
Microservices Configurations and the Impact on the
Performance in Cloud Native Environments

Mohamed Mekki
Communication system department

EURECOM
Sophia Antipolis, France

Email: mohamed.mekki@eurecom.fr

Nassima Toumi
Communication system department

EURECOM
Sophia Antipolis, France

Email: nassima.toumi@eurecom.fr

Adlen Ksentini
Communication system department

EURECOM
Sophia Antipolis, France

Email: adlen.ksentini@eurecom.fr

Abstract—Cloud-native rethinks the application architecture
by embracing a micro-service approach, where each microservice
is packaged into containers to run in a centralized or an edge
cloud. When deploying the container running the micro-service,
the tenant has to specify the amount of CPU and memory limit
to run their workload. However, it is not straightforward for a
tenant to know in advance the computing amount that allows
running the microservice optimally. This will impact the service
performances and the infrastructure provider, particularly if
the resource overprovisioning approach is used. To overcome
this issue, we conduct in this paper an experimental study
aiming to detect if a tenant’s configuration allows running its
service optimally. We run several experiments on a cloud-native
platform, using different types of applications under different
resource configurations. The obtained results provide insights
on how to detect and correct performance degradation due to
misconfiguration of the service resource.

I. INTRODUCTION

In recent years, software development models have shifted
from monolithic architectures to loosely coupled microser-
vices. In the monolithic architecture model, all the components
of the system are part of the same application making it harder
to deploy, manage and improve its functionality due to the
high coupling and dependence between the components of
the application [1]. While in micro-service architecture, an
application is decoupled into many loosely distributed services
that have independent and straightforward functions following
the single responsibility principle. Microservices, combined
with containerization and container orchestration solutions
such as Kubernetes [2], allowed the emergence of the cloud-
native ecosystem. A recent model in which applications are
developed to take full advantage of the distributed computing
offered by the cloud.

This evolution led many vertical industry to consider mi-
grating their applications in cloud and Edge environments [3]
to get full advantage of the cloud-native deployments and
the benefits that it offers. Indeed, cloud-native offers reliable
and self-healing deployment as containers are deployed using
advanced container orchestration solutions such as Kubernetes,
Openshift, etc [4]. These solutions, in addition to the decom-
posability of the applications, reduce the points of failures
and speed up the recovery in cases where failures occur in
a set of microservices. The cloud-native has an impact not
only on the vertical industry but also on other industries such

as telecommunication. Indeed, the 5th generation of mobile
network (5G) builds on cloud-native the 5G core network
functions, known as Service Based Architecture (SBA); all
the network functions are cloud-ready and can be deployed in
containers on a cloud or edge infrastructure [5].

But despite this shift in application design, one fundamental
problem is setting the configuration (needed computing re-
sources) of individual microservices (i.e., container) to allow
optimal running of the service on the one hand and to optimize
the usage of the available resources on the other hand. Usually,
the users or tenants have to indicate the amount of CPU
and memory limit for a container running a micro-service.
It happens that a container that exceeds these limits is killed
or experiences a drop in performance. Accordingly, how to
derive the limit to assign to a contain and configure a service
resource is a challenge. On the one hand, the tenant does not
clearly understand the environment in which the application
will be deployed; on the other hand, the platform provider gets
the application as a packaged container in which the workload
is seen as a black box. In many situations, the configuration
ends by using default configurations that are not appropriate
for the application’s requirements. Indeed, tenants naturally
request a larger limit than what the application needs, which
in turn, for a constrained environment (like the edge), results
in resource wastage

Several works have tackled the problem of optimising ap-
plication performance while reducing the amount of resources
used by the latter. Most of the works propose reactive and
proactive auto-scaling methods in containerized deployments.
Work in [6] for instance investigated the relevance of metrics
to be used as threshold metrics for scaling up and down a
container. Another work [7] studied the difference between
absolute versus relative metrics, i.e., metrics providing the
percentage of resources used by the application from allocated
resources, in microservices autoscaling. Moreover, in [8],
the authors propose a Reinforcement Learning approach to
autoscale microservices in the cloud. It uses two modules: the
first one is a threshold-based auto-scaling algorithm deployed
on Kubernetes (GKE), and the second module uses Reinforce-
ment Learning to tune the autoscaler threshold values to obtain
better threshold values to trigger autoscaling. The authors did
not consider the relevance of the initial configuration.



In this paper, we will shed light on the performance
of cloud-native services aiming to find solutions to correct
resource misconfiguration on runtime. We run several ex-
periments using a cloud-native platform to find solutions to
overcome the resource configuration challenge. To this end,
we study the behaviour of a set of representative cloud-
native applications under different resource configurations and
loads by measuring their performance in service response
time. Then, we deduce the relationship between the service
performance and the resource allocated to the workload (CPU
and memory) in both absolute and relative forms. This relation
allows the detection of faulty configurations and the provision
of more optimal configurations for the deployed applications.
The considered representative cloud-native applications are
web servers and data brokers that represent vertical applica-
tions, a 5G core network service, namely Access and Mobility
Management Function (AMF). Besides deriving in a generic
way the threshold of CPU and memory limit from which an
application does not run optimally and hence the probability
of failure is high (as a container is killed if it exceeds its limit
of resources), the paper’s results open several perspectives.
Indeed, we have also constructed different datasets using
the experiment results, which may be used to run Machine
Learning (ML) to predict the performances of the workloads
according to their configuration.

The paper is organized as follows. Section II presents related
work. Section III presents the motivation of the paper. Section
IV presents the tests and the obtained results with a discussion
and finally we conclude in section V.

II. MOTIVATION

As stated earlier, most of the vertical applications are cloud-
native and deployed in cloud and edge environments. However,
migrating services into a new environment introduces resource
allocation difficulties. First, the tenant or the application owner
is not an expert in understanding the application behaviour
and functioning as well as the cloud-native environment in
which the application will be deployed to offer the desired
services. Second, although resource over-provisioning might
seem like an easy fix for this problem, this alternative in-
troduces additional costs over long periods, which is worse
when considering multiple instances of a service to deploy.
Indeed, overprovisioning can lead to resource wastage which
is not acceptable in an edge environment. For instance, an
over-provision of an edge application will cause an overload
of the Edge server, thus restricting the number of services that
can run in the latter. Further, overprovision is not optimal when
considering node consolidation to reduce energy consumption
as the number of services to run on a node is not optimal.

On the other hand, if only horizontal scalability is available,
the initial configuration of the service becomes crucial in
determining the performance/resources used ratio, and a faulty
configuration of the memory and CPU resources for an appli-
cation can cause the container to run Out Of Memory (OOM)
and experience CPU throttling or being stopped (which is
harmful on the service availability). The latter can be fixed

by increasing the number of instances of the application, but
this will come with the cost of doubling the memory allocated
to the service even though the application can perform as
expected using lower memory.

Knowing the above limitations, in this paper, we investigate
the behaviour of different types of services under variable
load and resource limits. Our goal is to improve the initial
resource configuration process and provide vertical scalability
based on the limiting resource (CPU or memory). We perform
tests to validate the assumption that CPU and memory relative
values can be a strong indicator of the application performance
and explore the cases where it is not. To this aim, we run
experiments using three types of applications: 1) a Golang
web server and a python web server, since web applications
are widely used and deployed as the frontend of any complex
service; 2) a RabbitMQ message broker, as many applica-
tions use the publish-subscribe model for communication; 3)
OpenAirInterface’s 5G Core Network, more specifically the
AMF (Access and Mobility Management Function). For each
application, we experiment with different configurations by
changing the CPU limit, Memory limit, relative CPU usage
(i.e. ratio), memory usage ratio, and the number of service
requests received in parallel. For each configuration, we mea-
sured the latency to treat a service request (or service response
time), which reflects the performance of the service in terms
of Quality of Service (QoS) seen by a service consumer.

III. CONDUCTED TESTS AND RESULTS

In this section, we describe the performed tests and the
obtained results. We have performed the tests on top of
the cloud-native edge facility of EURECOM. The facility
uses a Kubernetes cluster for container orchestration. We
have implemented a benchmarking program that automatically
deploys the application while allocating different resources
for each deployment, mainly changes in CPU and memory
allocated. We focused on these two metrics as they are the key
resources used by the application since we did not consider
access to storage or network latency and restrictions as the
tested applications are run in the same cluster as the tester
process. For each test, we measured the latency of the service
to treat a number of requests received in parallel.

A. Testing environment

The test facility includes a Kubernetes cluster, which is de-
ployed on top of an Intel server PowerEdge T440 with 128GB
of RAM and 64 Core (Intel(R) Xeon(R) Silver 4216 CPU
@ 2.10GHz) with hyperthreading enabled. The cluster was
bootstrapped using Kubeadm v1.20.1, and the host operating
system is Ubuntu 18.04.5. All the tested applications (web
servers, RabbitMQ, InfluxDB and 5G core functions) run as
containers in the cluster.

The testbed, shown in Fig. 1, includes a Prometheus 1

deployment for metrics collection, a Container Infrastructure
Service Manager (CISM) [9] to manage workloads (automatic

1https://prometheus.io/



creation and deletion of the applications pods and its neces-
sary Kubernetes services) and software for load test such as
ApacheBench 2 and RabbitMQ PerfTest 3.

Fig. 1. The components of the testbed

B. Obtained results

We performed the tests using the following procedure. First,
the test program is configured by specifying the different
combinations of allocated resources. The application is then
deployed with one initial configuration of resources as a
container in a Kubernetes pod. Once the container is running,
the application is tested with a gradually increasing load
(i.e., number of service requests in parallel) until all the
requests are performed, or the pod fails. While the tests are
running, the tester collects resource usage from the Prometheus
instance in the cluster and stores it in a file. Once all the
tests are performed and the desired results are collected, the
pod is deleted, and the next pod is deployed with the next
configuration.

1) Web servers: We used Golang and Python-based web
servers for the test. Each request to the webserver returns a
video of a size 43 MB, which allowed us to overload the
server with a lower number of parallel requests. We used
ApacheBench, a command-line program used for benchmark-
ing HTTP web servers, to produce high traffic. ApacheBench
permits to specify the number of requests that need to be sent
to the webserver and the level of concurrency, which allows
parallel requests from multiple clients. We used a number of
requests ranging from 100 to 1000 and a concurrency level
between 1 and 100.

For allocated resources variation, we used configurations
with the CPU value ranging between 0.5 and 4 CPUs with
an increment of 0.5 CPU, and memory between 70 MB and
500 MB with 5MB increment between 70-100MB and 50MB
increment from 100 to 500 MB. The obtained results from the
two web servers were similar. The Golang based server results
are shown in Fig. 2 and Fig. 3. The performance/resources

2https://httpd.apache.org/docs/2.4/programs/ab.html
3https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/

trade-off is shown in Fig. 2. We can notice that under different
loads, represented by the number of requests sent to the server,
the more CPU the application has, the lower the response
latency is. This is true for CPU allocation between 0.5 and 2
CPUs; afterward, providing more CPU does not improve the
latency of the web application. Fig. 3 shows the distribution of
the response time. In this experiment, we consider the relative
CPU and memory, which represent the percentage of resources
used from the provided limit. We notice that the higher the
relative CPU (shifting vertically from one graph to the one
below) is, the greater the percentage of high response times
is. In contrast, the memory percentage (moving horizontally
from left to right) does not change the distribution of latency
values.

Fig. 2. Web Server’s 95% latency in relation to the allocated CPU

2) 5G AMF: For the second use case, we study the perfor-
mance of a 5G core network function: the AMF, which is a
control plane function. Its main functions and responsibilities
are registration, connection, and mobility management and
access authentication and authorization. To obtain the perfor-
mance of the AMF, we measure the registration time, which
represents the time between the sending of the attachment
requests from the UE (User Equipment) until the UE receives
the authentication request.

To perform the test and generate 5G attach requests, we use
my5G-RANTester 4, my5G-RANTester is a tool for emulating
control and data planes of the UE and gNB (5G base station).
my5G-RANTester follows the 3GPP Release 15 standard for
NG-RAN (Next Generation-Radio Access Network). my5G-
RANTester allows generating different workloads and testing
several functionalities of a 5G core, including its compliance
with the 3GPP standards. Scalability is also a relevant fea-
ture of the my5G-RANTester, which is able to mimic the
behaviour of a large number of UEs and gNBs accessing
simultaneously a 5G core. We deploy an OpenAirInterface

4https://github.com/my5G/my5G-RANTester



Fig. 3. Web Server’s 95% latency statistical distribution

[10] core network and specify the configuration of the AMF.
The explored resource allocations vary from 0.5 to 4 CPUs
with an increment of 0.5 each test and memory from 256 MB
to 4096 MB with an increment of 256 MB each test. The
number of simultaneous registration requests that are sent to
each instance varies between 10 and 400.

The obtained results are shown in Fig. 4, where the mean
values for registration time (i.e., the time needed to complete
the User Equipment registration to the network) in relation
to the allocated CPU are displayed. We can observe that
AMF performances have the same behaviour as the webserver.
Indeed, we remark that the higher the CPU allocation to
the AMF is, the lower the registration time is. This is valid
between 0.5 and 2 CPU, after which the performance is
constant. Fig. 5 shows the distribution of registration time.
We see that an increase in the relative CPU results leads to
high registration times.

Fig. 4. AMF’s 95% registration time in relation to the allocated CPU

3) RabbitMQ broker: The third microservice that we tested
is a RabbitMQ messages broker. We used RabbitMQ PerfTest
which is a throughput testing tool that simulates basic work-
loads and provides the throughput and the time that a message
takes to be consumed by a consumer. For the test we used a
number of producers and consumers that ranges from 50 to
500. Each producer sends messages to the broker with a rate
of 100 messages per second for a period of time of 90 seconds.

Similar to the precedent tests we vary the CPU configuration
of the RabbitMQ pod from 0.5 to 4 CPU, while we vary the
memory from 1024 MB to 4096 with increments of 256 MB.

The results are shown in Fig. 6, we observe that the response
time follows the same trend which is that the message’s latency
gets lower when more CPU is allocated to the broker. Fig. 7
shows that the proportion of high latencies is largest when the
relative CPU utilization is between 0.8 and 1.

Interestingly, while testing the broker, and as it is a memory
intensive application, even if the relative memory does not
correlate with the message delay time, when the allocated
memory was low (around 1024 MB) it resulted in several
container restart due to an OOM signal. Fig. 8 shows the
distribution of relative memory values for a memory allocation
of less than 1536 MB. The values shown are the last collected
memory before the failure of the pod, indeed not all failures
were caused by OOM exception, but the graph shows that
memory usage was approaching the set limit before the
occurrence of the failure.

C. Discussion

The obtained results obviously show a strong relationship
between the allocated resources and the performance of the
service. The more resources the application has, the better its
performance, which is valid until it reaches peak performance.
The results show the effect of CPU allocation on the per-
formance, where we clearly observed that for the same load,
the response time of the service is lower when more CPU is
allocated. It continues to decrease until it reaches an optimum



Fig. 5. 5G AMF’s 95% UE registration time statistical distribution

Fig. 6. RabbitMQ broker’s 95% message delay in relation to the allocated
CPU

performance, after which additional resources do not make the
performance better, which means that a proportion of allocated
resources is wasted.

Another important measure is the relative CPU. From the
obtained results, we remarked that when an application’s
CPU usage approaches the limit allocated to the latter, the
distribution of response times tends toward higher response
time. Consequently, in order to detect performance degra-
dation of applications that do not provide measures about
their performances, like the latency of treated requests that
is available only at the application level and difficult to derive
by monitoring the infrastructure. The relative CPU and relative
memory values are good indicators for (1) the application
performance, where the relative CPU values indicate the
service load and, consequently, the probability of occurrence
of high response times. Indeed, the higher the relative CPU is,
the higher the response time of a server is, whatever the type
of service and the number of service requests. This finding is

very important to cloud/edge providers in order to detect early
misconfiguration of the service in terms of needed resources
and anticipate any Service Level Agreement (SLA) issues with
the tenant. Second, the relative memory consumption alerts on
the occurrence of OOM signals that results in the restart of
the container deploying the service, which leads to disturbing
the service continuity and hence the service availability.

Finally, using the obtained results, we have implemented
monitoring in our edge facility that alerts on the values of
the relative CPU and memory values; by aiming to keep
the relative CPU and memory values less than 0.8, which
anticipate any misconfiguration of application resource. The
alerts provide feedback about the application’s configuration.
This process helps validate the vertical resources request and
assists him in finding the best configuration for the service
according to the relative values of CPU and memory. If
the resource usage/limit ratio approaches one, we update the
Edge application with more resources to avoid performance
degradation and service disturbtion.

IV. CONCLUSION

In this paper, we presented a study on application perfor-
mance in a cloud-native and containerized environment. We
have run different experiments using representative vertical
applications, including a telecommunication network function.
All the applications were tested under different resource con-
figurations (CPU and memory) and loads. The obtained results
provide useful insights into the behaviour of the workloads and
the relation between resource usage and application perfor-
mance. From those insights, we concluded that relative CPU
usage is an important indicator of the relevance of the initial
application resources configuration. The higher this value is,
the more likely the applications will experience performance
deterioration. In comparison, relative memory usage is an
important indicator of the risk of occurrence of OOM errors
and hence service disruption. Our future work concern the
usage of the different dataset we have constructed using these



Fig. 7. RabbitMQ broker’s 95% message delay statistical distribution

Fig. 8. RabbitMQ last recorder relative memory before pod failure

experiments to train ML models that anticipate and correct
misconfiguration of application configuration to run optimally.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under the
5G!Drones project (Grant No. 857031) and MonB5G (Grant
No. 871780).

REFERENCES

[1] S. Arora and A. Ksentini, “Dynamic resource allocation and placement
of cloud native network services,” in ICC 2021 - IEEE International
Conference on Communications, Montreal, QC, Canada, June 14-23,
2021. IEEE, 2021, pp. 1–6.

[2] Kubernetes. [Online]. Available: https://kubernetes.io/
[3] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,

J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for
cloud amp; edge systems,” 2019.

[4] S. A. et al., “Lightweight edge slice orchestration framework,” in ICC
2022 - IEEE International Conference on Communications, Montreal,
Seoul, May 16-20, 2022. IEEE, 2022.

[5] I. Afolabi, T. Taleb, P. A. Frangoudis, M. Bagaa, and A. Ksentini,
“Network slicing-based customization of 5g mobile services,” IEEE
Netw., vol. 33, no. 5, pp. 134–141, 2019.

[6] M. Gotin et al., “Investigating performance metrics for scaling microser-
vices in cloudiot-environments,” 2018.

[7] E. Casalicchio and V. Perciballi, “Auto-scaling of containers: The impact
of relative and absolute metrics,” in IEEE 2nd International Workshops
on Foundations and Applications of Self* Systems (FAS* W), 2017.

[8] A. A. Khaleq and I. Ra, “Intelligent autoscaling of microservices in the
cloud for real-time applications,” IEEE Access, vol. 9, 2021.

[9] M. Mekki et al., “A scalable monitoring framework for network slicing
in 5g and beyond mobile networks,” IEEE Transactions on Network and
Service Management, vol. 19, no. 1, pp. 413–423, 2022.

[10] Openairinterface. [Online]. Available: https://openairinterface.org/


