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Abstract

The ability to predict the exit patterns of vehicles in a roundabout shows
potential to improve the safety and efficiency of roundabout crossings by con-
nected vehicles. Namely, vehicles seeking to enter a roundabout in the pres-
ence of incoming vehicles, may take educated decisions on whether to enter
the roundabout based on the likelihood of the incoming vehicles not to exit
and cause a merging conflict. In previous work, a machine learning model was
trained to assess the probability of a vehicle to exit a roundabout based on
its observed position relatively to the next exit. Yet, the transferability of the
knowledge of exit probability models was not investigated, i.e., whether the
knowledge of an existing exit probability model can be accurately transferred
in unseen roundabouts, both for model usage and training. In this paper,
we compute a metric similarity of exit probability models trained from eight
real roundabouts. In turn, we identify the contextual features of two round-
abouts which impact the similarity of the resulting exit probability models,
and define three levels of context similarity, i.e., strict, moderate, and low.
Lastly, significant accuracy improvements are obtained by constraining the
knowledge transfer of exit probability models to roundabouts which feature a
similar context. On the one hand, applying exit probability models on distinct
roundabouts with a moderately similar context yielded an average accuracy of
80.4± 4.6%, which is equivalent to the most accurate non-similar models. On
the other hand, training a model for an unseen roundabout using exclusively
training data extracted from roundabouts with a moderately similar context
featured a 80± 5% accuracy, which represents a consistent accuracy increase
of 8.5± 4.8% compared with knowledge transfer without context constraints.
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1 Introduction
Connected and Autonomous Vehicles (CAVs) are intelligent vehicles which aim at
enabling highly-automated driving, eventually eliminating the need for human su-
pervisors. Through Artificial Intelligence (AI) techniques, CAVs analyze and extract
knowledge from their environment to understand and safely interact with other road
users. For example, [1] defined a deep learning model to recognize and classify ob-
jects on the roads based on camera images and LiDAR point clouds. What is more,
[2] described a reinforcement learning approach for a CAV to drive autonomously
and avoid obstacles. Nonetheless, CAVs can face complex situations which may
compromise automated driving features. As described in [3], a key risk factor is the
potentially erratic or unpredictable behavior of other road users, such as human-
driven vehicles. Especially in unsignalized intersections which require negotiation
with human actors, means of understanding and predicting the intentions of other
vehicles are instrumental in the implementation of self-driving algorithms. For ex-
ample, it has been implemented for unsignalized intersections through an AI model
in [4].

Specifically, roundabouts are unsignalized yield-type intersections which involve
several types of conflicts. As illustrated by Figure 1, a roundabout may involve
two main types of conflicts. On the one hand, sequential conflicts may occur and
potentially trigger rear-end collisions. On the other hand, merging conflicts may
occur when two vehicles wish to drive in a single point at a single time. In particular,
roundabout merging conflicts may involve a vehicle entering the roundabout despite
an incoming vehicle. In the case of multi-lane roundabouts, lane changes in the
circular part of the roundabout, or two vehicles merging into a single-lane exit are
possible merging conflicts.

Rear-end collision risk

Merging collision risk

Exit
probability?

Time To
Collision?

Figure 1: Types of Conflicts in a Roundabout

In particular, mitigating the risk of merging conflicts between vehicles which
enter and vehicles which are already present in the circular part of the roundabout
requires understanding the intentions of other vehicles. Namely, when a vehicle
wishes to enter a roundabout but senses an incoming vehicle, a relevant metric to
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quantify the intentions of the incoming vehicle is the probability of the incoming
vehicle to exit the roundabout at the next available exit, as illustrated in Figure 1.
Based on the probability of any incoming vehicle to exit at the next available exit,
entering vehicles can take educated decisions on whether to engage in the round-
about. This applies both to CAVs or as an intelligent assistance system for human
drivers.

AI algorithms, such as Machine Learning (ML), can be used to learn the exit
patterns of vehicles in a roundabout, and in turn estimate the probability of a vehicle
to exit. In [5], we defined a model to assess the probability of a vehicle to exit a
roundabout, based on its position in the roundabout relatively to the next exit. The
model is trained from real vehicle track data extracted from a roundabout of the
RounD dataset, as introduced by Krajewski et al. [6]. On this roundabout, the exit
behavior of vehicles can be predicted with a 91% accuracy on validation data from
the considered roundabout.

Yet, training exit probability model is a costly process, which requires a set of
training data extracted from vehicle tracks in a roundabout. For example, in the
RounD dataset, obtained vehicle tracks and in turn training data involved complex
logistics, flying a drone multiple times over each roundabout and post-processing
the obtained camera images to detect vehicles. In turn, it is a desirable property to
be able to (i) use an exit probability model which was already trained on a distinct
roundabout to compute exit probabilities on another, or at least, (ii) complete the
training data for an exit probability model from training data already sensed in
another roundabout.

However, in [5], an exit probability model was trained for a single roundabout,
and no model was trained nor evaluated on other roundabouts. As such, the modal-
ities of knowledge transfer among roundabouts for exit probability models are un-
clear. For example, it is unknown whether exit probability models would perform
accurately when applied to different roundabouts than the one they were trained
from. Instead, what if classes of ’similar’ roundabouts could be identified, among
which a pre-existing exit probability model can be applied accurately? By first train-
ing exit probability models on multiple distinct roundabouts, and then extracting
patterns which impact the similarity of two exit probability models, we identify a
relevant description of their context of training and usage. Lastly, we evaluate the
role of the context in which two exit probability models were trained on the accuracy
of knowledge transfer, both for context-aware exit probability model (i) application
and (ii) training.

Namely, in this paper, we train exit probability models as defined in [5] for eight
distinct roundabouts, extracted from the RounD [6] and the INTERACTION [7]
datasets of drone-captured vehicle tracks. Further, the similarity of exit probability
models is computed in an information theoretic sense. Then, the obtained similarity
values for each pair of roundabouts are used to extract the roundabout contextual
elements which mostly impact the similarity between the resulting exit probability
models, such as the geometry or traffic features of roundabouts. The obtained
similarity factors are used to define a similarity condition which defines if two distinct
roundabouts feature a similar context for exit probability models. Lastly, we verify
that (i) exit probability models trained on a specific roundabout R can be applied
accurately on distinct roundabouts featuring a similar context, and that (ii) training
data for a new roundabout can be accurately completed from training data extracted
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from a roundabout featuring a similar context. The contributions of this paper are
the following:

• Exit probability models are trained and evaluated on eight distinct round-
abouts, extracted from the RounD [6] and the INTERACTION [7] datasets.

• An information theoretic approach based on the mutual information between
two exit probability models is used to extract the pairwise similarity between
the considered roundabouts.

• Contextual factors which could explain the similarity between exit probability
models trained on two distinct roundabouts are evaluated. Especially, round-
about geometry and traffic features are considered as potential explanatory
features.

• Similarity conditions between the exit probability model training contexts as-
sociated with two roundabouts is defined. The conditions are evaluated both
for model application and model training purposes. Namely, we show that:

– A model which was trained on a specific roundabout R can be used on
a distinct roundabouts featuring a similar training context, with greater
accuracy than models which were trained on non-similar roundabouts.

– When training an exit probability model for an unseen roundabout R,
for which a limited amount of training data is available, completing the
available training data with data extracted from roundabouts featuring
a similar training context improves the accuracy of the trained model
compared with using data from non-similar roundabouts.

What is more, the obtained results open perspectives on the significant role
of context in knowledge distribution in vehicular and transportation applications.
As the context of driving, and in turn of information sensing, of CAVs is rapidly
evolving due to vehicular mobility, mechanisms are needed to describe, distribute,
and store AI knowledge models based on their context of training and usage. In turn,
distributing knowledge to the vehicles which feature the right driving context could
open new opportunities for accurate distributed knowledge networking in vehicular
networks.

The rest of the article is organized as follows: Section 2 introduces the round-
abouts considered for exit probability model training, and presents the resulting
trained models. Section 3 investigates the information theoretic similarity of each
pair of the obtained exit probability models, and identifies clusters of similar exit
probability models. Based on this understanding, Section 4 identifies the round-
about contextual factors which can be associated with a greater similarity between
exit probability models trained on two distinct roundabouts, roundabout geometric
features as well as traffic conditions are considered as potential explanatory factors.
Finally, Section 5 evaluates the accuracy improvement linked to using and training
exit probability models in a relevant context, while Section 6 summarizes the article.
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2 Considered Roundabouts
As a first step to investigate the contextual factors which can be related to the
similarity of exit probability models trained for two distinct roundabouts, we train
exit probability knowledge models on a set of real roundabouts. In turn, the obtained
models are described and show the diversity of vehicle exit behavior in distinct
roundabouts.

2.1 Description

To train exit probability models using realistic vehicle tracks, we used the round-
abouts defined in the RounD and INTERACTION datasets. Both datasets consist
of drone-captured real vehicle tracks obtained from several roundabouts. RounD [6]
contains tracks extracted from three German roundabouts in the region of Aachen,
while INTERACTION [7] features tracks from seven Roundabouts, based in China,
Germany, and the USA.

The RounD and the INTERACTION datasets include position, heading, and
velocity data at a framerate of, respectively, 25 and 10 traffic snapshots per second.
Vehicle tracks are separated in multiple short recordings, typically 15 minute long
for RounD and 5 minute long for INTERACTION. Each of the eight roundabouts
provided in the datasets, which we consider in this study, are illustrated through
aerial pictures in Figure 2. What is more, Table 1 lists a set of characteristics
extracted from each roundabout, as follows:

Identifier The unique name of the roundabout.

Dataset The dataset in which the roundabout is represented.

Country The country in which the roundabout is located.

Entries The number of entry legs of the roundabout, observed from the tracks
data.

Lanes The number of circulating lanes in the circular part of the roundabout.

Radius The radius of the roundabout, i.e., the distance between the center point of
the roundabout and the inner extremity of the innermost lane of the circular
part of the roundabout.

Width The width of the roundabout, which is the width of the driveable circular
area of the roundabout, i.e., the distance between the inner extremity of the
innermost lane and the outer extremity of the outermost lane.

The number of entry legs observed on the ’RounD_2’ roundabout is marked
with an asterisk. While the roundabout physically features four entry legs, the
track data provided with the RounD dataset virtually does not include traffic from
the bottom-right entry, as illustrated by Figure 3. Considering the 263 available
vehicle tracks for ’RounD_2’, no recorded vehicle exits the roundabout and only
two vehicles enter. As the vehicular mobility effectively ignores the bottom-right
exit of the roundabout, we flag the ’RounD_2’ as practically a 3-entry roundabout
in this study.
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(a) DR_USA_Roundabout_EP (b) DR_USA_Roundabout_SR

(c)
DR_USA_Roundabout_FT

(d)
DR_CHN_Roundabout_LN

(e)
DR_DEU_Roundabout_OF

(f) RounD_0 (g) RounD_1 (h) RounD_2

Figure 2: Roundabouts Considered for the Transfer of Exit Probability Knowl-
edge [7, 6]

Table 1: Features of the Considered Roundabouts

Identifier Dataset Country Entries Lanes Radius Width
DR_USA_Roundabout_EP Interaction USA 4 1 6.75m 6.75m
DR_USA_Roundabout_SR Interaction USA 4 1 13.5m 4.5m
DR_USA_Roundabout_FT Interaction USA 7 1 9m 9m
DR_CHN_Roundabout_LN Interaction China 4 2 23m 9m
DR_DEU_Roundabout_OF Interaction Germany 3 1 8.75m 4.5m
RounD_0 RounD Germany 4 2 15m 9m
RounD_1 RounD Germany 4 1 8m 4.5m
RounD_2 RounD Germany 3∗ 1 6.75m 4.5m
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Figure 3: Vehicle Tracks of the ’RounD_2’ Roundabout

2.2 Exit Probability Model Training

To evaluate the relevant context of use of exit probability models, as well as their
applicability on distinct roundabouts, a model is trained for each of the roundabouts
listed in Table 1. The procedure for exit probability model training is described
in [5], and summarized in this section.

2.2.1 Definition

As in [5], we define ML exit probability models which take (i) the relative heading,
(ii) the distance to the next exit, and (iii) the lateral position of a vehicle in the
roundabout as input, and output the probability of exit at the next exit of that
vehicle. What is more, in this study, the inputs are normalized to avoid biases
related to the shape of the roundabouts and increase the applicability of a model on
a distinct roundabout than the roundabout it was trained from. Namely, for each
frame of a recording, and for each vehicle in the circular lanes of the roundabout, the
following training input is gathered, as illustrated by the matching items of Figure 4.

1. The heading of the vehicle, relatively to the curvature of the roundabout. It
takes values in the range of α ∈ [−180, 180] degrees.

• α = 0 indicates that the vehicle is following the curve of the roundabout.

• α > 0 indicates that the vehicle is driving towards the inner part of the
roundabout.
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Figure 4: Input Features of the Defined Exit Probability Models

• α < 0 indicates that the vehicles is driving towards the outer part of the
roundabout.

2. The normalized straight line distance between the front bumper of the con-
sidered vehicle and the next exit. The distance is normalized by the distance
between the next exit and the previous exit.

3. The normalized lateral position of the considered vehicle in the circular part
of the roundabout. The lateral position takes discrete values. Namely, each
roundabout is divided into a finite amount of 2.25m-large virtual lanes, as
described in [5]. The lateral position of a vehicle is the identifier of the vir-
tual lane it is located in, normalized by the number of virtual lanes in the
roundabout.

In turn, Figures 5a and 5c illustrate the training data which was obtained
from the vehicle track recordings of, respectively, the DR_USA_Roundabout_FT and
DR_CHN_Roundabout_LN roundabouts. Each point is associated with an observed
position of a vehicle in the considered roundabout. The blue-colored points corre-
spond to [heading, distance, lateral position] positions of a vehicle which
subsequently exited at the next available exit. On the contrary, red-colored points
represent positions from which a vehicle stayed in the roundabout at the next exit.
Clear patterns can be observed in the training data, with lower values of relative
heading typically associated with roundabout exits, and vice versa.

2.2.2 Training

Finally, a logistic regression model is trained which returns the probability of a vehi-
cle to exit the roundabout at the next available exit from the three aforementioned
inputs. Figures 5b and 5d illustrate the obtained models. They associate the po-
sition input of a vehicle in a roundabout with its probability of exit at the next
available exit for, respectively, the USA-based and the Chinese roundabout.
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(a) Exit Behavior Scatter

(b) Exit Probability Model

DR_USA_Roundabout_FT

(c) Exit Behavior Scatter

(d) Exit Probability Model

DR_CHN_Roundabout_LN

Figure 5: Extract of two Trained Exit Probability Models and their Matching Train-
ing Input

We observe different patterns of exit probability, as the models are adapted
to the driver behaviors of each roundabout. In the USA-based roundabout, in
the outermost lane, the normalized distance to the exit has a limited impact on
the probability of exit, as opposed to the relative heading of the vehicle. On the
contrary, in the Chinese roundabout, the relative distance to the next exit has a
strong impact on the exit probability. A possible explanation for this difference in
patterns is the difference in the distance between two consecutive entries in both
roundabouts, which is shorter in the USA-based roundabout.

Based on the exit probability models trained for each of the roundabouts listed
in Table 1, we analyze the similarity between each trained models. In turn, we
analyze the contextual characteristics of a roundabout which are the most relevant
to describe the context of training of an exit probability model.
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3 A Similarity Metric for Roundabout Exit Proba-
bility Models

In Section 2, we have described the training of exit probability models on several
roundabouts, to produce accurate exit probability values tailored for each round-
about. Nonetheless, training an exit probability model for a new roundabout is a
costly process. It requires sensing a relatively large set of training data, which is done
in the considered roundabouts by flying a drone multiple times over a roundabout, as
well as calibrating and running a vehicle detection algorithm on the obtained camera
images. As such, it is unpractical to train a new model for new roundabout on the
map, especially in countries where roundabouts are a common type intersection.

Rather, a more efficient approach would be to reuse exit probability models
which have already been trained on a different roundabout. Yet, as illustrated
by Figures 5b and 5d, exit probability models learn different patterns on different
roundabouts. As such, the applicability of a model on another roundabout is un-
certain. In turn, in this section, we compute a pairwise similarity metric for exit
probability models trained for each roundabouts listed in Table 1. Then, exit prob-
ability models are clustered based on their similarity to exhibit the roundabouts
which feature the most similar and interchangeable models.

The aim of this preliminary work is to use the obtained clustering to extract
generic patterns and contextual features which make two roundabout similar. Based
on this, semantic rules can be defined which determine if an existing model is suitable
to be used on a new roundabout. As such, the metric which defines the similarity
between two exit probability models should be generic and objective. What is more,
it is not satisfactory to directly compare the accuracy of two models as:

• It is biased by the selected validation set.

• Two equivalent accuracy scores may be obtained by two completely different
set of predictions.

3.1 Mutual Information

Mutual Information (MI) is a similarity score which measures the mutual dependence
between two random variables. It was originally introduced by C. Shannon in [8],
and measures the theoretical amount of information which can be obtained about
one random variable by observing the outcomes of the other. MI is symmetric and
non-negative, the MI I(X, Y ) of two random variables X and Y equals zero if X
and Y are independent. It is defined as:

I(X, Y ) = H(X)−H(X|Y )

, with:

• H(X) the entropy of X.

• H(X|Y ) the entropy of X conditioned on Y .

The entropy H(X) of a random variable X encodes the average level of infor-
mation which is inherent to the possible outcomes of X. Namely, let us consider X
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to be a discrete random variable which can produce outcomes in the set (xi)i∈[1,n],
with respective probabilities (P (xi))i∈[1,n]. The entropy of X is defined as:

H(X) = −
n∑
i=1

P (xi) · log2(P (xi))

As we expressed the entropy using base 2 logarithms, the unit of H(X) is the
shannon bit. Then, considering an extra random variable Y producing outcomes in
(yi)i∈[1,n], the entropy of X conditioned on Y is defined as:

H(X|Y ) = −
n∑
i=i

m∑
j=1

P (xi, yj)log2(
P (xi, yj)

P (yj)
)

MI scores can be computed for two classifiers, by considering the predictions of
classifiers as random variables. The exit probability models trained in Section 2
are classifiers which associate a class label, i.e., the exit probability, to a set of
inputs, i.e., heading, distance to exit and lateral position. In turn, the MI between
two exit probability models can be computed by considering the predicted exit
probabilities as a random variable. MI has been computed for classifiers and used as
a metric of similarity to ensure the diversity in classifier combinations applications,
in [9] and [10].

Namely, the MI between two exit probability models e1 and e2 can be computed
through the following procedure:

1. Let K ≡ (ki)i∈[1,l], l ∈ N be a set of input [heading, distance, lateral
position] observations. Each input entry ki can be passed as input to e1 and
e2 to produce an output probability, respectively, e1(ki) and e2(ki).

2. The set of probability predictions of e1 and e2 on K input entries, i.e., E1 ≡
(e1(ki))i∈[1,l] and E2 ≡ (e2(ki))i∈[1,l], are assimilated to two random variables
named E1 and E2.

3. The MI of the e1 and e2 models is expressed as I(E1, E2).

MI measures the theoretical amount of information which can be obtained about
the probability predictions of a model from the observation of the predictions of an-
other model. As such, it is a relevant metric to estimate a generic value of similarity
between two exit probability models. In turn, we implement the following procedure
to compute the MI between each pair of roundabouts (R1, R2), R1 6= R2, extracted
from Table 1:

1. Two exit probability models MR1 and MR2 are trained using 5000 training in-
put entries extracted from the track data of, respectively, R1 and R2. For each
roundabout, a 1000-entry validation set is also extracted from the remaining
track data, respectively, VR1 for R1 and VR2 for R2.

2. VR1 and VR2 are gathered and randomly shuffled into a 2000-entry common
validation set VR1,R2 = VR1 ∩ VR2 .

3. The exit probability associated with the entries of VR1,R2 are computed for both
theMR1 andMR2 models. Let (m1i)i∈[1,2000] and (m2i)i∈[1,2000] be, respectively,
the set of exit probability predictions produced by MR1 and MR2 .
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Figure 6: Computed Mutual Information for each Pair of Exit Probability Models

4. We assimilate (m1i) and (m2i) with the outcomes of two random variables
M1 and M2. In turn, the MI of MR1 and MR2 is computed as I(M1,M2).

5. The MI is I(M1,M2) computed using the EDGE estimator as introduced
in [11].

Figure 6 illustrates the pairwise values of MI computed for the roundabouts
listed in Table 1. The identifiers for the INTERACTION roundabouts have been
shortened to include only the country and roundabout codes. Finally, each value
has been computed 20 times with different samplings of training and validation sets
for each exit probability models, to produce 95% confidence intervals. The results
give hints on the level of similarity of the considered roundabouts. Yet, it is not
straightforward to interpret the strength of the similarity, and compare the MI values
as-is. In turn, we proceed to normalize the MI values, to ease their interpretation.

3.2 Normalization

MI values computed in Figure 6 are not upper bounded. As such, it is challenging
to interpret the strength of the mutual information between two exit probability
models. In turn, we aim at normalizing the MI values in a [0, 1] interval, such that a
maximal value indicates a complete determination of one random variable through
the knowledge of the other. The Uncertainty Coefficient (UC) is a normalization of
MI which matches these requirements. The UC of a random variable X given Y is
expressed as:

UC(X|Y ) =
I(X, Y )

H(X)

It comes from the definition that the UC is bounded in the [0, 1] interval:

1. UC(X|Y ) ≥ 0, as I(X, Y ) ≥ 0 and H(X) ≥ 0.

2. UC(X|Y ) ≤ 1, as I(X, Y ) = H(X)−H(H|Y ) =⇒ I(X, Y ) ≤ H(X).
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Figure 7: Computed Uncertainty Coefficient for each Pair of Exit Probability Models

UC(X|Y ) represents the fraction of the information which can be predicted on
the X variable provided full knowledge of the outcomes of Y . As such, it provides a
scale of the level of similarity between two variables. Unlike the MI, the UC is not
symmetric, i.e., the proportion of information obtained on X from the observation of
Y may differ from the proportion of information obtained on Y from the observation
of X.

Provided with the values of pairwise MI listed in Figure 6, the UC value UC(M1,M2)
associated with the exit probability models trained on roundabouts R1 and R2 can
be inferred from H(M1). As introduced in Section 3.1, the entropy is defined for
random variables taking discrete outcomes. In turn, the exit probability predictions
of the considered models, i.e., the outcomes ofM1 andM2, are discretized by round-
ing the probability value to a single digit. Namely, the predicted probabilities may
take 11 possible values, in ( p

10
, p ∈ {0, 1, ..., 10}). In turn, H(M1) is computed using

the formula H(M1) = −
∑10

p=0 P (M1 = p
10

) · log2(P (M1 = p
10

)). The discretization
is also used to compute MI values.

Figure 7 show the obtained UC values for pairs of exit probability classifiers
associated with the roundabouts in Table 2. For each pair of roundabout (R1, R2),
with R1 on the y-axis and R2 on the x-axis, the associated UC(M1|M2) is provided
with a 95% confidence interval, similarly to Figure 6. The results show that the
highest value of similarity for a pair of roundabout are obtained by the (RounD_0,
RounD_1) and (DR_DEU_Roundabout_OF, RounD_2), with about 60% of similarity,
e.g., knowledge of the predictions of RounD_0 theoretically allows to predict 60%
of the predictions of RounD_1. On the other hand, DR_USA_Roundabout_FT and
RounD_2 feature a lower UC of about 20%.

4 Roundabout Context Semantic Description
The pairwise MI and UC values of exit probability models listed, respectively in
Figures 6 and 7 can be used to form clusters of roundabouts based on the simi-
larity of their associated exit probability model. Clustering can be produced using
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Figure 8: Hierarchical Clustering of Roundabouts based on the Similarity of their
Associated Exit Probability Classifiers

distance matrix-based clustering algorithms such as hierarchical clustering [12] or
DBSCAN [13].

Figure 8 shows a possible clustering based on the MI similarity, which is used
because of its property of symmetry. A distance matrix representing the level of
dissimilarity of exit probability classifiers is produced from the inverse of MI values
1
MI

. In turn, clusters are computed using the ward linkage method of hierarchical
clustering [12]. The clusters are illustrated by a dendogram, the y-axis represents
the level of dissimilarity associated with each clusters. As such, the results show
the high similarity of DR_DEU_Roundabout_OF and RounD_2, with a MI value of
1

0.55
= 1.81. It also shows their relative dissimilarity with the other exit probability

classifiers.
Clustering roundabouts by the similarity of their associated exit probability mod-

els opens perspectives of knowledge transfer, or use a model which was trained on
a distinct roundabout to predict exit probabilities. Yet, the clustering is based
on exit probability models which were already trained, which limits the interest of
knowledge transfer, as models which were specifically trained for each roundabout
are already available. In turn, in this section, we analyze the factors in terms of
the geometry of the traffic in roundabouts which may explain high or low values
of similarity between the resulting exit probability models. Generally, this analysis
aims at identifying a generic semantic description of the context of training of exit
probability models, to infer specific types of roundabouts for which exit probability
models are expected to feature a high similarity.

4.1 Geometric Semantics

As a first step, we analyze to what extent the the geometric features of two round-
abouts can impact and explain the similarity of their associated exit probability
models. In turn, we analyze the relationship between the similarity of various geo-
metric features of each pair of roundabouts (R1, R2) in Table 1 and the UC of their
associated exit probability models UC(M1|M2).

As such, we investigate the relationship between UC(M1|M2) and the following
geometric and geographical features of the R1 and R2 roundabouts:
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Table 2: Training Set to Investigate the Relationship between Roundabout Geomet-
ric Disparities and UC

Pair of Roundabouts Same Country ∆Entries ∆Lanes ∆Radius ∆Width UC
USA_FT / USA_SR True 3 0 4.50 4.50 0.31
USA_SR / USA_FT True 3 0 4.50 4.50 0.33
USA_FT / USA_EP True 3 0 2.25 2.25 0.33
USA_EP / USA_FT True 3 0 2.25 2.25 0.37
USA_FT / CHN_LN False 3 1 14.00 0.00 0.33
CHN_LN / USA_FT False 3 1 14.00 0.00 0.43
USA_FT / DEU_OF False 4 0 0.25 4.50 0.22

...
RounD_0 / RounD_1 True 0 1 7.25 4.50 0.60
RounD_1 / RounD_0 True 0 1 7.25 4.50 0.61
RounD_0 / RounD_2 True 1 1 8.50 4.50 0.29
RounD_2 / RounD_0 True 1 1 8.50 4.50 0.29
RounD_1 / RounD_2 True 1 0 1.25 0.00 0.30
RounD_2 / RounD_1 True 1 0 1.25 0.00 0.24

Same country Whether both roundabouts are located in the same country.

∆Entries The absolute difference of the number of entry legs of the two round-
abouts.

∆Lanes The absolute difference of the number of circulating lanes in the circular
part of the two roundabouts

∆Radius The absolute difference of the radius of the two roundabouts, expressed
in meters.

∆Width The absolute difference of the width of the two roundabouts, expressed
in meters.

The ’radius’ and ’width’ features of a roundabout are described in detail in
Section 2.1. Table 2 shows an extract of the 56 entries which associate the geometric
and geographical differences of pairs of roundabouts with the UC of their associated
exit probability models.

Based on the obtained table, we proceed to investigating any potential relation-
ship between the considered geometric features and UC values through two comple-
mentary approaches. On the one hand, we analyze the correlation between UC and
the considered features. On the other hand, we train a decision tree to estimate UC
values based on an input set of geometric and geometrical differences. Because of
its explainability, the obtained decision tree is used to identify further patterns of
relationship between the UC and the considered features.

4.1.1 Correlation Analysis

To begin with, based on the data gathered in Table 2, we analyze the correlation
between the considered geometric and geographical features, and the UC column.
Figure 9 presents the obtained correlation matrix, listing the correlation coefficients
for each feature pair.
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Figure 9: Correlation Coefficients for UC and Roundabout Geometric Disparities

The results indicate a moderate negative correlation between ∆Entries and UC
values, i.e., r = −0.46. Namely, lower absolute differences in the number of entry legs
of two roundabouts tend to be related with a higher UC for their associated exit
probability models. The correlation between ∆Entries and UC values is further
detailed in Figure 10. It shows a scatter plot of (∆Entries, UC) pairs extracted
from Table 2, as well as a visualization of their distribution. It can be observed that
pairs of roundabouts which feature the largest difference in the number of entry legs
feature the lowest UC values. On the contrary, the pairs of roundabouts with the
same number of entry legs feature the highest values of UC in average. As such,
∆Entries can be identified as a significant factor to explain a high value of UC
similarities between the exit probability models associated with two roundabouts.

Additionally, the difference of the width of two roundabouts ∆Width is nega-
tively correlated with UC values, with a correlation coefficient r = −0.35. The other
considered features have a low to negligible correlation coefficient with UC values.
As such, the two main geometric features which can be associated with higher UC
values are low absolute differences of (i) the number of entries and of (ii) the width
of two roundabouts.

4.1.2 Regression Tree Analysis

In parallel to the previously discussed correlation analysis, we perform a comple-
mentary analysis based on the training of a regression tree to infer a level of UC
similarity based on the geometric features of two roundabouts. Namely, we use
Table 2 as a supervised learning training set for a regression tree, associating the
geometric and geographical features to the UC class.

Figure 11 illustrates the obtained regression tree. It encodes a set of explainable
rules and conditions to predict UC values from relevant geometric and geographical
features of two roundabouts. As such, it emphasizes the role of ∆Entries in the
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Figure 11: Regression Tree Trained to Predict UC from Roundabout Geometric
Disparities

determination of similarity values, as previously identified by correlation analysis.
Namely, the highest UC similarity of the exit probability models associated with two
roundabouts, i.e., UC = 0.5 in average, are reached for ∆Entries = 0, combined
with ∆Radius ≤ 8.12m, i.e., a same number of entry legs and a radius difference
below a threshold identified at 8.12m. The role of low values of ∆Width to reach
high similarity, as identified in the previous correlation analysis, is also observed:
For two roundabouts with a different number of entry legs, the highest UC similarity
values, i.e., UC = 0.38 in average, are achieved for width differences below a 1.125m
threshold.

The regression tree analysis emphasizes the role of ∆Entries and ∆Width
as high impact factors for exit probability models UC similarity. What is more,
∆Radius is identified as a key factor to reach highest similarity values, for round-
abouts which feature the same number of entries. For other roundabouts, low values
of ∆Width are a decisive factor.

4.2 Traffic Semantics

In Section 4.1, three geographical features of roundabouts which highly impact the
similarity of exit probability models were identified. Namely, low differences of (i)
the number of entry legs, (ii) the radius and, (iii) the width of two roundabouts can
be linked to higher UC values of the resulting exit probability models. In turn, we
investigate another key aspect of roundabout mobility, possibly influencing the exit
behavior patterns of vehicles, i.e., traffic. In this section, we analyze the impact of
traffic on the exit probability context of a roundabout. Namely, we consider whether
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similar traffic conditions in two roundabouts can lead to higher UC similarity of the
resulting exit probability models.

We follow the following process to investigate the relationship between the traffic
conditions in two roundabouts and the similarity of the resulting exit probability
models:

• A normalized metric is selected and computed to accurately compare the traffic
conditions in two roundabouts.

• The track data available for each of the considered roundabouts listed in Ta-
ble 1 is partitioned into different levels of traffic congestion.

• Exit probability models are trained for each roundabout and for each normal-
ized value of traffic conditions.

• A correlation analysis is performed to investigate the correlation between the
UC of the obtained models and the difference of the normalized traffic condi-
tions in two roundabouts.

4.2.1 Computation of Normalized Traffic Metrics

As a first step, a metric is selected to represent the level of traffic congestion in a
roundabout. A key requirement is the selection of a normalized metric which defines
the level of congestion in a roundabout with reduced bias from the geometry of the
roundabout. Namely, a value of traffic flow which causes a traffic congestion in a
small scale roundabout may have a low impact on traffic fluidity in a larger round-
about. In turn, a normalized metric is required, which allows a relevant comparison
among different roundabouts.

In turn, we select the traffic flow of a roundabout as a traffic level metric, nor-
malized by the capacity of each of the considered roundabouts listed in Table 1.
On the one hand, the traffic flow of a roundabout is defined as the sum of the flow
of vehicles at each entry leg. In turn, the flow at a specific entry is defined as the
number of vehicles which enter the circular part of the roundabout from this entry
in a specific time interval. In this work we use the unit of vehicles per hour for flow
computation. On the other hand, the capacity of a roundabout can be defined as
the maximal traffic flow which can be handled by the roundabout before saturation.

Flow Computation To begin with, we define a procedure to measure the evo-
lution of the flow of vehicles at each entry leg of a roundabout. As illustrated by
Figure 12, showing the example of the CHN_LN Interaction roundabout, we define a
set of sensing areas in each roundabout. In turn, each unique vehicle which crosses
a sensing area is counted and used to compute the number of vehicle having crossed
in a specific time interval. Sensing areas are defined for the entry legs, the exit
legs, and the circulating lanes and illustrated by, respectively, the green, red, and
blue-colored shapes in Figure 12.

In turn, the available vehicle track recordings for each of the considered round-
abouts are divided into time intervals of duration tsub. For each time interval, the
number of unique vehicles having entered the roundabout through any of the entry
sensors are counted. Then, they are divided by the tsub duration, to obtain a value
of the average traffic flow of the considered roundabout over the considered tsub-long
period, i.e., the sum of the flow of each entry leg over the period.
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Capacity Computation The capacity of a roundabout is the maximal traffic
flow value it can support before saturation. Approaches to estimate the capacity
of a roundabout from its observed traffic conditions and shape have been defined,
as summarized in [14, 15]. Different approaches have been defined by organizations
targeting the roundabouts of different countries. In this study, we consider the
roundabouts listed in Table 1 which are mostly located in Germany and the USA.
In turn, we investigate the two following approaches to compute capacity values in
the considered roundabouts:

• The Highway Capacity Manual (HCM) is a publication of the USA-based
Transportation Research Board, which describes concepts and procedures for
computing the capacity of various intersections. It is designed for USA-based
intersections. The latest update of the HCM, published in 2016 as described
in [16] and subsequently referred to as ’HCM2016’, describes a procedure for
computing the capacity of each entry leg of a roundabout. In turn, the capacity
of the roundabout is the sum of the capacity of each entry leg. Specifically,
the capacity of an entry leg can be computed following the HCM2016 model
using Equation 1.

C = A · exp(−B ·Qc) (1)

With:

– C, the capacity of the entry in vehicles per hour.

– A = 3600
tf

, B =
tc−

tf
2

3600

– tf and tc, respectively, the follow-up and critical headway in the round-
about.
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∗ HCM2016 provides a table of values for tc and tf , depending on the
number of lanes of (i) the considered entry and (ii) the circular part
of the roundabout.

– Qc, the flow in vehicles per hour in the circular part of the roundabout,
upstream the considered entry.

∗ This represents the flow of vehicles in the circular part of the round-
about before it merges with the considered entry, and excluding the
flow of vehicles which exit the roundabout before the entry. Namely,
Figure 12 illustrates the computation of the upstream flow of entries
in numbered blue-colored rectangles.

• As an alternative, a model focusing on German roundabouts was described
in [17]. We refer to this approach as the ’German’ model. Following this model,
the capacity at an entry of a roundabout can be computed using Equation 2.

c =

(
1− ∆ · qc

nc

)nc
· ne
tf
· exp(−(t0 −∆) · qc) (2)

Where:

– c = C
3600

, the capacity of the entry in vehicles per second.
– ne and nc, the number of driving lanes in, respectively, the considered

entry leg and the circular part of the roundabout.
– t0 = tc − tf

2

∗ The ’German’ model provides values, i.e., tc = 4.12s and tf = 2.88s.
– ∆, the minimum time headway in the circular part of the roundabout.

∗ The ’German’ model provides the ∆ = 2.10s value.
– qc = Qc

3600
, the flow upstream the entry, as captured in the blue-colored

rectangles of Figure 12, in vehicles per second.

In turn, we partition the track data available for each of the roundabouts listed
in Table 1 in subdivisions of a 1 minute duration. For each subdivision of track data,
the capacity as well as the flow of the roundabout, i.e., summed over each entry of
the roundabout, is computed. Two versions of the capacity are computed, based
on the HCM2016 and ’German’ approaches. Then, a normalized traffic level metric
which we note γ is obtained by dividing the flow by the capacity of a roundabout
for each subdivision.

The obtained values provide an indication of the level of traffic congestion γ for
each 1-minute subrecording of each roundabout. Figure 13 and Figure 14 illustrate
the distribution of the obtained γ values for the subrecordings of, respectively, the
RounD_0 and the USA_FT roundabouts. The orange-colored graph show the distribu-
tion of γ values computed using the ’German’ model for capacity computation, and
the dark blue-colored graph illustrates the γ values obtained through the HCM2016
model. We observe that the HCM2016 and the ’German’ models do not produce
significant differences in γ values, which in turn leads to similar distributions. As
such, we select a single model, e.g., the ’German’ model, to compute γ values of traf-
fic level. In turn, the obtained values are used to analyze the relationship between
the traffic conditions in two roundabouts and the UC similarity of the resulting exit
probability models.
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USA_FT

4.2.2 Impact of Traffic Conditions on Exit Probability UC

As described in Section 4.2.1, the vehicle track data available for each of the con-
sidered roundabouts were split in subrecordings of a duration of 1 minute each. In
turn, the traffic level metric γ was computed for each subrecording. Practically,
the tracks data of a roundabout is divided into a set R of (ri, γi) pairs, with ri a
subrecording extracted from the roundabout, and γi the average traffic level in this
subrecording.

Then, the subrecordings R of each roundabout are partitioned by traffic con-
ditions. Namely, R is divided into several subsets of subrecordings which contain
subrecording with increasingly congested traffic conditions, i.e., R = [R0.0≤γ<0.1,
R0.1≤γ<0.2, R0.2≤γ<0.3, R0.3≤γ<0.4, R0.4≤γ<0.5, R0.5≤γ<0.6], with ∀x, y ∈ [0, 1], x <
y,∀i ∈ {0, ...‖R‖}, x ≤ γi < y ⇐⇒ (ri, γi) ∈ Rx≤γ<y. For example, R0.5≤γ<0.6

contains all the subrecordings (ri, γi) which feature a high level of traffic congestion
γi ∈ [0.5, 0.6]. As such, a discrete partition of subrecordings is obtained, form-
ing an incremental scale of six levels of traffic congestion from γ ∈ [0, 0.1] value
to γ ∈ [0.5, 0.6]. Higher levels of traffic congestion are not considered as only a
negligible amount of subrecordings featured γ > 0.6.

Based on the obtained partition of subrecordings, distinct exit probability models
are trained for each roundabout and for each value of the discrete scale of γ traffic
metric. For example, given the tracks R of a roundabout, a model MR0.5≤γ<0.6] will
be trained exclusively using track data extracted in congested traffic conditions, iif
R0.5≤γ<0.6] contains at least 5000 training entries. Generally, for each roundabout,
models are trained for each partition of traffic congestion which features at least
5000 training entries.

In turn, the UC value is computed for each pair of the obtained exit probability
models, following the same process as in Section 3. Table 3 illustrates an extract
of the obtained 225 rows. The ’pair of exit probability models’ describes the used
roundabouts as well as their associated traffic level γ. Then, ’Same Roundabout’
refers to whether the pair of exit probability models was trained from the same
roundabout, i.e., only with a traffic condition difference. The ’∆γ’ column refers to
the absolute amount of difference between the traffic levels of the two considered
sets of roundabout tracks. Namely, provided a pair of track data sets [(R1, a ≤ γ <
b), (R2, c ≤ γ < d)], it is defined as ∆γ = |a− c| = |b− d|. Finally, the ’UC’ column
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Table 3: Training Set to Investigate the Relationship between Roundabout Traffic
Disparities and UC

Pair of Exit Probability Models Same Roundabout ∆γ UC
(RounD_2, 0.2 ≤ γ < 0.3) / (RounD_1, 0.3 ≤ γ < 0.4) False 0.1 0 .28 ± 0 .003
(USA_SR, 0. ≤ γ < 0.4) / (USA_SR, 0.2 ≤ γ < 0.3) True 0.1 0 .59 ± 0 .006
(USA_FT, 0. ≤ γ < 0.4) / (USA_EP, 0.1 ≤ γ < 0.2) False 0.2 0 .35 ± 0 .001
(RounD_1, 0.2 ≤ γ < 0.3) / (RounD_2, 0.2 ≤ γ < 0.3) False 0.0 0 .26 ± 0 .002
(RounD_0, 0.1 ≤ γ < 0.2) / (USA_FT, 0.2 ≤ γ < 0.3) False 0.1 0 .40 ± 0 .001
(RounD_0, 0.5 ≤ γ < 0.6) / (RounD_1, 0.3 ≤ γ < 0.4) False 0.2 0 .53 ± 0 .002
(USA_EP, 0.2 ≤ γ < 0.3) / (DEU_OF, 0.4 ≤ γ < 0.5) False 0.2 0 .31 ± 0 .003

...
(USA_EP, 0.2 ≤ γ < 0.3) / (CHN_LN, 0.1 ≤ γ < 0.2) False 0.1 0 .41 ± 0 .003
(USA_FT, 0.3 ≤ γ < 0.4) / (DEU_OF, 0.3 ≤ γ < 0.4) False 0.0 0 .23 ± 0 .001
(CHN_LN, 0.1 ≤ γ < 0.2) / (RounD_0, 0.1 ≤ γ < 0.2) False 0.0 0 .48 ± 0 .003
(CHN_LN, 0.0 ≤ γ < 0.1) / (USA_EP, 0.2 ≤ γ < 0.3) False 0.2 0 .41 ± 0 .003
(USA_FT, 0.2 ≤ γ < 0.3) / (USA_EP, 0.1 ≤ γ < 0.2) False 0.1 0 .35 ± 0 .002
(RounD_0, 0.3 ≤ γ < 0.4) / (USA_FT, 0.4 ≤ γ < 0.5) False 0.1 0 .40 ± 0 .002

lists the associated UC values for each pair with a 95% confidence interval, obtained
by running 20 computations per pair from different random samplings of training
entries.

Provided with the data of Table 3, we analyze the correlation between the differ-
ence in the traffic conditions ∆γ of two set of tracks data and the UC value of their
resulting exit probability models. Namely, we compute the correlation coefficient
between ’Same Roundabout’ and ’UC’, as well as ’∆γ’ and ’UC’. The aim of this
computation is both to:

• Investigate whether traffic plays an important role in the exit probability model
UC values.

• Compare the influence of traffic to that of geometrical features. Do two distinct
roundabouts with similar traffic conditions lead to higher UC values than the
same roundabout under different traffic conditions?

On the one hand, the correlation coefficient of ∆γ with UC equals to r = 0.068,
and r = −0.035 when the entries which involve the same roundabout, i.e., ’Same
Roundabout’ is True, are removed. On the other hand, ’Same Roundabout’ and
’UC’ are highly correlated with r = 0.77. As such, no link can be observed between
the traffic conditions from which two exit probability models are trained and their
UC similarity. On the contrary, regardless of traffic conditions, models trained on
a single roundabout feature a high UC correlation, suggesting a strong impact of
roundabout geometry rather than traffic conditions on the UC similarity of exit
probability models.

Specifically, Figure 15 illustrates the detailed relationship between the ∆γ and
UC. It shows both:

• The distribution of the ∆γ and UC values in Table 3, in the top-left and
bottom-right corners.

• Scatter plots illustrating the (∆γ,UC) pairs from Table 3, in the top-right and
bottom-left corners.
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Figure 15: Relationship between UC and the Difference of Traffic Congestion Levels
∆γ

What is more, the data illustrated by Figure 15 is partitioned in two classes, i.e.,
data points which were obtained from (i) the same roundabout with different traffic
conditions in light-blue colors, and (ii) distinct roundabouts with potentially similar
traffic conditions in red colors.

In turn, the obtained visualization illustrates the lack of correlation between ∆γ,
i.e., the difference in the traffic congestion level of input track data, and the UC sim-
ilarity of the resulting exit probability models. This pattern is observed regardless of
whether data points from only the same roundabouts, only distinct roundabouts, or
any roundabouts are considered. On the contrary, Figure 15 illustrates the impact
of the geometric characteristics of two roundabouts in the UC similarity of resulting
exit probability models. Namely, models trained on the same roundabout, i.e., with
the same geometric shape, as shown in light-blue points, largely lead to higher UC
values than models trained on distinct roundabouts, regardless of traffic conditions.

Nonetheless, in the case of distinct roundabouts, it can be observed that the
highest obtained UC values decrease as ∆γ increases. Namely, the distinct round-
abouts which lead to the highest UC values feature low traffic differences. In turn,
while they do not indicate high similarity values alone, low differences in traffic con-
gestion levels could act as a secondary factor and a prerequisite to reach the highest
UC values, i.e., in the [0.65, 0.7] range in this case.
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4.3 Discussion

In this section, the characteristics and features of two roundabouts which lead to
an increased expected similarity of their associated resulting exit probability models
were identified. Generally, we identified contextual features which are relevant to
semantically describe the context of training and usage of exit probability models.
The pertinent features include the following geometric features: the number of entry
legs, as well as radius and width of a roundabout. Traffic conditions played a minor
role in the similarity of exit probability models.

In turn, classes of exit probability models can be described and extracted to, for
example, (i) apply existing models to unknown roundabouts with a similar context,
or (ii) complete the training data of an exit probability model from tracks data
extracted from distinct roundabouts with a similar context. As such, as a step
forward and in the next section:

• We define a set of similarity conditions, based on the semantic description
of the context of two roundabouts, to assess whether their context can be
considered similar.

• To verify the relevance of the defined similarity conditions, we investigate the
accuracy of knowledge transfer based on the context similarity of two distinct
roundabouts.

– The accuracy of creating exit probability knowledge on an unknown
roundabout for which no exit probability model has been trained is com-
pared considering two approaches, namely, using existing exit probability
models trained in (i) similar contexts, and (ii) non-similar or randomly
selected contexts.

– The accuracy of model training for a new roundabout is compared consid-
ering two approaches, namely, completing the training data with vehicle
tracks extracted from roundabouts with (i) a similar context, and (ii) a
non-similar or randomly selected context.

5 Accuracy of Context-Based Roundabout Exit Prob-
ability Knowledge Transfer

In Section 4, we identified a set of factors and rules which impact the information
theoretic similarity between two roundabouts. Namely, geometric factors such as the
number of entry legs, the radius and width of roundabouts were found to significantly
influence the similarity of the resulting exit probability models. On the contrary,
traffic conditions had no clear influence. In turn, we use the obtained similarity
factors to define a general semantic description of the context of training and usage
of exit probability models. We aim at extracting classes of exit probability models
with similar context, which support knowledge transfer with increased performance.

Namely, it is a costly procedure to train an exit probability model for a new,
unknown roundabout. In the datasets used in this paper, the input vehicle track
data required for training is obtained by flying a drone multiple times over each
roundabout and extract the position of vehicles from camera images, which implies

25



complex logistics. Instead, the definition of contextual semantic rules to identify
existing exit probability models which can be accurately applied to distinct un-
known roundabouts would allow the exit probability estimation on a large set of
roundabouts from a much smaller set of exit probability models.

In this section, we define semantic rules to assess the similarity of the context of
two roundabouts. In turn, we assess whether the context similarity of two round-
abouts can be related to a higher accuracy of the (i) application and (ii) training of
an exit probability model from one roundabout to the other:

• To begin with, we define a set of context similarity conditions based on the
context-influencing features identified in Section 4. A context similarity con-
dition is a function which takes two exit probability model contexts as input
and returns whether or not they should be considered similar. We define three
conditions which are increasingly strict in terms of their requirements for two
contexts to be considered similar.

• In turn, we show that estimating exit probabilities on an unknown roundabout,
i.e., for which no model was directly trained, features a higher accuracy when
using existing models trained on distinct roundabouts with a similar context,
as opposed to randomly-selected other models, potentially with non-similar
context.

• Lastly, we consider exit probability models being trained for new roundabouts
for which a limited amount of training data is available. We show that the
models perform more accurately when the available training data is completed
from vehicle tracks extracted from roundabouts which feature a similar con-
text, than from other randomly-selected roundabouts.

5.1 Context Similarity of Exit Probability Models

To begin with, based on the relevant features to describe the context and the similar-
ity between two roundabouts, as identified in Section 4, we define a set of similarity
conditions. They are binary, semantically described functions which compare the
context of two roundabouts and assess whether the contexts can be considered sim-
ilar for the use case of exit probability knowledge usage and training.

As identified in Section 4, the key contextual features which influence the in-
formation theoretic similarity of two roundabouts are geometric, specifically, the
difference of (i) the number of entry legs, (ii) the width, and (iii) the radius of the
two roundabouts. On the one hand, the difference of entry legs and width is neg-
atively correlated with the UC similarity of the resulting exit probability models,
i.e., lower differences can be related to an expected higher similarity. On the other
hand, higher UC similarity values are obtained below a threshold of radius differ-
ence, which was identified at 8.12m for the roundabouts considered in this study,
listed in Table 1.

In turn, we define a set of similarity conditions of gradual strictness. Namely, the
’Strict Similarity’ Condition describes a strict condition of similarity between the
context of two roundabouts, which sets constraints on all three of the radius, width,
and number of entry legs of the roundabout. In turn, the ’Moderate Similarity’
Condition is an instance of a moderate similarity condition. It follows the path
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to the leftmost leaf of the regression tree of Figure 11 which associates higher UC
similarity values with the ∆Entries and ∆Radius conditions, but has no constraint
on ∆Width. Yet, the constraint on ∆Radius is lowered from 8.12m in the regression
tree to 6m. Finally, the ’Weak Similarity’ Condition is a weaker condition, which
follows the condition identified in the regression tree of Figure 11, without lowering
the ∆Radius threshold.

The specific choice of the thresholds on ∆Entries, ∆Radius, and ∆Width in the
’Strict Similarity’, ’Moderate Similarity’, and ’Weak Similarity’ Conditions is given
as an example of similarity conditions of gradual strictness. Values are chosen such
that the number of roundabouts which match the similarity conditions grow with
each stricter condition, based on the roundabout contextual data listed in Table 1.

∆Entries = 0 ∧∆Radius ≤ 2.0m ∧∆Width ≤ 2.0m (Strict Similarity)

∆Entries = 0 ∧∆Radius ≤ 6.0m (Moderate Similarity)

∆Entries = 0 ∧∆Radius ≤ 8.12m (Weak Similarity)

5.2 Performance of Context-Aware Model Application

In this section, we assess whether the context similarity of two roundabouts, assessed
by the similarity conditions defined in Section 5.1, affects the accuracy of using exit
probability models. Namely, we aim to compare the accuracy of the exit probability
which is computed by an exit probability model which is applied on a distinct round-
about that the one it was trained from, when it features (i) a similar context, and
(ii) a randomly-selected or non-similar context. Generally, this section investigates
the role of context-aware exit probability model application on the accuracy of the
produced knowledge.

5.2.1 Evaluation Procedure

For each roundabout Rtarget and for each similarity condition E, i.e., one of the
three similarity conditions defined in Section 5.1, the accuracy of exit probability
knowledge created from models trained in roundabouts with a similar context is
compared to that of models created in non-similar or random contexts, in the fol-
lowing process:

1. For each roundabout R,R 6= Rtarget listed in Table 1:

(a) A set Vtarget of 1000 validation entries is extracted from the vehicle tracks
of the target roundabout Rtarget.

(b) An exit probability model is trained from R vehicle tracks and applied
to the validation data Vtarget. Namely, the model predicts an exit iif the
estimated exit probability is strictly greater than 0.5.

(c) The obtained exit predictions are matched to the ground truth, i.e., the
observed real behavior of vehicles in the Vtarget validation data, to com-
pute various accuracy metrics.
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2. The roundabouts and results are partitioned into three distinct groups:

• RoundaboutsR which feature a similar context thanRtarget, i.e., E(R,Rtarget).

• Roundabouts R which do not feature a similar context than Rtarget, i.e.,
¬E(R,Rtarget).

In turn, the accuracy score associated with the roundabouts in each group are
compared to assess whether context-aware exit probability knowledge creation
improves the accuracy of the produced knowledge.

5.2.2 Considered Accuracy Metrics

In turn, we consider several accuracy metrics to assess the performance of the exit
probability prediction of the models associated with each roundabout R, featuring
similar or non-similar contexts, on the tracks data of the target roundabout Rtarget:

• Accuracy, i.e., the proportion of correct predictions among the total 1000 val-
idation entries.

• Precision, i.e., TP
TP+FP

∈ [0, 1], with TP and FP the number of, respectively,
true positives and false positives. Namely, a true positive is a case where the
model predicted an exit, which did happen. On the contrary, a false positive
is a case where the model predicted an exit, but the considered vehicle did not
exit. In turn, precision penalizes false positives. It is a key asset in this use
case as a serious collision risk may occur if a vehicle enters a roundabout based
on a false prediction of an incoming vehicle to exit the roundabout before any
chance of conflict.

• F1-score, i.e., the harmonic mean of precision and recall. Recall is a metric
which is similar to precision. It penalizes false negatives, i.e., false predictions
that a vehicle will stay in the roundabout, which are less critical than false
positives. While they may increase queues because of an entering vehicle
repeatedly predicting incoming vehicles to stay in the roundabout, it does
not induce an immediate collision risk. Nonetheless, it is relevant to consider
the F1-score as a mean of both precision and risk, to penalize conservative
models which reach a high precision by predicting that vehicles will stay in
the roundabout in clear exit situations.

5.2.3 Results

Strict Context Similarity Condition To begin with, Figure 16 illustrates the
obtained results in terms of accuracy, when using the ’Strict Similarity’ Condition
as the similarity condition to determine whether the context of two roundabouts
can be considered similar. The results are shown for each of the eight considered
target roundabouts on the x-axis. In turn, for each target roundabouts, blue and
red-colored points show the accuracy obtained when predicting the exit of vehicles
using, respectively, models trained in a distinct roundabout with a similar, and
non-similar context. What is more, the black-colored dot represents the accuracy
obtained when estimating probabilities using a model from tracks data extracted
from the same target roundabout, for reference. Each value point is accompanied
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Figure 16: Accuracy of Exit Probability Knowledge Transfer for Model Application
using the ’Strict Similarity’ Condition

by 95% confidence intervals obtained from 20 distinct computations using different
random samplings of training data for the training of the considered exit probability
model.

Due to the limited amount of roundabouts available in the considered datasets,
most roundabouts listed in Table 1 do not feature other roundabouts with a similar
context according to the ’Strict Similarity’ Condition. The pair of roundabouts
composed of DEU_OF and RounD_2 is a notable exception. In turn, the available
data shows that, when the exit probability model trained on DEU_OF is applied
on RounD_2 and vice versa, the accuracy, as well as F1-score and precision, of the
produced exit probability knowledge is significantly higher than with models trained
in non-similar contexts. While this initial result goes in the direction of showing
the impact of context-aware knowledge creation on knowledge accuracy, in the case
of exit probability knowledge, the lack of similar roundabouts limits the amount of
data to interpret.

Moderate Context Similarity Condition In turn, we investigate the impact
of context-aware knowledge creation for exit probability models using the less strict
similarity condition defined in the ’Moderate Similarity’ Condition. In turn, more
roundabouts feature other roundabouts with a similar context, which provides more
data, but the similarity is less strong, which may induce noise.

Figure 17 illustrates the obtained accuracy results when the similarity of round-
abouts is defined by the ’Moderate Similarity’ Condition. Using this less strict
similarity condition, more roundabouts feature distinct roundabouts with a simi-
lar context. Namely, USA_SR, USA_EP, DEU_OF, and the three RounD roundabouts
feature at least one similar roundabout. Using the ’Moderate Similarity’ Condi-
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Figure 17: Accuracy of Exit Probability Knowledge Transfer for Model Application
using the ’Moderate Similarity’ Condition

tion, models trained in similar contexts yield higher accuracy metrics than others
for DEU_OF, RounD_0, RounD_2, and similar values of accuracy metrics for USA_EP.
Yet, noise can be observed for USA_SR and RounD_1, in which similar context models
perform less accurately than some non-similar models, potentially due to the weaker
constraints of the considered similarity condition.

As an interpretation, the weaker Moderate Similarity Condition increases the
amount of matches and similar contexts for roundabouts listed in Table 1. On the
other hand, it also introduces noise, from which a few models are flagged as having
a similar context to a target roundabout perform less accurately than non-similar
models. For example, out of the two similar models identified for USA_SR, one model
is performing more accurately than other models, while the other yields relatively low
accuracy metrics. As such, selecting a single model based on a moderate condition
of similarity involves a risk of relying on a ’noisy’ model which yields relatively low
accuracy metrics.

To alleviate the risk of selecting a single model which yields low accuracy despite
being considered moderately similar, we group the exit probability predictions of
several similar models in an ensemble voting approach, as described in [18]. The
aim of this approach is to reduce the impact of potential noise in the probability
produced by a single model. Namely, the following process is implemented:

• The n models M1, ...,Mn which have been trained in a similar context to
Rtarget, according to the considered similarity condition E (here the ’Moderate
Similarity’ Condition), are identified and listed in a Msimilar set of n elements.

• To evaluate the set of 1000 validation entries Vtarget extracted from Rtarget

tracks data, as defined in Section 5.2.1:
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1. Each validation entry v ∈ Vtarget is fed as input to each model ofMsimilar,
to produce an exit probability value, i.e., ∀i ∈ [1, n], pi = Mi(v), with
Mi(v) the output of the application of Mi on v, i.e., a value of exit
probability pi ∈ [0, 1].

2. The ensemble voting technique of voting regression is used for averag-
ing the predictions of a set of classifiers with the same interface. We
implement voting regression for all the predictions of exit probability
produced by the models M1, ...,Mn. Namely, the probability of exit as-
sociated with the validation entry v is the average of the probabilities
p1, ..., pn: pvoting =

∑n
i=1 pi
n

.
3. pvoting is considered as the prediction of the ensemble of the available

models which have been trained in a similar context than Rtarget. In
turn, its accuracy on Vtarget is evaluated, following the process described
in Section 5.2.1.

To compare the accuracy of the ensemble prediction of similar models with other
models, the procedure is repeated for the set of models which have been trained in
a non-similar context than Rtarget, as well as for the set of all models except the
one trained on Rtarget tracks data. Figure 18 illustrates the obtained results, still
using the ’Moderate Similarity’ Condition. In addition to the content presented in
Figure 17 and for each roundabout, Figure 18 shows the accuracy of the ensemble
voting predictions of the grouped (i) similar models, (ii) non-similar models, and
(iii) all models except target, respectively, in light-blue, red, and green pentagons.
Each point features a 95% confidence interval, obtained by training each model 20
times with different random samplings of training data extracted from the vehicle
tracks.

We observe that the ensemble voting alleviates the noise related to the ’Moderate
Similarity’ Condition. Namely, while models which are similar to the context of
RounD_1 yield relatively low accuracy when taken independently, their ensemble
predictions reach a significant improvement of accuracy scores compared with any
other model or ensemble of models. Similarly, the ensemble predictions of the models
similar to the context of USA_SR reach a significantly improved accuracy, compared
with the relatively low accuracy reached by a similar model taken independently.

Generally, the average accuracy of ensemble voting from similar exit probability
model reaches 80.4± 4.6%. It is equivalent to the single most accurate non-similar
model of each roundabout, with a 0.8±4.3% change in accuracy in average. In turn,
ensemble voting is a promising approach to consistently get accurate results when
using moderate to weak similarity conditions, which can be required in cases where
the amount of available models is limited.

Weak Context Similarity Condition Lastly, we investigate the impact of using
a weak context similarity condition as defined in the ’Weak Similarity’ Condition,
e.g., in cases where a strongly limited amount of trained models are available to
assess exit probabilities in an unknown roundabout. Figure 19 shows the accuracy
of context-based exit probability knowledge creation, as in Figure 18, but using the
’Weak Similarity’ Condition as a context similarity condition. As a result, more pairs
of exit probability models match the similarity condition, for the USA_SR, USA_EP,
CHN_LN, RounD_0 and RounD_1 roundabouts.
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Figure 18: Accuracy of Ensemble Exit Probability Knowledge Transfer for Model
Application using the ’Moderate Similarity’ Condition

Nonetheless, the models which were newly flagged as ’similar’ to distinct roud-
about contexts perform less accurately than models flagged as ’similar’ following
stricter similarity conditions. This shows that a threshold exists in the level of
’strictness’ of context similarities in terms of the accuracy of the produced knowl-
edge. Namely, context-aware exit probability knowledge creation performs more
accurately than context-agnostic knowledge creation, provided models with a suffi-
ciently strong context similarity are used.

5.2.4 Impact & Discussion

In this section, we investigated context-aware knowledge transfer through the ap-
plication of an existing exit probability model on a distinct roundabout for which
no model was trained. We observe increase accuracy metrics of the produced exit
probability knowledge when the used model has been trained in a similar context
than the roundabout it is applied to.

To define whether the context associated with two roundabouts is similar, we
described a set of three gradually less strict similarity conditions, in the ’Strict
Similarity’, ’Moderate Similarity’, and ’Weak Similarity’ Conditions. In turn, we
observed the following results:

• Using a strict context similarity condition, i.e., the ’Strict Similarity’ Con-
dition, a low amount of the roundabouts listed in Table 1 feature a similar
context. In turn, applying models on similar roundabouts significantly im-
proved the accuracy metrics of the produced exit probability knowledge.

• Using a moderate context similarity condition, i.e., the ’Moderate Similarity’
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Figure 19: Accuracy of Ensemble Exit Probability Knowledge Transfer for Model
Application using the ’Weak Similarity’ Condition

Condition, more of the roundabouts listed in Table 1 feature a similar context.
Yet, some noise is introduced in the results, i.e., some similar models perform
less accurately than non-similar models, as the context similarity gets weaker.
This can be mitigated by grouping the exit probability predictions of several
similar models through ensemble voting.

• Using a weak context similarity condition, i.e., the ’Weak Similarity’ Condi-
tion, further roundabouts listed in Table 1 feature a similar context. Yet, no
pattern is identified which improves the accuracy of similar models using this
overly weak similarity condition.

The obtained results show the impact and role of context in knowledge creation
and knowledge transfer in the use case of roundabout exit probability models, and
provide hints on its general role in other highly context-dependent models in the
vehicular and transportation domains. As such, we argue that an analysis of the
context of training of models, as well as condition for context similarity should be
tuned for each context-dependent model.

What is more, the results illustrate the need for a balance to be found between
the number of available models for knowledge transfer and the level of strictness of
the context similarity condition. Namely, if the context similarity condition is too
strict, few to no available models may be similar to a specific context. On the other
hand, if the context similarity condition is too permissive, models judged as similar
models are less likely to perform accurately, relatively to other models.

Generally, this section demonstrates the impact and potential for a semantic
description of the context of training and application of context-dependent models,
notably in the vehicular and transportation domains. Provided with a semantic
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description of the current driving context as well as the context of application of
available models, vehicles could efficiently network models to be applied in the right
context, to reach a higher accuracy.

5.3 Performance of Context-Aware Model Training

In Section 5.2, the similarity of the context of training of an exit probability model
was shown to positively impact context-aware knowledge application, i.e., the use
of a fully trained model on a distinct roundabout with a similar context. In turn,
in this section, we investigate the performance of context-aware model training.

As shown in Section 5.2, while using models trained in a similar context to target
roundabouts approached the accuracy of models trained directly on tracks data of
the target roundabout, it did not exceed it. Namely, training a model specifically
for a target roundabout, using vehicle track data extracted from it, performed with
optimal accuracy. Yet, training a model for a specific roundabout requires gathering
training data, which is a complex and costly task, potentially flying drones over
roundabouts.

In turn, we investigate the possibility of context-aware model training. Namely,
we consider the case of training an exit probability model for an unknown round-
about for which little to no training data is available. In turn, we complete the avail-
able training data with vehicle tracks extracted from distinct, known roundabouts
which feature a similar context. Finally, the accuracy of the obtained model is
compared with the case in which training data is completed from randomly-selected
roundabouts, i.e., not necessarily with a similar context.

5.3.1 Evaluation Procedure

We contribute an algorithm of context-aware knowledge transfer for model training
in the use case of roundabout exit probability models. The algorithm is given in
Figure 20. It involves the completion of the limited available training data of an exit
probability model from tracks extracted from roundabouts which feature a similar
context.

In Section 5.2, the ’Moderate Similarity’ Condition showed a balance between
the number of matching roundabout contexts and the accuracy of context-aware
knowledge application. In turn, we choose it as a similarity condition E to investi-
gate the performance of context-aware exit probability model training through the
procedure described in Figure 20.

To procedure of Figure 20 is applied for each each δ ∈ {0.0, 0.1, 0.2, ..., 1.0}, and
for each roundabout Rtarget of Table 1 which has at least one distinct roundabout
with a similar context. This excludes USA_FT and CHN_LN. This process is repeated 20
times with different random samplings of training data, to compute and compare the
95% confidence intervals of the accuracy scores of models trained from data sourced
from (i) similar context, (ii) non-similar context, and (iii) all other roundabouts.

5.3.2 Results

Figure 21 illustrates the obtained results for each of the considered roundabouts in
six graphs, which can be read as follows:
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1. We name Rs the set of the considered roundabouts, i.e., listed in Table 1. We consider the
use case in which an exit probability model is being trained for an unknown roundabout
Rtarget ∈ Rs, for which a limited amount of training data is available. In turn, it must be
completed with training data extracted from other roundabouts.

2. Using an input similarity condition E, we compute:

(a) Rssimilar, the set of roundabouts which have a context which is similar to Rtarget
according to E: ∀R ∈ Rs \Rtarget, E(R,Rtarget) ⇐⇒ R ∈ Rssimilar.

(b) Rsdistant, the set of roundabouts which have a context which is non-similar to
Rtarget, i.e., contextually ’distant’, according to E:
∀R ∈ Rs \Rtarget,¬E(R,Rtarget) ⇐⇒ R ∈ Rsdistant.

(c) Rsothers ≡ Rssimilar ∪Rsdistant ≡ Rs \Rtarget.

3. As in Section 2, we train an exit probability model targeting Rtarget with a total of 5000
training entries. Yet, we consider that only a limited amount of training data has been
sensed for Rtarget, i.e., only a fraction δ ∈ [0, 1[ of the required number of training entries
is available in the training data of Rtarget. In turn, we complete the δ · 5000 available
entries with (1− δ) · 5000 training entries extracted from the vehicle tracks of other known
roundabouts.

4. Namely, an exit probability model is trained for Rtarget by completing the training data
using (1− δ) · 5000 training entries extracted from other known roundabouts with a similar
context, i.e., in Rssimilar, as follows:

(a) Let N = ‖Rssimilar‖ the number of known roundabouts which feature a similar
context to Rtarget, according to the similarity condition E.

(b) An even number of training data is extracted from each similar roundabout
Ri ∈ Rssimilar. Namely, ∀i ∈ [1, N ], (1−δ)·5000N entries are extracted from Ri.

(c) The set of training data composed of the δ · 5000 entries from Rtarget as well as the
(1− δ) · 5000 entries from the roundabouts of Rssimilar is randomly shuffled, and
used to train a model to be applied to Rtarget tracks.

5. The training process described in Item 4 is repeated to train two new models, replacing
Rssimilar by, respectively, Rdistant and Rothers.

6. The accuracy metrics of each of the three obtained exit probability models, respectively,
trained from fractions of training data from (i) similar, (ii) non-similar, and (iii) all other
models are computed, using a 1000-entry evaluation set extracted from the tracks data of
Rtarget. In turn, the accuracy of context-aware model trained can be compared with other
approaches which do not take the context of collection of the training data into account.

Figure 20: Procedure for Exit Probability Training Knowledge Transfer and Com-
parison with Context-Agnostic Approaches
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• The x-axis shows the evolution of the proportion δ of training data which is
directly extracted from the target roundabout. In turn, the remaining (1− δ)
fraction of data is completed from distinct roundabouts. Namely, δ = 0.0
indicates that the model is trained fully from distinct roundabouts data, and
δ = 1.0 indicates that the model is fully trained directly from the track data
of the target roundabout.

• The y-axis shows the accuracy of the trained models, with 95% confidence
intervals, in the following scenarios:

1. Context-aware model training, i.e., the training data was completed with
data from distinct roundabouts with a similar context, in blue colors.

2. The training data was completed with data from distinct roundabouts
with a non-similar, i.e., ’distant’ context, in red colors.

3. The training data was completed with data from all available distinct
roundabouts, i.e., ’other’ roundabouts, in green colors.

In all the considered roundabouts, context-aware exit probability model training
significantly improved the accuracy of the trained model, specifically when a low
proportion of training data is available from the target roundabout, i.e., δ ≤ 0.2.
Specifically, when no training data is available for the target roundabout, using
training data from roundabouts with a similar context yields a 80 ± 5% accuracy,
i.e., a 8.5± 4.8% increase from using non-similar roundabouts.

What is more, for DEU_OF, RounD_0, and RounD_2, near optimal accuracy is
obtained from δ = 0 and remains stable as the proportion of training data from the
target roundabout increases. On the contrary, context-agnostic approaches produce
model which reach optimal accuracy at higher values of δ, respectively, δ = 0.7 for
RounD_0 as well as RounD_2, and δ = 1.0 for DEU_OF.

The obtained results demonstrate the impact and role of context on the accuracy
of knowledge training in the case of roundabout exit probability knowledge, and
opens perspectives on the potential generic impact of context-aware model training
in vehicular, or transportation applications.

5.3.3 Impact & Discussion

In this section, we studied the role and impact of context on the accuracy of knowl-
edge model training, in the applied case of roundabout exit probability knowledge.
Namely, we consider the case in which a limited amount of training data is available
for a roundabout. In turn, the results showed a significant increase in accuracy
scores when the training data is completed from data collected in a similar context.

Generally, the obtained results open perspective on the potential impact of con-
text networking in vehicular and transportation applications. Vehicles are increas-
ingly involved in ML model training through distributed and cooperative training
approaches such as Distributed ML [19] or Federated ML [20]. As the vehicular en-
vironment is highly dynamic, the driving environment of a vehicle is likely to evolve
rapidly over time. As such, learning coordinators have optimized training client
selection mechanisms based on physical characteristics such as channel link [21],
computational power [22], energy usage [23], or mobility [24]. Yet, to the best of
our knowledge, no mechanism has been defined to ensure that both:
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(a) USA_EP (b) USA_SR

(c) DEU_OF (d) RounD_0

(e) RounD_1 (f) RounD_2

Figure 21: Accuracy of Ensemble Exit Probability Knowledge Transfer for Model
Training using the ’Moderate Similarity’ Condition
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• The vehicle which is selected for training owns the right type of training data.
For example, in the exit probability case, training vehicles must own the kine-
matics data of other sensed vehicles in a roundabout, which means they must
have crossed a roundabout in recent history before maintenance mechanisms
discard the training data.

• The context in which the training data was sensed matches the desired context
of training of the model being trained. Namely, a key contribution of this paper
is the significant role of context in knowledge training accuracy. According to
the results of this section, contributing training data sensed in the wrong
context, e.g., from a 7-entry roundabout, whereas the trained model targets a
4-entry roundabout, reduces the accuracy of the final model.

In turn, context-based knowledge training opens perspectives of (i) extending the
amount of available training data by using training data sensed in the right context
regardless of its source, while (ii) avoiding an accuracy loss related to selecting
context-irrelevant data. Generally, the obtained results in terms of the accuracy
of both context-aware knowledge application and training suggest a need for the
definition and networking of context semantics for applications of ML which are
highly relevant on the context. In turn, a generic knowledge training as a service
could be defined for cooperative training in vehicular networks, which inherently
feature heterogeneous driving and training contexts. Knowledge training as a service
has the potential to match the semantic annotations describing a model with the
context of driving of each vehicle. Then, appropriate training nodes can be selected
to train knowledge with the right context and reach higher accuracy scores.

6 Conclusion
Roundabouts may be challenging intersections to cross for highly-automated vehicles.
They are yield-type intersections which may require negotiation which other vehicles
to be crossed safely and efficiently. Namely, in cases of congested traffic, understand-
ing the intentions of vehicles which are already in the roundabout is necessary to
take the decision of whether to enter the roundabout. If highly-automated vehicle
waits until no potentially conflicting vehicle is in the roundabout, it may create long
queues and dissatisfaction from human road actors. On the other hand, it is unsafe
to take the decision to enter a roundabout without understanding the intentions of
other vehicles on whether to exit or stay in the roundabout. In a previous work,
we defined a machine learning model to estimate the probability of a vehicle to exit
a roundabout based on its position relatively to the next exit. Yet, training such
models are costly in terms of training data sensing, and so far requires flying drones
over the roundabouts to extract vehicle track data. In this paper, we identify and
evaluate the accuracy of a relevant semantic description to describe the context of
training of an exit probability model, based on the roundabout it was trained on.
We find that a low difference in the number of entry legs, as well as in the width
and radius of two roundabouts leads to a higher similarity of their associated exit
probability models, which translates to both (i) an increased accuracy when apply-
ing an exit probability model on the other roundabout, and (ii) when training a
new exit probability model and completing the training data with data obtained in
a roundabout with a similar context. The identified semantic description provides
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a base to describe the context of usage and training of roundabout exit probability
knowledge, and allows to efficiently provide exit probability knowledge on a large
spectrum of roundabouts from only a small amount of trained models. Generally,
it can be used to support smart knowledge networking operations in vehicular net-
works, which take the context of usage of models into account when describing,
storing, and disseminating knowledge models.
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