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Abstract—In massive multiple-input multiple-output orthogo-
nal frequency division multiplexing (MIMO-OFDM) systems, a
challenging problem is how to predict channel state information
(CSI) (i.e., channel prediction) accurately in mobility scenarios.
However, a practical obstacle is caused by CSI non-stationary
and nonlinear dynamics in temporal domain. In this paper, we
propose a spatio-temporal neural network (STNN) to achieve
better performance by carefully taking into account the spatio-
temporal characteristics of CSI. Specifically, STNN uses its
encoder and decoder modules to capture the spatial correlation
and temporal dependence of CSI. Further, the differencing-
attention module is designed to deal with the non-stationary
and nonlinear temporal dynamics and realize adaptive feature
refinement for more accurate multi-step prediction. Additionally,
an advanced training scheme is adopted to reduce the discrepancy
between STNN training and testing. Evaluated on a realistic
channel model with enhanced mobility and spherical waves,
experimental results show that STNN can effectively improve the
accuracy of prediction and perform well with respect to different
signal to noise ratios (SNRs). Visualization and testing for unit
root illustrate STNN is able to learn CSI time-varying patterns
by alleviating series non-stationarity.

Index Terms—Massive MIMO, channel prediction, spatial
correlation, non-stationarity and non-linearity, deep learning.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) has
been widely regarded as a fundamental technology for

the fifth generation (5G) and future wireless communications
[1]. By equipping with a large number of antennas at the base
station (BS), massive MIMO can achieve superior spectral
efficiency [2] and energy efficiency [3]. In addition, orthogonal
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frequency division multiplexing (OFDM) is incorporated to
cope with the effect of the inter-symbol interference (ISI)
in the multipath fading channel [4]. In order to realize the
potential of massive MIMO-OFDM systems, many emerging
techniques have been introduced, such as transmit antenna
selection [5], precoding [6] and beamforming [7]. It is worth
mentioning that the promising benefits of all these techniques
are based on accurate CSI acquisition at the BS. Nevertheless,
when the user equipment (UE) is moving, CSI obtained at
the BS would be outdated, leading to significant performance
degradation. Considering higher mobility scenarios in the
future, this problem will be more serious. To overcome the
aforementioned problem, accurate and timely channel predic-
tion is the key.

The conventional channel prediction methods can be mainly
divided into two categories, the parametric radio channel
(PRC) model based methods [8], [9] and the autoregressive
(AR) model based methods [10], [11]. However, both of them
are based on the theoretical channel models and strict assump-
tions, which are quasi-static and wide-sense stationary (WSS),
respectively. In [11], inspired by employing the difference of
the past CSI between adjacent times instead of the past CSI,
two AR based channel prediction methods were proposed to
suppress interference in MIMO systems. In [12], based on the
first-order Taylor expansion (FIT), a FIT prediction method
was designed to track CSI in time-varying massive MIMO sys-
tems. Both [11] and [12] assumed different transceiver anten-
nas are mutually uncorrelated. Similarly, every sub-carrier in
massive MIMO/MIMO-OFDM systems was treated as a SISO
flat-fading channel in [13] and [14]. In the above methods,
the temporal correlation was utilized to implement channel
prediction, however, the array and frequency correlations were
ignored.

In practice, CSI correlations exist not only in temporal
domain, but also in array and frequency domains [15], [16],
promoting the further development of channel prediction meth-
ods. In [17], two AR based channel predictors with data
selection were derived to employ correlations existed in both
array and temporal domains with a competitive complexity,
which could effectively improve prediction accuracy. Instead
of directly extracting correlations in array-frequency domain,
CSI is transformed to angular-delay domain through inverse
discrete Fourier transform (IDFT) and the corresponding chan-
nel prediction methods were investigated [18]–[20]. In [19],
a Prony based angular-delay domain (PAD) predictor was
presented to address the curse of mobility. In [20], a spatio-
temporal autoregressive (ST-AR) predictor was designed to
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employ residual correlations in angular-delay domain. The
above predictors all exploited the characteristics of CSI struc-
ture in array/angular-frequency/delay domain. Nevertheless, in
temporal domain, they still assumed that CSI time-varying
patterns followed the linear and stationary models, which
would be deviated from realistic wireless channels. Based on
the above reason, the temporal dynamics of CSI also need to
be carefully considered.

Due to the successful applications in computer vision (CV)
and natural language processing (NLP), deep learning (DL)
has recently been introduced into wireless communication
[21]–[23]. Without any prior assumptions about the channel
models, DL based methods can learn time-varying patterns of
CSI in data-driven manners. Considering channel prediction
as a time series problem, many powerful prediction methods
have emerged [24]–[31]. In [24], motivated by the gap between
the theoretical models and realistic wireless channels, a multi-
layer perceptron (MLP) based method was proposed. In [25]
and [26], recurrent neural network (RNN) and long short
term memory (LSTM) based methods were investigated to
implement channel prediction, respectively. In [29] and [30],
inspired by the sequence-to-sequence (seq2seq) model in NLP,
two LSTM based neural networks (NN) were designed to
predict CSI. To better fit the characteristics of CSI, channel
prediction has been extended to spatio-temporal series problem
[32], [33]. In [32], by considering CSI as a two-dimension (2-
D) image, convolutional neural network (CNN) and RNN were
cascaded to extract the array and temporal correlations. In [33],
an online prediction scheme based on CNN and RNN was
proposed with an offline-online training mechanism. However,
[32] and [33] simply stacked CNN and RNN, while few
specific structures were designed to pertinently address diffi-
culties in channel prediction. Moreover, RNN/LSTM adopted
in the above methods does not take spatial correlation into
consideration and may suffer from unaffordable complexity in
massive MIMO-OFDM systems.

To fill the aforementioned research gaps, in this paper, we
propose a novel spatio-temporal channel prediction method
based on DL by exploiting the spatio-temporal characteristics
of CSI in massive MIMO-OFDM systems, which will not
only improve the prediction accuracy but also possess partial
interpretability. More specifically, our predictor is designed
based on the fact that CSI owns spatial correlation in array-
frequency domain and reflects the non-stationary and non-
linear characteristics in temporal domain. Our ideas consist
in jointly processing the spatio-temporal information, explic-
itly modeling the non-stationary and nonlinear dynamics and
adaptively realizing feature refinement, in which “explicitly”
means a deterministic differencing sub-module is designed and
“adaptively” means that we use attention mechanism to decide
“what”,“where” and “when” to focus for the proposed NN.

The major contributions of this paper are summarized as
follows:
• After investigating the spatio-temporal characteristics of

CSI from the aspects of correlation and time variation, we
formulate the massive MIMO-OFDM channel prediction
problem by taking into account the spatial and tempo-
ral information, and introduce a DL based approach to

parallel exploit spatial and temporal information in high
dimension space with tractable complexity.

• We propose a spatio-temporal neural network (STNN),
which utilizes the differencing operation to improve the
non-stationary modeling capability and three lightweight
attention sub-modules for the enhancement of feature re-
finement power. Moreover, we improve the performance
of STNN by combining it with an advanced training
scheme, called scheduled sampling [34]. To the best
of our knowledge, this is the first work to consider
the differencing operation and attention mechanism in
designing DL based channel prediction network structure.

• We evaluate STNN on a spherical waves and enhanced
mobility based channel model with extensive experi-
ments. Numerical results show that STNN can achieve
excellent performance in terms of the prediction length,
velocity of the UE and imperfect CSI. Moreover, we
verify the robustness of STNN to noise, and the effect of
the temporal dependence. Furthermore, we also design
specific experiments to explore STNN itself, including
the training scheme, hyper-parameter setting and model
ablation.

• Through visualization of learned attention weights and
the stationary analysis of series, we investigate the pre-
diction mechanism of STNN in learning CSI time-varying
patterns, which partially explains why STNN works and
is the first to discuss the cause of the superior perfor-
mance of DL based channel prediction methods.

The rest of this paper is organized as follows. In Section II,
we introduce the massive MIMO-OFDM channel model [35]
used in this paper. In Section III, we give the problem formu-
lation of channel prediction and investigate the effectiveness
of ConvLSTM for CSI spatio-temporal modeling. Section IV
presents STNN and experimental results are shown in Section
V. Finally, Section VI concludes this paper.

Notations: Throughout the paper, we use bold uppercase
letter to denote matrix, bold lowercase letter to denote vector,
and non-bold letter to denote scalar. ‖ · ‖2 is the Euclidean
norm. (·)T represents the transpose of a vector or matrix.
The complex number field is represented by C and the real
number field is represented by R. The symbol ◦ represents the
Hadamard product, mod represents the module operation and
E{·} represents the expectation operation.

II. MASSIVE MIMO-OFDM CHANNEL MODEL IN
MOBILE ENVIRONMENT

In the general channel models, e.g., the 3GPP-3D model
[36] and the 3GPP-NR model [37], the description of the
Doppler shift is related to the arrival angles, while the model-
ing of arrival angles is time independent. In other words, the
arrival angles are fixed as the UE moves, so are the delays.
This kind of modeling approach is easy to implement, but
there are non-negligible gaps compared to the real mobile
environments. Furthermore, when the number of antennas is
large, the plane waves assumption is not fulfilled [38]. To
improve the effectiveness of channel prediction method in real
deployments, we adopt a 3-D geometric based channel model
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TABLE I: The definitions of the key parameters of the propagation environment.

Parameter Definition
τl the initial transmitting delay of the l-th path at time t0
θal,m the initial elevation angle of arrival (AOA) of the m-th sub-path in the l-th path at time t0
φal,m the initial azimuth AOA of the m-th sub-path in the l-th path at time t0
θal,m,t the elevation AOA of the m-th sub-path in the l-th path at time t
φal,m,t the azimuth AOA of the m-th sub-path in the l-th path at time t

θds,l,m
the elevation angle of departure (AOD) of the m-th sub-path in the l-th path for the s-th

antenna element of the BS
φds,l,m the azimuth AOD of the m-th sub-path in the l-th path for the s-th antenna element of the BS

ψs,l,m,t
the phase between the s-th antenna element of the BS and the UE via the m-th sub-path

in the l-th path at time t
τs,l,t the delay between the s-th antenna element of the BS and the UE via the l-th path at time t
r the distance vector pointing from the BS to the initial location of the UE at time t0

[35], which supports enhanced mobility and spherical waves
to provide a practical evaluation. The main idea is to calculate
the location of the last-bounce scatterer1 (LBS) based on the
initial arrival angles.

Let us consider a single-cell massive MIMO-OFDM system
where a mobile UE is communicating with a BS. The BS
equips Ns antennas (Ns � 1), while the UE equips Nr
antennas. Due to the BS has massive antennas, we thus mainly
focus on exploiting the correlation among BS antennas, and
the number of antennas of the UE, i.e., Nr, is assumed to 1.
The number and spacing of sub-carriers are Nf and ∆f . For
clarity, the definitions of the key parameters of the propagation
environment are listed in Table I. At first, the initial delay of
the line of sight (LOS) path is assumed to be zero. Based on
the initial path delay of the l-th path and the distance ‖r‖2
between the BS and the initial location of the UE at time t0,
the initial length dl of the l-th path follows

dl = ‖r‖2 + τl · c, (1)

where c is the speed of light. Although different sub-paths are
indistinguishable from the length (i.e., path delay), they have
different arrival angles. Denote pl,m as the arrival vector of
the m-th sub-path in the l-th path pointing from the initial
location of the UE at time t0 to the LBS, its length can be
obtained by

‖pl,m‖2 =
d2l − ‖r‖22

2(dl + rT p̄l,m)
, (2)

where

p̄l,m =

cosφal,m cos θal,m
sinφal,m cos θal,m

sin θal,m

 . (3)

Once we get the arrival vector pl,m and the initial location
of the UE at time t0, the corresponding location of the LBS
becomes known. The geometric relationship between the BS,
UE and LBS at time t0 is shown in Fig. 1. Due to the
movement of the UE, at time t, the arrival vector pl,m,t and the
corresponding elevation AOA θal,m,t and azimuth AOA φal,m,t
can be updated by

pl,m,t = pl,m − et, (4)

1We illustrate here the single-bounce model in order to simplify the
notations. In Section V, the proposed prediction method is evaluated on the
multi-bounce model, which can be extended from the single-bounce model.
More details about the multi-bounce model can be found in [35].

Fig. 1: The geometric relationship between the BS, UE, LBS
and s-th antenna element of the BS at time t0 and t.

θal,m,t = arcsin
pl,m,t,z
‖pl,m,t‖2

, (5)

and
φal,m,t = arctan

pl,m,t,y
pl,m,t,x

, (6)

where the vector et points from the initial location of the UE
at time t0 to the current location of the UE at time t, pl,m,t,x,
pl,m,t,y and pl,m,t,z are the Cartesian coordinate components
of pl,m,t. To support spherical waves, the departure vector
qs,l,m for the s-th antenna element of the BS and the corre-
sponding elevation AOD θds,l,m and azimuth AOD φds,l,m can
be similarly obtained by

qs,l,m = ql,m − es, (7)

θds,l,m = arcsin
qs,l,m,z
‖qs,l,m‖2

, (8)

and
φds,l,m = arctan

qs,l,m,y
qs,l,m,x

, (9)

where the departure vector ql,m of the m-th sub-path in the
l-th path directs from the BS to the corresponding LBS,
the direction of the vector es is from the BS to the s-
th antenna element of the BS, qs,l,m,x, qs,l,m,y and qs,l,m,z
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(a) LSTM (b) ConvLSTM

Fig. 2: Cell architecture of LSTM (a) and ConvLSTM (b). LSTM operates on 1-D vectors, while ConvLSTM oprates on 3-D
tensors.

are the Cartesian coordinate components of qs,l,m. Now, the
deterministic phase ψs,l,m,t and delay τs,l,t can be derived as

ψs,l,m,t =
2π

λc
· (ds,l,m,t mod λc), (10)

and

τs,l,t =

∑Ml

m=1 ds,l,m,t
Ml · c

, (11)

where
ds,l,m,t = ‖qs,l,m‖2 + ‖pl,m,t‖2, (12)

Ml is the number of subpaths in the l-th path, λc represents
the wavelength and mod represents the module operation.

Based on the above modeling of enhanced mobility and
spherical waves, the channel between the s-th antenna element
of the BS and the UE via the l-th path at time t can be
described as [35]

gs,l,t =

Ml∑
m=1

βs,l,m,te
(−jψ0

l,m−jψs,l,m,t), (13)

where j =
√
−1 is the imaginary unit, ψ0

l,m is the random
phase of the m-th sub-path in the l-th path, and βs,l,m,t is
the attenuation coefficient between the s-th BS antenna and
the UE via the m-th sub-path in the l-th path at time t. In
equation (13), according to the modeling of the phase ψs,l,m,t,
which is calculated by the BS location, the LBS location and
the UE location at time t, mobility is explicitly integrated into
the channel model. For the channel matrix H̄t ∈ CNs×Nf in
array-frequency domain, its (s, k)-th element can be derived
as

[H̄t]s,k =

L′∑
l=1

gs,l,te

(
−j2π k−1

Nf
Bτs,l,t

)
, (14)

where B is the bandwidth, and L′ is the number of path,
s = 1, · · · , Ns and k = 1, · · · , Nf . In practice, the channel
matrix H̄t is obtained by reference signals.

III. PROBLEM FORMULATION AND MOTIVATION

In this section, we provide the problem formulation of
channel prediction in massive MIMO-OFDM systems and
compare the ability of LSTM and ConvLSTM, two basic units
of NN, in the spatio-temporal modeling.

A. Problem Formulation
Channel prediction is generally considered as a time series

problem. As described in [19], the channel matrix has the
specific array-frequency structure in massive MIMO-OFDM
systems. Therefore, the prediction series contains both the
spatial (i.e., array-frequency domain) and temporal characteris-
tics, which is essentially a spatio-temporal series problem [39].
Thus, the specific formulation of channel prediction could be
stated as

ˆ̄Ht+1, · · · , ˆ̄Ht+J = f
(
H̄t−K+1, · · · , H̄t

)
, (15)

where J denotes the length of the prediction series, K denotes
the total length of the past series, f(·) denotes an arbitrary
mapping function, and ˆ̄Ht+i denotes the (t + i)-th estimated
CSI.

The main purpose of channel prediction is to determine the
mapping function f(·). Over the last decades, a large number
of linear predictors under the WSS assumption have been pro-
posed. However, in real fast-varying environments, CSI may
be non-stationary and nonlinear in temporal domain. Thus, the
assumptions of the mapping function f(·) in equation (15) no
longer require to satisfy the linear and stationary constraints,
which is a major difference from the existing model. Besides,
the mapping function f(·) needs to take the spatial correlation
into consideration.

B. Why ConvLSTM?
By collecting huge amount of CSI, DL based methods

are expert in discovering the inherent data characteristics.
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Fig. 3: The structure of STNN, including an encoder module, a differencing-attention module and a decoder module.

Thus, LSTM is widely applied to solve channel prediction
problem [26], [28]–[30], [33]. The internal architecture of
an LSTM cell unit is illustrated in Fig. 2a. For brevity, the
principle of LSTM is not mentioned here, which can be
found in [40]. Considering that the input, hidden states and
cell states of LSTM are 1-D vectors, the channel matrix H̄t

needs to be mapped into 1-D space. A straightforward way is
to transform H̄t to its vectorized form. However, mapping
from 2-D space to 1-D space could cause damage to CSI
correlations and reduce the accuracy of channel prediction.
One feasible solution is to jointly process H̄t in 2-D space to
better exploit its spatial correlation.

Recently, ConvLSTM [39] is proposed to capture the spatio-
temporal correlation and has been successfully applied to the
high-speed railway and millimeter-wave communications [41],
[42]. The major modifications of ConvLSTM are that all of
the fully connected operators existed in LSTM are replaced
by the convolution operators. As a result, the input, hidden
states, cell states and gate signals are three-dimension (3-D)
tensors, shown in Fig. 2b. From the perspective of physical
propagation, antennas arranged in an array are pretty close
to each other, which results in similar propagation paths of
electromagnetic waves of different antennas [43]. Thus, the
strong array correlation exists in the wireless channel. Mean-
while, different sub-carriers in nearby frequencies are also
strongly correlated [16]. Therefore, the convolution operators
are resorted to exploit the array and frequency correlations of
the channel matrix H̄t with specific structural characteristics.
As the convolution kernel slides over the input CSI and
hidden states, the spatial information is encoded during the
input-to-state and state-to-state transitions of ConvLSTM. The
convolution operator for the feature extraction of CSI has
also been verified in channel estimation [44] and feedback
[45]. Due to the convolution operator is a local connection
architecture, ConvLSTM has the advantages in terms of time
complexity and space complexity. In addition, comparative
experiments and visualization analysis are carried out to verify

the ability of ConvLSTM for channel prediction, given in
Appendix.

IV. DESIGN OF STNN AND TRAINING SCHEME

By considering channel prediction as a spatio-temporal
series problem, we here propose a DL based method, namely
STNN, to implement multi-step CSI prediction. Fig. 3 shows
the structure of STNN. Specifically, STNN is designed to deal
with the nonlinear and non-stationary temporal dynamics and
extract the spatial correlation of CSI. Besides, an advanced
training scheme is adopted to fill in the gap between STNN
training and testing.

A. The Encoder Module

The encoder module is designed to extract the spatial
and temporal features from the input CSI, which is stacked
with several ConvLSTM layers. Denote {H̄t}Kt=1 as the input
series, H̄t at any time step can be considered as a 2×Ns×Nf
grid of image Ht, where its two channels2 represent the real
and imaginary parts of H̄t, respectively. Hereafter, we use
{Ht}Kt=1 to denote the input series. Considering the first layer
of the encoder, at time step t, the input Ht, hidden states
He,1
t−1 and corresponding cell states Ce,1

t−1 are used to output
the hidden states He,1

t and cell states Ce,1
t as

Ce,1
t ,He,1

t = ConvLSTM
(
Ce,1
t−1,H

e,1
t−1,Ht

)
. (16)

Note that the parameters of ConvLSTM are shared along time
in the same layer. Denote N as the total number of encoder
layers, all the hidden states {He,i

0 }Ni=1 and cell states {Ce,i
0 }Ni=1

are initialized as pure-zero tensors.

2Here “channel” represents a dimension of feature map in CNN, not the
wireless channel. In this paper, the specific meaning of “channel” can be
inferred from the context.
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Fig. 4: Diagram for calculating the channel attention weights.

B. The Differencing-Attention Module

For accurate multi-step prediction, the differencing-attention
module is designed to deal with the non-stationary and non-
linear temporal dynamics of CSI and realize adaptive feature
refinement, which is consist of four sub-modules, as the dif-
ferencing, channel attention, spatial attention and temporal at-
tention. Denote the prediction series by {Ht′}K+J

t′=K+1. At time
step t′, based on the hidden states {He,N

1 , · · · ,He,N
K ;Hd,N

t′ },
a feature representation tensor Zt′ is obtained, where Hd,N

t′

denotes the hidden states of the last layer in the decoder at
time step t′.

1) The Differencing Sub-Module: Differencing CSI be-
tween adjacent time steps is considered to perform channel
prediction in [11], [28]. It can be explained from time series
analysis that the non-stationary process can be gradually
transformed to stationarity through differencing, improving the
predictability of time series [46]. To capture the non-stationary
temporal dynamic in STNN, the differencing sub-module is
designed. The main idea is that the hidden states instead of
the past CSI are considered, which could avoid damage to
the intrinsic information of CSI structure in array-frequency
domain and improve the non-stationary modeling capability
of STNN. Specifically, based on the hidden states of the last
layer in the encoder, differential states Dt (t = 1, · · · ,K − 1)
are obtained by

Dt = He,N
t+1 −He,N

t . (17)

Only the first-order differencing is executed for channel pre-
diction in equation (17). If the stationarity of input series
becomes worse, higher-order differencing can be considered
with only minor modifications to STNN. In detail, the higher-
order differencing is implemented by iteratively performing
Q (Q > 1) times first-order differencing. However, over-
differencing may damage the intrinsic structure of series,
causing negative impact for the accuracy of prediction. After
obtaining the differential states {Dt}K−1t=1 , attention mecha-
nism is used to adaptively determine significant features from
the approximately stationary process.

2) The Channel Attention Sub-Module: Each differential
state Dt is treated as a feature map of size C×H×W , where
C denotes the number of channels and H and W denote the
height and width of the feature map. The channel attention
sub-module is designed to derive attention weights aCA

t,t′ along

Fig. 5: Diagram for calculating the spatial attention weights.

the channel axis, as shown in Fig. 4. Specifically, the hid-
den states Hd,N

t′ and differential states Dt are concatenated
along the channel axis and both average-pooling and max-
pooling operators are used to integrate the spatial information,
generating two spatial feature vectors savg

t,t′ ∈ R2C×1 and
smax
t,t′ ∈ R2C×1. Then, savg

t,t′ and smax
t,t′ are fed into a shared

MLP with one hidden layer and two vectors aCA,avg
t,t′ ∈ RC×1

and aCA,max
t,t′ ∈ RC×1 are output. The hidden size is set to

b2C/r1c, where r1 is a reduction ratio. The ReLU and linear
activation functions are applied to the hidden and output
layers, respectively. Finally, the channel attention weights
aCA
t,t′ ∈ RC×1 are obtained by adding aCA,avg

t,t′ and aCA,max
t,t′ with

element-wise. The overall processes can be summarized as

aCA
t,t′ =MLP(AvgPool([Hd,N

t′ ;Dt]))

+ MLP(MaxPool([Hd,N
t′ ;Dt])). (18)

The channel attention weights determine “what” to attend
for a feature map [47]. Based on differential states Dt and
corresponding attention weights aCA

t,t′ , a new feature map Ḋt,t′

is derived by

Ḋt,t′ = Dt ◦ aCA
t,t′ , (19)

where the channel attention weights aCA
t,t′ are copied along the

spatial axis in equation (19).
3) The Spatial Attention Sub-Module: As shown in Fig. 5,

different from the channel attention sub-module, the spatial at-
tention sub-module is designed to determine “where” to attend
for a given feature map [47]. To calculate the spatial attention
weights ASA

t,t′ ∈ RH×W , we first concatenate the hidden states
Hd,N
t′ and feature map Ḋt,t′ along the channel axis and use

average-pooling and max-pooling operators to integrate the
channel information, obtaining two channel features matrices
Cavg
t,t′ ∈ RH×W and Cmax

t,t′ ∈ RH×W . Next, we concatenate
Cavg
t,t′ and Cmax

t,t′ along the channel axis and utilize a convolution
layer to output the spatial attention weights ASA

t,t′ . The overall
process can be summarized as

ASA
t,t′ = CNN([AvgPool([Hd,N

t′ ; Ḋt,t′ ]);

MaxPool([Hd,N
t′ ; Ḋt,t′ ])]), (20)

where the bias of the convolution layer is set to zero. Further,
the spatial attention weights ASA

t,t′ are applied to feature map
Ḋt,t′ and another new feature map D̈t,t′ is derived by

D̈t,t′ = Ḋt,t′ ◦ASA
t,t′ . (21)
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Fig. 6: Diagram for calculating the temporal attention weights.

Similarly, the spatial attention weights ASA
t,t′ are copied along

the channel axis in equation (21).
4) The Temporal Attention Sub-Module: After refining a

specific feature map D̈t,t′ for each differential state Dt along
the channel and spatial axes at time step t′, the temporal
attention sub-module is designed to combine all feature maps
{D̈t,t′}K−1t=1 along the temporal axis, as shown in Fig. 6.
Specifically, each feature map D̈t,t′ is concatenated with the
hidden states Hd,N

t′ along the channel axis and both average-
pooling and max-pooling operators are used to integrate all
the spatial and channel information. Concatenating the corre-
sponding output along the temporal axis, two channel-spatial
feature vectors bavg

t′ ∈ R(K−1)×1 and bmax
t′ ∈ R(K−1)×1 are

obtained. Then, two new vectors aTA,avg
t′ ∈ R(K−1)×1 and

aTA,max
t′ ∈ R(K−1)×1 are generated by inputting bavg

t′ and
bmax
t′ into a shared MLP with one hidden layer. The hidden

size is set to b(K − 1)/r2c, where r2 is another reduction
ratio. The hidden layer is deployed with the ReLU activation
function and the output layer is activated by the linear function.
By adding aTA,avg

t′ and aTA,max
t′ , we can obtain the temporal

attention weights aTA
t′ ∈ R(K−1)×1. The overall process can

be summarized as

bavg
t′ =[AvgPool([Hd,N

t′ ; D̈1,t′ ]); AvgPool([Hd,N
t′ ; D̈2,t′ ]);

· · · ; AvgPool([Hd,N
t′ ; D̈K−1,t′ ])]

bmax
t′ =[MaxPool([Hd,N

t′ ; D̈1,t′ ]); MaxPool([Hd,N
t′ ; D̈2,t′ ]);

· · · ; MaxPool([Hd,N
t′ ; D̈K−1,t′ ])]

aTA
t′ =MLP(bavg

t′ ) + MLP(bmax
t′ ). (22)

The temporal attention weights determine “when” to attend
for the feature map series {D̈t,t′}K−1t=1 . Finally, feature repre-
sentation tensor Zt′ is derived by

Zt′ =

K−1∑
t=1

D̈t,t′ ◦ aTA
t′,t, (23)

where aTA
t′,t denotes the t-th component of attention weights

aTA
t′ . In equation (23), aTA

t′,t(t = 1, · · · , K − 1) are copied
along the spatial and channel axes during multiplication.

C. The Decoder Module

The decoder module, consisting of several ConvLSTM
layers and a convolution layer without bias, is designed to
generate predictions of CSI step by step. The ConvLSTM
layers of the decoder are symmetrical to that of the encoder
and are initialized by the hidden states {He,i

K }Ni=1 and cell
states {Ce,i

K }Ni=1. The convolution layer is used to recover CSI
at each time step. Specifically, to predict Ht′ , the estimated
Ĥt′−1, the hidden states of the first layer in the decoder
Hd,1
t′−1 and the corresponding cell states Cd,1

t′−1 are input to the
ConvLSTM to output the hidden states Hd,1

t′ and cell states
Cd,1
t′ as

Cd,1
t′ ,H

d,1
t′ = ConvLSTM

(
Cd,1
t′−1,H

d,1
t′−1, Ĥt′−1

)
. (24)

Upward transmission layer by layer, the hidden state Hd,N
t′ in

the last layer can be obtained at time step t′. After feature
representation tensor Zt′ is calculated, it is concatenated with
the hidden state Hd,N

t′ along the channel axis and convolved
by the convolution layer to produce prediction Ĥt′ , which can
be expressed as

Ĥt′ = CNN
(

[Hd,N
t′ ;Zt′ ]

)
. (25)

While for predicting Ĥt′+1, the estimated Ĥt′ and the cor-
responding hidden state Hd,1

t′ and cell state Cd,1
t′ are input at

time step t′+1, and so on. Finally, we can obtain an estimated
series {Ĥt′}K+J

t′=K+1.
When multiple antennas are equipped on the UE, i.e.,

Nr > 1, a possible idea for STNN is to extend the number of
channels to exploit the array correlation among user antennas.
To be more specific, the input size of STNN at each time
step needs to be extended to 2Nr × Ns × Nf and the same
extension is needed for the output size. In this way, the future
CSI corresponding to different antennas of the UE can be
predicted. We prefer to leave this to future work.

D. The Advanced Training Scheme

At the training stage, the ground truth Ht′−1 is available
and generally used to replace the estimated Ĥt′−1 in equation
(24). However, during the testing stage, the ground truth Ht′−1
is unknown and the estimated Ĥt′−1 output by STNN itself
is considered as the input to predict Ht′ . This gap among the
input distributions between training and testing may cause a
negative impact for channel prediction. So we stitch the gap
by the scheduled sampling [34]. Specifically, during the i-th
epoch of the training stage, a sampling probability ηi is set
to decide the possibility of feeding the ground truth. With the
increasing number of training epoch, the sampling probability
ηi is gradually reduced to push the model to reach the testing
stage.

The above three modules of STNN are trained jointly
in an end to end manner and the mean squared error
(MSE) is used as the loss function. For the estimated series
Ŝi = (ĤK+1; · · · ; ĤK+t′ ; · · · ; ĤK+J) ∈ RJ×2×Ns×Nf and
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ground truth series Si = (HK+1; · · · ;HK+t′ ; · · · ; HK+J) ∈
RJ×2×Ns×Nf , the specific loss function is defined as

L(Θ) =
1

2 · JBNfNs

B∑
i=1

‖Si − Ŝi‖22, (26)

where ‖ · ‖2 denotes the Euclidean norm, B denotes the batch
size and Θ denotes the parameter set of STNN. Besides, we
utilize adaptive moment estimation (ADAM) optimizer [48] to
train STNN.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we provide the details of our experiments
and the prediction performance of the proposed STNN is
evaluated on a realistic channel model with enhanced mobility
and spherical waves. Moreover, we focus on analysis of the
temporal attention sub-module to study the learning ability of
STNN in temporal domain.

A. Experimental Setting

QuaDRiGa channel simulator [35] can not only support
the baseline channel model of 3GPP New Ratio [37] but
also provide some additional modeling components for more
practical evaluation. In particularly, both enhanced mobility
and spherical waves described in section II are implemented
in the QuaDRiGa channel simulator. Based on QuaDRiGa,
we consider the 3GPP rural macro (RMA) LOS scenario at
frequency fc = 3.5 GHz, to evaluate the performance of the
proposed method. Note that our STNN is applicable to other
communication scenarios. The number of clusters of multipath
is 11 and the number of subpaths in each cluster is 20. The
number of antennas equipped on BS, Ns, is set to 64, while
the UE has only one antenna. The antenna spacing is half
of the wavelength λc. The number of sub-carriers Nf is set
to 64 and the sub-carrier spacing ∆f is set to 30 kHz. The
UE moves along a linear trajectory with the velocity v = 60
km/h, and the period Ts of the sounding reference signal is
set to 0.5 ms. The normalized Doppler shift, which influences
the time-varying patterns of channel matrix H̄t in equation
(14), is defined as fn = Tsfd, where fd = v

λc
denotes

the maximum Doppler shift. We can obtain the normalized
Doppler shift fn ≈ 0.1 and the maximum Doppler shift fd ≈
200 Hz. To generate the dataset of STNN, we reconstruct
the scattering environment 200 times, where the UE moves
a distance of 5 meters every time, and the sliding window
way is used to obtain each sample of the dataset. The size
of window is set to the sum of the prediction length and the
input length. The generated dataset is split into three parts,
namely training, validation and testing datasets, containing
15000, 2000 and 3000 samples, respectively. The parameters
of STNN are optimized based on the training dataset. It is
worth mentioning that 3GPP TR 38.901 large scale calibration
and full calibration have been performed in QuaDRiGa, which
guarantee the reality and reliability of the dataset.

STNN is implemented in PyTorch. The total length of the
past series (i.e., the input length) K is set to 20, and the length
of the prediction series (i.e., the prediction length) J is set to
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Fig. 7: NMSE (dB) performance comparison between STNN
and four benchmarks under multi-step channel prediction.
STNN shows the highest accuracy among all predictors.

5. In other words, we predict CSI in the next 2.5 ms based on
the past 10 ms. The reduction ratios r1 and r2 are both set to 2
in the channel attention and temporal attention sub-modules.
The kernel size of convolution layer in the spatial attention
sub-module is set to 5× 5. The number of ConvLSTM layers
both in the encoder and decoder modules is set to 2, and all the
corresponding hidden and kernel sizes are set to 8 and 3× 3.
The final convolution layer in the decoder has 1×1 kernel size
with 2 convolution channels to predict the real and imaginary
parts of CSI. During training, we use ADAM optimizer with
default setting (β1 = 0.9, β2 = 0.999, ε = 1e − 8), and
the learning rate, batch size and epoch are set to 0.0001, 100
and 1000. To realize the scheduled sampling, the sampling
probability in the first epoch is set to 1, and it is then reduced
by 0.002 in every epoch. Once the sampling probability decays
to 0, it will be fixed. Normalized MSE (NMSE) is considered
as the metric to evaluate the prediction performance on the
testing dataset, which is defined as

NMSE = E

{
‖S− Ŝ‖22
‖S‖22

}
. (27)

We compare the proposed STNN with four benchmarks,
the outdated, linear regression, S times channel difference
based forward AR (SDFAR) [11] and forward AR (FAR)
[11]. The outdated method uses the last CSI for any time
in the future. The linear regression is a statistical model,
which predicts future CSI by fitting regression line to the
past CSI. The FAR method can be seen as a special case of
SDFAR when differencing is not performed. For the sake of
fairness, the length of the available past series for calculating
the above mentioned model parameters is also set to 20 and the
prediction length is set to 5. The AR order of the FAR method
is set to 4. For the SDFAR method, the AR order is set to 3 and
the differencing order is set to 1. Unless otherwise specified,
experimental setting mentioned above is applied throughout
this paper.
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Fig. 8: Comparison of NMSE (dB) between STNN, FAR,
SDFAR and linear regression with respect to the velocity v.
The corresponding normalized Doppler shifts fn are 0.075,
0.1, 0.125, 0.15, 0.175 and 0.2.
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Fig. 9: Comparison of NMSE (dB) between STNN and other
benchmarks in noisy CSI.

B. Performance of the Proposed STNN

1) Effect of the Prediction Length: Fig. 7 shows the NMSE
of different methods under multi-step channel prediction.
When the prediction length J increases from 2 to 8 (i.e.,
1 ms to 4 ms), the performance of all predictors decline,
except for linear regression. Compared with the FAR and
SDFAR methods, the NMSE of STNN increases slowly as
the prediction length increases. When the prediction length
is 2 ms, STNN can improve the accuracy of the prediction
by 39% compared to the FAR. This indicates that STNN
has ability to provide more accurate predictions. In addition,
the performance gap between the FAR and SDFAR methods
implies that differencing CSI is not always useful for channel
prediction. The reason is that differencing may cause a loss
of intrinsic information of CSI in practical high-mobility
scenarios.

2) Effect of the Normalized Doppler Shift: Fig. 8 shows
the NMSE of different methods against the velocity of the
UE. Compared with other methods, significant gains of per-
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Fig. 10: Comparison of NMSE (dB) between the match and
mismatch scheme in noisy CSI.

5 10 20 30

Input Length

0

-5

-10

-15

-20

-25

-30

-35

N
M

S
E

 (
d

B
)

Seq2Seq NN

STNN

Fig. 11: Comparison of NMSE (dB) between STNN and
Seq2Seq NN with respect to the input length K.

formance can be observed from STNN at various velocities.
The reason is the design of STNN carefully considers the
characteristics of CSI in array-frequency-temporal domain. By
comparing the performance of the FAR and SDFAR at v =
45 km/h and v = 60 km/h, the decreasing of performance
implies that these two AR based methods encounter difficulties
in high-mobility scenarios. Additionally, the poor performance
of the outdated method reflects that CSI changes rapidly during
the corresponding time period.

3) Effect of Imperfect CSI: Considering imperfect CSI case,
we add the zero-mean white Gaussian noise with different
variance levels to CSI. Fig. 9 shows the NMSE of different
methods against signal to noise ratio (SNR). There is no doubt
that STNN outperforms other predictors in all SNR regimes.
At low SNR (e.g., 0 dB and 5dB), we can observe that SDFAR
even performs worse than the outdated method.

4) Comparison Results under the RMSE and MAE Metrics:
In addition to considering the NMSE as an evaluation metric,
we also compare the performance of different methods under
the root mean squared error (RMSE) and mean absolute error
(MAE) metrics. Table II presents the RMSE and MAE of
different methods related to the prediction length, Table III
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TABLE II: RMSE and MAE performance comparison of different methods under multi-step channel prediction.

Method Metric Prediction Length
1.0 ms 1.5 ms 2.0 ms 2.5 ms 3.0 ms 3.5 ms 4.0 ms

Outdated RMSE 0.0520 0.0691 0.0842 0.0972 0.1079 0.1160 0.1217
MAE 0.0410 0.0534 0.0646 0.0745 0.0829 0.0898 0.0946

Linear Regression RMSE 0.1084 0.1135 0.1172 0.1193 0.1197 0.1187 0.1165
MAE 0.0897 0.0936 0.0964 0.0979 0.0980 0.0970 0.0947

FAR RMSE 0.0010 0.0025 0.0049 0.0083 0.0127 0.0182 0.0247
MAE 0.0006 0.0013 0.0025 0.0041 0.0062 0.0087 0.0115

SDFAR RMSE 0.0028 0.0065 0.0124 0.0205 0.0304 0.0417 0.0536
MAE 0.0018 0.0040 0.0072 0.0117 0.0172 0.0235 0.0302

STNN RMSE 0.0007 0.0013 0.0019 0.0024 0.0034 0.0051 0.0057
MAE 0.0005 0.0009 0.0014 0.0017 0.0023 0.0035 0.0038

TABLE III: RMSE and MAE performance comparison of different methods with respect to the velocity v.

Method Metric Velocity
45 km/h 60 km/h 75 km/h 90 km/h 105 km/h 120 km/h

Outdated RMSE 0.0778 0.0982 0.1084 0.1112 0.1087 0.1026
MAE 0.0590 0.0745 0.0841 0.0866 0.0839 0.0783

FAR RMSE 0.0034 0.0083 0.0143 0.0180 0.0199 0.0210
MAE 0.0015 0.0041 0.0074 0.0098 0.0112 0.0121

SDFAR RMSE 0.0072 0.0205 0.0341 0.0431 0.0478 0.0475
MAE 0.0039 0.0117 0.0201 0.0264 0.0298 0.0301

STNN RMSE 0.0017 0.0024 0.0034 0.0048 0.0073 0.0090
MAE 0.0012 0.0017 0.0022 0.0031 0.0049 0.0057

TABLE IV: RMSE and MAE performance comparison of different methods in noisy CSI.

Method Metric SNR
0 dB 5 dB 10 dB 15 dB 20 dB

Outdated RMSE 0.1274 0.1077 0.1007 0.0983 0.0976
MAE 0.0995 0.0832 0.0741 0.0756 0.0750

Linear Regression RMSE 0.1410 0.1265 0.1216 0.1200 0.1195
MAE 0.1138 0.1021 0.0993 0.0984 0.0981

FAR RMSE 0.0905 0.0586 0.0426 0.0353 0.0314
MAE 0.0677 0.0432 0.0307 0.0246 0.0214

SDFAR RMSE 0.1364 0.1138 0.0932 0.0696 0.0488
MAE 0.1052 0.0856 0.0684 0.0495 0.0336

STNN RMSE 0.0182 0.0155 0.0135 0.0123 0.0105
MAE 0.0132 0.0111 0.0096 0.0085 0.0072

lists the comparison results related to the velocity and Table
IV shows the comparison results related to SNR. Similar to
the results under the NMSE, STNN has the lowest prediction
error among all methods in both the RMSE and MAE. More
specifically, STNN shows better performance than FAR on
MAE by decreasing 44% (at 2ms), 68% (at 90km/h) and 66%
(at 20dB).

5) Robustness to imperfect CSI: We here study the robust-
ness of STNN against SNR. As shown in Fig. 10, STNN was
trained at SNR = 10 dB and then directly tested from 0 dB
to 20 dB. The match scheme trains and tests STNN at the
same SNR, which is chosen as comparison. When the testing
SNR is lower than the training SNR, the NMSE of STNN
drastically degrades. However, the prediction performance of
STNN can almost reach the same result with the match scheme
if the testing SNR is slightly higher than the training SNR.
Therefore, when deploying STNN in the real communication
systems, we should choose a relatively low SNR to train
STNN.

6) Effect of the Input Length: For our STNN, another
interesting problem is to study how many the past CSI are
required to achieve a superior performance. Fig. 11 shows

the NMSE of STNN and Seq2Seq NN3 with respect to the
input length K. When we increase the number of past CSI
fed into STNN, the corresponding prediction performance
has gradually improved. Meanwhile, we can observe that the
performance gains become less and less when increase the
input length K, because the correlation among CSI weakens.
As the input length K increases from 10 to 30, the limited
accuracy improvement and subsequent decline of Seq2Seq NN
can be seen in Fig. 11. Therefore, we may conclude that STNN
is able to cope with the long-term temporal dependence of CSI.
It is also worth mentioning that the increase of the input length
will bring higher time complexity for STNN. Considering the
trade-off between prediction accuracy and complexity, hence
we set the input length K = 20 in Section V-A.

7) Effect of the HP Setting: Table V compares the pa-
rameter numbers, floating point operations (FLOPs) and cor-
responding NMSE of STNN with different kernel sizes and
depths. The HP setting {3×3−8} uses one ConvLSTM layer
with hidden size 8 and kernel size 3×3 in both encoder and
decoder modules, the setting {5×5−8} uses one ConvLSTM

3Seq2Seq NN stands for STNN without the differencing-attention module.
The specific number of ConvLSTM layers, hidden size and kernel size of
Seq2Seq NN are set to 2, 8 and 3 × 3. The other hyper-parameters are the
same with STNN to provide a fair evaluation.
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TABLE V: Comparison of the parameter numbers, Flops (G)
and NMSE (dB) of STNN with different HP settings.

HP Setting Parameter Numbers Flops (G) NMSE (dB)
{3×3-8} 6512 0.68 -25.66
{5×5-8} 16752 1.72 -27.76

{3×3-8-3×3-8} 15920 1.62 -30.31
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Fig. 12: Comparison of MSE loss on training dataset and val-
idation dataset between the scheduled sampling (SS) and non-
scheduled sampling (NSS) schemes with respect to training
epoch.

layer with hidden size 8 and kernel size 5×5 and the setting
{3×3−8−3×3−8} uses two ConvLSTM layers, where each
layer has the same kernel size 3×3 and hidden size 8. We can
observe that STNN with kernel size 5×5 outperforms the one
with kernel size 3×3. The reason is that more global infor-
mation is obtained when STNN extracts CSI array-frequency
correlations. Meanwhile, the performance improvement also
brings the increase in parameter numbers and FLOPs. Due to
the enhancement of nonlinear approximation ability, the third
setting outperforms the second one with a little bit decrease
in parameter numbers and FLOPs.

8) Effect of the Advanced Training Scheme: Fig. 12 illus-
trates the relationship between MSE loss and epoch of STNN
under the SS and NSS4 schemes. Due to avoiding iteration
errors at the decoder module of STNN, the training loss of
the NSS scheme is superior than that of the SS scheme. In
contrast, the MSE loss of the SS scheme on validation dataset
is lower than the NSS scheme. This is because the SS scheme
fills in the discrepancy between STNN training and testing. It
turns out that the SS scheme is more effective in the practical
deployment of STNN.

9) Ablation Study: Model ablation is carried out to verify
the necessity of the differencing sub-module for dealing with
the non-stationary temporal dynamic. As illustrated in Table
VI, the prediction performance is significantly reduced when
we only remove the differencing sub-module from STNN.
The comparison method has the same parameter setting,
loss function and training scheme as STNN, only the first-

4At time step t′ of decoder during the training stage, the previous estimated
Ĥt′−1is ignored and the ground truth Ht′−1 is fed into STNN.

TABLE VI: Ablation study with respect to the differencing
sub-module.

Model NMSE (dB)
STNN (Without the Differencing Sub-Module) -23.74

STNN -30.31
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Fig. 13: Absolute values of the temporal attention weights at
each decoder time step learned by STNN and STNN (without
differencing sub-module) for a random sample in the testing
dataset.

order differencing for the hidden states He,N
t is ignored in

the structure of NN. Thus, it is important to consider CSI
non-stationary temporal dynamic when implementing channel
prediction.

C. Analysis of the temporal attention sub-module

In this subsection, we focus on the analysis of the temporal
attention sub-module to study the role of the differencing sub-
module in STNN. We arbitrarily choose a sample from the
testing dataset and visualize absolute values of the temporal
attention weights to find “when” to attend for STNN. From
Fig. 13a, we can observe that the differences in the last few
time steps are assigned higher weights compared to the other
time steps in STNN. The higher the weight, the greater the
impact on the predictions will be imposed. In contrast, the
temporal attention weights learned by STNN (Without the
Differencing Sub-module) are in disorders, as shown in Fig.
13b.

Further, we use ADF test [49] to evaluate the stationary
degree of feature map series {D̈t,t′}K−1t=1 (t′ = 1, · · · , J).
The null hypothesis of the ADF test is that series has a
unit root (i.e., the non-stationary process). Fig. 14 shows the
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TABLE VII: Comparison of the NMSE (dB), RMSE, MAE, parameter numbers and Flops (G) between LSTM, GRU, the
cascaded CNN and LSTM, and ConvLSTM.

Model NMSE (dB) RMSE MAE Parameter Numbers Flops (G)
LSTM -11.34 0.0210 0.0157 604 M 21.61
GRU -11.29 0.0214 0.0160 470 M 16.24

CNN-LSTM -12.45 0.0182 0.0137 604 M 21.63
ConvLSTM -19.11 0.0087 0.0065 8112 1.31
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Fig. 14: The CDF of P value obtained by ADF test with the
feature map series in the temporal attention sub-module of
STNN and STNN (Without the Differencing Sub-module).
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Fig. 15: The output of different models for the real part of
CSI and the corresponding ground truth CSI.

cumulative distribution function (CDF) of P value with STNN
and STNN (Without the Differencing Sub-module). In the 1%
(5%) significance level, we can conclude that the differencing
sub-module brings significant improvement of feature map
series stationarity in the temporal attention module of STNN,
leading to an accurate pattern of the temporal attention wights
aTA
t′ (t′ = 1, · · · , J).

VI. CONCLUSION

In this paper, we studied channel prediction problem in
massive MIMO-OFDM systems and addressed several existing
difficulties based on DL. After defining the specific formula-
tion of channel prediction, we investigated the ability of CSI
spatio-temporal modeling and complexity of ConvLSTM and

compared it with LSTM. More importantly, we proposed a
novel deep learning based channel prediction method, namely
STNN. It can not only jointly extract CSI spatial-temporal
information but also effectively deal with CSI non-stationary
and non-linear temporal dynamics. When evaluated on a
realistic channel model with enhanced mobility and spherical
waves, experimental results showed that STNN could improve
the prediction performance significantly and perform well with
respect to different SNRs. Furthermore, we also demonstrated
the superior ability of STNN in learning the time-varying
patterns of CSI by the methods of visualization and the
stationary analysis.

APPENDIX

Table VII compares the NMSE, RMSE, MAE, parameter
numbers and Flops of four basic DL based channel prediction
models. For the LSTM model, the input at each time step t
is the vectorized form of CSI matrix Ht and the number of
neurons (i.e., hidden size) is set to 8192. The experimental
setting of the gate recurrent unit (GRU) model is same to the
LSTM model, only the structure of NN is changed. For the
CNN-LSTM model, CSI spatial correlation is first extracted
by a convolution layer with kernel size 5× 5 and convolution
channel 2 and then the output feature map at each time step is
vectorized and fed into LSTM with hidden size 8192. For the
ConvLSTM model, we directly input CSI matrix Ht at each
time step t and the hidden size and kernel size are set to 8
and 5 × 5. The number of LSTM and ConvLSTM layers are
set to 1. We here predict a single CSI matrix HK+J instead
of series {Ht′}K+J

t′=K+1 for simplicity.
As listed in Table VII, GRU and LSTM have similar

prediction accuracy, but GRU enjoys lower parameter numbers
and Flops. After adding an extra convolution layer, obvious
performance gain can be observed from CNN-LSTM. This
indicates that the extraction of the spatial correlation is ben-
eficial. Compared to CNN-LSTM, convolutional features of
ConvLSTM are incorporated into the transmission of the recur-
rent states over time step, and we can observe that ConvLSTM
outperforms the other three basic DL models. The improve-
ment of performance verifies the superiority of the “deeper”
integration between the convolution operators and LSTM cell
unit, which is similar to the results in [50]. Meanwhile, the
complexity of ConvLSTM is the lowest. Furthermore, the
visualization analysis in the same way as [51] is used to
reveal the reason behind the performance gain of ConvLSTM.
An arbitrary sample in the testing dataset is selected, and the
output of different basic DL models and the ground truth are
visualized. By comparing the output of different DL models
and the corresponding ground truth in Fig. 15, we can observe
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that LSTM loses the most information in array-frequency
domain, followed by CNN-LSTM, and ConvLSTM predicts
the characteristics of CSI best. The results of visualization
analysis illustrate the superiority of ConvLSTM from another
perspective.
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