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Abstract—Automatic Speech Recognition (ASR) usually works
well with close-talking microphone environment rather than in
far-field conditions. A major challenge in the far-field ASR
systems is to handle the background noise, multipath reflections,
and reverberation, that leads to decrease in the quality of the
speech signal. To that effect, we propose Teager energy-based
Gabor filterbank (TGFB) features that preserve the amplitude
and frequency modulation of a resonant signal, and improve the
time-frequency resolution. In addition, via TGFB features, we
exploit noise suppression capability of Teager Energy Operator
(TEO) for improving ASR performance under signal degrada-
tion conditions due to far-field speech. The ASR experiments
are performed on LibriSpeech (near-field) and CHiME-3 (far-
field) corpora. Marginal improvements were observed for TGFB
features over MFCC features in our experiments. We observed
that the system combination of TGFB and MFCC features could
provide significant improvements over the standalone MFCC
features. For LibriSpeech corpus, a relative improvement for
Word Error Rate (WER) of close to 5% was observed. On
the other hand, for CHiME-3 corpus, the average relative
improvement of 7.20% was obtained over the baseline features
using system level combination.

Index Terms—Automatic Speech Recognition, Teager Energy
Operator, Near and Far-Field.

I. INTRODUCTION

Automatic Speech Recognition (ASR) is a task that converts
a speech signal into a continuous sequence of words along
with real interaction between humans and the machines [1].
Far-field speech recognition is an essential technology for
interactions that aims to provide access of the smart devices
through the recognition of far-field speech [2]. This technol-
ogy is applied to smart home appliances (smart loudspeaker,
and TV), meeting transcription, and onboard navigation, etc.
However, in a real environment, there is a lot of background
noise, multipath reflections, reverberation, and even human
voice interference, leading to decrease in ASR accuracy [3].

Recent developments in acoustic modeling employs tech-
niques, such as deep learning, sequence modeling, etc. How-
ever, their performance degrades in the case of far-field record-
ing conditions. The reverberant artifacts distort the speech
signal by smearing the amplitude envelopes of the speech
signal [4]. The development of a real-world applications faces
a notable challenge because of reverberation. The ASR system

degrades the performance when the far-field microphone array
signals are used instead of close-talking microphone.

The aim of the 3rd CHiME (Computational Hearing in
Multisource Environments) challenge was to develop a multi-
channel ASR system [5]. The CHiME-3 dataset upgrades the
difficulty by providing not only artificially noisy speech (i.e.,
obtained by combining clean speech with recorded background
noise) but also consists of the noisy speech recorded in
public environments, such as cafe, bus, street junction, and
pedestrian areas. The CHiME-3 challenge covers different
speakers, noise environments, and real-world problems, such
as clipping, microphone failure, recording glitches, etc.

Our goal in this work is to increase the robustness of ASR
using Teager energy-based features in noise and reverberation
in order to combine them efficiently with standard Mel Fre-
quency Cepstral Coefficients (MFCC)-based front-ends with
GMM (Gaussian Mixture Model), and DNN (Deep Neural
Network) acoustic models in addition to use of RNN (Re-
current Neural Network) as language models. The motivation
behind using Teager Energy Operator (TEO) is its attributes to
capture nonlinear aspects of speech production [6]. The true
total energy of source is estimated using TEO, and it also pre-
serves the amplitude and frequency modulation of a resonant
signal. Hence, it improves the time-frequency resolution along
with improving the formant information representation [7]. In
addition, the TEO has the noise suppression property, and it
attempts to suppress the distortion caused by noise signal.
While there are studies in ASR literature that exploit noise
suppression capability of TEO for ASR task, however, they are
either for close-talking speech [8] or artificially added noise
[9]. The present study extends this work for a typical acoustic
noise characteristics of real far-field scenarios.

The rest of the paper is organized as follows: Section II
presents the basic mathematical details of the Teager Energy
Operator (TEO). In addition, Section II also presents the block
diagram of the proposed feature set, the spectral energy dif-
ferences along with noise suppression capability of TEO. The
experimental setup is explained in Section III along with some
basic information of the corpus used. Section IV presents the
experimental results on both the databases, i.e., LibriSpeech
and CHiME3 corpus. Finally, Section V concludes the paper



along with future research directions.

II. TEAGER ENERGY OPERATOR (TEO)
The TEO tracks running estimate of instantaneous energy

fluctuations of a narrowband speech signal [7], [6], [10]:

Ψd{xi[n]} = x2i [n]− xi[n− 1]xi[n+ 1] ≈ ai[n]2Ωi[n]2, (1)

where xi[n] is discrete-time bandpass filtered signal for ith

Fig. 1. Block diagram of Teager energy spectral features. After [11], [12].

subband filter, and Ψd{·} represents TEO. The TEO works on
narrowband signal and hence, bandpass filtering is necessary
to apply on the input speech signal to compute ‘N’ number
of subband filtered signals. The block diagram of Gabor
filterbank energy coefficients-based on TEO is shown in Fig. 1.
Here, the input speech signal is first passed through the Gabor
filterbank to obtain ‘N’ subband filtered signals [4], [13], [14].
We used Mel-spaced Gabor filterbank to have compressed
bandwidth in the lower frequency region and wide bandwidth
in the higher frequency regions. The optimal criteria here
is to be able to achieve minimum time-bandwidth product
that is dictated by Heisenberg’s uncertanity principle in signal
processing framework [15]. The temporal variance (σ2

t ) and
the frequency variance (σ2

ω) of a signal, f(t)∈L2(R) (i.e.,
Hilbert space of finite energy signals) satisfy,

σ2
t .σ

2
ω ≥ 1/4. (2)

This inequality becomes equality if and only if f(t) is Gaus-
sian, where σ2

t .σ
2
ω is called as time-bandwidth product (which

is also area of Heisenberg box). The earlier studies found that
the linearly-spaced center frequencies have good resolution
in both the lower and higher frequency regions which makes
the estimation of the spectral information more reliable [14].
Hence, the narrowband filtered signals are obtained at center
frequency, which are Mel-spaced between fmin=10 Hz, and
fmax=8000 Hz. The impulse response, h(t), of Gabor filter is
given by [7] :

h(t) = exp(−b2t2)cos(ωct), (3)

where ωc is the center frequency (in Hz) of the subband
filter chosen as per the Mel frequency scales. The parameter
b controls the bandwidth of the subband filter. The Gabor
filter has the linear phase response characteristics and hence, it
maintains the same pattern (shape) of the filtered speech signal
(within the passband of filter) with a delay in time which is
equal to group delay function (in seconds) of filter [16].

In ASR, the lower formants and harmonics are important
as the linguistic information is present in lower formant
frequencies and hence, these should be preserved. Further-
more, these subband filtered signals are passed through TEO
block in order to estimate the Teager energy profile of each
subband filtered signals. These Teager energy profiles are
further passed to the frame-blocking along with averaging
of the speech segment using a window length of 25 ms and
shift of 10 ms followed by logarithm operation. Finally, these
filterbank energy coefficients are extracted from the speech
signal. Henceforth, we will denote it as TGFB (Teager energy-
based Gabor filterbank) feature set for the ASR task.

The time-frequency representations of the speech signal
from the CHiME-3 corpus is shown in Fig. 2. The comparison
is done with time-frequency representations obtained from the
Mel filterbank, and TGFB features as shown in Fig. 2(b), and
Fig. 2(c), respectively, for both real (Panel I) and simulated
(Panel II) speech signals. It can be observed that the energy
obtained for the real speech signal from the Mel filterbank has
less energy spectral density compared to the TGFB approach.
For the ASR task, the lower formants, such as F1 and F2

are important to preserve the linguistic content. The spectral
energy obtained from the TEO shows the sharp formants, and
high energy compared to that of Mel filterbank features. In
particular, the Mel spectral energy obtained are distorted, and
have blurred characteristics at the higher frequency regions.

A. Noise Suppression Capability of TEO

The noise suppression capability of TEO was originally
analyzed for near-field speech in car noise as acoustic en-
vironment in [17] followed by our recent work on Wall Street
Journal (WSJ) corpus [9]. Consider a clean speech signal s(n),
degraded by a additive noise η(n), and the resulting in noisy
speech signal is given as y(n):

y(n) = s(n) + η(n). (4)

The TEO of the noisy speech signal is given by:

ψ[y(n)] = ψ[s(n)] + ψ[η(n)] + 2ψ̃[s(n)η(n)], (5)

where ψ̃[s(n)η(n)] is the cross-ψ energy of s(n) and η(n).
As s(n) and η(n) are statistically-independent, the expected
value of ψ̃[s(n)η(n)] is zero [8], [17] and hence,

E{ψ[x(n)]} ≈ E{ψ[s(n)]}+ E{ψ[η(n)]}. (6)

We analyzed the power spectral density (PSD) of a speech
segment for far-field data (speech signals are taken from
CHiME-3 corpus). The PSD plots obtained from the (a) street,
(b) pedestrian, (c) bus, and (d) cafe background environment
obtained from with and without TEO (applied as speech



Fig. 2. (a) Time-domain speech signal for (Panel I) real, and (Panel II)
simulated, spectral energy density obtained from (b) Mel filterbank, and
(c) TGFB. Highlighted ovals and box shows the spectral energy differences
between Fig. 2(b) and Fig. 2(c).

signals from CHiME 3 corpus) is shown in Fig. 3. Noise
suppression capability of TEO can be clearly observed in
Fig. 3, in particular, the PSD plot of noisy speech (shown
in red color in Fig. 3) [9]. [18] shifts downward in TEO-
domain indicating noise suppression that is achieved due to
mathematical structure of TEO.

Fig. 3. Power Spectral Density (PSD) of a real speech segment with street,
pedestrian, bus, and cafe background. The PSD is shown for speech segment
with and without application of TEO. Downward shift in PSD plot with TEO
indicates noise suppression due to TEO.

III. EXPERIMENTAL SETUP

A. Near-Field and Far-Field ASR Corpus
In this paper, the ASR experiments were performed on

LibriSpeech and CHiME3 corpora. The LibriSpeech task com-
prises English read speech data based on the LibriVox project
[19]. The LibriSpeech database consists of two sets of clean
speech data (100 hours + 360 hours), and noisy speech data
(500 hours) for training. We used 100 hours of clean speech
data to train the initial ASR model, and tested the trained
models on test-clean and test-other subsets of Librispeech.
The statistics of the database is reported in [19]. In addition,
we also performed experiments on CHiME-3 corpus which
uses multi-microphone tablet device in everyday environments
[5]. Four varied environments have been selected: cafe (CAF),
street junction (STR), public transport (BUS), and pedestrian
area (PED). The real speech data is of 6-channel recordings
of the sentences from the WSJ0 (Wall Street Journal) corpus.
The simulated data was developed by adding the clean speech
utterances with the different environment in the background
during recordings. For ASR evaluation, the corpus is divided
into three subsets, namely, training, development, and test sets,
respectively.

B. Feature Representation
For Gaussian Mixture Model-Hidden Markov Model

(GMM-HMM) training, MFCC features are extracted from
the speech signals using a window length of 25 ms and shift
of 10 ms. Delta and double-delta features are also appended
resulting in 39-dimensional (D) feature set. Human auditory
system can be viewed as a dense filterbank in frequency-
domain with several thousands of subband filters [18]. Hence,
we performed experiments to investigate the significance of
number of subband filters on the ASR performance. The TGFB
features are extracted using subband filters by the process
shown in Fig. 1.

Fig. 4. Effect of subband filtered signals on TGFB feature set.

Fig. 4 shows the effect of increasing number of subband
filtered signals during feature extraction. The experiments
were performed with GMM-HMM and DNN-HMM systems
by varying the number of subband filters from 40 to 120. It
can be observed from the Fig. 4 that features extracted using
60 number of subband filters are found to be optimal on DNN-
HMM systems compared to the other number of subband



TABLE I
WER (%) USING BEAMFORMING AND ENHANCED METHODS WITH PROPOSED FEATURE SET TRAINED ON MULTI-ENHANCED SPEECH

Method Dev Eval
Real Sim Real Sim Avg.(Real+Sim)

MFCC TGFB MFCC TGFB MFCC TGFB MFCC TGFB MFCC TGFB
GMM-HMM 16.59 16.96 18.93 19.35 26.55 26.25 26.73 25.71 26.64 25.98
+ DNN (CE) 13.19 12.95 14.66 14.69 20.76 20.30 20.75 19.79 22.25 20.04
+ DNN (sMBR) 11.73 12.06 13.26 13.53 18.63 18.53 18.82 18.32 18.72 18.42
+ 5-gram rescoring 10.59 10.81 11.85 12.01 17.01 16.68 16.95 16.60 16.98 16.64
+ RNNLM 9.86 9.89 11.18 11.41 15.97 15.61 15.67 15.47 15.82 15.54

TABLE II
WER(%) FOR EACH NOISE WITH MFCC AND TGFB FEATURES AND WITH THE SYSTEM-LEVEL COMBINATION (SC) OF MFCC AND TGFB FEATURE SET

Envt.
MFCC TGFB SC

Dev Eval Dev Eval Dev Eval
Real Sim Real Sim Real Sim Real Sim Real Sim Real Sim

Avg. 13.19 14.66 20.76 20.75 9.89 11.41 15.61 15.47 9.43 10.79 14.78 14.59
BUS 15.96 13.6 27.43 15.63 11.71 10.41 21.63 12.10 11.37 9.96 20.56 11.11
CAF 12.82 16.52 19.95 21.31 9.29 13.75 13.37 16.01 8.70 12.58 12.29 15.11
PED 10.43 12.70 18.59 22.69 8.16 9.59 13.66 16.16 7.85 9.14 12.76 15.28
STR 13.54 15.77 17.07 23.35 10.41 11.89 13.77 17.63 9.79 11.46 13.50 16.87

filtered signals and hence, further set of experiments for TGFB
features were performed with 60 number of subband filtered
signals. In this papaer, the Kaldi toolkit is used to build the
ASR systems for both the corpora [20].

IV. EXPERIMENTAL RESULTS

A. Results for Near-Field ASR

GMM-HMM system is used to generate the alignments for
training the DNN-based model and also as the baseline system.
MFCC features (39-dimensional) are spliced with 7 frames
context and linear discriminant analysis is applied to project it
to 40-dimensions and further semi-tied covariance is applied.
Then, speaker adaptive training using a single feature-space
maximum likelihood linear regression (FMLLR) transform is
done to obtain the resultant features for training the GMM-
HMM systems [21]. The MFCC-based GMM-HMM baseline
system achieved WERs of 12.28 %, and 34.92 % on test-clean
and test-other portions of Librispeech, respectively. The results
obtained with TGFB are comparable to the MFCC feature set
resulting in 12.71 % and 35.58 % WER on test-clean and
test-other, respectively.

The experiments performed consists of DNN with 6 hidden
layers with 1024 neurons (sigmoid activation) in each hidden
layer. The output units are 3480 senones or context-dependent
triphones for each DNN which are obtained using forced
alignment from the GMM-HMM system. The input is 11
frames (5 left context, 1 current, and 5 right context) of 60-D
features concatenated together. The performance of the ASR
system is analyzed using Word Error Rate (WER). The DNN-
HMM system is trained on clean speech and tested for both
test-clean and test-other for MFCC and TGFB feature sets. The
experimental results of test set using the DNN-HMM systems

are reported in Table III. This shows that TGFB features are as
effective as MFCC features for ASR in near-field conditions.

TABLE III
WER (%) ON DNN-HMM SYSTEM TRAINED ON 100 HRS OF TRAINING

DATA OF LIBRISPEECH CORPUS

Subset # Hrs MFCC TGFB
Test-clean 5.4 9.55 9.40
Test-other 5.1 27.62 27.54

B. Results for Far-Field ASR

The speech enhancement baseline system based on time-
varying minimum variance distortionless response (MVDR)
beamforming available in Kaldi is used for transforming the
multi-channel noisy input signals to single channel enhanced
output signals [5]. The training set used is clean speech
taken from WSJ0 corpus and multi-noisy data and tested
on noisy speech signals. On the other hand, the enhanced
speech signal were tested on the clean speech and multi-
enhanced speech signal. The DNN has 7 layers with 2048
units per hidden layer. The input layer has 5 frames of left
and right context (i.e., 11×40 = 440 units). The DNN is pre-
trained using restricted Boltzmann machines, cross-entropy
(CE) training, and sequence discriminative training using the
state-level minimum Bayes risk (sMBR) criterion. In addition,
the N-gram rescoring, and RNN-based LM (RNNLM) is used
for far-field ASR task. The experimental results with GMM,
DNN, and RNN-LM-based ASR system are shown in Table I
which is trained on multi-enhanced speech signal with MFCC
and TGFB feature sets.

Furthermore, in order to combine the possible complemen-
tary advantages available from the amplitude and frequency
modulation of the speech signal, the posterior lattices obtained



TABLE IV
SPEECH RECOGNITION PERFORMANCE (IN % WER) ON NEAR-FIELD AND

FAR-FIELD CORPUS

Corpus System Subset SC RI (%)
LibriSpeech Near-field Test-Clean 9.15 4.19
LibriSpeech Near-field Test-Other 26.24 4.99
CHiME-3 Far-field - 14.68 7.20

(SC: System Combination, RI: Relative Improvement)

from the MFCC and TGFB feature sets were combined using
lattice-level system combination (as shown in Table IV) [22],
[23]. The performance of the combined system is 9.15%
and 26.24% for test-clean and test-other, respectively, on
LibriSpeech corpus, that results in relative improvement of
4.19% and 4.99% which is better than the MFCC alone. On
the other hand, for CHiME-3 corpus, a relative improvement
of 7.20% is obtained resulting in 14.68% WER.

The detailed results on different noises in CHiME-3 are re-
ported in Table II with MFCC, TGFB features and their system
combination. For all the noise conditions of CHiME-3 corpus,
the TGFB feature set shows improvements over the baseline
system on the evaluation set. This shows the noise supression
capability of TEO in varied noisy conditions. The individual
noise condition performance after system combination (SC) of
MFCC and TGFB using MBR decoding significantly improved
over the standalone features.

TABLE V
COMPARISON WITH OTHER SYSTEMS ON CHIME-3 CORPUS

System Dev Eval
Real Sim Real Sim

MFB [24] 11.6 14.3 22.6 25.5
PFB [24] 12.0 13.7 23.0 25.1
RAS [24] 11.8 14.6 21.6 23.1
MHE [24] 12.0 14.4 22.9 26.4
CVAE[24] 10.2 12.4 18.9 19.9
Ratemap+F0 [25] 5.51 4.82 18.56 20.03
PNCC [26] 14.23 11.85 22.12 14.88
MESSL [27] 9.00 11.5 16.3 21.00
log Mel [28] 12.58 10.66 23.86 20.17
DOC [28] 12.00 10.18 20.35 18.53
NIN-CNN [29] 10.64 11.21 12.81 18.47
DS Beamforming [30] 13.92 13.62 26.30 21.14
MFCC+RNNLM 9.86 11.18 15.97 15.67
TGFB 12.06 13.53 18.53 18.32
TGFB+RNNLM 9.89 11.41 15.61 15.47
TGFB+RNNLM SC 9.43 10.79 14.78 14.59

Finally, we compared the performance of TGFB feature
set with our proposed and the other similar systems (in the
literature) as reported in Table V. Currently, we have not con-
sidered end-to-end speech recognition systems for evaluation
and comparison purpose as the purpose of this work is majorly
to highlight the importance of noise robust Teager energy-
based features for ASR.

V. SUMMARY AND CONCLUSIONS

In this study, we presented the use of Teager energy spectral
features-based acoustic model for near and far-field ASR

tasks, where the TGFB feature set was extracted from Mel-
spaced Gabor filterbank. The TEO preserves the amplitude and
frequency modulation of a resonant signal, and it improves the
time-frequency resolution. The noise suppression capability of
TEO indeed helps for robust ASR task. The performance of
the ASR system degrades when far-field speech is considered
instead of near-field speech and hence, far-field system are
more challenging, in particular, to handle background noise,
reverberation, etc. The experiments are performed on both
LibriSpeech (near-field) and CHiME-3 (far-field) corpora. Sig-
nificant reduction in % WER was achieved using the system
combination using MBR decoding of MFCC and TGFB-
based features. For LibriSpeech corpus, we obtained relative
improvement of 4.19% and 4.99% in word error rate (WER)
for test-clean and test-other, respectively. On the other hand,
for CHiME-3 corpus, the average relative improvement of
7.20% is obtained over the baseline features. Therefore, Teager
energy-based features do contain additional relevant infor-
mation for ASR than the magnitude spectrun-based features.
The future work could be towards using further sophisticated
speech enhancement techniques for far-field conditions and
use end-to-end speech recognition systems to improve the
performance further by exploiting the Teager energy based
features.
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