the network slice life-time. Besides, they
consider that a UE is attached only to one slice, which is not realistic as 3GPP allows UEs to
be attached to up to 8 network Slices. In contrast, NRflex uses a multiplexing mechanism to
allow UEs to be attached to more than one network slice parallelly.

3.2.2 O-RAN architecture

In parallel with 3GPP groups, a group of network operators as well as big telecommunication
manufacturers names has launched a new initiative known as O-RAN alliance [7]. The latter
specifies the new architecture of RAN in 5G and beyond. The alliance objective is to redesign
the RAN architecture to unlock it from proprietary-locked solutions to an open system allowing
the deployment of novel services and applications on top of the RAN. The O-RAN Alliance
is committed to evolving radio access networks by offering open and standardized interfaces
for every network component. This transformation will reduce network cost, improve network
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efficiency, and give the agility to import new network capability [14].
O-RAN vision relies on the programmable RAN concept, a new trend that enforces the SDN
concept at the RAN. Programmable RAN introduces the RAN controller’s notion that runs
different RAN applications, such as mobility management, user scheduling, etc. It enforces
the policies issued by these applications on the eNB/gNB under its control via a southbound
protocol. An example of a programmable framework is FlexRAN [50] [51], which is composed of
a RAN controller and agents deployed on top of OpenAirInterface (OAI) eNB/gNB [52]. Figure

gNB
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Figure 3.1: The O-RAN network management architecture and open interfaces

3.1 illustrates the O-RAN architecture that considers a fully functional split of RAN functions.
Indeed, the new trend in terms of 5G RAN architecture is to split the RAN functions, which
were constituting monolithic gNB entities, among the CU-CP and CU-UP, the DU, and the
Radio Unit (RU). CU contains the functions related to higher layers of the RAN, i.e., RRC and
PDCP CP, and SDAP and PDCP-U, respectively, for CU-CP and CU-UP. In comparison, O-DU
(O-RAN DU) hosts the low-layer functions, i.e., RLC, MAC, and Physical high. It should be
noted that CU and DU can run in a virtualized environment using VM or container technology.
Finally, the O-RU (O-RAN RU) hosts all the functions that cannot be virtualized, such as
Physical low and RF. The O-RU will be kept in the field and deployed as hardware. Besides,
O-RAN adds two layers to the RAN, namely Orchestration and Automation and RIC Near-Real
Time (RT).
Orchestration and Automation: contains the Non-RT (Non-Real-Time) RIC functions,
which support intelligent RAN optimization in non-real-time (i.e., greater than one second)
relying on data analytics and ML training/inference solutions. It also manages the network
functions such as network design, control, policies, inventory, and configuration.
RIC Near-RT: enables near real-time control (i.e., 10ms to 1s) and optimization of O-CU
(CU-CP and CU-UP), O-DU, and O-RU nodes. The RIC Near-RT hosts Applications that
use the E2 interface to collect near real-time RAN information (as Key Performances Indicator
(KPI)) to ease service deployment using these primitives such as QoS and mobility management
services, which can also be guided by the policies provided through the A1 interface by the
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Non-RT RIC.
In summary, O-RAN represents the future of the RAN architecture; therefore, NRflex is relying
on it to build the components needed to enforce 5G RAN slicing.

3.3 NRflex framework

NRflex’s main idea is to jointly allocate numerology and radio resources for each slice so that UEs
can use multiple slices with different requirements. To achieve this objective, NRflex introduces
several components that interact together, namely, Bandwidth manager, Pre-processor, and
BWP multiplexer, distributed into two separate entities, i.e., RIC and gNB. In this section, we
detail the NRflex framework’s components and algorithms. We start by defining a RAN slice
in NRflex and introducing the revised life-cycle process of RAN slices. Then, we present the
components of NRflex, and for each one, we give its role in the O-RAN architecture as well as
its related algorithms.

3.3.1 NRflex slice definition

A network slice is an isolated logical sub-network tailored to fulfill diverse requirements requested
by an application. A network slice can be isolated at the RAN level in terms of radio resources
(for each slice, a number of PRBs is allocated) and network functions (each slice has personalized
network functions). We consider that a slice is defined at three levels: application, MAC, and
Physical. At the Application level, a slice is an object that contains: the type of the slice
(URLLC or eMBB or mMTC), the requirements of the slice (maximum latency for URLLC
slices, and the desired throughput for eMBB slices), the duration in which the slice is active,
the UEs associated with that slice, and the region where the slice is active. These objects are
managed by a high-level entity, the RAN Controller, which divides the gNB’s bandwidth among
slices. The RAN Controller increases/decreases the number of PRBs for each slice according
to specific KPIs sent by the gNBs. At the MAC level, a slice is a set of Logical Channel (LC)
belonging to different UEs. As the gNB can have more than one data LC for a UE, the latter can
be associated with many slices, suitable for multi-service applications. The LCs are scheduled
in a way to fulfill services’ requirements with a minimal number of PRBs. At the Physical level,
a slice is considered as a BWP associated with numerology according to the slice type. For
instance [49], numerology 0 for eMBB slices, numerology 1 for URLLC slices with Max Latency
> 5 ms, and numerology 2 for URLLC slices with Max Latency < 5 ms. The amount of PRBs in
a BWP is computed to fulfill the slice requirements (see Section 3.2). For each UE, the BWPs
with the same numerology are aggregated to reduce the complexity of the Multiplexing step (see
Section 3.3).

3.3.2 Network Slice life-cycle in NRflex

According to 3GPP [53], an end-to-end network slice LCM is composed of four phases (Figure
3.2): Preparation, Activation, Run-time, and Decommissioning. The preparation phase is dedi-
cated to the description of the network slice components and attributes using a blueprint. The
activation phase consists of configuring and instantiating the network slice resources, such as
instantiating the virtual resources (Virtual Machine (VM) or containers) and reserving physical
resources such as radio, network, and compute resources. The run-time phase covers the super-
vision and the modification of the resources dedicated to the slice, such as increasing the radio
resources or computing resources. Finally, the decommissioning phase consists of releasing the
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resources that have been reserved to the network slice. In NRflex, we revisit the run-time phase,
focusing on the RAN part of the end-to-end network slice, or the RAN slice.

Preparation Decommissioning

Design
Pre-

provision

Network environment 
preparation

Activation

Instantiation / 
Configuration

Activation

Run-time

Supervision

Reporting

Modification
De-

activation
Termination

Figure 3.2: Lifecycle phases of a Network Slice Instance [53]

Since gNB traffic load and UEs channel quality can change over time, NRflex adjusts the slice
performance by adding or removing PRBs to running slices. Besides, a slice can not be active
during all UE’s slots. Indeed, a UE can use only one numerology at a given time (for example,
a UE belonging to both an URLLC slice and an eMBB slice can not use both of them at the
same slot). Therefore, the network slice lifecycle at run time is detailed in NRflex as follows
(Figure 3.3):

1. Pre-processing in this step, the amount of PRBs needed to ensure the slice requirement
is calculated for each slice. At the end of this step, a sorted list of LCs according to the
deadline criterion is provided to the Multiplexer (at the MAC layer level); each LC has a
pre-allocated amount of PRBs.

2. Multiplexing knowing that only one BWP is active for a UE at a given time, and a UE
can not be associated with more than one slice type (more than one configured BWP), a
multiplexing step is mandatory. This step is needed to select which BWP will be active in
the next slot by considering the different slices’ requirements to which the UE belongs. At
the end of this step, LCs not supposed to transmit in the next slot will be removed from
the sorted list, which is transferred to the MAC Scheduler.

3. Allocation in this step, the MAC scheduler will allocate PRBs to different LCs by con-
sidering the result of the preprocessing and multiplexing steps.

4. Monitoring in this step, two KPIs are computed. They are used in the life cycle manage-
ment of a RAN slice, throughput success rate measures the eMBB slice performance (best
value 1, worst value 0), and deadline failure rate measures the URLLC slice performance
(best value 0, worst value 1). They are computed at the gNB level and used by RIC to
make decisions to add more resources to a slice. If its value has not reached the targeted
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Figure 3.3: Runtime slice lifecycle in NRflex

value, then more resources need to be assigned to the slice. The throughput success rate
takes into account the actual throughput, the desired throughput, and the queue size. Its
value reaches 1, if the actual throughput reaches the desired throughput or the data queue
is empty. deadline failure rate monitors the packets that exceed their deadline. A value
equal to 0 means that all the slice’s packets respect their max latency.

5. Pre-adaptation in this step, the amount of PRBs dedicated to each slice is computed by
relying on the previous pre-allocation results and the KPIs, aiming at adjusting the slice
performance.

This process is executed in an infinite loop until the slice deletion.

3.4 NRflex and the O-RAN architecture

As stated earlier, to support the deployment of NRflex components to ensure 5G NR network
slicing, we consider the O-RAN architecture. In figure 3.4, we illustrate the different components’
interaction in the O-RAN model. Those added by NRflex are highlighted in orange. This figure
is slightly different than Figure 3.1 as we group O-CU, O-DU, and O-RU functions under the
same components (i.e., gNB) to ease the figure readability. Also, there is a new entity, Slice
Orchestrator (SO), which is not under the scope of O-RAN, but it is an essential element as it
manages the LCM of the end-to-end network slices, including the RAN (or RAN slice). In the
following, we describe the role of each component highlighted in the figure.

The Slice Orchestrator (SO) This component is the entry of the system. It is not defined
by the O-RAN architecture. Its role is to provide the end-to-end slice template to be used
by the tenant to define the network slice characteristics and its components and manage the
end-to-end slice LCM (Figure 3.2). Although the end-to-end slice includes other components to
deploy, such as the Core Network, the applications, and the transport network, we focus only

34



On enforcing Network Slicing in the new generation of Radio Access Networks

Service Management and Orchestration Framework

RAN Intelligent Controller (RIC) Near-RT

gNB 

RIC Non-RT Non-RT 
database

Network Slicing Master
BWP Manager

Near-RT 
database

Network Slicing Agent
Pre-Processor BWP Multiplexer MAC Scheduler

KPIs + MAC layer statistics

Slice definition :
users list, 
numerology,
requirements

gNB protocol 
stack 

statistics (ex: 
CQI, RSRP, 
RSRQ… ) 

KPIs + 
Consumed PRBs New BWPs 

size

List of UEs 
with needed 
PRBs to 
guarantee 
requirements

List of UEs with 
the choice of 
numerology to 
be active in the  
next slot

Slice definition: 
area, duration, 

users list, 
requirements.

General KPIs 
aggregated
at the slice

level  (ex: average throughput 
per slice)

1

2

3 4

5

6 78

9

Slice Orchestrator

Slice template0

KPIs + slice template

gNB statistics

KPIs + BWPs size

Figure 3.4: NRflex components mapped to the O-RAN architecture

on the RAN part in this work. Therefore, the SO enforces the RAN part of the network slice
by communicating with the RIC Non-RT module.

The RIC Non-RT In our system, the RIC Non-RT launches the slice creation and deletion
procedures and gathers general performance KPIs from the RAN, such as throughput, latency,
bandwidths, etc., via the O-RAN O1 interface.

The RIC Near-RT O-RAN RIC Near-RT allows flexible onboarding of third-party control-
applications as QoS enforcement, connectivity management, and handover control. NRflex adds
two control applications:

• The Network slicing master: it manages the slices among many gNBs. It can be
instantiated for a region and checks for UEs association with their slices. It collects gNB
statistics used by O-RAN analytic applications.

• The BWP manager (Algorithm 1): it uses O-RAN E2 interface to re-adapt the BWP
size for each slice according to the schedulers’ feedbacks (i.e., the KPIs of the Monitoring
step) and the consumed PRBs of each slice. We consider two KPIs:

throughput success rate =
∑slots

i=1 T i | Qi
number of slots where Ti = 1 if the scheduled bytes at slot i ex-

ceed the throughput per slot, and Qi = 1 if the traffic queue is empty (all traffic scheduled);

deadline failure rate = D
number of slots where D is the number of times a PDU (Proto-

col Data Unit) chunk had exceeded its deadline. Nembbslices (Nurllcslices) is the number
of eMBB (URLLC) slices, respectively. NewPRBj represents the number of PRBs to
be allocated for slice j (BWP size of slice j) in the next time interval, consumedPRBj
represents the average number of used PRBs by slice j during the past time interval.
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Algorithm 1 BWP manager

1: for j = 1, 2, . . . , Nembbslices do
2: if throughput success ratej < 1 then
3: NewPRBj = consumedPRBj + 2
4: end if
5: end for
6: for i = 1, 2, . . . , Nurllcslices do
7: if deadline failure ratei > 0 then
8: NewPRBi = consumedPRBi + 2
9: end if

10: end for
11: Send the new BWP sizes to the gNB Pre-processor

The gNB (O-DU mainly) NRflex uses the following components at the gNB:

1. The Network slicing agent: it manages slices at the MAC level, receives slices’ con-
figuration from the Network slicing master, and stores the information to be used by the
pre-processors and the MAC scheduler.

2. Pre-processor: it executes for each slice an instance of a pre-processor. We considered
two types of pre-processors:

(a) The eMBB pre-processor (Algorithm 2): it takes data from the LCs associated
with the slice instance and calculates the effective number of PRBs needed to send
the buffered data. It considers the buffer size, the CQI of each UE, and the maximum
number of PRBs allocated by the BWPmanager that achieves the desired throughput.
The αUE is a weight associated with a UE indicating how many eMBB slices of this

Algorithm 2 eMBB pre-processor for slice i

1: Sort LCs according to the weight αUE
2: for LC = 1, 2, . . . , NLCs do
3: R← bytes to RBs(CQIUE , αUE ∗ reqLC)
4: N ← bytes to RBs(CQIUE , queue sizeLC)
5: prealloc resLC ← min(R,N)
6: Update the available PRBs for slice i
7: end for

UE were discriminated in the Multiplexing stage; it is updated in the Multiplexing
algorithm. Based on this variable, NRflex controls the required amount of throughput
to achieve in the current slot to guarantee the desired throughput in a 1s time interval.
bytes to RBs is a helper function that returns how many PRBs are required to carry
the amount of data with the CQI passed in parameters.

(b) The URLLC pre-processor (Algorithm 3): it sorts LCs according to their head
PDU deadline, then computes the PRBs amount needed only to transmit data chunks
that meet their deadline in the near future.

3. The BWP multiplexer (Algorithm 4): it selects which BWP to activate for each UE
and generates DCI [54] to be sent to the concerned UEs indicating the decision.
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Algorithm 3 URLLC pre-processor for slice i

1: Sort LCs according to the remaining time of the first pdu
2: for LC = 1, 2, . . . , NLCs do
3: size← 0
4: while remaining time(pduj) <= 2TTIµ do
5: size← size+ pdu sizej
6: end while
7: prealloc resLC ← bytes to RBs(CQIUE , size)
8: Update the available PRBs for slice i
9: end for

Algorithm 4 BWP multiplexer

1: for UE = 1, 2, . . . , NUEs do
2: for LC = 1, 2, . . . , NLCs do
3: if µLC = 2 and schedLC > 0 then
4: if αUE < αmax1 then
5: activate numerology 2 for UE
6: αUE ← αUE + 1
7: break
8: end if
9: else

10: if µLC = 1 and schedLC > 0 then
11: if αUE < αmax2 then
12: activate numerology 1 for UE
13: αUE ← αUE + 1
14: break
15: end if
16: else
17: if schedLC > 0 then
18: activate numerology 0 for UE
19: end if
20: αUE ← 1
21: break
22: end if
23: end if
24: end for
25: end for

This algorithm prioritizes URLLC traffic as it has to respect a deadline. αmax1 and αmax2
are thresholds to avoid starvation of eMBB traffic. schedLC is the amount of data to
schedule in the next slot (the result of the pre-processing step).

4. The MAC Scheduler: It allocates PRBs for each UE based on how many PRBs it needs
and how many are available for each slice.
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3.5 Performance Evaluation

In order to evaluate NRflex framework algorithms, we used a reliable 5G simulator based on
Matlab that supports different numerology (Table 3.1) and BWPs with dynamic scheduling.
Note that this simulator is an improved version of the one used in [55]; it includes 5G NR
features. We validated the simulator using the 3GPP 5G NR simulator [56]. Both of them gave
the same throughput with different configurations (Bandwidth, numerology, etc.). Table 3.1
describes the available system bandwidths in the simulation environment. These bandwidths
will be divided among different BWPs.
We have simulated 3 scenarios: (1) the evolution of the number of users over time and its
impact on the KPIs as well as the PRBs allocated for each slice; (2) the variation of the users’
number as well as the traffic load and their impact on the KPIs and the PRBs allocated for
each slice; (3) the variation of the traffic load and its impact on the numerology selection. We
have run the simulation for 100 iterations. Each value presented in the figures represents the
average. We did not include the minimum and maximum values as they are very close to the
average, and adding them will reduce the figures’ readability. For eMBB slices, we compared our

Table 3.1: 5G NR parameters [57]

Numerology System available BandWidth (MHZ) Number of PRBs

0 20 106

1 40 106

2 80 107

algorithm with the one introduced in [55] (called the standard solution for eMBB slices in the
rest of the paper), which shares the same idea with other eMBB resource allocation algorithms
(as [50, 58]); i.e., they use the slice throughput constraint to compute the required amount of
PRBs. To recall, NRflex, in addition to throughput, considers the queue size (see Algorithm
2) to allocate only the needed PRBs for the slice. Thus, we minimize the number of PRBs
allocated for eMBB slices while respecting their throughput requirements. For URLLC slices,
we compared our algorithm with the Fair Proportional Scheduling algorithm combined with a
resource allocation strategy that allocates the amount of PRBs needed to schedule all URLLC
traffic first (called the standard solution for URLLC slices in the rest of the paper). NRflex
(Algorithm 3) considers PDUs’ deadline to allocate only the needed PRBs to schedule PDUs
that will exceed their deadline shortly. We have simulated four slices with different requirements
(Table 3.2) and a random CQI, which takes values in [12-15] intervals for each UE, indicating a
medium to a suitable channel condition.
We specified the arrival rate and the packet size of the traffic associated with each user’s slice
type in Table 3.3. URLLC slice traffic is characterized by small data chunks with high frequency,
while data chunks’ sizes are big with low frequency sending for eMBB slice traffic. Moreover,
the UEs can join more than one slice. In all scenarios, we are associating each UE to two slices
(one eMBB and another one URLLC). However, UEs cannot serve two slices at the same time
(i.e. same slot in ms granularity) when the slices use different numerology (5G NR physical
layer constraint). We are using the term slot relative to the slice numerology. If numerology n
is selected then slot duration is 2−n ms. At t=0s, the system includes 10 UEs among them
5 UEs are connected to each slice tuple ((urllc1,urllc2,embb1), (urllc1,urllc2,embb2)). At t=5s
and t=11s, 2 more UEs connect to each slice tuple; i.e., at t=6s, the system includes 14 UEs,
and at t=12s, 18 UEs.
Figure 3.5(a) shows the evolution of the deadline failure rate over time as the number of UE
increases. At t=6s and t=12s, the deadline failure rate increases since 4 more UEs have joined
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Table 3.2: Slices requirements

slice Max Latency desired throughput per UE

embb1 - 0.9 mbps

embb2 - 1.5 mbps

urllc1 5 ms -

urllc2 1 ms -

Table 3.3: Traffic simulation parameters

Slice Inter-arrival time Packet size

urllc1 4 ms 800 Bytes

urllc2 2 ms 400 Bytes

embb1 70 ms 4596 Bytes

embb2 70 ms 6516 Bytes

the system. However, the preadaptation phase in NRflex decreases the deadline failure rate
in an incremental way. Hence, it is important to recall that the preadaptation phase is realized
by RIC, which dynamically computes the size of a BWP dedicated to a slice according to gNB’s
feedbacks (Algorithm 1).
Figure 3.5(b) shows the evolution of the number of allocated PRBs for each slice. We note that
for the first slice, which requires a latency of 5 ms, NRflex ensures a lower deadline failure rate
(Figure 3.5(a)) than the standard solution. Moreover, NRflex adapts itself quickly to the new cell
load by adding more PRBs to the slice. We also observe that NRflex meets the slices’ required
latency deadline with a smaller number of PRBs (Figure 3.5(b)). For the second slice, which
requires a latency of 1 ms, we remark that, at t=17s (Figure 3.5(b)), the standard solution can
not reduce the deadline failure rate (Figure 3.5(a)) as it consumed all the bandwidth dedicated
for numerology 2 (Table 3.1). In comparison, NRflex is able to reduce the deadline failure rate
to zero after 5s of adaptation with the same bandwidth size. We can also see that our NRflex
allocates lesser PRBs (Figure 3.5(b)) to satisfy the slice latency requirement. Thus, we can argue
that combining deadline-aware scheduling with our resource allocation strategy can achieve very
low latency while using fewer radio resources.
Figure 3.6(a) shows the throughput evolution over time. We remark that both approaches
achieve the same throughput, which is different from the desired throughput. We argue this
because the practical throughput is calculated on the gNB, while the desired throughput is just
a theoretical throughput. In figure 3.6(b), we see that NRflex consumes fewer PRBs to meet
the same throughput, compared to the standard solution. As the number of UEs increases, the
difference between the two approaches increases in terms of used PRBs. We explain this by the
fact that UEs do not require all the PRBs allocated by the standard solution at each slot; hence,
the needed PRBs depend on the state of the traffic queues (LCs) of the UEs and their CQI.
UEs, which have a good CQI and a small amount of data in their LC, do not need many PRBs
even if the desired throughput is significant. That proves the pertinence to calculate the number
of needed PRBs from an entity close to the gNB, which is aware of the state of the queues (the
CQI of the UEs) and has a global vision to manage the radio resources and distribute them
among the RAN slices. Therefore more UEs can be connected, and hence more RAN slices can
be created.
It is worth noting that NRflex may introduce overhead due to the exchanged messages (number
of messages x message’s size) between RIC and gNBs. For each 1s interval, gNB sends a
message containing a list of slices with the average of used PRBs and calculated KPIs (i.e.,
deadline failure rate and throughput), and receives a message containing a list of slices with
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Figure 3.5: URLLC performance and resource allocation over time
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Figure 3.6: eMBB performance and resource allocation over time

their new BWP configuration. However, these messages’ impact is very low in terms of needed
bandwidth, as their size is very small. Hence, only a few bytes are transmitted periodically.
In the second scenario, we varied the URLLC traffic load to see the limit of both approaches.
By traffic load, we mean the inter-arrivals time of packets and packet size. Figure 3.7(a) shows
deadline failure rate evolution according to the number of UEs (UEs are equally distributed
between the two slices) with a medium URLLC traffic load for each UE. NRflex can handle up
to 50 UEs in numerology 2 and up to 60 UEs in numerology 1 with a deadline failure rate=0
(no packet is lost due to deadline exceeded). In contrast, the standard solution can handle up to
25 UEs in numerology 2 and 40 UEs in numerology 1 before the deadline failure rate increases.
For high URLLC traffic load (Figure 3.8(a)), NRflex can handle up to 50 UEs that require a 5
ms latency and 20 UEs that require a 1ms latency, while the other approach can handle only 20
UEs and 10 UEs, respectively. At the same time, NRflex ensures that the eMBB throughput is
sustained for both medium and high URLLC traffic loads (Figures 3.7(c), 3.8(c)).
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Figure 3.7: Medium URLLC traffic load
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Figure 3.8: High URLLC traffic load

Table 3.4: URLLC traffic load

Index average Inter-arrival time (ms) Average packet size (Bytes)

1 5 200

2 4 280

3 3 360

4 2 440

5 1 520

1 2 3 4 5
0

0.5

1

1.5

Traffic load (index)

R
at
e

Numerology Selection Rate

slice 1 : Numerology 0
slice 2 : Numerology 0
slice 3 : Numerology 1
slice 4 : Numerology 2

Figure 3.9: Numerology selection over URLLC traffic load

In the third scenario (Figure 3.9, we varied the URLLC traffic load (Table 3.4) to show the
impact of URLLC slices on eMBB slices, when URLLC traffic becomes dominant. As the traffic
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becomes more intensive, it requires more active slots in the URLLC numerology; hence, fewer
slots for the eMBB numerology. (only one numerology active at a time slot). We argue this by
the fact that NRflex prioritizes URLLC traffic (Algorithm4). We remark that from index = 3
(see Table 3.4), URLLC traffic starts impacting eMBB traffic. However, the results show that
even with the higher loads, eMBB slices are still supported (eMBB numerology is selected).

3.6 Conclusion

In this chapter, we have introduced a 5G NR Network Slicing framework aligned with O-RAN
architecture. This framework, namely NRflex, enables UEs to benefit from multi-service appli-
cations and leverages 5G NR numerologies to achieve URLLC service latencies while respecting
eMBB services throughput. NRflex is divided into two parts: (1) one executed by RIC near-RT
to dynamically compute the size of BWP to be dedicated to a slice; (2) one executed by gNBs
that periodically decides for each UE the active BWP to be used and the number of PRBs
assigned to it. Numerical results show that NRflex succeeds in meeting service requirements,
scheduling more UEs, and optimizing PRBs allocation compared to the standard solution. Be-
sides, NRflex architecture offers modularity that allows a flexible modification of the different
introduced entities, i.e., schedulers, the BWP manager and the pre-processors.
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Chapter 4

DRL-RS: Deep Reinforcement
Learning (DRL)-based scheduler in
shared bandwidth environment

4.1 Introduction

In this chapter, we address the challenging problem of resource management in 5G NR featuring
network slicing by first modeling it as a mixed-integer linear program taking into account: i)
multiple numerology in the same bandwidth while avoiding the INI; ii) multiple slices attached
per UE; iii) different throughput and latency requirements per slice. Then, we model the
problem as a MILP, we analyze its complexity, and we prove that the problem is NP-hard; i.e.,
solving it will take a considerable amount of time, which is not tolerable when scheduling radio
resources in real-time. RL that can be seen as a learning, heuristic search strategy when it is
applied to optimization problems. Accordingly, we formalize this problem in the RL framework
and propose a DRL-based approach that aims to select the numerology to be used and the
number of resources allocated per UE at each time slot during a time window while taking
into account the channel quality of the UE. Specifically, we designed the DRL-scheduler to be
independent of the number of UEs in the system. We have modeled the DRL state to make
the solution scalable for larger bandwidths covering both FR1 and FR2 frequency bands, with
a bandwidth up to 400 MHz, which correspond to the usage of the mmWave bands.
The key contributions of this chapter are:

• Model the radio resource management problem in 5G NR featuring network slicing us-
ing MILP and prove it is a NP-hard problem. The novelty of the problem formulation
compared to the state of the art models, such as [59], [60], [61], [62], consists in selecting
both the numerology and number of PRBs dynamically in each time slot to satisfy slices
throughput and latency requirements while supporting multiple slices per UE.

• Devise a solution to solve the problem in a polynomial time. The solution is based on
Machine Learning (ML), namely DRL. The novelty of the DRL approach is its ability to:
(i) solve unseen instances of the problem in reasonable time, (ii) scale with the bandwidth
and the number of UEs and (iii) dynamically select the numerology per UE while scheduling
the PRBs in time and frequency.

• Extensive simulation campaign to compare the two approaches: (i) the LP approach (ii)
the DRL approach, and evaluate their performances to guarantee the network slice require-
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ments. We observed that approach (i) (i.e., solving the MILP problem using Gurobi) takes
exponential time regarding the number of UEs while approach (ii) reduces the execution
time down to 1ms. Furthermore, both approaches are able to meet the requirements of
the slices in terms of throughput and latency considering different network configurations.

4.2 Related works

The authors in [59] propose a two-level RAN slicing approach based on the O-RAN architecture
to allocate the communication and computation RAN resources among uRLLC end-devices.
They modeled the resource slicing problem as a single-agent MDP and designed a DRL algo-
rithm to solve it. However, they considered only numerology 0. Further, they did not provide
details on the model scalability in terms of bandwidth and number of UEs; up to 16 UEs and a
fixed bandwidth that was not defined in the paper. The work in [60] designed a DRL model able
to solve the radio resource scheduling problem in 5G networks under different fixed numerology
settings. Nevertheless, the proposed solution did not consider using different numerology under
the same bandwidth. The authors in [61] formulated a binary non-convex problem that maxi-
mizes the aggregate capacity of multiple network slices. The model exploits the channel fading
statistic to provide a spectrum allocation that minimizes the INI. The authors leveraged DRL
to design a model-free solution computation. However, the presented problem assumed that all
UEs belong to one and only one slice and have the same numerology, making the system less
flexible. In [62], the authors formulated the resource allocation problem as a non-linear binary
program and proved its NP-hardness. They modeled the problem as an MDP. They leveraged
the exponential-weight algorithm for exploration and exploitation (EXP3) as well as the Multi-
Agent DQN algorithm to solve the single-agent MDP and the multi-agent MDP, respectively.
But, they did not consider multiple numerology and the high dimension of the problem (only
eight UEs were considered).
The work in [63] optimized resource allocation with flexible numerology in the frequency domain
and variable frame structure in the time domain, with different types of requirements. They
prove the NP-hardness of the problem and propose a scalable optimization algorithm based
on LP and Lagrangian Duality (LD). However, they did not take into account the interference
caused by the mixed numerology environment. Besides, the gap between the optimal solution
and the proposed solution depends on the required throughput (30% for a 0.5 Mbps rate), making
the solution unsuitable for high throughput requirements as expected in 5G. In [64], the authors
modeled the resource allocation problem for mixed-numerology systems as a multi-objective op-
timization problem aiming to increase cell throughput, maintain fairness, and minimize the delay
and packet loss. They proposed a heuristic-based solution to perform numerology multiplexing
as well as resource allocation taking into account the QoS and channel quality. Nevertheless,
the latency requirement was ignored and the comparison between the optimal solution of their
model and the solution of the proposed method was not addressed. Work in [65] designed a
random forest-based decision algorithm to accomplish the numerology selection for each service.
Then, the numerology selection results will be the basis of system resource scheduling and allo-
cation. However, the solution did not consider the frequency efficiency and did not model the
problem formally. Also, they did not compare their solution with the optimal solution of their
problem. In [66], the authors studied radio resource allocation for mMTC services based on a
mixed-numerology system. They followed an efficient heuristic approach to meet diverse QoS
requirements of the Machine-to-Machine (M2M) applications while achieving spectral efficiency.
However, they ignored the time domain in the problem definition.
All the above works were investigated only on small instances of the problem (small bandwidths
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and small number of UEs), and did not take into consideration UEs belonging to multiple
slices with different requirements. Furthermore, most of DRL based solutions ignored the mixed
numerology environment for the sake of reducing the model complexity. In our work, we consider
large instances of the problem with up to 400 MHz of bandwidth, which is the maximum
bandwidth in current 5G NR standards. We adapted the state representation of the DRL
solution to be scalable regardless of the problem size. In addition, we considered having multiple
numerology in the same bandwidth, divided by BWPs, while UEs can switch numerology to
satisfy their heterogeneous needs.

4.3 System Model and Problem Formulation

4.3.1 System model

We consider a network that consists of a set of UEs N that compete to access the radio resources.
The UEs use different network slices, each characterized by different objectives, characteristics,
and Service Level Agreement (SLA). Each UE can be a member of one or multiple network
slices simultaneously. The SLA of a slice consists of a set of KPIs, with each KPI having a
target value. In our system, we consider two KPIs: (i) throughput, (ii) latency. For instance,
uRLLC slices have a lower target KPI value of latency, while eMBB slices have a higher target
KPI value of throughput. The radio resources are divided on the UEs on time window ∆T and
frequency bandwidth ∆F . Formally, PRBs should be assigned to the UEs within the matrix of
shape ∆T × ∆F illustrated in Figure 4.1. Let δT and δF be the minimum allocation units in
time and frequency domains, respectively. Formally, δT = 2−µmax ms and δF = 12 ∗ 15 ∗ 2µmax
Hz, where µmax is the maximum numerology in the system. Let N denote the set of UEs in the
network. Each UE has a set of time slots to transmit both UL and DL traffics. Let K denote the
maximum number of time slots that can be assigned to a UE. To transmit their data, UEs use
a set of numerology M = {0, 1, 2, 3, 4}. At a given time slot, the UE should use one and only
one numerology. However, it can use more than one resource blocks that should be contiguous
for the sake of performance.

Table 4.1: Summary of Notations.

Notation Description

N The set of UEs existing in the network.

Ω The maximum number of PRBs assigned to the same UE at the same
time slot.

∆T The time slot window of the resource blocks.

∆F The frequency band of the resource blocks.

M The set of numerology.

µ A specific numerology. Formally, µ ∈M.

T ki An integer variable that denotes the starting time of the kth time slot
of the UE i ∈ N .

Fki An integer variable that denotes the starting frequency assigned to the
UE i ∈ N at time slot k.

X k,µi,ω A decision Boolean variable that shows if a UE i at the time slot k uses
ω contiguous PRBs of numerology µ. ω takes values in the range from
1 to Ω.

Yk,li,j A decision Boolean variable that shows if the kth and lth time slots of
UE i and j overlap.
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∆T

∆F

δT

δF

Figure 4.1: Resource matrix illustration for the 5G NR featuring network slicing resource management
Model

The size of a resource block in terms of slot duration E(µ) (in ms) and frequency G(µ) (in Hz)
of a numerology µ are defined as follows:

E(µ) = 2−µ (4.1)

G(µ) = 12× 15× 2µ (4.2)

As we have explained previously, a UE at a given time slot can have one or multiple contiguous
PRBs (ω ×G(µ)) that use the same numerology µ. The PRBs of the same UE or different UEs
should never overlap. Formally, a UE i never shares the frequency bound with another UE j at
the same time.

4.3.2 Problem formulation and optimal solution design

For the sake of readability, all the symbols and optimization variables are summarized in the
table 4.1. Let T ki be an integer variable that denotes the starting time of the kth time slot of
the UE i ∈ N . Note that not all the time slots {1, 2, · · · K} should be assigned to the UE i. If a
time slot k is not assigned to the UE i, then T ki = −1. Similarly, let Fki be an integer variable
that denotes the starting frequency assigned to the UE i ∈ N at time slot k. Each UE can have
maximum Ω PRBs at the same time slot. Moreover, all the PRBs of the same UE at the same
time slot should use the same numerology. If a frequency Fki is not used by the UE i, then
Fki = −1.
Formally, we have the following two constraints that ensure the time slot and frequency starting
value should be higher or equal to −1:

∀i ∈ N , ∀k ∈ {1, 2, · · · K} : T ki ≥ −1 (4.3)

∀i ∈ N ,∀k ∈ {1, 2, · · · K} : Fki ≥ −1 (4.4)

Let X k,µi,ω a decision Boolean variable that shows if a UE i at the time slot k uses ω contiguous
PRBs of the same numerology µ. At a given time slot k, only one numerology can be allocated
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to UE i. However, many resource blocks can be assigned to the same UE. This constraint is
captured thanks to the constraint (4.5).

∀i ∈ N ,∀k ∈ {1, 2, · · · K} :
∑
µ∈M

∑
ω∈{1,···Ω}

X k,µi,ω ≤ 1

(4.5)

The UE i uses the numerology µ at the time slot k if and only if
∑
µ∈M

∑
ω∈{1,···Ω}

X k,µi,ω = 1.

The time slot duration allocated to UE i transmission must not exceed ∆T . In this constraint,
both the kth starting time slot (i.e., T ki ) and time slot duration E(µ) using the numerology µ
are considered.

∀i ∈ N ,∀k ∈ {1, 2, · · · K} :

T ki +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ)×X k,µi,ω ≤ ∆T (4.6)

From another side, the frequency should not exceed ∆F . In constraint (4.7), at each time slot
T ki , both the starting frequency bound Fki and the amount of frequency bound (ω × G(µ)) are
considered.

∀i ∈ N ,∀k ∈ {1, 2, · · · K} :

Fki +
∑
µ∈M

∑
ω∈{1,···Ω}

ω × G(µ)×X k,µi,ω ≤ ∆F (4.7)

T ki should equal to −1 if time slot k is not allocated to UE i.

∀i ∈ N ,∀k ∈ {1, 2, · · · K} :

T ki ≤ −1 + Φ×
∑
µ∈M

∑
ω∈{1,···Ω}

X k,µi,ω (4.8)

, such that Φ is a big number Φ ≈ +∞.
Based on (4.3) and (4.8), T ki equals to −1 if no numerology is used by that time slot

(
∑
µ∈M

∑
ω∈{1,···Ω}

X k,µi,ω = 0).

Similarly, the frequency Fki should equal −1 if it does not use any numerology at the time slot
T ki .

∀i ∈ N ,∀k ∈ {1, 2, · · · K} :

Fki ≤ −1 + Φ×
∑
µ∈M

∑
ω∈{1,···Ω}

X k,µi,ω (4.9)

Based on (4.4) and (4.9), T ki equals to −1 if no numerology is used by that time slot.
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A UE should not use two numerology at the same time. Also, the time slots should not overlap
with each other. In our solution, the time slots of a UE are defined from the smaller to the last.
Then, the remaining time slots should have only −1.

∀i ∈ N , ∀k ∈ {1, 2, · · · K − 1} :

T ki +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ)×X k,µi,ω ≤

T k+1
i +Φ× (1−

∑
µ∈M

∑
ω∈{1,···Ω}

X k+1,µ
i,ω ) (4.10)

Equation 4.11 ensures that only the first slots assigned for a UE i. In our solution, we fill the
first slots before moving to the last ones.

∀i ∈ N , ∀k ∈ {1, 2, · · · K − 1} :
∑
µ∈M

X k+1,µ
i ≤

∑
µ∈M

X k,µi (4.11)

Equation 4.12 ensures that two UEs i and j should not use the same frequency resources if their
time slots overlap.

∀i, j ∈ N , i ̸= j,∀k, l ∈ {1, 2, · · · K − 1} :

If T lj ≤ T ki ≤ T lj +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ)×X k,µi,ω :

F lj +
∑
µ∈M

∑
ω∈{1,···Ω}

ω × G(µ)×X l,µj,ω < F
k
i

OR

Fki +
∑
µ∈M

∑
ω∈{1,···Ω}

ω × G(µ)×X k,µi,ω < F lj (4.12)

Unfortunately, the above inequality is not linear. In order to convert the optimization problem
to a linear integer program, we replace the constraint (4.12) by the following constraints and
variables:
First, we define a Boolean variable Yk,li,j that shows if the kth and lth time slots of UE i and j
overlap, respectively. Then, we define the following constraints:

∀i, j ∈ N , i ̸= j,∀k, l ∈ {1, 2, · · · K} :

T lj ≤ T ki +Φ× (1− Yk,li,j )

T ki ≤ T lj +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ)×X l,µj,ω +Φ× (1− Yk,li,j )

T ki +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ)×X k,µi,ω < T lj +Φ× (Yk,li,j + Z
k,l
i,j )

T lj +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ)×X l,µj,ω < T
k
i +Φ× (Yk,li,j + 1

−Zk,li,j ) (4.13)
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, such that Zk,li,j is a decision Boolean variable that should be fixed by the system.

From (4.13), Yk,li,j = 1 iff T lj ≤ T ki ≤ T lj +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ) × X l,µj,ω . Otherwise, Yk,li,j = 0, the

time slots do not overlap. In case the time slots overlap, we have to ensure that they do not use
the same frequency resources.

∀i, j ∈ N , i ̸= j,∀k, l ∈ {1, 2, · · · K} :

F lj +
∑
µ∈M

Ik,l,µi,j ×G+
∑
µ∈M

∑
ω∈{1,···Ω}

ω × G(µ)×X l,µj,ω <

Fki +Φ× (1− Yk,li,j +W
k,l
i,j )

Fki +
∑
µ∈M

Ik,l,µi,j ×G+
∑
µ∈M

∑
ω∈{1,···Ω}

ω × G(µ)×X k,µi,ω <

F lj +Φ× (2− Yk,li,j −W
k,l
i,j ) (4.14)

, such that Wk,l
i,j is a Boolean variable that should be fixed by the system to ensure that the

frequency i and j do not overlap when their time slots do.
Moreover, UEs sharing contiguous frequencies and having different numerology should be sepa-
rated by a guard band G to avoid the INI. Ik,l,µi,j is a Boolean variable fixed by the system: if

Ik,l,µi,j = 1 a guard band is needed between UE i and j during slots k and l when they are not
using the same numerology µ (Equation 4.15).

∀i, j ∈ N , i ̸= j,∀k, l ∈ {1, 2, · · · K}, ∀µ ∈M :

Ik,l,µi,j ≥
∑

ω∈{1,···Ω}

X l,µj,ω −
∑

ω∈{1,···Ω}

X k,µi,ω

Ik,l,µi,j ≥
∑

ω∈{1,···Ω}

X k,µi,ω −
∑

ω∈{1,···Ω}

X l,µj,ω

(4.15)

Each UE i has a maximum latency ∆i.

∀i ∈ N ,∀k ∈ {1, 2, · · · K} :

T ki +
∑
µ∈M

∑
ω∈{1,···Ω}

E(µ)×X k,µi,ω < ∆i (4.16)

Each UE i has a minimum throughput, which is translated to the number of required resource
blocks N PRB i taking the MCS as input for each UE i during the time window ∆T . It should
be noted that a way to derive the number of PRBs using MCS and throughput is presented in
[24]. The system that solves our model is responsible for providing this information as input,
and can be dynamic between different time windows.

∀i ∈ N :
∑

k∈{1,···K}

∑
µ∈M

∑
ω∈{1,···Ω}

ω ×X k,µi,ω ≥ N PRB i (4.17)

In our solution, we consider network slicing, such as one UE can have multiple network slices.
To do so, a (physical) UE is divided into multiple logical UEs. Each logical UE represents a
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slice belonging to a UE. Therefore, a UE with multiple slices will have as many logical UEs as
slices. For simplicity, we consider logical UEs like UEs with additional constraints (4.18 and
4.19), with logical UEs belonging to the same UE forming a group. Formally, a UE i ∈ N is a
logical representation of a slice belonging to UE k ∈ Nph where Nph denotes the set of physical
UEs. For instance, two logical presentations of a UE i, j ∈ N and i ̸= j can belong to the same
physical UE k ∈ Nph. To prevent a UE i ∈ N from using different numerology simultaneously,
we have considered G, whereby the same logical presentations of the same physical UE create a
group g ∈ G. Constraints 4.18 and 4.19 jointly ensure that the logical presentations of the same
physical UE do not use different numerology when their time slots overlap.

∀g ∈ G, ∀i, j ∈ g, i ̸= j,∀k, l ∈ {1, 2, · · ·K}, ∀µ ∈M :∑
ω∈{1,···Ω}

X l,µj,ω −
∑

ω∈{1,···Ω}

X k,µi,ω ≤ 1−Yk,li,j

Yk,li,j − 1 ≤
∑

ω∈{1,···Ω}

X l,µj,ω −
∑

ω∈{1,···Ω}

X k,µi,ω (4.18)

∀g ∈ G, ∀i, j ∈ g, i ̸= j,∀k, l ∈ {1, 2, · · · K} :

T ki − T lj ≤ Φ×(1− Yk,li,j )

Φ× (Yk,li,j − 1) ≤ T ki − T lj (4.19)

Finally, the objective is to maximize the bandwidth utilization. In the optimization model, we
do not consider priorities between UEs. However, the priority can be easily considered by a
slight update of the equation 4.20.

max
i=N∑
i=1

k=K∑
k=1

∑
µ∈M

∑
ω∈{1,···Ω}

ω ×X k,µi,ω (4.20)

Now, we are able to formulate the final optimization problem as follows:
Eq. (4.20)
S.t,
Eq.: (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.13), (4.14), (4.15), (4.16),
(4.17), (4.18), (4.19).

Theorem 1. Radio resource allocation problem in 5G NR is NP-hard problem.

Proof. Let P1 denotes the problem of filling the radio resource matrix with BWPs i ∈ {1..n}.
Let wi denotes the frequency occupied by each BWP i. Each BWP i is dedicated to a UE j
and has a start time t. For the sake of simplicity and without loss of generality, we assume
that only one numerology can be used, and the BWPs that exceed UE j latency SLA can be
omitted. Let vi denotes the size of the BWP i. Meanwhile, let P2 denotes the knapsack problem,
which is defined as follows: Given a set of objects, each of which has a weight and value, the
problem consists in determining the number of each item that should be put in the knapsack so
that the total weight does not exceed a specific weight and the total value is maximized. The
optimization of knapsack problem is well known in the literature that it is NP-hard problem.
To prove that P1 is NP-hard, it is sufficient to proof that the knapsack problem P2 would be
reduced to P1 in a polynomial time. If P2 is reduced to P1 in a polynomial time and P1 is
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not NP-hard, then P2 is also not NP-hard, which is a contradiction. P2 can be reduced in
a polynomial time to P1 by formulating P2 as follows: The total weight that can be handled
by the knapsack is ∆F and ∆T (two dimensions) and the set of items that should be put in
knapsack is the set of BWPs i, such that the sum of vi is maximized.

4.4 DRL-RS general overview

Despite seeing great improvement throughout the years in the ability to find optimal solutions
for bigger and more complex problems, the time and the computational power needed to find
a solution remain an important bottleneck, making this type of algorithms impractical to solve
real-world problems. RL intends to learn the skills required to solve the problem more holistically
rather than trying to find an optimal solution for one specific configuration of the problem.
Where the other combinatorial optimization solving methods will need to solve the problem
from scratch every time, the RL approach leverages what it has learned before and the skills
it has acquired to quickly provide a solution to a new instance of the problem. Radio resource
management problem in 5G NR can be seen as a sequential decision-making problem where
an agent, namely DRL-RS, allocates PRBs and selects numerology for each UE and time slot
during ∆T time window. DRL-RS considers the environment as a ∆F ×∆T matrix and aims to
fill it by allocating PRBs to a dynamic number of UEs in the system. DRL-RS takes the MCS
to use during ∆T as input to ensure the link adaptation for dynamic channels.

(a) 1st UE (t = 0, µ = 3, N = 1) (b) 2nd UE (t = 4, µ = 1,
N = 2)

(c) 3rd UE (t = 1, µ = 3, N = 1)

(d) 4th UE (t = 2, µ = 2,
N = 1)

(e) 2nd UE (t = 4, µ = 1,
N = 1)

(f) 4th UE (t = 2, µ = 2,
N = 1), all SLAs are met

Figure 4.2: Example of resource allocation using DRL-RS

As each UE can belong to multiple slices, DRL-RS should satisfy the throughput and the latency
of the SLA for each slice. The throughput SLA is the minimum throughput that needs to be
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achieved by a UE for that slice, while the latency SLA is the maximum latency that a UE can
not exceed when serving that slice. To allow a UE to belong to multiple slices, we introduce the
concept of virtual UEs. Formally, each UE consists of a set of virtual UEs that belong to only
one slice. Virtual UEs belonging to the same UE are organized in groups. The time slots of
members of the same group should neither overlap in time nor use different numerology. From
this point, we mention by UE a real or virtual UE indifferently. In this scope, DRL-RS loops
over the active UEs (i.e., UEs having data in their transmission queues and their SLA is not
satisfied yet) until the resource matrix is filled or all the UE’s SLAs are met. In each iteration,
the scheduler chooses a time slot t, a numerology µ, and a number of resources N for the current
UE. The three parameters form a rectangle of shape 2µmax−µ ∗ (N ∗ 2µ) which will be stacked in
the resource matrix at time slot t.
We illustrate how DRL-RS works through a simple example illustrated in Figure 4.2. We con-
sider a 1.44MHz× 1ms matrix shared between 4 UEs. Each UE has a latency SLA of 0.125ms,
1ms, 0.25ms, 0.5ms, and a throughput SLA that can be met with 1, 3, 1, 2 PRBs, respectively.
The x-axis represents time slots where the unit is related to the maximum numerology in the
system (i.e., 3 in this example) and the y-axis represents frequency PRBs where the unit is
related to the minimum numerology in the system (i.e., 0 in this example). In the first itera-
tion, for the first UE, DRL-RS allocates 1 PRBs with numerology 3 at t = 0. The selection of
numerology 3 allows the first UE to respect its latency SLA. Then, DRL-RS allocates 2 PRBs
for the 2nd UE at t = 4 with numerology 1. This choice will allow the third and fourth UEs to
respect their latency SLA, which shows that DRL-RS gives the current UE an insight into the
state of other UEs. After that, the third UE takes 1 PRB using numerology 3 at t = 1, while
the 4th UE takes 1 PRB at t = 2 using numerology 2. The stop condition is not met yet; hence,
DRL-RS continues looping over the active UEs that did not meet their SLAs, i.e., the 2nd and
4th UEs. The 2nd UE takes one more PRBs at t = 4 with numerology 1. Finally, the 4th UE
takes one PRB at t = 2 using numerology 2. At this step, all UEs’ SLAs are met, and thus
DRL-RS finished the resource allocation process and successfully fulfilled all the slices’ SLAs.

4.5 DRL-RS design

In the balance of this section, we model the radio resource management problem in the RL
framework by designing the state, the reward and the action of the DRL-RS agent.

4.5.1 State

The state Si observed by the model when serving UE i is composed of 4 vectors, which are
F , Ti, Oi and Ei, respectively. Vectors F and Ti contain the frequency boundary (the red line
in Figure 4.2) and the numerology used by UE i for each time slot t, respectively. If a UE is
not using any numerology at time t, Ti,t is set to -1. Meanwhile, vectors Oi and Ei contain
the information about SLA of the current UE and the other UEs, respectively. Oi contains two
values, Othgi measuring the throughput SLA and Olati measuring the latency SLA. Othgi indicates

the rate of the achieved throughput over the throughput SLA. The bigger Othgi is, the better
performances of UE i becomes in terms of throughput. Since a UE can achieve a throughput
higher than its throughput SLA, Othgi can have a value bigger than 1. For instance, to decrease

the state space size, we can limit Othgi with a maximum value Othgmax. On the other hand, Olati
indicates the rate of the PRBs used before the latency SLA over all the allocated PRBs for UE
i. The bigger Olati is, the better performance of the UE i becomes in terms of latency. Note
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that a UE will respect the latency requirements if all the allocated PRBs are scheduled before
the latency SLA, which is equivalent to Olati = 1. Formally,

Othgi = min{achieved throughputthroughput SLA , Othgmax} with Othgmax > 1

Olati = Number of allocated PRBs before latency SLA
Total number of allocated PRBs

Ei contains three values: N thg
i , N lat

i and Minthgi . N thg
i and N lat

i count the number of UEs

excluding UE i that have met their throughput and latency SLAs, respectively. Minthgi is the
smallest throughput SLA achieved by other UEs.
The state’s design considers the solution’s scalability regarding the number of UEs, the SLA
requirements, and the bandwidth size.

4.5.2 Action

The agent take an action parameterized by the tuple (t, µ, N), where t is a time slot, µ is the
numerology to use at the given time slot t, and N is the number of resources to allocate at t.
Accordingly, the agent allocates a rectangular shape of (2µmax−µ,(N ∗ 2µ)) at time slot t and
put it on the top of the frequency boundary line. Since the agent can output unfeasible actions,
we added a pre-processing step in order to compute an action space A that contains only the
possible actions at the current state Sit .

4.5.3 Reward

We have adopted an episodic approach; i.e., an episode is over when max T steps are reached,
the resource matrix is full, or all UEs SLAs are met.
The agent gets the reward r defined as follow:

rt =


α ∗ (Othgi,t −O

thg
i,t−1) + (1− α) ∗ S if not done

K if done and SLAs are met

P otherwise

Indeed, while the episode is still in progress and for each step, the agent takes a reward equivalent
to the improvement made by the current action at step t since the previous step t − 1. We
formulate this improvement by the term (Othgi,t −O

thg
i,t−1). Moreover, to minimize the number of

steps needed to finish an episode, we added a penalty S for each step. Also, we added weights α
and (1−α) to the two previous terms in order to control their contribution in the reward term.
Once the episode is done, the agent takes a high positive reward K if the SLAs are met for all
UEs, or a penalty P else.

4.6 DRL-RS detailed description

Among the most efficient off-policy DRL algorithms for continuous state space and discrete
actions, we may cite: DQN [39] and A3C [67]. The DQN-based method has a replay memory
that is sampled and used to optimize the model at every time step while A3C is only optimized
when the episode finishes. This makes DQN learning faster in a single actor environment. For
this reason, DRL-RS leverages the DQN algorithm.
DRL-RS executes two steps: decision making and updating the Q-Networks. In DQN, two
networks are used: a local Q-Network and a target Q-Network. The latter is the same as the
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local network except that its parameters are updated every τ steps. They are combined to help
the convergence and stabilization of the learning.

• Decision making: The DRL-RS agent observes a state Sit for UE i and feeds it to the
local Q-Network. In DQN, the Q-Network outputs the Q value of each couple (Sit ,a)
where a is an integer that identifies the action. In order to evaluate the action, the agent
needs to derive the three parameters (t, µ, N) from a. To do so, we partitioned the integer
value a, using the method “the partitioning of an integer into different parts” introduced
in [68], as follows:

t = a ÷ (µmax ∗ Nmax) where Nmax is the maximum number of resources that can be
allocated to one UE and µmax is the maximum numerology in the system. Note that ÷ is
the division of integer division and mod is the mod of integer division.
µ = a mod (µmax ∗Nmax)÷Nmax

N = (a mod (µmax ∗Nmax) mod Nmax) + 1.

Then, the agent removes the unfeasible actions from the action space (e.g., allocating re-
sources that overlap with other existing resources) by setting the Q value of each unfeasible
tuple (t, µ, N), indexed by a, to a negative value. The DQN algorithm will not explore
the unfeasible actions since DQN explores actions having high Q values.

After that, we apply an ϵ-greedy approach to choose an action. This means that the
agent will choose a random action over the feasable actions with ϵ probability and the best
action over the action distribution with a 1- ϵ probability. The value of ϵ decays over time
during the learning phase. It allows pushing the agent to explore the environment at the
beginning of the training phase and better exploit the learned decisions over time.

• Updating the Q-Networks: At each step, the current state, the action, the next state,
and the reward are stored in a buffer known as the replay buffer. The local Q-Network
is updated using a random sample from the replay buffer, which reduces the correlation
between the agent’s experiences and increases the stability of the learning. Using Mean
Square Error (MSE) and ADAM optimizer [69], the parameters of the local Q-Network are
optimized at every step by considering the local and target values, while the parameters
of the target Q-Network are smoothly updated at each step using a parameter τ .

4.7 Performance Evaluation

In this section, we will introduce the simulation environment and parameters used for O-RS and
DRL-RS. We note O-RS the exact solver of the MILP model. Then, we illustrate an example of
the resource matrix filled with different approaches on a small instance of the problem for the
sake of illustration clarity. After that, we solve bigger instances of the problem with different
network configurations. We compare the different approaches in terms of efficiency, scalability,
and execution time.

4.7.1 Simulation parameters

To evaluate different contributions in a 5G environment, we used the mixed-numerology 5G
Simulator developed in [70] that relies on 6.1.4.2 of TS 38.214 [24] specifications to compute
the TBS. The simulator takes the scheduling policy regardless of the source of the policy. For
instance, we can plug O-RS and DRL-RS into the simulator and compare their results. All tests

54



On enforcing Network Slicing in the new generation of Radio Access Networks

Table 4.2: Illustration example parameters

Parameter Value

Bandwidth 5 MHz

Maximum numerology 3

Time window 3 ms

Number of UEs 3

Number of slice per UE 2

1st slice throughput requirement 4 Mbps

1st slice latency requirement 3 ms

2nd slice throughput requirement 1 Mbps

2nd slice latency requirement 0.5 ms

MCS 26

are performed on a machine with 64 CPUs, an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
(2.7 GHz with Turbo Boost technology), and 128 GBs of RAM.
O-RS: The MILP problem is solved using Gurobi version 9.1.2. The absolute optimality gap is
set to 10−8, and the time limit to 50000 seconds. We recall that the absolute gap is the absolute
difference between the best possible objective value and the objective value of the best feasible
solution.
DRL-RS: The simulation environment is implemented using Python. We used PyTorch to
implement the DRL-RS agent. We have trained the DRL-RS agent using 500 independent
episodes. We have fixed the maximum number of steps at each episode T by 100. We have
varied the reward parameters and chosen the values that stabilize the convergence of the model.
The different considered parameters are presented in Table 4.3. The model converges after 200
episodes.

Table 4.3: DRL-RS parameters

Parameter Value

P −0.02
S −0.01
K 5000

α 0.5

Othgmax 2

Number of hidden layers 2

Hidden layer size 64 nodes

discount factor γ 0.99

Batch size 128

Learning rate 5 ∗ 10−4

Replay buffer size 109

Soft update coefficient τ 0.001

Optimizer ADAM [69]

ϵ-start 1

ϵ-decay 0.99

ϵ-end 0.01

For each bandwidth size and ∆T , we trained an instance of the model using MCS 16, 3 UEs.
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Each UE is attached to one eMBB and one uRLLC slice with a fixed SLA. The sum of throughput
SLA of UEs nearly equals the maximum achievable throughput in the corresponding bandwidth.

4.7.2 Resource grid illustration
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(a) O-RS solution
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(b) DRL-RS solution

Figure 4.3: Resource matrix illustration

Figure 4.4: Virtual UEs scheduled in the resource matrix illustration example (Figure 4.3)

We solve the problem instance described in Table 4.2 using O-RS and DRL-RS. We selected
a small matrix for the sake of illustration clarity. Figure 4.3 compares the resource allocation
policies generated by each approach. Figures 4.3(a), 4.3(b) illustrate the radio resource allocation
matrix filled by O-RS and DRL-RS, respectively. Each virtual UE has a color, for instance we
have 6 virtual UEs. We recall that each slice associated with a UE is a virtual UE. The mapping
between colors and virtual UEs is illustrated in Figure 4.4. We observe that, for the two
approaches, the black, pink and yellow UEs respect the 0.5 ms latency (resources are allocated
before 0.5 ms thanks to the use of numerology 1 by different approaches) and each one uses 4
PRBs (carry 2984 bits of data per time window with MCS 26, we compute the estimated amount
of data sent by second: 2984*1000/3 = 0.99 Mbps ) required by the 2nd slice in Table 4.2. Gray,
blue and green UEs are the virtual UEs belonging to the 1st slice, each one respects the 3 ms
latency and the 4 Mbps throughput (each UE uses more than 16 PRBs, which carry 11832 with
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Table 4.4: 5G NR Configurations

Index Bandwidth (MHz) ∆T (ms) Number of UEs slices per UE Slices SLA list (Mbps, ms) MCS
1 20 3 3 2 (9,10),(0.2,1) 16
2 20 3 10 2 (5,10),(0.2,1) 26
3 40 1 10 2 (5.5,10),(0.2,0.5) 16
4 40 1 10 2 (13,10),(0.7,0.25) 26
5 100 3 3 3 (40,10),(1,2),(0.2,1) 16
6 100 3 6 3 (40,10),(2,2),(0.7,1) 26
7 400 1 5 2 (110,10),(1,0.125) 16
8 400 1 20 1 (50,10) 26
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Figure 4.5: Aggregated throughput comparison between O-RS and DRL-RS

MCS 26 per time window, and hence, the throughput per second is estimated to be more than
11832*1000/3 = 3.94 Mbps ). We conclude that O-RS and DRL-RS generate different allocation
policies and all these policies fulfill the slices SLA in terms of throughput and latency.
We observe that O-RS and DRL-RS dynamically selected the numerology 0 and 1 to fill the
matrix. These decisions are due to the fact that DRL-RS and O-RS are designed to be able
to select a numerology at each timestamp taking into consideration different constraints. For
instance, DRL-RS and O-RS selected numerology 1 to satisfy the 0.5 ms latency for the second
slice, and numerology 0 to satisfy the first slice which does not require higher numerology to
satisfy its latency SLA.

4.7.3 Comparison with the State of The Art

In the balance of this subsection, we compare DRL-RS results with the results of [63]. We recall
that [63] proposed a scalable optimization algorithm based on LP and LD (noted as LP+LD).
We adapted our simulation parameters to reproduce the same experiment using a scheduling
window of 2 MHz of bandwidth and 2 ms of duration. We assumed a maximum numerology of
3. We considered 10 UEs with a target throughput of 450 kbps (this is due to the limitation
of LP+LD). We varied the target latency. Figure 4.6 depicts the achieved throughput using
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Figure 4.6: Average throughput per user comparison between DRL-RS and the state of The Art

different latency targets. The x-axis represents the latency targets while the y-axis represents
the achieved throughput in kbps. We notice that DRL-RS is able to achieve slightly higher
throughput than LP+LD solution. We are not able to compare with bigger instances of the
problem because [63] did not consider it. In contrast, DRL-RS considers bigger instances, which
is one of the critical contributions of our work compared to state of the art solutions.

4.7.4 Efficiency and Scalability Evaluation

In this subsection, we will evaluate the effeciency and the scalability of DRL-RS. Figure 4.5
compares the aggregated UE throughput achieved in each configuration by O-RS and DRL-RS.
We notice that the achieved throughput by DRL-RS is close to the optimal achievable throughput
obtained by O-RS, which means that DRL-RS is able to fill the resource matrix efficiently while
satisfying the throughput and latency SLA for all the slices (Figures 4.7). We observe a small
gap between the performance of DRL-RS and O-RS in higher bandwidths (greater than 100
MHz). This gap is caused by the wasted resources that DRL-RS may generate due to the
nature of DRL algorithms, which approximate continuous state using neural networks. Indeed,
these resources cannot be used by any UE due to shape and numerology constraints.
Figure 4.7 depicts the achieved SLA by DRL-RS for each configuration listed in Table 4.4. The
y-axis represents the metrics used for measuring the SLA: maxiO

thg
i , miniO

thg
i , averageiO

thg
i

for the throughput SLA (blue and red in the figure) and maxiO
lat
i , miniO

lat
i , averageiO

lat
i for

the latency SLA (green and grey in the figure). We remind that these values are described in
Section 4.5.1. The SLA is assumed respected when the value of these metrics is higher than
1 with a tolerance of 5% due to the QNetworks estimation errors. The x-axis represents the
configuration indexes summarized in Table 4.4.
We adopted different bandwidth sizes from 20 MHz to 400 MHz, representing the maximum
bandwidth defined by 5G NR specifications and corresponding to the usage of the mmWave
bands. Moreover, in order to support the dynamic nature of the RAN environment, we varied
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Figure 4.7: Throughput and Latency SLA fulfillment by DRL-RS

the number of UEs, the number of slices per UE (1, 2, or 3 slices per UE), slices SLA and the
MCS assigned to each UE (16 and 26 for medium and high channel quality, respectively). Figure
4.7 reveals that the slice’ SLAs are met for each configuration. We notice that the maximum
and the minimum achieved SLA for throughput are greater than 1 (maxiO

thg
i > 1) and 0.94

(miniO
thg
i > 0.94), respectively. This means that all the UEs have achieved their throughput

SLA targets. We also notice that the latency SLAs are respected for all the configurations (i.e.,
miniO

lat
i = 1).
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Figure 4.8: 20 MHz matrix

Figures 4.8(a), 4.9(a), 4.10(a), 4.11(a), 4.12(a) compare the execution time needed by O-RS,
DRL-RS to find a feasible solution for a bandwidth of 20MHz (configuration 1), 40 MHz (con-
figuration 3), 100MHz (configuration 5) and 400MHz (configuration 7 and 8), respectively. The
x-axis represents the number of UEs to be scheduled and the y-axis represents the execution time
in milliseconds. The number of UEs is defined by β while the throughput SLA for each UE will
be Initial SLA÷β, where β = 5∗k, with k a positive integer; and Initial SLA is the maximum
possible throughput SLA in the given configuration. We observe that O-RS’s execution time is
exponential by report to the number of UEs while DRL-RS take much less time to be executed.
We notice that O-RS is not able to solve the problem instances with more than 30 UEs before
the fixed time limit (50000 s). Figure 4.13 zoom out the execution time for Figure 4.12(a) to
visualize the difference in execution time more clearly for smaller instances (number of UEs less
than 30 UEs for O-RS plot). We notice that DRL-RS takes much less time to find a feasible
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Figure 4.9: 40 MHz matrix
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Figure 4.10: 100 MHz matrix

solution (less than 1ms). Hence, we can say that DRL-RS is suitable for real-time scheduling.
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Figure 4.11: 400 MHz matrix
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Figures 4.8(b), 4.9(b), 4.10(b), 4.11(b), 4.12(b) compare the number of satisfied UEs when
applying O-RS and DRL-RS on a bandwidth of 20MHz (configuration 1), 40MHz (configuration
3), 100MHz (configuration 5) and 400MHz (configuration 7 and 8), respectively. The x-axis
represents the number of UEs to be scheduled, and the y-axis represents the number of satisfied
UEs in terms of both throughput and latency. We observe that DRL-RS is able to fulfill the
throughput and latency requirements of up to 50, 180, 130, 140, and 150 UEs out of 200 UEs
in configuration 1, 3, 5, 7, and 8, respectively (we recall that configuration requirements are
different, see Table 4.4 ).
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Figure 4.12: 400 MHz matrix (1 slice attach case)
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Figure 4.13: Execution time for the 400 MHz matrix (single slice attach case)

To summarize, O-RS is able to derive the optimal solution for the proposed optimization prob-
lem. However, we observed that it takes exponential time regarding the number of UEs. DRL-RS
is an approach to reducing the execution time. DRL-RS takes less than 1ms to find a feasible
solution in different network configurations. Hence, DRL-RS is more suitable for real-time
scheduling. Moreover, the DRL solution was able to select the numerology dynamically, pre-
venting from using higher numerology when it is not needed (since the DRL-RS design allows
the selection of numerology for each time slot).
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4.8 Conclusion

In this chapter, we modeled the radio resource allocation problem in 5G NR featuring network
slicing and considering a mixed-numerology environment as a Mixed Integer Linear Program.
We proved that the problem is NP-hard and proposed a DRL-based approach to solve it for
big instances of the problem (i.e., when the number of UEs is higher than 50 and bandwidth
size bigger than 40 MHz). Simulation results demonstrated the proposed approach’ efficiency
and scalability in meeting the desired quality of service requirements. Indeed, DRL-RS can find
feasible solutions for the radio resource management problem in a reasonable amount of time
which makes it suitable for real-time scheduling. Besides, DRL-RS is energy efficient since it
dynamically selects high numerology only when it is required in the context of multiple slices
per UE.

62



Part II

Dynamic TDD optimization in 5G
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Chapter 5

Dynamic TDD for a single-cell 5G
environment

5.1 Introduction

Emerging 5G and 6G network services are shifting from DL-dominant traffic to more equilibrate
DL and UL traffic, even to more UL-dominant traffic [10]. Indeed, emerging network services
such as AR and VR applications generate high UL traffic corresponding to offloaded intensive
computation to be run at a remote application sitting at the Edge. Another example is the
high-quality video streaming captured by drones for building surveillance that requires more UL
traffic than DL. One solution to accommodate this new trend in terms of traffic model is TDD.
TDD allows using the entire bandwidth by dividing it into time slots where some are assigned
to UL and some to DL.
4G proposes 7 different configurations of the TDD frame, which allows configuring the eNB
according to the traffic patterns. But, one concern with this solution is that the configuration is
fixed in time and cannot be adapted to the traffic dynamic, i.e., if in a certain moment of time
more DL or UL need to be accommodated, then there is no possibility to increase the number
of UL or DL slots, without rebooting the eNB. To overcome this issue, 5G NR introduces a
more flexible solution, where the number of UL and DL slots in the TDD frame can be changed
dynamically. This flexibility will allow the gNB to adapt to the frame configuration according
to the traffic pattern by selecting the number of slots dedicated to UL and DL. However, the
5G NR specifications only cover the mechanism allowing the gNB to inform the UE about the
UL/DL slots pattern in a TDD frame, leaving the algorithm deriving the pattern UL/DL opens.
In this contribution, we propose a novel algorithm, namely DRL-based 5G RAN TDD Pattern
(DRP), which allows deriving the UL/DL pattern of TDD frames dynamically and accommodat-
ing cell traffic whatever it is DL or UL dominant. DRP monitors UL and DL traffic periodically
and derives the optimal pattern. DRP uses the BSR sent by UEs for the UL traffic and the
state of the radio bearer channel queues at gNB, which avoids having an exact pattern of the
traffic. DRP is run by gNB before the MAC scheduling process. DRP is particularly efficient
for 5G private network deployment, allowing to run gNB in a plug-and-play mode.

5.2 Related works

Many dynamic TDD resource allocation algorithms for optimizing both power efficiency and
transmission performance in LTE were investigated [71, 72, 73]. T. Ding et al. analyze the
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performance of employing dynamic TDD for dense small cell networks towards 5G [74]. In [75],
authors considered a cluster-based dynamic UL/DL re-configuration considering a centralized-
RAN scenario in dense deployments. The central control unit uses a low complexity trellis
exploration algorithm to reconfigure the UL/DL ratio aiming at maximizing the overall RAN
throughput. In [76], the authors presented a game-theoretic approach where each eNB re-
configures its TDD frame aiming at minimizing the UL/DL delay while considering cross-slot
interference. As mentioned earlier, all these works consider the LTE TDD configuration, ignor-
ing the new flexibility of 5G NR. In [77], the authors explored employing deep reinforcement
learning to adaptively allocate TDD UL/DL resources in the high mobility 5G HetNet. As high
mobility of users leads to the high dynamic network traffic and unpredicted link state change, a
new method to predict the dynamic traffic and channel condition and schedule the TDD config-
uration in real-time is proposed. However, this work does not consider the 5G NR specificities
and requires additional information that is not available at the base station. In [78], the authors
proposed a service-oriented soft spectrum slicing for 5G TDD. The objective is to use the flexi-
bility of TDD to adjust the UL/DL dynamically using forecasted traffic and user mobility. The
problem has been modeled using weighted optimisation. Although the paper tackles 5G, it uses
the TDD LTE configuration (i.e., fixed patterns). In addition, the optimization problem needs
to be solved periodically to define the new pattern, which is not realistic in a real deployment.

Table 5.1: Summary of Notations & Variables.

Notation
/ Variable

Description

B the gNB.

Γ the set of UEs in the network.

γ A UE γ ∈ Γ.

δ TDD period.

µ A numerology used by gNB.

Tδ The number of slots during a period δ. Tδ = {1, 2, 3 · · · 16}.
λUγ The UL traffic generated by UE γ.

λDγ The DL traffic of UE γ.

λUΓ The UL traffic generated by all UEs Γ. Formally, λUΓ =
∑
γ∈Γ

λUγ

λDΓ The DL traffic of all UEs Γ. Formally, λDΓ =
∑
γ∈Γ

λDγ

ψU
γ The UL buffer of UE γ.

ψD
γ The DL buffer of UE γ.

ΨU
Γ The UL buffer of all UEs Γ. Formally, ΨU

Γ =
∑
γ∈Γ

ψU
γ .

ΨD
Γ The DL buffer of all UEs Γ. Formally, ΨD

Γ =
∑
γ∈Γ

ψD
γ .

S OFDM symbol.

µS The amount of traffic in bytes transmitted by S.
α A constant that specifies the priority between the UL and DL traffics.

ΦU
γ The initial amount of stored data in bytes in the UL buffer ψU

γ .

ΦD
γ The initial amount of stored data in bytes in the DL buffer ψD

γ .

Xγ A real variable that denotes the percentage of UL slots reserved for the
UE γ ∈ Γ.

Yγ A real variable that denotes the percentage of DL slots reserved for the
UE γ ∈ Γ.
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5.3 Network model and problem formulation

5.3.1 Network model

In the system, we focus only on one gNB B, whereby a set of UEs are connected. Let Γ denote
the set of UEs in the system. UEs γ ∈ Γ are attached to the same gNB. We assume that gNB is
using TDD operations. Each TDD period δ is fixed by gNB. For the sake of paper readability,
the used notations are summarized in Table 5.1.Each UE γ ∈ Γ has UL and DL traffics that
can vary from an industrial vertical to another. While UL traffic is generated and transmitted
from the UE γ to the gNB B, the DL traffic is sent from the gNB B to the UE γ. Let λUγ and

λDγ denote the amount of UL and DL traffic in bytes of UE γ, respectively.

In contrast to LTE, where the DL traffic λDγ is more critical than the UL one λUγ , in the 5G
system and beyond the amount of traffic in UL and DL is application dependent. For instance,
in a network slice that manages autonomous driving or UAV, high UL traffic λUγ is expected.

On another side, in some verticals, such as live streaming, the DL traffic λDγ is more important.
Other industrial verticals and network slices, such as immersive applications (VR, AR, and
holograph communication), require high data rates in both directions. The players in these
applications are characterized by colossal collaborative interactions, tremendous precision, and
high data synchronization. Furthermore, the same UE γ can be subscribed in multiple network
slice, which makes hard to predict the UL λUγ and DL λDγ traffic of a UE γ.
For the sake of simplicity and without loss of generality, we assume that each UE γ has limited
UL ΨU

γ and DL ΨD
γ buffers, respectively. Let |ΨU

γ | and |ΨD
γ | denote the size of UL and DL

buffers in bytes, respectively. While ΨU
γ is located at the UE γ, ΨD

γ is located at the gNB

B. The UE γ periodically keeps informing the gNB B about the state of ΨU
γ . In 5G NR, this

operation corresponds to the BSR sent by UE when requesting UL resources. Meanwhile, the DL
buffers are monitored by gNB, as it corresponds to the radio bearer data channels maintained
by gNB for each UE. Let ΨU

Γ and ΨD
Γ denote the UL and DL buffer of all the UEs. Formally,

ΨU
Γ =

∑
γ∈Γ

ψU
γ , and ΨD

Γ =
∑
γ∈Γ

ψD
γ .

5.3.2 Problem formulation

In this work, we assume that the number of slots T∆ is fixed in each frame ∆. However, their
distribution on UL and DL traffic is unknown, and it is the target of this contribution. The
main research question is how to distribute the slots among the UL and DL traffic, such that the
SLA is preserved and the UL ΨU

Γ and DL ΨD
Γ buffers do not overrun their boundary. The main

challenge faces the work is both UL λUγ and DL λDγ traffics are unknown and hard to predict.
As aforementioned, each slot has 14 OFDM symbol S, each of which can transmit µS bytes.
Thus, each slot t ∈ Tδ transmits 14× µS . Let Xγ a real variable that denotes the percentage of
UL slots reserved for the UE γ ∈ Γ. Similarly, let Yγ a real variable that denotes the percentage
of reserved slots for DL traffic. Formally, the following statements should hold (5.2), (5.3) and
(5.4).
If we denote by XΓ a real variable that denotes the percentage of UL slots reserved for all the
UEs Γ, then XΓ = 1

|Γ|
∑
γ
Xγ . Similarly, if YΓ is a real variable that denotes the percentage of

DL slots reserved for all the UEs Γ, then YΓ = 1
|Γ|

∑
γ
Yγ . Also, the following statement holds:

XΓ + YΓ = 1

Let α a given constant (0 ≤ α ≤ 1) that defines the priority between the UL and DL traffics.
This parameter can be defined by the customer to specify the priorities between the two traffics.
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If α = 1, then we are interested only to optimize the UL traffic, whereas, if α = 0, then we
are interested only to optimize the DL traffic. The proposed solution should be periodically
applied to specify Xγ and Yγ in order to prevent the overflow of UL buffer ΨU

γ and DL buffer

ΨD
γ . Let ΦU

γ and ΦD
γ denote the initial stored data of the UL and DL buffers. Both ΦU

γ and

ΦD
γ are initialized by zero. At each iteration, we aim to optimize the following linear integer

programming:

min
α

|ΨU
Γ |

×
∑
γ∈Γ

(
ΦU

γ + λU
γ − 14× µS ×Xγ × Tδ

)
1− α

|ΨD
Γ |

×
∑
γ∈Γ

(
ΦD

γ + λD
γ − 14× µS × Yγ × Tδ

)
(5.1)

S.t,

0 ≤ Xγ ≤ 1 (5.2)

0 ≤ Yγ ≤ 1 (5.3)

Xγ + Yγ = 1 (5.4)

∀γ ∈ Γ : ΦU
γ + λU

γ − 14× µS ×Xγ × Tδ ≤ |ΨU
γ | (5.5)

∀γ ∈ Γ : ΦD
γ + λD

γ − 14× µS × Yγ × Tδ ≤ |ΨD
Γ | (5.6)

∀γ ∈ Γ : Xγ × Tδ = Aγ (5.7)

∀γ ∈ Γ : Yγ × Tδ = Bγ (5.8)

∀γ ∈ Γ : (Aγ ,Bγ) ∈ N 2 (5.9)

The objective function (5.1) aims to minimize the amount of stored data in the UL and DL
buffers to prevent their overflow. While ⌊

∑
γ∈Γ
Xγ × Tδ⌋ denotes the number of slots reserved

for the UL traffic, ⌈
∑
γ∈Γ
Xγ × Tδ⌉ is the number of slots reserved for the DL traffic. We have

used weighted normalized sum method to prevent an objective (i.e., buffer) dominant the other.
Meanwhile, constraints, (5.2), (5.3) and (5.4), ensure that the variables Xγ and Yγ are rates of
slots distribution for UL and DL. Meanwhile, constraints 5.5 and 5.6 ensure that the UL and
DL buffer of γ ∈ Γ is not overflow, respectively. Meanwhile, constraints, (5.7), (5.8) and (5.9),
ensure that the number of UL and DL solts distributed on each UE γ ∈ Γ is an integer. Note
that Aγ and Bγ are two integer variables should be fixed by the system. While Aγ denotes the
number of UL slots of γ, Aγ denotes the DL slots.
Unfortunately, we cannot use the optimization problem mentioned above for distributing the
slots mainly due to two reasons: i) Solving the optimization problem is time-consuming while
we should take decisions within few milliseconds as the solution is online and acting at the RAN
level; ii) The amount of UL λUγ and DL λDγ traffics are unknown and it is hard to predict them
a priory.

5.4 DRP System Overview

As aforementioned, it is hard to distribute OFDM slots using optimization efficiently and without
prior knowledge of the traffic generation patterns. For this reason, we have proposed the DRP
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system that leverages DRL, more precisely the DDPG Algorithm, to define the 5G NR TDD
pattern dynamically. The DRL hides the complexity and stochastic of the environment and
helps the DRP framework to make efficient and quick decisions that adapt according to the
traffic patterns. Moreover, the DRP framework gains the ability to learn with time and adapts
to different and unseen situations. In the balance of this section, we will present the DRP system
overview and DRL background, more precisely the DDPG Algorithm, and a detailed description
of the DRP system.
The ability of DRL-based solutions to deal with unknown and unseen environments makes them
the best fit for addressing the 5G TDD pattern configuration problem. The DRL Algorithm
mainly consists of two steps: i) The learning (exploration) step; ii) The exploitation step.
In order to overcome the need of model (i.e, transition probability), during the learning step,
the agent interacts with the environment by following stochastic policy (i.e., random actions)
to explore and build the knowledge about the environment. While, in the exploitation step,
the agent exploits the acquired knowledge by following the optimal policy π∗ that provides the
optimal action at, to take in each state st, in a way that maximizes future cumulative discounted
reward Gt defined as follows:

Gt
.
=

T∑
k=0

γkrt+k+1 = rt+1 + γGt+1 (5.10)

With γ ∈ [0, 1] defined as the discount rate that penalises the future rewards, and T equal to the
time horizon which is finite for episodic problems (i.e., problems that ends when the environment
is a final state) and infinite for continuing problems.
In general, DRL methods are classified into three categories : i) value-based methods, such as
Monte Carlo, SARSA, Q-Learning, and DQN; ii) policy-based methods, such as REINFORCE
(i.e., Monte-Carlo Policy Gradient) and REINFORCE with baseline; iii) actor-critic methods
that combine the two previous methods, such as A2C, A3C, DDPG, and PPO [42]. In actor-
critic approach, we have mainly two families, the stochastic policy approach (e.g., A2C and A3C)
and the deterministic approach (e.g., DDPG). In the stochastic policy approach, the actions are
selected from the Actor with different probability using the softmax activation function. The
agent should pick the action that has a high probability. Unfortunately, the main limitation
of the stochastic policy approach is the number of actions should be limited. In contrast, in
the deterministic approach, the actions are generated directly from the actor-network, enabling
continuous actions. In this contribution, we are interested in specifying the percentage of UL
and DL slots as depicted in Figure 5.1. For this reason, we have adapted DDPG Algorithm. We
will explain further the DDPG Algorithm when explaining our DRP approach.

5.5 DRP Detailed Description

We have designed the DRP agent to be lightweight to ensure fast interaction with the environ-
ment. Also, we have designed the DRP agent to ensure generality and then work in an unseen
environment. The DRP agent has been designed to work independently from the number of
slots and the size of the buffers. Moreover, it considers the variation and correlation in the
buffer states to predict the traffic patterns. In what follows, we define the elements of the DRP
agent, including the state, the reward, and the action.
i) State: Let ξUt and ξDt denote the amount of traffic in the UL ΨU

Γ and the DL ΨD
Γ at the step t,

respectively. To ensure the generalization, we define the observation OU
t and OD

t of the UL and

DL buffers as normalized values (Figure 5.1: 1). Formally, OU
t =

ξUt
ΨU

Γ

and OD
t =

ξDt
ΨD

Γ

, respectively.
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Figure 5.1: Envisioned DRL-based 5G RAN TDD Pattern (DRP) System

The benefits of the normalization are twofold: i) It ensures the generality by enabling the DRP
agent to be agnostic to the scenario scale. It works similarly in different buffers with different
sizes. The most important is to catch the buffer fullness ratio of ΨU

Γ and ΨD
Γ ; ii) It is well known

that the activation functions in the neural network work well for small values, which positively
impacts DRP’s convergence. Moreover, to capture the traffic patterns, we define the state st as
follow:

st =

( K⋃
i=0

OU
t−i,

K⋃
i=0

OD
t−i

)
(5.11)

In the state st, the DRP agent, besides the current observation, considersK previous observations
before taking any action. This enables to capture the behavior of both buffers and traffics before
making any action.
ii) Action: We have only one continuous action at that presents the percentage of slots should
be reserved for the UL traffic at the step t. The DRP agent enforces the taken decisions as
depicted in Figure 5.1:6. Accordingly, the ⌊at × Tδ⌋ slots are reserved for the UL traffic, and
⌈(1 − at) × Tδ⌉ slots are reserved for the DL traffic. It is worth noting that the action is
independent on the number of slots Tδ, which ensures the generality and enables the DRP agent
to be agnostic to the scenario scale.
iii) Reward: We have adapted an episodic approach, whereby each episode runs for max T
steps before ends. The reward rt has been defined as follow:

rt =

{
α× (1−OU

t ) + (1− α)× (1−OD
t ) If|OU

t | < 1 ∧ |OD
t | < 1

−M Otherwise
(5.12)

Where, α is the priority between the UL and DL traffics. The DRP agent receives a positive
reward for each step succeeds to keep the buffers ΨU

Γ and ΨD
Γ do not exceed their threshold.

Moreover, the emptiest the buffers are, the highest reward becomes. When one of the buffers
exceeds its capacity, then the agent receives a penalty −M, such thatM is a significant number.
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This strategy will enforce the DRP agent to keep both buffers empty as much as possible and
prevent their overflow, which has a positive impact on the QoS.
As depicted in Figure 5.1, DRP system leverages DDPG algorithm and executed on three dif-
ferent steps: i) Decision making (Figure 5.1: 1 − 6) presented with blue color; ii) Updating
policy networks (Figure 5.1: 7 − 17) presented with red color; iii) Updating target networks
(Figure 5.1: 18 − 19) presented by green color. In DDPG, we have two networks: a) Policy
networks that consist of the Actor and the Critic neural networks. These networks are used
to predict the deterministic action at. While the actor network has as input the state st and
it is used to predict the action at, the critic network has as inputs st and at and returns the
Q value that is used for criticizing the taken action; b) The target network that consists of
target actor and target critics. These two networks are frozen and used to help the convergence
of policy networks and stabilize their learning. In deep learning, the optimizer (i.e., ADAM)
should update the neural network parameters of the policy networks closer to the labels, which
are the fixed target neural network values. Moreover, to stabilize the learning, a replay buffer is
used. The training is performed using a random sample from the replay buffer, which reduces
the correlation between the agent’s experiences.
Decision making: At the reception of the observation (OU

t ,OD
t ), the DRP agent generates

the state st using the equation (5.11) (Figure 5.1: 2). The received state is used by the actor
network to predict the deterministic action at (5.11) (Figure 5.1: 3). In order to enable the
DRP agent to explore the environment, a noise N is added to the action (5.11) (Figure 5.1: 4).
Accordingly, the UL and DL slots are reserved (Figure 5.1: 5− 6).
Updating policy network: In order to take optimal actions, the policy network should be
updated (Figure 5.1: 7− 17). The taken action with noise should be stored in the replay buffer
(Figure 5.1: 7), as well as their corresponding state and reward (Figure 5.1: 8). First the critic
network is updated by leveraging a random batch sample (st, at +N , rt) from the replay buffer
(Figure 5.1: 9−14). Using the MSE and ADAM optimizer, the parameters of the critic network
are optimized by considering the critic values and target critic values. Then, the actor network
is also optimized by leveraging the gradient generated against the critic network.
Updating policy network: The target networks (actor and critic) should be updated slowly
and periodically towards the policy networks using soft update (Figure 5.1: 18 − 19). This
strategy helps the Algorithm for providing optimal deterministic action.

5.6 Performance evaluation

We have implemented our simulation environment using Python, and Pytorch . We have used
a physical machine with 8 Core i7-8665U 1.90GHz and 16 GB of memory using Centos 7 as
an operating system. We have employed two fully connected hidden layers of 400 and 300
nodes for both policy and target networks. We have also used layer normalization between the
hidden layers to enable smoother gradients, faster training, and better generalization accuracy.
While Rectified Linear Unit (ReLU) activation function has been used in the two hidden layers,
Hyperbolic Tangent (tanh) activation function has been used in the output layer. We have
employed a discount factor γ of 0.99, batch size of 1024, and the learning rates of the actor
and critic networks are set to 10−5 and 10−3, respectively. We have used the soft update with
coefficient τ 0.001. Also, ADAM optimizer has been leveraged in both actor and critic networks.
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Figure 5.2: Convergence evaluation of DRP agent during the training mode

(a) Impact of time (b) Impact of arrival traffic rate λ (c) Impact of number of slots Tδ

Figure 5.3: Performance evaluation of DRP system during the inference mode

5.6.1 DRP Training mode

As depicted in Figure 5.2, we have trained our DRP agent using 2000 independent episodes. We
have fixed the maximum number of steps at each episode T by 100. We have set the penalty
reward M to -100, and the number of slots Tδ to 40. We have considered three successive
observations (i.e., K = 3). From the figure, we observe that the DRP agent converges at 500
episodes.

5.6.2 DRP Inference mode

We have evaluated the DRP agent in terms of: i) The percentage of the fullness of the UL and
DL buffers; ii) The number of buffer overflows. In the figure 5.3, the left Y-axis represents the
percentage of the fullness of the UL and DL buffers, whereas the right Y-axis represents the
number of overflows. In all the experiments, we have fixed the maximum number of steps T by
200. We have conducted three sets of experiments: i) We have varied the number of episodes
while fixing the number of slots Tδ by 40 and the amount of UL λUγ and DL λDγ traffic by 400; ii)

We have varied Tδ while fixing λUγ and λDγ by 400 and number of episodes by 100; iii) We have

varied λUγ and λDγ while fixing Tδ by 40 and number of episodes by 100. Figure 5.3(a) depicts
the impact of the execution steps on the DRP agent. The first observation that we can draw
from this figure is the average amount of traffics in the UL, and DL buffers are 20%. Also, we
observe that the fullness of the buffer did not exceed 45% in the 12000 execution steps. We also
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witness that the number of times a buffer overflow happens did not exceed 10 times, which is
less than 0.083%. This figure also confirms the ability of the DRP agent for generalizing. While
it is trained with T = 100, it has been tested with T = 200 without feeling any difference.
Figure 5.3(b) depicts the impact of λUγ and λDγ on the DRP agent. Each plotted point presents
the average of 100 episodes, each of which with 200 steps. The first observation that we can draw
from this figure is the amount of traffic hurts the DRP agent. The more data traffic generation
rate is, the higher likelihood to get buffer overflow becomes. We observe that whatever the
amount of traffic, the average fullness of both buffers does not exceed 60%. The number of
buffer overflows did not exceed 100 cases, which is 0.5% in the worst-case scenarios. The obtained
results demonstrate the DRP agent’s ability to make the generality and perform well in unseen
environments.
Figure 5.3(c) shows the impact of the number of slots on the DRP agent. We observe that
the number of slots has a positive impact on the fullness of the buffers and the number of
buffer overflows. The more number of slots is, the higher capacity for transmitting the packets
becomes. We observe that DRP agent succeeded to get empty buffers when more 60 slots are
used. These results demonstrate the efficiency of the proposed solution for making the generality
and achieving its main design goals. We also observe that the percentage of buffer fullness does
not exceed 45% in the worst-case scenarios. Also, the number of buffer overflows did not exceed
90, which is less than 0.45%.

5.7 Conclusion

In this chapter, we introduced DRP, a DRL-based solution that allows to derive and adjust the
TDD pattern in 5G NR. DRP is used by 5G base station before the UE scheduling process
to compute the number of slots dedicated to UL and DL in a TDD frame. Without knowing
the UEs traffic model, DRP can derive the optimal TDD pattern aiming at reducing both UL
and DL buffers. DRP uses available information at the gNB, i.e., BSR, and DL buffer size,
to deduce the optimal TDD pattern. Simulation results clearly showed that DRP could avoid
buffer overflow and dynamically adapt to the cell traffic.
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Chapter 6

Dynamic TDD for a multi-cell 5G
environment

6.1 Introduction

In this contribution, we extend DRP to solve the dynamic TDD problem in a multi-cell envi-
ronment and introduce the MADRL-based 5G RAN TDD Pattern (MADRP) framework. The
MADRP approach is fully decentralized. Each MADRP agent is located close to the gNB,
serving a particular cell. Compared to a centralized approach, MADRP is executed close to
the gNB, which reduces the control latency between the gNB and MADRP. Moreover, MADRP
reduces the signaling overhead normally generated when gNBs send data to a central entity.
Each MADRP agent monitors the gNB’s UL and DL buffers and the number of edge users with
neighboring cells. Note that edge users of a cell correspond to UEs attached to that cell and
are physically located at the cell’s boundaries where the signal strength from neighboring cells
is significant. Then, each agent uses this local observation along with messages from neighbor-
ing cells to derive the optimal TDD pattern to accommodate connected users while avoiding
cross-link interference with neighboring cells.
The key contributions of this chapter are:

• Model the dynamic TDD problem in 5G NR considering a multi-cell environment. The
proposed model takes into account dynamic traffic patterns and cross-link interference.

• Design a solution to solving the problem without knowing the traffic pattern. The sug-
gested approach is designed as a fully distributed solution, enabling it to operate near the
gNB and minimize control latency consequently.

• The proposed solution is designed to guarantee generality in terms of (i) number of cells (ii)
radio configuration in terms of the numerology, the TDD period, and the buffer capacity.

• The proposed solution takes into account the propagation effect of cross-link interference
between cells, i.e., the indirect cross-link interference that occurs between two cells without
direct cross-link interference due to a third cell interfering with the two cells.

• Implementation of the proposed solution using the MADDPG algorithm [41].

• Simulation results with different numbers of cells under different traffic patterns and cross-
link interference probability. We compared MADRP with the optimal solution and differ-
ent static TDD configurations with different traffic UL/DL proportions. The results show
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that MADRP outperforms the static TDD configurations even in high cross-link interfer-
ence scenario and the gap between the optimal solution and the MADRP solution is small
in low-interference scenario.

Table 6.1: Summary of Notations & Variables.

Notation
/ Variable

Description

C set of radio cells

Γc the set of UEs connected to cell c.

γ A UE γ ∈ Γc.

δ TDD period.

νc A numerology used by a cell c.

T cδ The number of slots in cell c during a period δ . T cδ = {2, · · · , 16}.
λUγ The UL traffic generated by γ ∈ Γc.

λDγ The DL traffic from a cell towards the UE γ ∈ Γc.

ψU
γ The UL buffer of the UE γ ∈ Γc.

ψD
γ The DL buffer of the UE γ ∈ Γc.

λUc The UL traffic generated by Γc.

λDc The DL traffic from cell c towards the UEs γ ∈ Γc.

ΨU
c The UL buffer of cell c.

ΨD
c The DL buffer of cell c.

µDc The amount of traffic in bytes transmitted by cell c per slot.

µUc The amount of traffic in bytes received by cell c per slot.

α A constant that specifies the priority between the UL and DL traffics.

ΦU
c The initial amount of stored data in bytes in the UL buffer ψU

c .

ΦD
c The initial amount of stored data in bytes in the DL buffer ψD

c .

Fc1,c2 A Boolean constant that denotes if there is interference between cells c1
and c2.

Xc A real variable that denotes the percentage of allocated UL slots in cell
c.

Yc A real variable that denotes the percentage of allocated DL slots in cell
c.

6.2 Related works

The problem introduced in this chapter can be decomposed into two sub-problems: (i) The
distribution of time slots between the UL and the DL (ii) the mitigation of the cross-link
interference between neighboring cells. In the literature, most solutions focus on solving only
one of the two sub-problems.

6.2.1 Time slots distribution

In [77], the authors explored employing deep reinforcement learning to adaptively allocate TDD
UL/DL resources in 5G networks considering high mobility UEs. However, this work requires
additional information that is not available at the gNB, such as the ideal channel capacity and
real-time channel capacity. In [78], the authors proposed a service-oriented soft spectrum slicing
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for 5G TDD. The objective is to use the flexibility of TDD to adjust the UL/DL dynamically
using forecasted traffic and user mobility. The problem has been modeled using a weighted
optimization whose objective is to maximize the allocated slice bandwidth for each corresponding
load. The weights describe the normalized slice size suitable for each service. Although the paper
addresses 5G, it uses the LTE TDD configuration (i.e., fixed TDD patterns) and the proposed
solution requires predicting the traffic demands for each service, which can lead to over-allocation
or under-allocation of resources when the predicted traffic is not accurate.

6.2.2 Cross-link interference mitigation

The authors of [79] investigated interference management schemes for 5G dynamic TDD and
proposed new interference suppression schemes using advanced receivers. They derived the
analytic expressions of the receivers for dynamic TDD interference suppression by theoretical
analysis. In [80], the authors designed a distributed algorithm to be used by all transmitters to
compute their power allocations in real time and thus avoid gNB-to-gNB interference. However,
the cost of these solutions is high because they require updating the transmitters and receivers at
all the gNBs and UEs. In [81], the authors overview the academic research and standardization
efforts undertaken to solve this cross-link interference problem and make the Dynamic TDD
system a reality. However, they did not provide any solution.

6.2.3 Joint time slots distribution and cross-link interference mitigation

In [82], the authors proposed a Q-learning approach to reconfigure the TDD pattern of gNBs
in order to maximize users’ QoE while mitigating cross-link interference. However, they relied
on a centralized architecture that does not guarantee generalization, i.e., if they add/remove
another gNB, they have to re-train the model from scratch. In addition, they only considered
fixed configuration patterns, ignoring the flexibility of 5G NR. In [83], authors proposed a dual
RL/ML approach for online pattern optimization in 5G NR TDD deployments. However, they
considered a centralized approach with the limitations mentioned above. Also, they require
knowledge of the UL latency, which is impossible to obtain in real 5G deployments. In [84],
the authors proposed a dynamic resource allocation scheme in TDD. They have designed a
clustering algorithm to group the radio units into different sets. Then, they adopted coordinated
multipoint technology to eliminate interference in each set. However, they used a centralized
approach and considered fixed configuration patterns without taking advantage of the flexibility
of 5G NR. In [85], authors modeled the dynamic TDD configuration problem as a dynamic
programming problem. Then, they designed a fully decentralized solution with distributed
MADRL technology. Each agent in MADRL makes decisions only based on local observations.
However, their models lack generality because they assume a fixed number of TDD patterns
with a fixed number of slots, so a change in numerology involves retraining all MADRL agents.
In addition, they only considered 4 types of traffic, i.e., high UL, high DL, low UL, and low DL,
which implies the need to know the traffic type and pattern in advance.
Overall, current solutions rely on a centralized approach that increases control latency and
signaling overhead. Furthermore, they do not consider the flexibility of 5G NR in terms of
numerology and dynamic number of slots per TDD period which results in a lack of generality
and the necessity to retrain the models for each numerology. Furthermore, they ignore the prop-
agation effect of cross-link interference, i.e., indirect cross-link interference that occurs between
two cells with no direct interference due to the transitivity relation between cells. Figure 6.1
depicts three cells with a direct cross-link interference between cell 1 and cell 3, cell 2 and cell
1. By transitivity, cell 2 and cell 3 are experiencing indirect cross-link interference. As a result,
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the three cells must align their TDD period even without direct cross-link interference between
cell 2 and cell 3.

Downlink buffer

Cell 1

Cell 2

Cell 3

Downlink buffer

Downlink buffer

Uplink buffer
Uplink buffer

Figure 6.1: Multi-cell scenario with 3 Radio Units (RU) and 2 User Equipment(UE) with different traffic
characteristics experiencing indirect interference

6.3 Network model and problem formulation

6.3.1 Network model

In the system, we consider a set of RAN cells, denoted C, whereby a set of UEs, denoted Γc,
are connected to each cell c ∈ C. We assume that cells are covered by radio units operating
under TDD and using a fixed TDD period δ and the same numerology. For the sake of paper
readability, the used notations are summarized in Table 6.1. Each UE γ ∈ Γc has UL and
DL traffic that can vary from one application to another. The UL traffic is generated and
transmitted from the UE γ to the cell c radio unit, while the DL traffic is sent from the radio
unit of cell c to the UE γ. Let λUγ and λDγ denote the amount of UL and DL traffic in bytes

of UE γ, respectively. In contrast to LTE, where the DL traffic λDγ is more critical than the

UL traffic λUγ , in 5G networks and beyond the amount of traffic in UL and DL is application
dependent. For instance, in AR applications that offload the AR processing to the edge, high
UL traffic λUγ is expected. On another side, in some applications, such as video streaming, the

DL traffic λDγ is more important. Other applications, such as immersive applications (e.g., the
Metaverse), require high data rates in both directions. The users in new generation applications
are characterized by colossal collaborative interactions, tremendous precision, and high data
synchronization. Furthermore, the same UE γ can use multiple applications, which makes it
hard to predict the UL λUγ and DL λDγ traffic of a UE γ. Let λUc and λDc denote the traffic of

the cell c in UL and DL, respectively. Formally, λUc =
∑
γ∈Γc

λUγ , and λ
D
c =

∑
γ∈Γc

λDγ .

Let ψU
γ and ψD

γ denote the UL and DL buffer size of UE γ, respectively. While ψU
γ is located

at the UE γ, ψD
γ is located at the gNB connected to the radio unit serving cell c ∈ C. The
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UE γ periodically keeps informing the gNB about the state of ψU
γ . In 5G NR, this operation

corresponds to the BSR sent by UE when requesting UL resources. Meanwhile, the DL buffers
are monitored by gNB, corresponding to the radio bearer data channels maintained by gNB
for each UE. Let ΨU

c and ΨD
c denote the UL and DL buffer of all the UEs connected to cell

c ∈ C. Formally, ΨU
c =

∑
γ∈Γc

ψU
γ , and ΨD

c =
∑
γ∈Γc

ψD
γ . For the sake of simplicity and without

loss of generality, we assume that each cell c has a maximum UL ΨU
c and DL ΨD

c buffers size,
respectively. Let |ΨU

c | and |ΨD
c | denote the maximum size of UL and DL buffers in bytes,

respectively.
The UEs at the edge of the cells experience cross-link interference when two or more neighbor
cells are using the same frequency and different slot directions (i.e., UL and DL) at a given
time. Figure 6.2 illustrates a scenario of 3 neighboring cells and 7 UEs with different traffic
patterns. Each UE is connected to a cell (the connection is illustrated with a pointed line). The
oval shape around each radio unit represents the cell coverage. In this example, the intersection
between cells’ coverage represents the cross-link interference region wherein UEs can experience
cross-link interference.

Interference region

Downlink buffer

Downlink buffer

Downlink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Cell 1

Cell 2
Cell 3

Figure 6.2: Multi-cell scenario with 3 Radio Units (RU) and 7 User Equipment(UE) with different traffic
characteristics showing the interference region

6.3.2 Problem formulation

In this work, we assume that all the cells in C are using the same TDD period δ and are
synchronized in time (i.e., slots boundaries of all the cells are aligned). However, the distribution
of the UL and DL traffic is unknown. The main research question targeted by this paper is how
to distribute the TDD slots among the UL and DL traffic to guarantee that: (i) UL and DL
buffers are not overflowed; (ii) edge users do not experience cross-link interference. The main
challenge addressed in this paper is that both UL λUc and DL λDc traffics are unknown and hard
to predict. Let µDc and µUc denote the transmission capacity of cell c per slot in DL and UL,
respectively. We assume that the cell capacity is static during the period δ. Let Xc be a real
variable that denotes the percentage of UL slots available at cell c ∈ C. Similarly, let Yc be a
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real variable that denotes the percentage of reserved slots for the DL. Formally, the following
statements should hold (6.2), (6.3) and (6.4). All the UEs γ ∈ Γc will share the UL and DL
slots. The number of UL and DL slots in which a UE γ is scheduled is proportional to the UE’s
UL and DL buffers, respectively. Further, the percentage of UL and DL slots in which a UE

γ ∈ Γc is scheduled is defined as follows §γ =
ψU
γ

ΨU
c
×Xc and †γ =

ψD
γ

ΨD
c
× Yc, respectively.

Let α be a given constant (0 ≤ α ≤ 1) that defines the priority between the UL and DL traffics.
This parameter can be defined by the solution designer to specify the priorities between the two
traffics. If α = 1, then we are interested only in optimizing the UL traffic. Otherwise, if α = 0,
we are only interested in optimizing the DL traffic.
The proposed solution should be periodically applied to specify Xc and Yc aiming at preventing
the overflow of UL buffers ΨU

c and DL buffers ΨD
c . Let Fc1,c2 be a Boolean constant (i.e., fixed by

the system for one iteration) that denotes if there is an interference between the two neighboring
cells c1 and c2. Fc1,c2 equals to 0 when there are no edge users between c1 and c2. Fc1,c2 equals
to 1 otherwise. If Fc1,c2 equals to 1, cells c1 and c2 must use the same TDD pattern (i.e., the
same percentage of UL and DL slots in the TDD period δ). This helps to avoid the cross-link
interference at the edge UEs. Otherwise, cells c1 and c2 can use different TDD patterns since
there is no edge users that will be impacted by the cross-link interference. Let ΦU

c and ΦD
c

denote the initially stored data of the UL and DL buffers. Both ΦU
c and ΦD

c are initialized by
zero. At each iteration, we aim to optimize the following linear integer programming:

min
∑
c∈C

(
α

|ΨU
C | ×

(
ΦU
c + λUc − µUc ×Xc × T cδ

)
+

1−α
|ΨD

C | ×
(
ΦD
c + λDc − µDc × Yc × T cδ

) ) (6.1)

S.t,

∀c ∈ C : 0 ≤ Xc ≤ 1 (6.2)

∀c ∈ C : 0 ≤ Yc ≤ 1 (6.3)

∀c ∈ C : Xc + Yc = 1 (6.4)

∀(c1, c2) ∈ C2, c1 ̸= c2 : Fc1,c2 × (Xc1 − Xc2) = 0 (6.5)

∀c ∈ C : ΦU
c + λUc − µUc ×Xc × T cδ ≤ |ΨU

C | (6.6)

∀c ∈ C : ΦD
c + λDc − µDc × Yc × T cδ ≤ |ΨD

C | (6.7)

∀c ∈ C : Xc × T cδ = Ac (6.8)

∀c ∈ C : Yc × T cδ = Bc (6.9)

∀c ∈ C : (Ac,Bc) ∈ N 2 (6.10)
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The objective function (6.1) aims to minimize the amount of stored data in the UL and DL
buffers in all the cells to prevent their buffers overflow. While ⌊Xc ×T cδ ⌋ denotes the number of
slots reserved for the UL traffic, ⌈Yc × T cδ ⌉ corresponds to the number of slots reserved for the
DL traffic in each cell c ∈ C during the period δ. We have used the weighted normalized sum
method to prevent an objective (i.e., buffer) from dominating the other. Meanwhile, constraints
(6.2), (6.3) and (6.4) ensure that the variables Xc and Yc are rates of slots distribution for UL
and DL. Meanwhile, constraint (6.5) ensures that two cells experiencing cross-link interference
can not use different TDD patterns (i.e., different percentages of UL and DL slots in the TDD
period δ), aiming at avoiding the impact of the cross-link interference on the edge UEs. Mean-
while, constraints (6.6) and (6.7) ensure that the UL and DL buffers of c ∈ C do not overflow,
respectively. Note that Ac and Bc are two integer variables that denote the number of UL slots
and DL slots of cell c, respectively. Constraints (6.8) and (6.9) transform the percentages of UL
and DL slots to integers given the number of slots available in the period δ. Constraint (6.10)
ensures that the number of UL and DL slots allocated in each cell c ∈ C is an integer.
The proposed model can be reformulated by replacing Yc by 1 − Xc in equations (6.1), (6.3),
(6.5), (6.7) and (6.9) and removing the constants from the Objective function (6.1). Therefore,
we obtain a boxed-constrained linear minimization problem as follows:

min
∑
c∈C

( (
1− α
|ΨD

C |
× µDc × T cδ −

α

|ΨU
C |
× µUc × T cδ

)
×Xc

)
(6.11)

S.t,

∀c ∈ C : 0 ≤ Xc ≤ 1 (6.12)

∀(c1, c2) ∈ C2, c1 ̸= c2 : Fc1,c2 × (Xc1 − Xc2) = 0 (6.13)

∀c ∈ C :
ΦU
c + λUc − |ΨU

C |
µUc × T cδ

≤ Xc (6.14)

∀c ∈ C : Xc ≤
−ΦD

c − λDc + |ΨD
C | + µDc × T cδ

µDc × T cδ
(6.15)

If we assume a static environment where we know the traffic distribution, it requires an expo-
nential time to solve the problem optimally in the worst case using the simplex method as shown
in [86]. However, we should recall that to solve the optimization problem, there is a need to
know in advance the exact traffic model, which is not possible in reality.
Unfortunately, we cannot use the optimization problem mentioned above for distributing the
slots in a dynamic environment. This is mainly due to the fact that the amount of UL λUc and
DL λDc traffics are unknown and hard to be predicted a priory.

6.4 MADRP System Overview

As stated earlier, it is hard to efficiently distribute TDD slots by solving the optimization model
without prior knowledge of traffic generation patterns. Besides, traffic patterns between cells
may differ, and cross-link interference between neighboring cells may exist. For these reasons,
using a multi-agent framework where each agent controls a cell configuration is essential. Each
agent will adapt the TDD pattern to accommodate its cell traffic while agents of neighboring
cells collaborate with each other to align their TDD pattern to avoid cross-link interference
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when there are edge UEs between neighboring cells. The multi-agent framework has several
motivations: (i) Decreases the control latency since the agents are executed near the gNB; (ii)
Reduces the control overhead compared to the centralized solution since the agents observe local
information to make a decision instead of sending the observation to a central entity to take the
decision; (iii) Decreases the action space since each agent will take one action compared to a
single agent solution where the agent will take a tuple of actions. Decreasing the action space
makes the training faster and more stable. In this context, we propose the MADRP system
that leverages MADRL, more precisely, the MADDPG algorithm, to dynamically define the 5G
NR TDD pattern. The MADRL hides the complexity and stochastically of the environment
and helps the MADRP framework to make efficient and quick decisions that adapt according
to traffic patterns. Besides, MADRL allows different cells to make distributed decisions using
local information, enabling communication between cells to collaborate and avoid cross-link
interference. Moreover, the MADRP framework gains the ability to learn with time and adapt
to different and unseen situations.

Interference
region

Downlink buffer

Downlink buffer

Downlink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Cell 1

Cell 2
Cell 3

DDPG agent 2 DDPG agent 1 DDPG agent 3

1

1

1

22

2

3

3

3
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3

Collecting metrics from gNB

Echanging buffer fullness ratio if there is interference

Pushing the TDD pattern to gNB

Control Plane

User Plane

Figure 6.3: MADRP Architecture

As depicted in Figure 6.3, we propose a MADRL learning scheme with one agent for each
cell. The set of agents is part of the RAN control plane, while the RAN functions executing
dynamic TDD at the gNB level are part of the RAN user plane. Each agent observes the state of
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the cell’s buffers and exchanges information with neighboring agents (i.e., agents controlling the
neighboring cells), thus observing the state of the buffers associated with neighboring cells in case
of cross-link interference. Communication between agents can be based on the Xn Application
Protocol (XnAP) specification to comply with 3GPP [87]. Specifically, an agent will send an
XnAP message containing the Information Element (IE) “Intended TDD DL-UL Configuration
NR” to inform the destination gNB of the source gNB’s current TDD configuration in order to
mitigate cross-link interference.
We have adopted a centralized training and decentralized execution approach. Thus, we allow
the policies to use extra information to ease the training step, so long as this information is
not used at test time. It is unnatural to do this with Q-learning, as the Q function generally
cannot contain different information at training and test time. Thus, MADDPG extends the
actor-critic policy gradient methods, whereby the critic is augmented with extra information
about other agents’ policies.
More concretely, let consider N agents with policies parameterized by θ = (θ1, ..., θN ), and let
π = (π1, ..., πN ) be the set of all agent policies. Let [Ri] be the cumulative discounted reward
of agent i. As we have seen in the background section, each agent aims to maximize Ri. And,
since MADDPG is a policy gradient method, it samples the actions directly from the policy π.
Let µ = (µ1,..., µN ) be a continuous and deterministic policy function. Then we can write the
gradient of the expected cumulative reward for agent i, J(θi) = E[Ri] as:

∇θiJ (µi) = Es,a∼D

[
∇θiµi (ai | oi)∇aiQ

µ
i (s, a1, . . . , aN )|ai=µi(oi)

]
(6.16)

Where Qµi (s, a1, ..., aN ) is a centralized action-value function that takes as input the
actions of all agents, a1, ..., aN as well as some state information s and outputs the Q-
value for agent i. In the simplest case, s could consist of the observations of all agents,
s = (o1, ..., oN ). However, we may also include additional state information if available.
Since each Qµi is separately learned, agents can have arbitrary reward structures, including con-
flicting rewards in a competitive setting. Here the experience replay buffer D contains the tuples
(st, st+1, at1, ..., a

t
N , r

t+1
1 , ..., rt+1

N ), recording experiences of all agents.

6.5 MADRP detailed description

We have designed the MADRP to be lightweight to ensure fast interaction with the environ-
ment. Also, we have designed the MADRP to ensure generality and then work in an unseen
environment. Besides, MADRP has been designed to work independently from the number of
slots, the size of the buffers, and the number of cells. Moreover, it considers the variation and
correlation in the buffer states to predict the traffic patterns. In what follows, we define the
elements of the MADRP, including the state, the reward, and the action.
i) State: Let ξtU ,c and ξtD,c denote the amount of traffic in the UL ΨU

c and the DL ΨD
c at the

step t at the cell c, respectively. To ensure the generalization, we define the observation OtU ,c
and OtD,c of the UL and DL buffers as normalized values (Figure 6.4: 1). Formally, OtU ,c =

ξtU,c

|ΨU
c |

and OtD,c =
ξtD,c

|ΨD
c | , respectively. The benefits of the normalization are twofold: i) It ensures

generality by enabling the MADRP agent to be agnostic to the scenario scale in terms of the
buffer capacity. It works similarly in different buffers with different sizes. The most important
is to catch the buffer fullness ratio of ΨU

c and ΨD
c ; ii) It is well known that the activation

functions in the neural network work well for small values, which positively impacts MADRP’s
convergence. Moreover, to capture the traffic patterns, we define the state stj of the agent j at
time t as follows:
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Figure 6.4: MADDPG architecture and workflow

stj =

N⋃
k=0

ŝtj,k (6.17)

Where ŝtj,k is defined as follows:

ŝtj,k =


(K−1⋃

i=0

Ot−i
U, j ,

K−1⋃
i=0

Ot−i
D, j

)
if k = j or F(k, j) = 1(K−1⋃

i=0

0,
K−1⋃
i=0

0

)
else

(6.18)

, whereby F(k, j) = 1 when there is an interference between cells k and j (i.e., direct cross-
link interference) or ∃k′ ∈ C such that F(k, k′) = 1 or F(k′, j) = 1 (i.e., indirect cross-link
interference)
In the state stj , the MADRP agents, besides the current observation, consider K previous obser-
vations before taking any action. This enables capturing the behavior of both buffers and traffic
before taking any action.
Besides, MADRP agents capture the behavior of the function F by communicating with each

other. An agent j sends a message containing

(K−1⋃
i=0
Ot−iU , j ,

K−1⋃
i=0
Ot−iD, j

)
to agent k when agent

82



On enforcing Network Slicing in the new generation of Radio Access Networks

j observes an edge user with the cell associated to agent k. This message is considered an
interference alert. The operator can define a policy to trigger the interference alert, for example,
when the number of edge users exceeds a predefined threshold. Each agent stores a list of agents
with which it has interference, and each time it receives an interference alert, it broadcasts
the received alert to its interference list. This mechanism allows MADRP to capture indirect
interference (i.e., interference between two cells without edge users between each other but
∃k ∈ C such that there is interference between cell k and both cells).
ii) Action: We have only one continuous action atj per agent j that presents the percentage of
slots that should be reserved for the UL traffic at step t. Each MADRP agent j ∈ G enforces
the taken decisions as depicted in Figure 6.4:6. Accordingly, the ⌊atj ×T

j
δ ⌋ slots are reserved for

the UL traffic, and ⌈(1− atj)× T
j
δ ⌉ slots are reserved for the DL traffic. It is worth noting that

the action is independent of the number of slots T jδ , which ensures the generality and enables
the MADRP agent to be agnostic to the scenario scale.
iii) Reward: We have adapted an episodic approach, whereby each episode runs for max T
steps before it ends.

Let r̂tj denotes the buffer reward of each agent j, defined in (6.19) as follows:

r̂tj =

{
α× (1−Ot

U, j) + (1− α)× (1−Ot
D, j) if |Ot

U, j | < 1 ∧ |Ot
D, j | < 1

−M else
(6.19)

Equation (6.19) allows MADRP agents to get a positive reward for each step, which succeeds
in keeping the buffers ΨU

c and ΨD
c do not exceed their threshold. Moreover, the emptiest the

buffers are, the highest reward becomes. When one of the buffers exceeds its capacity, then the
agent receives a penalty −M, such that M is a significant number. This strategy will force
the MADRP agents to keep both buffers empty as much as possible and prevent their overflow,
which positively impacts the QoS. α is the priority between the UL and DL traffic.
Let rtj, k denotes the cross-link interference reward, defined in (6.20) as follows:

rtj, k =

{
0 if F(j, k) = 0 ∨ F(j, k) = 1 ∧ at−1

j = at−1
k

−M else
(6.20)

Equation (6.20) gives a penalty when two agents experience direct or indirect interference and
do not choose the same TDD pattern (i.e., the same percentage of UL slots).
The agent reward rtj is the sum of the buffer and the cross-link interference reward, defined in
(6.21) as follows:

rtj = r̂tj +
∑

k ∈ C

(
rtj, k

)
(6.21)

As depicted in Figure 6.4, the MADRP system leverages the MADDPG algorithm and is exe-
cuted on three different steps: i) Decision making (Figure 6.4: 1− 6) presented with blue color;
ii) Updating policy networks (Figure 6.4: 7− 17) presented with red color; iii) Updating target
networks (Figure 6.4: 18−19) presented by green color. Each MADDPG agent has two networks:
a) Policy networks that consist of the Actor and the Critic neural networks. These networks
are used to predict the deterministic actions atj . While the actor-network has as input the state
stj and it is used to predict the action atj , the critic-network has as inputs st = st1, ..., s

t
N

and at = at1, ..., a
t
N and returns the Q value that is used for criticizing the taken action;

b) The target networks that consist of target actor-networks and target critic-network. These
two networks are frozen and used to help the convergence of policy networks and stabilize their
learning. In deep learning, the optimizer (e.g., ADAM) should update the neural network pa-
rameters of the policy networks closer to the labels, which are the fixed target neural network
values. Moreover, to stabilize the learning, a replay buffer is used. The training is performed
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using a random replay buffer sample, reducing the correlation between the agents’ experiences.

Algorithm 5 Multi-Agent Deep Deterministic Policy Gradient for N agents

1: for episode = 1 toM do
2: Initialize a random process Ji for action exploration for each agent i
3: Receive initial state s
4: for t = 1 to max-episode-length do
5: for each agent i, select action ai = µθi (oi) + J

t
i w.r.t. the current policy and explo-

ration
6: Execute actions a = (a1, . . . , aN ) and observe reward r and new state s′

7: Store (s, a, r, s′) in replay buffer D
8: s← s′

9: for agent i = 1 to N do
10: Sample a random minibatch of S samples

(
sj , aj , rj , s′j

)
from D

11: Set yj = rji + γQµ′

i

(
s′j , a′1, . . . , a

′
N

)∣∣∣
a′k=µ′

k(o
j
k)

12: Update critic by minimizing the loss L (θi) = 1
S

∑
j

(
yj −Qµi

(
sj , aj1, . . . , a

j
N

))2

13: Update actor using the sampled policy gradient:

∇θiJ ≈
1

S

∑
j

∇θiµi
(
oji

)
∇aiQ

µ
i

(
sj , aj1, . . . , ai, . . . , a

j
N

)∣∣∣∣∣∣
ai=µi(o

j
i)

14: end for
15: Update target network parameters for each agent i: θ′i ← τθi + (1− τ)θ′i
16: end for
17: end for

Decision making: At the reception of the observation (OtU ,c,OtD,c,
N⋃
i=0

ntj), with n
t
j is the num-

ber of users at the edge between the current agent’ cell c and agent j’ cell. ntj is used to set the
variable F(c, j), i.e., F(c, j) = 1 if ntj > 0 or a message is received from agent j, F(c, j) = 0
otherwise. Each MADRP agent generates the state stj using the equation (6.18) (Figure 6.4: 2).
The received state is used by the actor-network to predict the deterministic action atj . In order
to enable the MADRP agents to explore the environment, a noise J tj is added to the action.
Accordingly, the UL and DL slots are reserved (Figure 6.4: 5− 6).

Updating policy network: In order to take optimal actions, the policy network should be
updated (Figure 6.4: 7− 17). The action taken by all the agents should be stored in the replay
buffer (Figure 6.4: 7), as well as their corresponding state and reward (Figure 6.4: 8). First the
critic-network is updated by leveraging a random batch sample (st, st+1, at1 + J t1 , ..., atN +
J tn, rt+1

1 , ..., rt+1
N ) from the replay buffer (Figure 6.4: 9−14). Using mean square error (MSE)

and ADAM optimizer, the parameters of the critic-network are optimized by considering the
critic values and target critic values. Then, the actor-network is also optimized by leveraging
the gradient generated against the critic-network.

Updating target networks: The target networks (actor and critic) should be updated slowly
and periodically towards the policy networks using soft update (Figure 6.4: 18 − 19). This
strategy helps the Algorithm for providing optimal deterministic action. We utilize a distributed
training procedure, where only the critic-networks are identical among the agents while the actor-
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networks are specific for each agent. Hence, the execution phase is distributed, with each agent
making its own decision at each interval relying only on the specific observations it receives from
the environment and its neighbors.
Overall, the MADDPG algorithm is summarized in Algorithm 5 where µ′ = (µ′1, ..., µ

′
N ) is the

set of target policies with delayed parameters θ′i.

6.6 Performance Evaluation

We implemented our simulation environment using Python and Pytorch. We leveraged the
simulator built in [40] and the open-source MADDPG implementation [41]. We used a physical
machine with Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz with 64 GB of memory and NVIDIA
GP102 GPU using Ubuntu 20 as an operating system. Following an empirical approach, we con-
ducted several experiments with different neural network parameters and activation functions.
We selected those which gave us the best performance. For all the agents, we employed two
fully connected hidden layers of 400 and 300 nodes for both policy and target networks. We
also used layer normalization between the hidden layers to enable smoother gradients, faster
training, and better generalization accuracy. While Rectified Linear Unit (ReLU) activation
function has been used in the two hidden layers, Hyperbolic Tangent (tanh) activation function
has been used in the output layer. We employed a discount factor γ of 0.99, batch size of 1024,
and the learning rates of the actor and critic-networks are set to 10−5 and 10−3, respectively.
We used the soft update with coefficient τ 0.001. Also, ADAM optimizer has been leveraged in
both actor and critic-networks. Finally, the optimization problem is solved using Gurobi version
9.1.2. The absolute optimality gap is set to 10−8.

MADRP Training mode

As shown in Figure 6.5, we considered three different configurations: (i) 4 neighboring cells; (ii)
7 neighboring cells; (iii) 14 neighboring cells. For each configuration, we trained 4, 7, and 14
agents, respectively. We trained the MADRP agents using 20000, 35000, and 35000 independent
episodes for configuration (i), (ii) and (iii), respectively. We set the maximum number of steps
in each episode T to 200. We set the penalty M to −100, and the number of slots T cδ to 40.
We considered three successive observations (i.e., K = 3). We used a Poisson distribution to
generate the traffic in each cell for the UL and DL. The arrival rates for UL and DL are randomly
chosen at each iteration λ ∈ {50, 100, 200, 300} with unit u per δ. We assumed a fixed serving
rate µ for each cell (i.e., the amount of data scheduled at each slot equals 14 times the unit u;
14 being the number of symbols per slot in 5G NR). Figures 6.5(a), 6.5(b), and 6.5(c) depict the
evolution of the averaged 100 sum rewards of all the agents over time. We observe that MADRP
converges at 5000, 15000, and 30000 episodes for configuration (i), (ii), and (iii), respectively.
Thus, we observe that the more agents we add, the more episodes the agents need to converge.

MADRP Inference mode

For the three configurations and under different interference probabilities, we have evaluated
the MADRP agents in terms of i) The percentage of the fullness of the UL and DL buffers;
ii) The number of conflicts successfully mitigated. Let p be the probability that agent i has a
direct cross-link interference with agent j (i.e., cell i has edges users with cell j). We recall that
indirect cross-link interference can happen by transitivity even if there are no edge users between
two cells. The terms dTDD and sTDD in the figures’ legend stand for dynamic TDD and static
TDD, respectively. It should be noted that we considered different static TDD configurations:

85



On enforcing Network Slicing in the new generation of Radio Access Networks

(a) 4 cells (b) 7 cells

(c) 14 cells

Figure 6.5: Convergence evaluation of MADRP agent during the training mode

(i) stdd 20D/20U: half of the TDD period slots (i.e., 20 slots) are dedicated to DL, while the
other half are dedicated to UL; (ii) stdd 30D/10U: 75% of the slots are dedicated to DL (iii)
stdd 10D/30U: 75% of the slots are dedicated to UL.
In Figure 6.6, we evaluated the performance of 4 agents during 1000 independent episodes, each
of which with 200 iterations. We considered three different interference probabilities p. Figure
6.6(a) depicts the Cumulative Distribution Function (CDF) of the ratio of solved interference
conflicts among all the interference cases. A solved interference conflict means two agents aligned
their TDD pattern while there is direct or indirect interference between them. The x-axis
represents the solved conflicts ratio, while y-axis represents its CDF. For p = 0.1 (i.e., agent i’
cell has a probability of 0.1 to have an edge user with agent j’ cell), we notice that MADRP is
able to solve more than 96% of the conflicts. While for p = 0.5 and p = 0.8, MADRP is able to
solve more than 80% and 92% of the conflicts, respectively. We noticed that with p = 0.8, there
is always interference (i.e., direct + indirect interference). While in static TDD, no interference is
present since all the cells share the same TDD pattern. For instance, we consider all the conflicts
are solved since there is no unsolved conflict. We can see that MADRP outperforms all static
TDD solutions. For the 20D/20D configuration, MADRP is better in UL and DL, while for the
30D/10U configuration, MADRP is better in UL, and for the 10D/30U configuration, MADRP
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.6: Performance evaluation of MADRP of 4 agents during the inference mode

is better in DL. Indeed, over 60% of the samples represent a buffer overflow for 30D/10U and
10D/30U static TDD in DL and UL, respectively. As a result, MADRP is able to balance DL
and UL traffic dynamically.
In Figure 6.7, we evaluated the performance of 7 neighboring agents during 1000 independent
episodes, each of which with 200 iterations. Figure 6.7(a) depicts the CDF of the ratio of solved
interference conflicts among all the interference cases. For p = 0.1, MADRP solved more than
90% of the conflicts during 60% of the samples and more than 70% of the conflicts among the
80% of the samples. While for p = 0.5 and p = 0.8, we notice that MADRP solves more than
70% of the conflicts among 50% of the samples. Figures 6.7(c) and 6.7(b) depict the CDF of the
UL and the DL buffers’ fullness percentage, respectively. For p = 0.1, the buffer size is lower
than 10% in 80% of the samples and higher than 20% in less than 2% of the samples. While
for p = 0.5 and p = 0.8, the buffer size is lower than 20% in 70% of the samples and lower than
40% in 80% of the samples. In all cases, MADRP outperforms all static TDD solutions. In the
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.7: Performance evaluation of MADRP of 7 agents during the inference mode

case of static TDD 20D/20U, we observe that around 20% of samples represent a buffer overflow
(i.e., the buffer is full) in both UL and DL. In contrast, in the 30D/10U and 10D/30U static
TDD solutions, around 70% of samples represent buffer overflow in UL and DL, respectively.
In Figure 6.8, we evaluated the performance of 14 neighboring agents during 1000 independent
episodes, each of which with 200 iterations. Figure 6.8(a) depicts the CDF of the ratio of solved
interference conflicts among all the interference cases. We observe that all the conflicts are solved
for all the conflict rates. This is because MADRP found that the configuration (50% DL slots,
50% UL slots) is the best due to the strong dynamics of the environment. Since the configuration
is fixed among all the agents, all the interference cases are mitigated. Figures 6.8(c) and 6.8(b)
depict the CDF of the UL and the DL buffer’s fullness percentage, respectively. We observe
that the buffer size is lower than 40% in 80% of the samples and lower than 80% in 90% of the
samples. In all the cases, MADRP outperforms all the static TDD solutions. We observe that,
in static TDD 20D/20U, around 20% of the samples represents buffer overflow (i.e., the buffer
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.8: Performance evaluation of MADRP of 14 agents during the inference mode

is full) in both UL and DL. While in static TDD 30D/10U and 10D/30U, around 70% of the
samples represents buffer overflow in UL and DL, respectively.
Figures 6.9 and 6.11 illustrate the performance evaluation of MADRP when traffic is DL-
dominant. That is, traffic arrives with higher arrival rates in the DL direction, while traffic
arrives with lower arrival rates in the UL direction. We compared the MADRP solution with
the optimization model solution.
In Figure 6.9(b), we see that the optimal solution empties the buffer continuously, whereas the
MADRP solution keeps the buffer below 60% in 99% of the time. The gap between the optimal
solution and the MADRP solution is 1%, representing the percentage of cases where the DL
buffer was full. We recall that the aim of MADRP is to avoid buffer overflow without the
knowledge of the arriving traffic model.
In Figure 6.11(b), we see that the optimal solution empties the buffer permanently, whereas the
MADRP solution keeps the buffer below 20% in 90% of cases when the probability of interference
is low, while the buffer overflows in 60% of cases when the probability of interference is high.
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.9: Performance evaluation of MADRP of 4 agents during the inference mode with DL dominant
traffic

Figures 6.10 and 6.12 depict the performance evaluation of MADRP when the traffic is UL-
dominant. We have compared the MADRP solution with the optimization model solution.
In Figure 6.10(c), we note that the optimal solution always empties the buffer, whereas the
MADRP solution keeps the buffer below 20% in 99% of the time. In figure 6.12(c), the MADRP
solution keeps the buffer empty in 40% of samples and below 40% in 80% of the time in the UL
buffers when the probability of interference is low. We note that the buffer overflows in 60% of
cases when the probability of interference is high.
Figures 6.13 and 6.14 depict the impact of arrival rates on the MADRP agents for configurations
with 4 and 7 cells, respectively. Each plotted point represents the average of 1000 episodes, each
of which with 200 steps. The first observation we can draw from this figure is the amount and
the variance of the traffic handled by the MADRP agents. Figures 6.13(a) and 6.14(a) depict
the average solved interference ratio variation over the arrival rates for different interference
probabilities. The x-axis represents the arrival rate of the traffic, while the y-axis represents the
average solved conflicts. We notice that while λ increases, the average ratio of solved conflicts
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.10: Performance evaluation of MADRP of 4 agents during the inference mode with UL dominant
traffic

decreases. We recall that the serving cell capacity is T cδ × µ (i.e., 560). Hence, we notice that
when λ ≥ µ, MADRP is able to solve around 30% and 60% of the interference. When µ

2 ≥ λ ≤ µ
in the 7 agents scenario, MADRP is able to solve between 60% and 95% for p = 0.1 and between
50% and 60% of the interference for p = 0.5. While in the 4 agents scenario, MADRP is able
to solve all the interferences. We conclude that when increasing λ, the traffic variance increases
(i.e., due to Poisson distribution), which introduces more aggressive conflicts in the agents’
observations. This will results in difficulties in aligning the TDD pattern between interfered
neighbors while serving each cell’s traffic.
Figures 6.13(b) and 6.14(b) depict the average DL buffer fullness percentage in the 4 cells and 7
cells environment, respectively. While figures 6.13(c) and 6.14(c) depict the average UL buffer
fullness percentage in the 4 cells and 7 cells environment, respectively. We notice that while
λ increases, the average buffer fullness ratio increases. When λ reaches 800 units, the average
buffer size is 70% for p = 0.1 and 85% when p = 0.5. We conclude that even when the arrival
rate is bigger than the serving rate, MADRP is able to balance the traffic between UL and DL.
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.11: Performance evaluation of MADRP of 7 agents during the inference mode with DL dominant
traffic

Overall, MADRP is able to change the TDD pattern dynamically by allocating UL and DL
slots to different cells while avoiding direct and indirect cross-link interference between cells.
When there is a small number of neighbors (i.e., 4 cells), small direct interference probability
(i.e., p = 0.1), and an arrival rate lower than a serving rate with a traffic variance lower than
half of the arrival rate, MADRP is able to avoid more than 96% of the interference cases while
serving different UL and DL traffic rates. Indeed, MADRP allocates the number of UL/DL slots
needed for each cell in each iteration according to the UL/DL buffer size, and hence it avoids
buffer overflow while avoiding cross-link interference. However, when we increase the number of
cells, the probability of direct interference, or the variance of the traffic, MADRP starts finding
difficulties in satisfying the traffic load in UL/DL while solving the interference issues. In all
the cases, MADRP outperforms the static TDD solution by reducing the probability of buffer
overflow in both UL and DL.
In conclusion, we propose to create small subsets of neighboring cells (e.g., 7 cells per subset)
that use the same frequency band in order to make dynamic TDD more efficient.
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.12: Performance evaluation of MADRP of 7 agents during the inference mode with UL dominant
traffic

6.7 Conclusion

In this chapter, we introduced MADRP, a MADRL-based solution that permits deriving and
adjusting the TDD pattern in 5G NR while mitigating cross-link interference. MADRP approach
consists in deploying a MADRP agent at each gNB serving a cell. Without prior knowledge of
the UEs traffic model, each MADRP agent computes the number of slots dedicated to UL
and DL in a TDD frame aiming at reducing both UL and DL buffers while avoiding cross-
link interference with the neighboring cells. Simulation results clearly showed that MADRP
could avoid buffer overflow and dynamically adapt to the cell traffic while avoiding cross-link
interference. Further, the results showed that MADRP clearly outperforms the different static
TDD configurations with different UL/DL proportions and the gap between the optimal solution
and the MADRP solution is small in low-interference scenarios
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.13: Performance evaluation of MADRP of 4 agents during the inference mode
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(a) Conflicts mitigation (b) DL buffer

(c) UL buffer

Figure 6.14: Performance evaluation of MADRP of 7 agents during the inference mode
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Part III

RAN optimizations for uRLLC
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Chapter 7

Radio Link Failure prediction in 5G
NR

7.1 Introduction

In this chapter, we introduce a novel framework that predicts future RLFs using ML techniques
and pushes notifications to third-party applications whenever radio connectivity between the
targeted UE and the RAN might be lost. The framework is designed to work in micro-services
environment, any third-party component can register to the framework in order to listen to radio
connectivity loss events for chosen UEs. These third-party apps can be a RIC that triggers the
handover process at the base station level, or a UAV controller application that modifies the
drone’s trajectory when our framework sends the predicted radio connectivity loss notification.
The key contributions of this chapter are:

• We propose a ML model based on LSTM to predict the future trend of radio channel
measurements, taking into account the evolution of past measurements.

• We propose a novel method based on SVM to classify the connectivity status (connectivity/
no connectivity) of UEs according to radio channel measurements and hence predict RLF.

• We trained and tested the framework on a real dataset using a 5G testbed based on OAI
platform [52].

• We present two use cases where the RLF prediction can be used. The first one is handover
enforcement, and the second one is UAV trajectory modification. These use cases are
aligned with O-RAN and MEC architecture, respectively.

7.2 Related works

In [88], the authors used deep learning to reduce RLF when performing the handover process.
They relied on the measured RSRP of the serving cell and the strongest neighbor cell to pre-
dict if the future handover (1-2 sec ahead) will succeed or fail. The work in [89] presented a
clustering method to group cells with similar handovers’ behavior to trigger early handovers
without requesting the measurements of each UE. However, these works are based only on com-
puter simulation, limiting the usability of the proposed solutions when they are deployed in real
networks.
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The authors in [90] proposed a deep learning approach to predict RLF according to RSRP
measurements. But, the authors considered only RLF that may occur when a UE switches
between a 4G and a 5G cell; hence RLF is not used to optimize network operations.
Besides, these works are focused only on handover, while other 5G use-cases may need infor-
mation about RLF. Indeed, we can mention the UAV control use case, as the UAV controller
needs to be notified whenever the drone may lose connectivity. This will allow for updating the
drone trajectory to avoid RLF. Another use case is the smart video streaming use case, where
gNB may schedule more resources for UEs to anticipate RLF by buffering more data.

7.3 Proposed framework

         Radio Link Failure        
Prediction

Channel
measurements Notification

Mobility Managment

Drone Trajectory
Modification

Third-Party
Applications

Figure 7.1: Framework overview

As indicated earlier, our main objective in this work is the early detection of radio connectivity
loss and anticipation of RLF. To achieve this objective, we first conducted a campaign to mea-
sure RSRQ, RSRP, PHR, and CQI using a 5G testbed based on OAI. Second, we analyzed radio
measurements and found a correlation between some measurements (RSRQ, PHR, and CQI)
and connectivity status (i.e., whether there is connectivity or not). RSRP did not contribute
explicitly to the correlation since it is implicitly used to compute the RSRQ metric (section
2.3.2). Nevertheless, applying this correlation directly to the reported measurements leads to
deriving the connectivity status only when the measurements are collected. Therefore, there
is a need to predict how radio measurements will evaluate in the near future. Based on this
prediction, we used a classifier to find the correlation with the connectivity status (i.e., RLF).
Once RLF is predicted, third-party components can consume this information (i.e., radio con-
nectivity loss events) for targeted UEs aiming at applying policies to avoid RLF, such as:

• Mobility Management application that takes handover decisions before link failure.

• UAV Trajectory Modification application that updates the pre-flight drone trajectory
whenever the radio connectivity might be lost.

In the following sections, we will start by describing the RLF prediction model (Figure 7.1). We
will show how this model can be used to optimize handover and update UAVs’ trajectories.
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Figure 7.2: RLF Prediction Model design

7.4 Radio Link Failure Prediction model

7.4.1 Design

The RLF prediction model is structured into five stacked layers (Figure 7.2):

• Input layer: Composed of three-time windows; a window for each radio information (i.e.,
CQI, RSRQ, PHR). A time window is a vector that keeps the N last radio information
collected from the RAN at the current time-step t.

• LSTM layer: LSTM is an improved version of RNN, designed to forecast time series
data. The advantage of LSTM compared to RNN is that the former deals with vanishing
and exploding gradient problems. In RNNs, the gradient problem becomes smaller due to
long data sequences. Hence, the network parameter updates become insignificant, which
means no real learning is achieved. Besides the existing hidden state of RNNs, LSTM
introduces the cell state to make the gradient computation more stable (avoid exploding
or vanishing).

LSTM can learn the order dependence between items in a sequence and the context re-
quired to make predictions in time series forecasting problems.

The key function of LSTM is its ability to use a local memory (i.e., learn when it needs to
memorize or forget the information) to extract temporal information from time sequences.
Then, it uses this information to predict the future value at time t+ p, p > 0.

• Fully Connected layer: This layer will sum the vector from the output of the LSTM
layer to produce one predicted value.

• SVM layer: This layer takes the predicted values of (CQI, RSRQ, PHR) and classifies
them into two classes (connectivity/ no connectivity).

• Output layer: This layer represents the final connectivity state at time t+ p.
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7.4.2 Data Collection

Although many recent works used deep learning algorithms to predict the channel quality, they
mainly rely on simulation to generate data for the learning step. However, it is well-accepted that
simulation has limitations to reproduce the behavior of real networks. In our work, we trained
the RLF prediction model using data collected from a testbed based on OAI. We collected (CQI,
PHR, and RSRQ) values when both the connectivity is available and non-available (i.e., RLF).
We labeled the data (i.e., the tuple CQI, PHR, and RSRQ) by 1 if there is connectivity, 0
otherwise.

7.4.3 Data Pre-processing

After collecting the data and creating the data set, we cleaned the latter by removing the static
values as we were more interested in the data trend over time (up/down). This manipulation
made the prediction more accurate. We also needed to format the data before feeding the model.
The LSTM’s input data is structured into a 3D vector (samples, time-steps, features), while the
SVM’s input data is structured into a 2D vector (samples, features). This step is mandatory to
keep the integrity between different layers and improve the overall model accuracy.

7.4.4 Training process

During this step, we trained the LSTMs and the SVM models separately using the Keras frame-
work [91]. We used the Adam optimizer [69] to have an adaptive learning rate. It is important
to note that for this kind of forecasting model, two main problems arise. The first one is over-
fitting. It means that the model will learn too much about the particularities of the training
data and will not be able to generalize the model to new data. In this case, the predicted
signal matches exactly the real signal in the same data set, even if the latter is very complex.
The second problem is that the model generates a signal that follows the real signal instead of
predicting it. To overcome the first problem, we followed many techniques. First, we used two
separate data sets, one for training and one for testing. Moreover, we used a Dropout layer after
the LSTM hidden layer. In neural networks, some units may fix up the mistakes of other units
leading to complex coordination, which, in turn, yields to overfitting as these coordinations do
not generalize to unseen data.
Meanwhile, the Dropout layer randomly ignores neurons during a particular forward or back-
ward pass. Hence, it will break up situations where network layers coordinate to correct mistakes
from prior layers, making the model more robust and reducing the overfitting effect. We also
used L2 regularization to push the model weights to 0 to have a less complex model and hence
less over-fitting.
To overcome the second-mentioned problem, we used the Teacher Forcing [92] method. It is a
method for training RNNs that uses the output from a previous time step as an input. When the
RNN is trained, it can generate a sequence using the previous output as current input, contrary
to the standard method that uses real data as an input during the training phase.

7.4.5 Examples of application using the RLF prediction model

In this section, we describe how the RLF prediction model can be used via two representative
applications or services: Improving the handover using O-RAN architecture and optimizing
UAVs trajectory based on ETSI MEC architecture.
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Figure 7.3: RLF Prediction in O-RAN scenario

RLF prediction as an O-RAN xApp According to O-RAN terminology, we assume that
the RLF prediction modules and mobility management applications are run as xAPP. The
mobility management xApp uses the input of the RLF xApp to optimize handover, which means,
whenever an RLF is predicted, the network will trigger an early handover to avoid disconnection
from the network.
The considered use-case is described in Figure 7.3. The RLF prediction is located at O-RAN
Near Near-RT RIC. It fetches the latest radio information (CQI, RSRQ, and PHR) available for
a specific/set of UEs from the E2 interface. It keeps a history of past information organized as a
time window for each UE and predicts connectivity loss. On the other hand, the Mobility Man-
agement service is located at O-RAN Near-RT as a xApp. It consumes RLF prediction events
from the RLF prediction xApp to trigger the handover procedure whenever the connectivity is
lost. It should be noted that in O-RAN, RIC Non-RT is responsible for training ML models
and pushing them to RIC Near-RT modules. Therefore, we assume that RLF prediction xApp
receives the trained models from the RIC Non-RT and updates the local models significantly
when the inference error increases.

RLF prediction as a MEC application In this use case scenario, we assume that the RLF
prediction module is deployed as a MEC service available to other MEC applications. In this
scenario, the MEC application is a UAV Trajectory Modification Application. The latter is
deployed at the edge as it has to send commands to update the trajectory of UAVs requiring
low-latency communications. Figure 7.4 illustrates the relationship between all the components.
The RLF prediction module collects the CQI, RSRQ, and PHR via the MEC Radio Network
Information Service (RNIS) [93] API. This API is provided by the MEC platform through MP2
interface. To recall, the RNIS enables third-party applications to fetch radio measurements for
a specific/set of UEs to accomplish data analytic or optimization jobs. The RLF prediction
module uses the measurements from the RNIS and predicts whenever the connectivity will be
lost for a set of UEs. If a connectivity loss is predicted, the RLF prediction application sends
a notification to the UAV Trajectory modification application via the MP1 interface, informing
the connectivity status of the near future of the concerned list of UEs. The UAV Trajectory
Modification Application uses the prediction events from the RLF Prediction Application and
modifies the UAV trajectory in order to avoid link failure.

101



On enforcing Network Slicing in the new generation of Radio Access Networks

5G Network

Uu

Uu

User Equipments
(Drones) MEC

gNB

gNB

gNB

RNIS

MEP

MP2:FlexRAN

UAV Trajectory Modification
Application

RLF prediction Application

Channel measurements

RLF prediction event

EP
C

UAV
Commands

Figure 7.4: RLF Prediction in MEC scenario

7.5 Performance Evaluation

This section is divided into two parts. The first one is dedicated to the LSTM model evaluation
of CQI, RSRQ, and PHR measurements, while the second part focuses on the classification
model. We compared two algorithms: Neural Networks (NN) and SVM. We tested the classifier
within two cases; the first is when the algorithm gets its input directly from the test data-set,
while the second one gets its input from the LSTM models.
We used a different data-set for testing to avoid over-fitting and ensure that our results are not
dependant on a particular data set. Two main metrics are used to evaluate the LSTM model:
Accuracy: the ratio of the number of correct predictions to the total number of input samples.

Accuracy =
Number of correct predictions

Total number of prediction made

Precision: the number of correct positive results divided by the number of positive results
predicted by the classifier.

Precision =
True Positives

True Positives+ False Positives

Recall: the number of correct positive results divided by the number of all relevant samples (i.e.,
all samples that should have been identified as positive).

Recall =
True Positives

True Positives+ False Negatives
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F1 score: the balance between precision and recall.

F1 Score = 2 ∗ 1
1

Recall +
1

Precision

It tells how precise the classifier is (how many instances it classifies correctly), as well as how
robust it is.

Root Mean Square Error (RMSE): the distance between the predictions and the real observa-
tions.

RMSE =

√√√√ 1

T
∗
T−1∑
t=0

(realt − predictedt)2

LSTM models Evaluation We varied the LSTM parameters and tuned them to achieve the
best performances: 1 LSTM hidden layer with 20 perceptrons, trained for 100 epochs with a
batch size of 50 samples. We used a dropout layer with a rate of 0.2.
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Figure 7.5: RMSE variation over past and future timesteps
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Figure 7.6: CQI prediction over time

Figure 7.5 illustrates the impact of changing the time window size (how many past samples the
LSTM takes as input) and the future time-step (the prediction’s time-step) on the RMSE. We
remark that if the LSTM does not consider enough past samples, the error is high. The model is
not able to predict the data. However, when more than 20 samples are used, we observe that the
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Figure 7.7: PHR prediction over time

error starts to converge to a smaller value, approximately 0.1. It should be noted that LSTM
is able to forget information; then, even if we continue to increase the window size, the model
keeps using only the needed number of past samples to decrease the prediction error. Besides,
we noticed that when the future time-step increases, the error increases. This indicates that the
model is not able to predict the measurements correctly for the long-term future.
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Figure 7.8: RSRQ prediction over time

Figures 7.6, 7.7, 7.8 illustrate, respectively, a part of the data-set plotted with the predicted
values of CQI, PHR, and RSRQ. The test data-set is shifted in time to compare the real values
and the predicted ones easier. We used 50 samples as input, and we predicted five-time steps
in the future. The generated results show the accuracy of our LSTM model to estimate the
measurement, i.e., CQI, PHR, and RSRQ.
Classification model Evaluation For the sake of comparison, we tested two algorithms: SVM

Table 7.1: Classifier Model metrics

metric SVM (%) NN (%)

Accuracy 98,44 99,25

Precision 97,76 96,14

Recall 96,56 99,59

F1 score 97,15 97,78

and a Neuron Network (NN) classifier. Table 7.1 compares the performance of the algorithms
according to performance metrics. We notice that NN performs slightly better than SVM when
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the real measurements are used as input directly from the dataset. However, when we consider
the LSTM’s prediction output as input, we can see that SVM is slightly better for the same
metrics (Table 7.2).

Table 7.2: Overall Model metrics

metric SVM (%) NN (%)

Accuracy 98,03 97,95

Precision 91,42 91,21

Recall 97,81 97,53

F1 score 94,32 94,08

7.6 Conclusion

In this chapter, we addressed the challenge of predicting RLF in 5G networks. To predict
RLF, we used a ML model that combines both LSTM and SVM using the radio measurement,
composed of RSRQ, CQI, and PHR. To train the RLF prediction model, we generated a data
set that matches the tuple RSRQ, CQI, and PHR with connectivity state (available or not)
using a 5G testbed based on OAI. The RLF prediction model was able to predict 98,03 % of
connectivity status using the collected data set. Besides, we presented two use-case scenarios
that exploit the RLF prediction module to optimize UE mobility (i.e., Handover Optimization)
and UAV trajectory. Both scenarios were aligned with two well-accepted architectures in 5G,
O-RAN, and MEC.
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Chapter 8

Uplink grant prediction to reduce
uplink latency

8.1 Introduction

In this contribution, we introduce a novel DRL-based algorithm that reduces the UL latency
by predicting the subsequent arrival of data and its size. We dubbed this solution DRL-based
Low Latency Scheduler (DRL-LLS). The latter monitors the BSR sent by UEs and derives the
future inter-arrival time and the grant size that should be allocated to the user in the next UL
opportunity. DRL-LLS is adapted to change happening in channel conditions very quickly since
it dynamically sends grants to the user before the data arrival. Hence, when the data is ready
to be sent, the UE will find the grant and fully transmit all the data to gNB, which decreases
the overhead signaling latency while adapting to the channel conditions.
The key contributions of this chapter are:

• We introduce a DRL-based framework (DRL-LLS) to reduce the UL latency of URLLC
services.

• We introduce a DRL-based agent to predict the future UL slot for a UE by leveraging its
traffic inter-packets arrival history.

• We introduce a DRL-based agent to compute the grant size for the next UL slot according
to the BSR history.

• We combine the above models to enhance the UL MAC scheduler. The new methodology
dramatically reduces the signaling overhead. For instance, the UL latency will decrease
since the UE will not send a SR nor send BSR to get more grants for the same transmission.

• We validate DRL-LLS on different traffic models [94] used in 5G new use cases like XR
and near real-time video streaming.

8.2 Related works

Authors of [95] have used deep learning to predict future traffic. They show that deep learning
outperforms linear statistical learning when the number of past observations is significant enough
to learn the traffic pattern. Meanwhile, authors in [96] have studied the impact of NR scheduling
timings (mainly the k2 parameter) on the UL traffic latency. They have proposed a heuristic
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approach to derive k2 value from the inter-packet arrival time considering only periodic traffic
with fixed packet size. Authors in [97] have proposed an enhanced dynamic scheduling method
to reduce VoIP traffic UL latency. However, they support only periodic traffic with fixed packet
inter-arrival times. They have reduced the latency by removing the SR delay. However, the
BSR delay was not reduced when the packet size is significant and can not be handled with the
minimum grant allocated to the UE in the first grant. Authors in [98] have presented a novel
framework for traffic prediction of IoT devices activated by binary Markovian events modeled by
an On-Off Markov process with known transition probabilities. However, this work considered
only ON-OFF traffic distribution and did not consider packet size. Authors of [99] leveraged
Artificial Neural Network (ANN) to predict the ON-OFF period of burst traffic and estimate
the bandwidth to be allocated to reduce the latency. However, they only considered IoT traffic
following a burst pattern and over-estimated bandwidths compared to the real traffic. In fact,
the bandwidth is estimated using the data rate of the network. Authors in [16] have suggested a
predictive SPS scheme to predict data size during the SPS period. However, they considered only
haptic data patterns, and the inter-packet arrival time is deemed static during the SPS period.
Besides, the SR latency is not reduced. Authors of [100] developed an LSTM architecture to
predict future traffic and minimize radio latency. However, they did not consider the size of
traffic in their prediction.
All the above solutions considered a specific traffic pattern (either periodic, following Exponential
distribution, or ON-OFF distribution), and most of them did not consider joint arrival prediction
with data size prediction.

Figure 8.1: DRL-LLS design

8.3 DRL-LLS design

DRL-LLS provides a high dynamic scheduler that has the ability to avoid the SR and BSR
latency and adapt according to channel conditions. To support URLLC, gNB may anticipate
UL traffic and then dynamically send DCI grants (to avoid the SR latency) with the adapted
MCS (to adapt to channel conditions) and with the right PRBs grant (to avoid the BSR latency).
To achieve this, we propose to predict the future traffic arrival time ∆Ti+1 and the future traffic
size Xi+1. Once the gNB knows ∆Ti+1, it will send a DCI grant, with f(Xi+1, MCS) PRBs
grant, k2 slots before t+∆Ti, where t is last arrival time slot and f(x, y) is the 3GPP compliant
function [24] that returns the number of PRBs needed to transport x bytes under MCS y. The
k2 parameter is computed by k2 = t+∆Ti− tc, where tc is the time of sending the DCI. Figure
8.2 illustrates the dynamic UL scheduling featuring low latency.
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Figure 8.2: 3GPP dynamic UL scheduling procedure featuring low latency

DRL-LLS aims to reduce the UL latency for a set of UEs, whereby each UE can serve more
than one service. DRL-LLS predicts the next UL slot for each UE u given its traffic history and
schedules it before the actual data arrival. The environment is considered as a sliding window
W i
u,j of size T containing information about the inter-arrival time intervals and BSR information

history for each couple (UE u, service j) at the ith data arrival. Formally:
W i
u,j = {Iiu,j , Di

u,j};
Iiu,j = (∆Ti−T ,∆Ti−(T−1), ...,∆Ti);

Di
u,j = (Xi−T , Xi−(T−1), ..., Xi)

where ∆Ti andXi are the i
th inter-arrival time interval (in slot granularity) and BSR information

(in bytes) of UE u, service j, respectively. We differentiate the BSR belonging to service j by the
LC Identifier (LCID) available at the MAC header, considering that each service has a separate
LC in the context of network slicing at the RAN [101]. For instance, by giving W i

u,j as input,
DRL-LLS schedules an UL slot for UE u following service j traffic pattern. That gives the
generalization ability to our agent and makes our DRL-LLS independent from the number of
UEs and the number of services per UE.
We recall that the UL latency at the RAN is composed of two parts: the SR and the BSR latency
(Figure 2.7). In order to reduce the SR latency, DRL-LLS predicts the next arrival of UE’s u
data. Whereas, to reduce the BSR latency, DRL-LLS predicts the size of the future data arrival
of UE u. To achieve the two goals, DRL-LLS includes two agents: i) Inter-Arrival Time (IAT)
Agent; ii) Data Grant (DG) Agent. Since traffic size and traffic inter-arrivals are independent
[94], the two agents can be independent if their states and rewards are well designed. Figure 8.1
illustrates the architecture of DRL-LLS.
IAT Agent takes (∆Ti−T ,∆Ti−(T−1), ...,∆Ti) as input and generates the next arrival interval
∆Ti+1.
DG Agent takes (Xi−T , Xi−(T−1), ..., Xi) as input, and then generates the next arrival size
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Xi+1.
DRL-LLS combines the values of ∆Ti+1 and Xi+1, and to schedule the future UL slot after
t + ∆Ti+1 slot with f(Xi+1, MCS) PRBs grant, where t is the current slot (last data arrival)
and f(x, y) is the 3GPP compliant function [24] that returns the number of PRBs needed to
transport x bytes under MCS y.

8.3.1 IAT Agent

• State: The observation of IAT agent at time t as normalized value is
Itu,j
M for UE u, service

j. M is the maximum time interval in the system in slots.

• Actions: The action is ∆Tt+1, which takes values from 1 to M .

• Reward: r1 =
Lmax−l
Lmax

, where Lmax is the maximum latency and l is the observed latency.
In order to make the IAT agent independent from the DG agent, we ignored the data size
in l computation. Formally;

l =

{
p− c+ 1 + Smax ∗∆f if p > c

(Smax − c+ 1)− p+ Smax ∗∆f, otherwise

Where p is the predicted slot in the TDD pattern, p = (t + ∆Ti+1 mod Smax), c is the
current slot, Smax is the number of slots in the frame and ∆f is the difference between
the current frame and the predicted frame ∆f =| ⌈ (c+∆Ti+1)

Smax
⌉ − f ′ |, f ′ is the frame offset

of the actual data arrival.

The reward is negative when the predicted slot is far from the actual data arrival. It
increases when the latency approaches Lmax and becomes positive when the latency is
smaller than Lmax.

Reward and States are normalized since it is well-known that the activation functions in the
neural network work well for small values, which positively impacts the model convergence.

8.3.2 DG Agent

• State: The observation of IAT agent at time t as normalized value is
Dt

u,j

N for UE u,
service j. N is the maximum data size in the system in bytes.

• Actions: The action is Xt+1, which takes values from 1 to N . The unit is kbytes instead
of bytes to reduce the action space.

• Reward: r2 = −α∗ | ⌈Xt+1−dr
N ⌉ | +(1−α)∗ l′, whereby, dr is the real (t+1)th data arrival

size. In order to make the DG agent independent from the IAT agent, we ignored the time
slot prediction in l′ computation, Formally,

l′ =

{
0 if Xt+1 < dr

1 otherwise

The reward increases when the predicted size is slightly bigger than the actual size. It
decreases when the predicted size is smaller than the actual size or the predicted size is
much bigger than the actual size (over allocated PRBs). α controls the contribution of
each term of the reward. For instance, it influences how much we tolerate the gap between
actual and predicted sizes.
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8.4 DRL-LLS detailed description

For both agents, DRL-LLS leverages the DQN algorithm [39], which is one of the most efficient
DRL algorithms for continuous state space and discrete actions. DRL-LLS executes two steps:
decision making and updating the Q-Networks. In DQN, two networks are used: a local Q-
Network and a target Q-Network. The latter is the same as the local network except that
its parameters are updated every τ−1 step. They are combined to help the convergence and
stabilization of the learning.

8.4.1 Decision making

IAT agent observes a state Itu,j÷M and feeds it to the local QNetwork to get the discrete action
distribution of ∆Tt+1. While DG agent observes a state Dt

u,j ÷ N and feeds it to the local
QNetwork to get the discrete action distribution of Xt+1. Then, we apply an ϵ-greedy approach
to choose an action from each distribution, which means IAT and DG agents will choose a
random action over the possible actions with ϵ probability and the best action over the action
distribution with a 1-ϵ probability. ϵ will decrease over time during the learning pushing the
agent to explore the environment at the beginning of the training and driving it to exploitation
over time.

8.4.2 Updating the Q-Networks

At each step, the current state, the action, the next state, and the reward are stored in a buffer
known as the replay buffer. The local Q-Network is updated using a random sample from the
replay buffer, which reduces the correlation between the agent’s experiences and increases the
stability of the learning. Using MSE and ADAM optimizer [69], the parameters of the local
Q-Network are optimized at every step by considering the local and target values. In contrast,
the parameters of the target Q-Network are updated every τ−1 step to stabilize the algorithm’s
convergence.

8.5 Performance Evaluation

In this section, we will introduce the simulation environment and parameters used for training
DRL-LLS agents. Then, we will evaluate the trained agents in a 5G simulated environment
using different 5G traffic models from [94].

Table 8.1: Traffic patterns parameters

Traffic model index packet inter-arrival packet size

0 Exponential distribution (λ = 1/20) Exponential distribution (λ = 1/10k)

1 Exponential distribution (λ = 1/5) Static (20k)

2 Static (10) Static (10k bits)

3 On-Off distribution (λ = 1/10, β1 = 1/20, β2 = 1/20) Static (15k bits)

4 On-Off distribution (λ = 1/10, β1 = 1/20, β2 = 1/10) Exponential distribution (λ = 1/20k)

5 Truncated Pareto distribution (α = 1.1, m = 5, max = 30) Truncated Pareto distribution (α = 1.2, m = 10k bits, max = 30k bits)

6 Truncated Pareto distribution (α = 1.2, m = 10, max = 40) Static (50k bits)

8.5.1 Simulation parameters and training phase

We have trained both IAT and DG agents using 5000 independent episodes. For each episode,
a different traffic inter -arrival and data size patterns are used in a circular way from the list:
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Figure 8.3: Convergence evaluation of DRL-LLS agents during the training mode

Exponential distribution with a random λ; 0 < λ < 1
M for IAT agent and 0 < λ < 1

N for DG
agent, Static distribution with a random value m (0 < m < M for IAT agent and 0 < m < N
for DG agent), On-Off distribution (For IAT agent only, λ, β1 and β2 are the parameters of the
exponential distributions for traffic inter-arrival during the ON period, the intervals of ON period
and the intervals of OFF period, respectively) and the truncated Pareto distribution (random α,
1 < α < 3, 0 < m < M , m < max < M for IAT agent and 0 < m < N , m < max < N for DG
agent). The value of M was fixed by 100 slots and the value of N by 103 kbytes. We have fixed
the maximum number of steps at each episode by 200 and the window size T by 1000. Before
starting the learning process, the window is filled by arrivals generated by the current episode
distribution. The different considered parameters for both agents are presented in Table 8.2

Table 8.2: DRL-LLS parameters

Parameter Value

α 0.2

Lmax 4 slots (1 ms)

Number of hidden layers 3

Hidden layer size 64 nodes

discount factor γ 0

Batch size 128

Learning rate 5 ∗ 10−4

Replay buffer size 109

Soft update coefficient τ 0.001

Optimizer ADAM [69]

ϵ-start 1

ϵ-decay 0.9991

ϵ-end 0.01

Number of training episodes 5000

To evaluate DRL-LLS in a 5G environment, we extended the 5G Simulator developed in [70] to
support UL scheduling, and we fixed the numerology by 2 (SCS = 60 khz) which is available
in both FR1 and FR2. We used a TDD period of 1.25 ms, which is the smallest TDD period
for numerology 2. We used a random MCS for each episode in the range of 20..26, which
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Figure 8.4: Average UL latency comparison between DRL-LLS, aDS and DS

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·105

N
u
m
b
er

o
f
P
R
B
s

DRL-LLS aDS DS

Figure 8.5: Number of the allocated PRBs comparison between DRL-LLS, aDS and DS
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Figure 8.6: Average inference execution time of DRL-LLS

maps to medium or good channel condition. Since DRL-LLS is independent of the number
of UEs and services, we focused on training and testing the framework on a single UE with
different traffic patterns to show the ability of DRL-LLS to reduce the UL latency. We have
implemented our simulation environment using Python and Pytorch library. We have used a
machine with 32 CPUs, an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz (2.7 GHz with Turbo
Boost technology), and 128 GBs of RAM.
Figure 8.3 depicts the convergence evaluation of DRL-LLS score (sum of rewards during an
episode) averaged every 100 episodes. We observe that the DRL-LLS agents converge after 4800
episodes since the curve tangents tend toward 0.

8.5.2 Inference phase

We have evaluated the DRL-LLS framework in terms of: i) The average UL latency between
data chunk arrival and the transmission of the whole chunk; ii) The number of PRBs allocated
during the test; iii) The average inference time of both IAT and DG agents executed sequentially
(one after the other).
In Figure 8.4, The y-axis represents the UL latency (in ms), which is measured by tct−tca, where tca
is the arrival time of a data chunk c and tca the transmission time of the last part of the data chunk
c. The x-axis represents the traffic pattern index introduced in Table 8.1. Each pattern has a
packet inter-arrival time and data size distribution. We used different distributions with different
parameters to show that DRL-LLS is able to predict the pattern of different distributions with
different parameters. We recall that these distributions correspond to 5G use case patterns [94].
We compared DRL-LLS with two methods: a) DS, where the UE sends an SR to gNB when
it has data to transmit; b) always Dynamic Scheduling (aDS), where gNB schedules a minimal
grant in all the UL slots to avoid the SR procedure. The minimum grant for both DS and aDS is
5 PRBs. We should note that the time unit in packet-inter arrival is slots. For instance, λ = 1

20
for an Exponential distribution means that the mean of the inter-arrival intervals is 20 slots. We
run the test over 1000 packet arrival for each pattern configuration. We observe that DRL-LLS
offers a lower latency compared to aDS and DS. Indeed, DS latency includes both SR and BSR
latency, while aDS only consists of the BSR latency. However, DRL-LLS removes both SR and
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BSR latency since it predicts the subsequent arrival and the size of the next arrival. Hence,
the UE sends the data directly without sending the SR and does not need a BSR to extend the
transmission. The smallest achieved latency by DRL-LLS is 0.25 ms (1 slot in numerology 2) in
the case of periodic traffic (traffic pattern index 2). This is due to the simplicity of the pattern,
which is predictable ideally by DRL-LLS. The highest latency achieved by DRL-LLS is 1.1 ms,
which makes the framework suitable for URLLC services with a latency requirement of 1 ms.
Figure 8.5 depicts the number of allocated PRBs (for UL) during the 1000 packet arrivals for
each traffic pattern (Table 8.1). We notice that aDS consume much more PRBs compared to
DRL-LLS and DS. This is since aDS schedules 5 PRBs in every UL slot even if there is no
transmission. We should shed light that DS is optimal in terms of resource allocation since it
allocates only the needed amount of PRBs to transmit the data. We also observe a smaller
difference between DRL-LLS and DS in terms of resource allocation while achieving a much
better latency by DRL-LLS (Figure 8.4).
Finally, Figure 8.6 shows the average execution time of DRL-LLS inference over the 1000 data
arrival for each traffic pattern (Table 8.1). We notice that the execution time does not exceed
0.62 ms, which is suitable for real-time scheduling and hence, better adaptation with channel
conditions and better latency.

8.6 Conclusion

This chapter introduced DRL-LLS, a DRL-based solution that reduces the UL latency in 5G
NR. DRL-LLS will be leveraged by the 5G base station before the UE scheduling process to
derive i) the next UL slot to schedule and ii) the number of PRBs to allocate to the user.
Without knowing the UEs traffic model, DRL-LLS can learn the traffic inter-arrival and data
size patterns. DRL-LLS uses the available BSR information history to derive the following UL
grant. Simulation results clearly showed that DRL-LLS is able to reduce the UL latency down
to 0.25 ms.
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Chapter 9

Balance between latency and power
consumption

9.1 Introduction

In this contribution, we introduce a DRL-based solution, called DRL-based Latency and Power
optimizer (DRL-LP), to jointly derive the C-DRX parameters and the BWP configuration. The
proposed solution is designed to be scalable in terms of the number of UEs and traffic patterns.
Indeed, The DRL agent observes UEs’ history of: (i) the experienced latency; (ii) the buffer
status; and (iii) the number of scheduled UEs; during a time window. Then, for each UE, the
DRL agent sets the C-DRX parameters and the BWP size for the next time window. To the
best of our knowledge, no prior work has combined C-DRX and BWP adaptation to reduce the
PC further while ensuring low latency.
The key contributions of this chapter are:

• We model the problem and the objective function to minimize the PC and the latency
considering the C-DRX parameters and BWP adaptation.

• We introduce a DRL-based solution to jointly derive the C-DRX and BWP configuration
and find a compromise between low PC and low latency. The C-DRX configuration in-
cludes new parameters introduced by 5G NR that help decrease the latency such as the
C-DRX slot offset.

• The proposed DRL solution is designed to support multiple UEs, and different traffic
patterns, i.e., the DRL agent is trained only once and then deployed regardless of the
number of UEs and their traffic patterns.

• We evaluate the solution on periodic and aperiodic traffic for different numbers of UEs.
The periodic traffic is characterized by random inter-arrival periods, and the aperiodic
traffic follows the Poisson distribution with random parameters.

9.2 Related works

In [102], a logic controller-based C-DRX system was proposed to adaptively adjust the C-
DRX parameters by learning the information of historical delay time and the packet arrival
rate. However, the authors only considered the C-DRX cycle length parameter and did not
consider multiple UE scenarios that can impact the latency. Authors of [103] proposed using
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a DRL-based actor-critic algorithm to choose the C-DRX cycles based on traffic statistics and
to use symmetric sampling to accelerate online learning. However, they only (i) considered C-
DRX cycle length parameter; (ii) evaluated two scenarios (i.e. the traffic follows two Poisson
distributions with fixed mean arrival rates). Authors of [104] presented a novel Contextual
Bandit-based approach to optimize the C-DRX configuration of UEs in 5G NR. However, they
did not consider the latency factor, which is strongly impacted by C-DRX. In [105], the authors
leveraged channel capacity predictions to minimize the energy usage of UEs and create longer
sleep opportunities while preventing video interruptions. However, authors only considered the
C-DRX cycle length parameter without optimization for low-latency services. Authors of [106]
designed a control policy to adjust the ON duration period parameter in order to satisfy XR
requirements and minimize PC. Authors of [107] developed a model to evaluate the impact of
the BWP adaptation on power gains. However, they did not consider multiple UE scenarios
since the scheduling opportunities in a BWP are limited per slot.
To the best of our knowledge, no prior work has combined C-DRX and BWP adaptation to
reduce PC further. The choice of this combination (i.e., combining C-DRX and BWP) is moti-
vated by the possibility of reducing PC by using the same narrow BWP for more UEs by shifting
C-DRX cycles (i.e., making the UEs ON duration period not cross) and thus reduce their PC.
In addition, most of the work on C-DRX has considered only one parameter to be optimized to
make the problem easy to solve.

9.3 Network Model and Problem formulation

We consider a network consisting of a set of UEs denoted K and sharing bandwidth of size W.
Let ∆, Φ, Γ and Ω be the sets of cycle length, ON periods, offsets and BWP sizes, respectively.
Each UE i ∈ K may use a different C-DRX configuration and a different BWP during a set of
S time slots. Let ∆j

i , Φ
j
i , γ

j
i , and ωji be Boolean decision variables that indicate whether the

UE i uses a cycle length of f(j), an ON period of g(j) an offset of h(j), and a BWP of size l(j),
respectively; f(x), g(x), h(x), and l(x) are functions that return the xth element of ∆, Φ, Γ, Ω,
respectively. Let Pi,t be a variable that measures the PC of UE i at time slot t ∈ S. Pmax is a
constant that defines the maximum PC of a given UE in all time slots of S. Let Li,t a variable
that measures the delay of the data arrived at slot t for UE i. If no data has arrived for UE
i at slot t, then Li,t = −1. Lmaxi is a constant that defines the maximum latency allowed for
UE i. Note that the latency is the waiting time between data arrival and transmission. Hence,
Li,t is influenced by the C-DRX parameters (i.e., data arrives during the sleep period and thus
latency increases), the BWP size (i.e., the BWP size does not allow all data to be sent in one
transmission and thus latency increases), and the packet arrival slot.
We can formulate the objective function as follows:

min

|K|∑
i=1

|S|∑
t=1

α× Li,t
Lmaxi

+ (1− α)× βi × Pi,t
Pmax

(9.1)

S.t.
∀i ∈ K, ∀t ∈ S : Li,t ≥ −1,Pi,t ≥ 0 (9.2)

Where α is a given constant (0 ≤ α ≤ 1) that defines the priority between latency and PC.
If α = 1, then we are only interested in optimizing latency, whereas, if α = 0, then we are
only interested in optimizing PC. According to the energy model introduced by the 3GPP
specification in [20], the relationship between the PC and the BWP size is linear and the scaling
factor βi is given by equation 9.3.
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∀i ∈ K : βi = 0.4 + 0.6×

(∑|Ω|
j=1 ω

j
i × l(j)− 20

)
80

(9.3)

Equation 9.4 ensures that each UE i has only one C-DRX configuration and one BWP during
S.

∀i ∈ K,
|Ω|∑
j=1

ωji ≤ 1,

|∆|∑
j=1

∆j
i ≤ 1,

|Φ|∑
j=1

Φji ≤ 1,

|Γ|∑
j=1

γji ≤ 1 (9.4)

Equation 9.5 ensures that the sum of the BWP sizes does not exceed the available bandwidthW
when the UEs ON periods cross. Let Bji,t be a Boolean system variable that indicates whether
UE i is active (i.e., during the ON period) and uses a BWP of size l(j) at time slot t.

∀t ∈ S,
|K|∑
i=1

|Ω|∑
j=1

Bji,t × l(j) ≤ W (9.5)

Each BWP has a limited amount of scheduling opportunities (i.e. DCIs) per slot. Let Kmaxj a
constant that defines the maximum number of UEs allowed per slot for the BWP j. Equation 9.6
ensures that for each BWP, the number of UEs scheduled per slot does not exceed the maximum
number of DCIs per slot, in each BWP.

∀t ∈ S,∀j ∈ Ω

|K|∑
i=1

Bji,t ≤ K
max
j (9.6)

Equation 9.7 ensures that Pi,t = 0 when UE i is in sleep mode at slot t. Otherwise Pi,t takes a
positive value, since we minimize the sum of Pi,t. It is sufficient to set Pi,t = 1 when UE i is

awake at slot t. In addition, the equation 9.7 allows us to define the system Boolean variable Bji,t
used in equations 9.5 and 9.6. Let N denotes a subset of integers in range 0 to the maximum
number of cycles in the system (i.e. |S| ÷minj f(j)).

∀i ∈ K,∀t ∈ S,∀k ∈ N :

if k ×
|∆|∑
j=1

∆j
i × f(j) +

|Φ|∑
j=1

Φji × g(j) ≤ t

And

t ≤ k ×
|∆|∑
j=1

∆j
i × f(j) +

|Φ|∑
j=1

Φji × g(j) +
|Γ|∑
j=1

γji × h(j)

then

Pi,t = 1, Bji,t =

{
1 if γji = 1 ∀j ∈ (1..|Ω|)
0 otherwise

else

Pi,t = 0, Bji,t = 0 ∀j ∈ (1..|Ω|)
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(9.7)

Unfortunately, we cannot use the optimization problem mentioned above, mainly because the
arrival of traffic is unknown and it is difficult to predict it and hence the variable Li,t is difficult,
if not impossible, to compute. Here the problem can be transformed into a linear problem, but
since we can not solve it, it is not worthy doingso.

9.4 DRL-LP Overview

As aforementioned, it is hard to solve the optimization problem efficiently and without prior
knowledge of the traffic patterns. For this reason, we propose the DRL-LP framework that
leverages DRL. The DRL hides the complexity and the stochastic nature of the environment.
It also helps the DRL-LP framework to make efficient and quick decisions that adapt according
to the traffic patterns. Moreover, DRL-LP gains the ability to learn with time and adapts to
different and unseen situations. In the balance of this section, we will present DRL and DRL-LP
overview followed by a detailed description of DRL-LP.
DRL-LP periodically loops over the UEs in K. For each UE i, DRL-LP captures an observation,
then applies a configuration (i.e., C-DRX parameters and BWP size ) and finally gets a reward
after applying the configuration during S slots. We have designed the DRL-LP agent to ensure
generality and then work in an unseen environment. The DRL-LP agent has been designed to
work independently from the number of UEs and the traffic pattern. In what follows, we define
the elements of the DRL-LP agent, including the state, the reward, and the action.
i) State: The DRL-LP agent captures an observation, per UE i, composed of four parts: {Li,
Bi, Ci, U }. The first three parts are specific for UE i, while the fourth part is common between
all UEs. Li is the history of latency Li,t experienced by UE i during the past |S| slots. For
each slot t, if arrived data Li,t represents the time delay between t and the data transmission,
else if no data arrived in slot t then Li,t = −1. Bi is the history of buffer status of UE i during
the past S slots. Ci summarizes the action applied to the environment (i.e., both the C-DRX
parameters and the BWP size). Each element Ci,t of Ci equals to the BWP size if UE i is awake
at slot t, else it equals to 0. U is an array of Ut that represents the number of scheduled UEs
for each slot t.
ii) Action: The DRL-LP agent has 4 discrete actions: (δi, ϕi, γi, ωi). For each UE i, δi is the
C-DRX cycle length, ϕi is the ON period, γi is the offset between the start of the ON period
and the start of the cycle, and ωi is the size of the BWP to configure. Accordingly, The C-DRX
configuration (δi, ϕi, γi) is applied for UE i and BWP of size ωi is configured for UE i.
iii) Reward: We have adapted an episodic approach, whereby each episode runs for fixed num-
ber of steps. For each episode, a randomly selected traffic pattern is applied. The reward rt has
been defined as follows:

rt = α×
(
1− maxt Li,t

Lmax

)
+

(1− α)×

1−

(
0.4 + 0.6 × (ωi − 20)

80

)
× Pi

|S|



Where maxt Li,t is the maximum latency for UE i during the past time window and Pi is the
number of slots in which UE i was awake. Lmax is the maximum latency in the system. α is a
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given constant (0 ≤ α ≤ 1) that defines the priority between latency and PC. The agent gets
a higher reward whenever the maximum latency gets smaller or the sleep period is larger while
using a smaller BWP.

9.5 DRL-LP detailed description

DRL-LP leverages the DQN algorithm with local and target networks, which is one of the most
efficient DRL algorithms for continuous state space and discrete actions. We have tried the A2C
[67] and the Actor-Critic using Kronecker-Factored Trust Region (ACKTR) [108] algorithms
but the exploration phase was not efficient for DRL-LP environment as the agent was not able
to converge. DRL-LP executes two steps: decision-making and updating the Q-Networks. We
used two networks: a local Q-Network and a target Q-Network. The target network is the same
as the local network, except that its parameters are updated every τ−1 step. They are combined
to help the convergence and stabilization of the learning.

9.5.1 Decision making

DRL-LP agent observes a state and feeds it to the local Q-Network to get a discrete action
distribution. Then, an ϵ-greedy approach is applied to choose an action from each distribution,
which means DRL-LP agent will choose a random action over the possible actions with ϵ prob-
ability and the best action over the action distribution with a 1-ϵ probability. ϵ will decrease
over time during the learning pushing the agent to explore the environment at the beginning of
the training and driving it to exploitation over time.

9.5.2 Updating the Q-Networks

At each step, the current state, the action, the next state, and the reward are stored in a buffer
known as the replay buffer. The local Q-Network is updated using a random sample from the
replay buffer, which reduces the correlation between the agent’s experiences and increases the
stability of the learning. Using MSE and ADAM optimizer [69], the parameters of the local
Q-Network are optimized at every step by considering the local and target values. In contrast,
the parameters of the target Q-Network are updated every τ−1 step to stabilize the algorithm’s
convergence.

9.6 Performance Evaluation

In the balance of this section, we will introduce the simulation environment and parameters
used for training DRL-LP agent. Then, we will evaluate the trained agent in a 5G simulated
environment.

9.6.1 Simulation parameters and training phase

We have trained the DRL-LP agent using 3000 independent episodes. In each episode, the traffic
pattern is selected randomly among two traffic pattern categories with different parameters: (i)
periodic arrival rate with a period λp ∈ {10, 20, 50, 100, 200} (ii) aperiodic traffic that follows a
Poisson distribution with the mean arrival rate λa ∈ {1/10, 1/20, 1/50, 1/100}. For the periodic
traffic, we add an initial offset oinit selected randomly, such as oinit, a positive integer smaller
than the period. The goal behind oinit is avoiding data arrivals aligned with C-DRX cycles,
which makes the simulation more realistic. The data size distribution is selected randomly
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among (i) a fixed data size; (ii) a Poisson distribution data size. For both distributions, the
mean data size is selected randomly among ∈ {103, 106} Bytes in each episode. The number
of steps in each episode is equal to 100 steps. In each step, the simulation runs for 100 slots.
We used numerology 0 wherein 1 slot is 1 ms. We have trained the agent using 12 UEs. The
set of cycle lengths is {10, 20, 50, 100}. The set of ON periods is {3, 5, 10}. The set of offsets
is {0, 0.5 × Tc}, such as Tc is the cycle length. The set of BWPs is {20, 50}. Each BWP has
a limited amount of scheduling opportunities (i.e., DCI). We assume an aggregation level of 2,
meaning that the maximum number of scheduled UEs per slot is 4 and 10 for the 20 MHz and
50 MHz BWP, respectively.

Table 9.1: DRL-LP parameters

Parameter Value

α 0.5

Lmax 3 ms

Number of hidden layers 2

Hidden layer size 128 nodes

Discount factor γ 0.99

Batch size 256

Learning rate 5 ∗ 10−4

Replay buffer size 109

Soft update coefficient τ 0.001

Optimizer ADAM [69]

ϵ-start 1

ϵ-decay 0.998

ϵ-end 0.01

Number of training episodes 3000

The considered parameters of the DRL-LP agent are presented in Table 9.1. To evaluate DRL-LP
in a 5G environment, we extended the 5G system level simulator developed in [70] to support C-
DRX operations. We have implemented our simulation environment using Python and Pytorch
library. We have used a machine with 32 CPUs, an Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz (2.7 GHz with Turbo Boost technology), and 128 GB of RAM.
Figure 9.1 depicts the convergence evaluation of the DRL-LP agent during training. The x-axis
represents the episodes, while y-axis represents the score (sum of rewards during an episode)
averaged every 100 episodes. We observe that the DRL-LP agent converges after 2000 episodes
since the curve tangents tend toward 0.

9.6.2 Inference phase

We evaluated the DRL-LP framework in terms of: i) Latency; ii) PC; iii) Number of UEs. We
ran the simulation for 4000 slots. We compared DRL-LP with static C-DRX configurations and
without C-DRX. We used the same traffic pattern selection mechanism as the training phase.
Configuration A and configuration B denote the static configuration (cycle length: 10ms, ON
period: 5ms, offset: 0ms and BWP: 50 MHz) and (cycle length: 100ms, ON period: 10ms, offset:
0ms and BWP: 20 MHz) respectively.
In Figure 9.2, the x-axis represents the latency (in ms), which is measured by tct − tca, where
tca is the arrival time of a c data block and tct is the transmission time of the last part of the c
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Figure 9.1: Convergence evaluation of DRL-LP agent during the training mode

data block. The y-axis represents the CDF of the latency collected by running the simulations
for 4000 ms. We observe that without C-DRX, the latency is less than 2 ms because the UE is
always on, and the data is scheduled directly on arrival. In configuration A, the latency is less
than 5 ms because the maximum sleep time of a UE is 5 ms, and in the 50 MHz BWP up to 10
UE can be scheduled per slot. While for configuration B, more than 50% of the samples have
latency greater than 50 ms, and 10% have latency greater than 150 ms because the sleep time
is higher (up to 90 ms) and the BWP does not allow more than 4 UEs to be scheduled per slot.
We note that for DRL-LP, 78% of the samples have latency less than 5 ms, which is better than
configuration A, and 90% less than 25 ms, which is better than configuration B. We conclude
that DRL-LP is able to avoid latency overflow while dynamically changing the configuration of
C-DRX and BWP.
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Figure 9.2: CDF of the Latency during inference mode

In figure 9.3, the x-axis represents the PC of a UE, calculated using the energy model in [20].
The y-axis represents the CDF of the PC collected at the same time as the latency in Figure 9.2.
We observe that without C-DRX, the PC is the highest because the UEs are awake all the time.
While in configuration A, we observe that all UEs achieve a gain of about 50% because all UEs
are sleeping for half of the cycle. In Configuration B, the power gain is higher ( 90%) because
the UEs sleep for 90% of the time. We note that 20% of the DRL-LP samples have a lower PC
than Configuration B, which means a power gain of over 90%. In addition, all DRL-LP samples
achieve a lower PC than configuration A (i.e., a power gain of more than 50%). We conclude
that DRL-LP achieves a good balance between PC and latency (i.e., it achieves more than 50%
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Figure 9.3: CDF of the PC during inference mode

power gain while maintaining less than 5 ms latency).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of UEs

0

20

40

60

80

La
te

nc
y 

D8

DRL
STATIC_10_5_0_50

STATIC_100_10_0_20
NO DRX + NO BWP adaptation

Figure 9.4: The 8th Decile of Latency during inference mode

In Figure 9.4, the x-axis represents the number of UEs and the y-axis represents the 8th decile
(i.e., 80% of the samples have a value less than this) of the samples collected during the 4000
slots. We observe that DRL-LP is able to keep the latency below 25ms. We note that DRL-LP
achieves better latency (i.e., less than 20ms) when run on more than 8 UEs. We justify this by
the nature of DRL, which consists of approximating continuous states using neural networks,
making it more biased to the observed states, and by the fact that the agent was trained on 12
UEs, which makes it more biased for larger number of UEs.

9.7 Conclusion

This chapter introduced DRL-LP, a DRL-based solution to balance PC and latency in 5G NR.
DRL-LP will be used by the 5G base station to derive the C-DRX and BWP configuration
per UE. The simulation results clearly showed that DRL-LP is able to find a trade-off between
latency (i.e., achieve latency less than 5ms) and PC (i.e., achieve power gain more than 50%).
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Conclusions and Perspectives
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Chapter 10

Conclusion

In conclusion, this thesis has delved deeply into the multifaceted realm of RAN slicing, a piv-
otal facet of advanced wireless communication systems. As the telecommunications landscape
evolves, transitioning from 5G to 6G networks, the concept of RAN slicing becomes increasingly
indispensable for catering to diverse service requirements.
Our research started with the challenge of spectrum slicing, made more intricate by the incorpo-
ration of 5G NR features such as numerology and BWPs. We undertook the complete problem
formulation for resource allocation, considering mixed numerology environments and BWPs,
and we mathematically demonstrated its NP-hard nature. Subsequently, a pioneering solution
was proposed, hinging on RL, to expedite resource allocation with remarkable efficiency. Yet,
the scope of our work extended beyond merely optimizing spectral resources. Network relia-
bility, particularly in scenarios involving users on the fringe of coverage or experiencing RLFs,
was another critical focus. We employed ML for RLF prediction, a vital stride in bolstering
network stability. When an impending RLF is anticipated, proactive measures are initiated, be
it through handovers or notifications to application services that mitigate the RLF’s impact.
The spectrum-slicing solutions we developed are versatile, functioning seamlessly in both UL
and DL directions. Nonetheless, the UL direction presented unique challenges, notably latency
concerns due to the network’s limited insight into user data volume for UL transmissions. Here,
we harnessed RL to predict UL grants, striking a balance between latency reduction and the
consequential rise in energy consumption.
Recognizing that resource allocation could be further optimized based on the UL/DL traffic
ratio, we introduced dynamic TDD management using RL. This began in a single-cell and was
successfully extended to multi-cell scenarios, skillfully mitigating cross-link interference patterns.
The insights gained from this thesis have far-reaching implications, serving as a cornerstone for
the development of autonomous control systems for beyond 5G networks, thereby facilitating
the evolution of SONs and the advent of AI-powered 6G networks. RAN slicing, as explored
in this thesis, plays a central role in realizing the vision of dynamic, adaptable, and efficient
wireless networks.
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Future Perspectives

11.1 Distributed Multi-Agents with different objectives: Dis-
tributed tracking and conflict mitigation

In future beyond 5G networks, we imagine the RAN as a set of independent smart agents
working together to control RAN functions. These agents may come from different vendors
and impact different RAN functions. RL is one of the key enablers of this ecosystem. RL
offers a framework for understanding how agents should make effective decisions within an
environment to maximize a cumulative reward defined based on the problem at hand. Traditional
RL techniques are effective for tasks with small, discrete state and action spaces. However, many
real-world applications involve more complex tasks with larger state spaces and continuous action
spaces. Classical RL methods struggle to handle high-dimensional input. With the advancement
in computing and storage capabilities, DRL, which combines deep learning with RL principles,
has demonstrated remarkable achievements, reaching or surpassing human-level performance
in challenging games. In our DRL-based contributions (i.e., DRL-RS, DRL-LLS, DRL-LP, and
DRP), we used single-agent DRL to solve their respective problems. However, the most complex
problems in telecommunications require multi-agent designs. The latter are more robust than
single monolithic designs since agent failures can be compensated, which makes the system
more robust and scalable. MADRL applies the idea and algorithm of DRL to the learning of
multi-agent systems, which is an important Actuators method to develop swarm intelligence
and has received increasing attention in recent years. In this thesis, we used MADRL to design
and build MADRP, a multi-agent solution to tackle the dynamic TDD problem in a multi-cells
environment where each agent controls a cell. While MADRL is a growing field, relatively little
research has been carried out on distributed tracking and conflict mitigation problems in the
field. In the state of the art, each agent observes all the other agents, and the training process
of multiple agents is centralized. In practical tracking processes, each agent could hardly obtain
the observation of all the other agents. Besides, the right reward function should be given to
each agent to satisfy the goal of the overall system. In addition, the centralized training mode
is not suitable for distributed tracking of multi-agent learning where the objectives of agents
are different. Moreover, agents with different objectives may have conflicting actions, which is
hard to mitigate with partial observations. Future research works should focus on enabling the
co-existence of multiple agents with different goals and rewards while preserving the coherence
of different RAN functions.
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11.2 RAN slicing in FR2 systems

The 5G NR design has a notable characteristic, which is its capability to operate across two
distinct frequency ranges: sub-6 GHz and mmW. With the sub-6 GHz spectrum becoming in-
creasingly scarce, mmW frequencies, known for their wider bandwidths, are becoming more
prevalent. mmW operates at high frequencies above 24 GHz, providing greater capacity. How-
ever, the characteristics, including propagation loss, signal blockage, and fading effects, differ
significantly between mmW and the sub-6 GHz band. These differences introduce new chal-
lenges for system design and have an impact on end-to-end throughput and the quality of the
user experience. To tackle these challenges, the 3GPP 5G NR standards have introduced novel
features at the PHY and MAC layers to support directional communications. One of these crit-
ical features is beam management, a technique used to acquire and maintain beams. A beam is
essentially a focused signal produced by a substantial antenna array. The 5G scheduler assigns
beams to users in each time slot according to the user’s positions and the radio environment.
In this thesis, we enhanced RAN slicing using mixed numerology and BWPs in both time and
frequency dimensions. In FR2, beam management will play an essential role in enhancing RAN
slicing by isolating different beams in the frequency domain and hence reusing the spectrum.
Future research works should focus on joint beam management and RAN slicing to enhance user
experience.

11.3 RAN slicing in Device-to-Device (D2D) communication
systems

Direct Device-to-Device (D2D) communication, which involves direct interaction between de-
vices, such as users, without the need for data traffic to traverse through any infrastructure
node, has been widely recognized as a crucial element in enhancing system performance and
enabling new services in advanced systems beyond 5G. In general, the advantages of employing
D2D communication encompass significantly higher spectral efficiency, improved data rates for
typical users, increased capacity per unit area, expanded coverage, reduced latency, and en-
hanced cost and power efficiency. These benefits stem from several factors. Firstly, the close
proximity of users utilizing D2D communication results in a ”proximity gain”. Secondly, there’s
an increased spatial reuse of time and frequency resources, known as the ”reuse gain”. Lastly,
D2D communication utilizes a single link instead of both an UL and a DL resource when com-
municating through a base station in cellular mode, leading to a ”hop gain”. These combined
gains contribute to the overall advantages of D2D operation. Sometimes, D2D communication
becomes mandatory when the users are out of coverage or during a disaster when base stations
are not available. D2D communication has two modes: (i) Mode 1, where the resources are
controlled by the base station; (ii) Mode 2, where the resources are managed directly by the
devices. In order to share the spectrum efficiently between different services and fulfill their
requirements, RAN slicing should also consider D2D communication. Future work should focus
on enabling RAN slicing in D2D systems leveraging distributed resource allocation solutions
such as MADRL.

126



On enforcing Network Slicing in the new generation of Radio Access Networks

11.4 RAN slicing in Joint Communication and Sensing (JCAS)
systems

Integrating sensing and communication functionalities into one Joint Communication And Sens-
ing (JCAS) system exploits the same signal for sensing and communication. This integration
substantially boosts the efficient use of scarce wireless resources by utilizing the same spectrum
band simultaneously for the two functionalities. Furthermore, such integration remarkably re-
duces hardware power consumption, cost, and size by using the same hardware for sensing and
communication. However, dedicating more resources to sensing negatively impacts the user
experience in terms of throughput and latency. Hence, RAN slicing should consider resources
dedicated to communication and resources dedicated to sensing. Indeed, a new metric is intro-
duced to measure the sensing performance and sensing accuracy. The latter should be used to
decide how many resources the system should allocate to sensing. Future works should focus on
enhancing JCAS systems using RAN slicing to share the same infrastructure among different
services, which may have different communication requirements (i.e., throughput, latency, and
reliability) and sensing requirements (i.e., sensing accuracy).
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