
Two-stream Convolutional Neural Network for Image Source Social Network
Identification

Alexandre Berthet
Department of Digital Security

EURECOM
Sophia Antipolis, France

Email: berthet@eurecom.fr

Francesco Tescari
EURECOM

Sophia Antipolis, France
Email: tescarifra@gmail.com

Chiara Galdi, Jean-Luc Dugelay
Department of Digital Security

EURECOM
Sophia Antipolis, France

Email: {galdi, dugelay}@eurecom.fr

Abstract—The identification of the source social network
from an image is a relatively new research area in the image
forensic domain. The classification of the source social network
can be a crucial element for the growing number of cases
of social-media related crimes, such as cyberbullying. This
paper takes into consideration the state-of-the-art approaches
addressing this problem and proposes a new methodology
to improve the results obtained to date. Our identification
technique is based on the idea that social networks perform
some processing on the uploaded images, such as resizing or re-
compression, and leave some artifacts on them. We propose to
use discrete cosine transform features and image noise residual
analysis to detect such artifacts. A two-stream convolutional
neural network, which combines the inputs from these two
artifact domains, is trained to classify the source social network
of images coming from three different datasets. This paper
explores the two domains, proposes strategies for managing
unbalanced datasets, provides details about the proposed two-
stream convolutional neural network, and presents the results
achieved by our method compared with the current state-of-
the-art approaches.

Keywords-Digital image forensics; Social network identifi-
cation; Convolutional neural networks; Two-stream neural
networks; Noiseprint.

I. INTRODUCTION

We live in a society where social networks (SNs) have
become an integral part of our daily life. Billions of images
are exchanged every day on SNs for a variety of purposes,
which sometimes include malicious activities. Cyberbully-
ing, violence instigation, and psychological harassment are
sometimes linked to media files exchanged via SNs like,
for example, WhatsApp, Facebook, or Instagram. When a
device is confiscated from a suspect, an image can become
a criminal evidence and therefore detecting the origin of that
image can be really useful to help with the investigation.

The goal of this research is to propose and develop a
methodology that enables the identification of the source SN
from an image. Each SN possesses its own fingerprint that
depends on its processing algorithm. Therefore, the main
idea is to analyze the artifacts that are left on an image
to identify the source SN. The identification is performed
blindly, using only the data that is extracted from the image,

without trusting the image header data, which could be easily
removed or edited without modifying the image content. The
presented methodology uses two types of feature domains,
where artifacts are more easily detectable: the discrete
cosine transform (DCT) domain and the photo response non-
uniformity (PRNU) domain. The identification is performed
by a convolution neural network (CNN), trained for this task,
in two steps: first, the artifacts are extracted and then used
for the classification. The method is tested on three publicly
available datasets. The proposed CNN model is called two-
stream network, because it takes as input two sets of features
(DCT and PRNU). The two sets of features are extracted
independently of each other and then concatenated and used
for the classification of the source SN.

The contributions of the paper are the following:
• We propose a two-stream CNN model that achieves

98% correct classification of three source SNs (Face-
book, Flickr and Twitter) in average over three test
datasets;

• We propose a new method to encode the DCT coef-
ficients in a compact feature vector, which provides
better performance compared to the state of the art;

• We propose the use of Noiseprint, a CNN based camera
model feature extractor, to analyze the SN noise pattern,
which also provides better performance compared to the
state of the art;

• We propose solutions for issues related to unbalanced
datasets, from assuring balanced patch-level CNN train-
ing, to unbiased image-level classification.

II. RELATED WORK

Many image forensic tasks have achieved excellent per-
formance thanks to the use of machine or deep learning
[13], [1], [12]. In particular, CNNs have shown a great
potential and are becoming the standard for solving image-
related problems [14]. When considering the identification
of the origin from an image, the literature usually refers
to source digital camera identification, rather than source
SN identification. The source camera identification problem
has been widely addressed by the image-forensic researchers

Figure 1: Scheme of the proposed two-streams CNN.

[11], [4], [9]. Machine learning and deep learning have been
adopted by the majority of the best-performing state-of-the-
art (SOTA) methods [13], [8].

The identification of the source SN from an image is a
relatively new and unexplored research field. Some previous
works approach the problem by considering different fea-
tures and are based on several assumptions. For example, in
[10] the use of the filename and metadata, as well as the
resizing and re-compression factors, is proposed to identify
the source SN using a k-Nearest Neighbors (k-NN) classifier.
In this case, the authors assume that metadata and filenames
can be trusted, proposing a so-called non-blind approach.
Instead, in this article, we are interested in providing a blind
approach, which trusts only the image content. The number
of SOTA blind approaches is very limited: we identified
two works based on the analysis of DCT-block features.
The first one [7] proposes the use of DCT-block features
and a bagged decision tree classifier. The second one [2]
uses also DCT-block features, but with a CNN classifier.
Another blind approach is suggested by the paper [6]: it
uses the residual noise of the image and a CNN classifier
to identify the source SN. These methods are based on the
assumption that once an image is uploaded to a SN, it goes
through some kind of processing that leaves some artifacts
on it. These artifacts create a distinctive pattern, usually
called fingerprint. For what concerns the DCT-block domain,
JPEG quantization causes a perturbation in the distribution
of the coefficients, while for the residual noise domain, the
photo response non-uniformity (PRNU) pattern of the image
is modified by the processing proper to a SN.

For the PRNU extraction, a recent work provides a pre-
trained CNN for image forensic task, named Noiseprint [8].
Noiseprint generates a camera-model fingerprint pattern that
the authors of [8] proved to be very useful for image forgery
detection. In this paper, we investigate the applicability of
Noiseprint for source SN identification.

Regarding two-stream neural networks, the literature
works dealing with source SN identification have not ex-
ploited this architecture yet. However, in other areas of
digital image forensics, the two-stream neural network archi-
tecture has proven to be successful. For example, a method
for the detection of double JPEG compression is presented in
[3], which is based on the analysis of two different features
coming from the spatial domain and from the frequency

domain, including DCT-block features. Another two-stream
neural network method is proposed in [16] for the detection
of image manipulations through the analysis of the original
image and its local noise features.

III. PROPOSED METHOD

The proposed method is based on the assumption that
the images uploaded to a SN go through some processing
that leaves traces with a specific pattern on them. The
most commonly used compression methods by SNs are
JPEG compression and resizing. JPEG compression is a
lossy compression algorithm that compress the image by
quantizing the coefficients of the DCT block before storing
them using the Huffman-coding. JPEG quantization disrupts
the distribution of the DCT-block coefficients, creating ar-
tifacts that can be used to determine the source SN of
the image. Resizing is achieved by reducing image size
into a smaller image with the interpolation of the pixels.
Even if more subtle, interpolation can create artifacts too.
Sometimes, additional manipulations can be applied by the
processing algorithm of the SN, notably to compensate the
other transformations that may cause blurring. All these
types of processing generate artifacts in the resulting image,
which can be more or less detectable depending on the
domain that we are analyzing. Such artifacts are usually
extracted by using preprocessing modules before being fed
to a neural network. A review of existing techniques for
image-forensic analysis based on deep learning can be found
here [5].

The method that we propose here combines two domains
where artifacts coming from the SN image processing can be
detected: DCT-block and PRNU analysis. Our assumption is
that the combination of the two domains may enhance the
artifacts diversity and, therefore, the possibility to correctly
identify the source SN. A CNN architecture is used to
perform feature extraction for both domains. We call this
approach two-stream network because starting from the same
image, two domains are separately analyzed and fed into
the CNN via two inputs. Both inputs go through a separate
and different series of convolutional layers before being
concatenated and classified (see Figure 1). More details on
the network architecture are given in section III-C.

A. DCT block domain

The DCT blocks can be generated by taking the Y channel
of the Y CbCr color space of the input image and splitting
it into 8× 8 blocks of pixels, and then computing the DCT
for each block. The original image can be reconstructed
by applying the inverse process, using the inverse DCT
(IDCT). JPEG compression uses this technique to reduce
the image size on disk by storing only the DCT-block
coefficients instead of the plain RGB data. Before storing the
DCT coefficients, JPEG compression applies quantization by
dividing each coefficient by a predetermined value contained

(a) Uncompressed (b) Facebook (c) Flickr

Figure 2: Comparison of the DCT-block features: (a) orig-
inal; (b) after Facebook processing; and (c) after Flickr
processing.

in the quantization table. The results of the division are
then rounded to the nearest integer and compressed with
Huffman-coding.

In our case, the crucial aspect of JPEG compression is
the analysis of the distribution of the DCT-block coefficients
that permits to detect the quantization artifacts. Considering
that each SN applies its own series of transformations that
changes the distribution of the DCT coefficients (see Fig. 2)
we can train our CNN on this type of features to identify
the source SN. However, feeding the network directly with
the plain DCT coefficients is not ideal, considering that
quantization leaves traces that are difficult to detect by a
CNN. Therefore, it is recommended to encode the DCT-
block coefficients in a way that makes the quantization
artifacts more detectable for the CNN.

The work presented in [2] proposes the use of a
histogram-based approach that encodes the DCT coefficients
by counting the occurrences of a given value in the DCT-
blocks (see Figure 3). The image is firstly cropped in non-
overlapping patches of size N × N to avoid repercussions
in DCT, which is affected by the content and size of the
considered image [15]. The DCT is then computed for each
patch and, for each 8 × 8 DCT block, the first 9 spatial
frequencies in zig-zag scan order are selected to compute the
histogram. For each spatial frequency (i, j), the histogram
h(i, j) representing the occurrences of a value from the
quantized DCT coefficients is built. The histogram ranges
from −50 to +50 (101 bins), as most of the coefficients
fall within these values, and the output of the encoding
is therefore 101 × 9 = 909 values. Coefficients above
50 or below −50 are counted in the last and first bin,
respectively [7]. Thanks to this encoding, the pattern due
to the quantization is extracted and made detectable for a
CNN.

Even if the encoding proposed in the previous work
[2] achieves good results, we investigated other encoding
methods with the aim of further improving performances.
One limitation of the previously proposed encoding is the
loss of information concerning coefficients above +50 or
below −50. An easy solution would be to increase the
range of the histogram, but this would not be ideal with
a distribution of small number of values for numerous bins.

Figure 3: Example of DCT-block coefficient distribution
histogram for the same image processed by different social
networks. Image taken from [7].

We therefore developed a different encoding scheme that
makes quantization artifacts even more detectable and uses
all the values of the DCT block. This encoding is based
on the normalization of the DCT coefficients in a limited
range of values prior to the computation of the histograms.
Given a coefficient value x and a quantization factor q, the
normalization is defined as follows:

xn =
x

q
− round(x

q
) (1)

The normalized values go from 0, which indicates that it is
likely that the value x has been quantized with the factor q,
to ±0.5, which indicates that it is unlikely instead.

We thus define the DCT-block features by computing the
histograms of the DCT-block coefficients, for each image
patch p and spatial frequency f, as follows:

histp,f (
xp,f
q
− round(xp,f

q
)) (2)

The set of histograms extracted from an image patch de-
scribes the quantization artifacts and can be used by the
CNN to classify the source SN. The downside of this
encoding procedure comes from the quantization factor,
which is not known beforehand. Therefore, we have to try all
the possible quantization factor values q up to 20 to detect
the artifacts. We selected only the first 9 spatial frequencies
of the DCT block, as in [2]. The values of q for these
coefficients are small, and therefore we can set the maximum
value at 20. For each value of q, where q = 1, 2, 3, ..., 20,
we compute the histogram of DCT-block coefficients ranging
from −0.5 to 0.5 (see Eq. 2), with the number of bins equal
to 11 (one bin for each decimal interval from [−0.5 to 0.5]).

For each image patch, the computed histograms are con-
catenated to form the feature vector. The final length of this
encoding vector is 20 possible quantization factors ×11 bins
×9 spatial frequencies = 1980 values. As demonstrated by
the experimental evaluation reported below, the proposed
encoding procedure achieves very good performances.

(a) Uncompressed (b) Facebook (c) Flickr

Figure 4: Comparison of a 64×64 pixels patch of Noiseprint,
extracted from the same image, (a) original, (b) after the
upload to Facebook, (c) and after the upload to Flickr.

B. PRNU domain

The Photo Response Non Uniformity (PRNU) is a distinc-
tive pattern due to imperfections in the silicon wafer during
the sensor manufacturing, different even among cameras
of the same model. These imperfections imply that the
pixels have different sensitivities to light. PRNU is usually
used for source digital camera identification [11], [4], but a
previous work has shown that it can be used for an accurate
classification of the source SN of an image as well [6]. In
fact, the processing algorithm of a SN affects and slightly
modifies the PRNU pattern (see Figure 4), but not enough
to completely suppress the PRNU. Therefore, by analyzing
the PRNU after the image upload to a SN, it is possible to
detect artifacts that can help in identifying the source SN.
Although the analysis of PRNU is also based on the study
of artifacts due to (but not limited to) re-compression as for
the analysis of DCT blocks, the features extracted in this
domain are different and independent of those coming from
the DCT blocks and, therefore, the combination of the two
could enhance the classification of the source SN.

The PRNU is constant in images taken with the same
camera sensor. Hence, the standard approach of PRNU ex-
traction is to take multiple images from the same camera and
extract the noise using a denoising filter. By calculating the
average of the extracted noise patterns, Gaussian distributed
noise with a zero mean tends to disappear, while only the
sensor pattern noise remains. This is the same approach used
by the work presented in [6], which performs image source
SN identification based on residual noise extraction. There
is a clear limitation to this method, which is the requirement
of having numerous images from the same sensor in order to
get an accurate extraction of the PRNU. In order to address
this issue, the work [6] uses the residual noise from a single
image instead of the camera PRNU computed over several
images. The problem in using the residual noise is that
it is strongly affected by the image content and contains
a considerable amount of noise that does not come from
the SN uploading process, making the identification of the
source SN for an image more difficult.

We address this problem differently by using a re-

Figure 5: Proposed two-stream CNN architecture.

cently developed PNRU extractor, namely Noiseprint [8].
Noiseprint is a pre-trained CNN that, given an image, gen-
erates a camera model fingerprint, called noiseprint, where
the scene content is largely suppressed and model-related
artifacts are enhanced. Even if the Noiseprint CNN does
not extract the PRNU directly, the generated pattern can be
considered as PRNU-related, as it correlates with the camera
sensor artifacts present in the image. Noiseprint has shown
a great potential in image forgery detection (another task
that can be solved by the PRNU analysis), but the authors
suggest that the Noiseprint pattern can be useful for other
image forensic tasks as well. We therefore decided to test
if the Noiseprint can be used to determine the source SN
of an image. We present the results of this evaluation along
with the comparison with the previous noise-residual-based
work [6] in section IV-C.

C. CNN Design

The structure of the two-stream CNN was developed by
firstly designing and evaluating each stream separately. The
proposed architecture for the two-stream CNN is illustrated
in Figure 5. The design of each stream is different because
the input data have different nature as well as different
size. Therefore, the size and number of layers are not the
same. The datasets were split into training (80%), validation
(10%), and test (10%) sets, randomly, with a fixed seed so
that the splitting could be reproducible for different training
and test sessions. For the DCT stream, both DCT-block
encoding methods (the one from the state of the art and
ours) were tested using two different network structures, due
to the different input shape. With this setup, we conducted
the hyper-parameters tuning phase by repeating the same
training session, with the same fixed seed, and by introduc-
ing both intuitive and random changes to the parameters in

order to find the best model structure. At each change, the
performance of the model is evaluated using the validation
set and the model with the highest performance is chosen.

The CNN has two inputs: encoded DCT block and image
patch of size 64 × 64 (for Noiseprint). Each input goes
through a series of convolutional layers with 3 × 3 kernels
and relu activation, and max pooling layers. The number
of filters in the convolutional layer is increased at each
max pooling layer. Batch normalization is applied before
each convolutional layer, except for the first one. This part
of the network is based on CNN, which usually applied
this kind of layers. The two streams are then flattened and
concatenated before the classification layers. The classifica-
tion layers are fully connected layers (called Dense in the
Keras implementation) and use the swish activation function:
swish(x) := x × sigmoid(βx) = x

1+e−βx
, where β is a

constant.
Dropout is applied before each Dense layer, except for

the first and the last ones. The output of the network is a
Dense layer with soft max activation and size N given by the
number of classes (3 in our experiments). The loss function
is categorical cross-entropy, and the optimizer is Nesterov-
accelerated Adaptive Moment Estimation (Nadam).

IV. EXPERIMENTAL RESULTS

A. Database

The proposed method adopts a supervised learning tech-
nique, therefore a labelled dataset is required to train the
two-stream CNN model. Being the number of works ad-
dressing the problem of source SN identification limited,
the number of publicly available labeled datasets is limited
too. For the sake of comparison with the state of the art, we
decided to use the same three datasets as in previous works:

UCID Social: this dataset is generated by taking the 1338
images of the UCID dataset, compressing each of them with
10 different JPEG quality levels (from 50 to 95 with steps
of 5), then uploading each image to three SNs (Facebook,
Flickr, and Twitter). The images are then downloaded and
stored in different labelled folders. The number of images
in the three classes are therefore 1338 × 10 × 3 = 40140.
The dataset also contains multi-class images: images that
have been first uploaded to a SN (e.g. Facebook), then
downloaded and re-uploaded to another SN (e.g. Twitter)
and finally stored in a multi-class labeled folder. These
images can be used for multi-class origin identification,
which is out of the scope of this research.

IPLab: this dataset is generated by taking 240 images and
by uploading them to 8 image sharing services including
SNs and messaging services. The images are then down-
loaded and stored in different labelled folders. In this paper
we use only three SNs for our research, namely Facebook,
Flickr, and Twitter.

Social Public: this dataset is generated by taking three
target SNs (Facebook, Flickr, Twitter) and by downloading

Figure 6: Number of patches per class, for each of the three
datasets.

1000 images from each of them. The images are stored in
labelled folders to create the dataset.

UCID Social and IPLab are controlled environment
datasets, meaning that the data was generated by taking a set
of images and uploading them to each SN, then downloading
them to create a dataset where each class contains the same
original images that have undergone different processing.

Social Public is an uncontrolled environment dataset,
meaning that the data was generated by downloading a set
of random images from the SNs. Thus, the set of images for
each class (i.e. SN) is different.

B. Dataset balance

In order to train a neural network (NN) it is advisable to
have a balanced training set, where the number of samples
per class is equal for each class, otherwise the model could
converge by privileging the most represented class. In each
of the three selected datasets the data is perfectly balanced at
the image level: 13380 images per class in the UCID Social
dataset, 1000 images per class in the Social public dataset,
and 240 per class in the IPLab one. However, because our
training samples are 64 × 64 pixels patches, we have to
make sure that the datasets are balanced at the patch-level
too. Since the images are processed by different SNs, and the
processing includes resizing in some cases, the final number
of extracted patches is going to be different for each class
(see Figure 6), which is not ideal for training our two-stream
CNN.

In order to solve this issue, for a given training dataset
we consider each class of the dataset (Facebook, Flickr,
and Twitter) as a standalone data generator and, thanks
to the Tensorflow Dataset APIs, we create an infinite-loop
generator for each class, with reshuffling. We then interleave
the three classes generators, by taking a sample from each
class in turn, to create an infinite Dataset generator of

perfectly balanced batches of training data. The same class-
balance issue can be a problem also for the validation
and test set, as the metrics used (e.g. recall and accuracy)
can output misleading results if the validation classes are
unbalanced. We therefore made validation and test results
balanced by defining class weights.

A class weight is a multiplicative factor applied to the
calculation of a metric or loss function associated with each
sample of a given class. For the validation and test sets, the
total weight of each class is first calculated by summing up
the sample weights. If the total class weights are different, a
correcting class weight factor fk is multiplied to each sample
weight for each class. More details about class weights will
be given in section IV-D2.

C. Single-stream CNN evaluation

1) PRNU-based method: Each dataset (UCID Social,
Social Public, and IPLab) is split at the image level (training
80%, validation 10%, test 10%) and evaluated separately.

Before evaluating the two-stream CNN, the single streams
are evaluated separately to validate the developed methods.
First, we verify our assumption about the use of Noiseprint:
we want to make sure that the Noiseprint-based stream is
appropriate for SN identification and that the performances
are at least as good as for the method proposed by the
previous work based on residual noise [6]. We therefore
evaluated the single-stream Noiseprint-based CNN alone.
In order to provide a direct comparison with the results
obtained in [6], we reproduced the same experiment on the
UCID Social dataset on the same three SNs (Facebook,
Flickr, and Twitter) and computed the same evaluation
metric, that is classification precision:

precision =
TP

TP + FP
(3)

where TP = True Positives and FP = False Positives.
The evaluation is performed on the test set of the UCID

Social dataset at patch-level, by considering the precision
metric on the classified patches. The stratified repeated ran-
dom sub-sampling validation (SRRSV) is applied with 5 it-
erations to validate the performance results. Our Noiseprint-
based solution achieves an average precision of 90%, while
the previous PRNU-based work [6] achieves only about
80% (see Table I) with the same protocol, suggesting that
Noiseprint works very well as feature extractor for source
SN identification.

2) DCT-based method: Then, we evaluate the DCT-
block-based single-stream CNN alone. For this evaluation,
the proposed method is compared with the previous DCT-
based work [2]. Both CNN are very similar with a difference
only in the processing of the DCT-based input. Therefore, we
decided to determine which of the two DCT-block encoding
techniques achieves the best performances, and to define
the CNN architecture to be used in the final two-stream

UCID Social Facebook Flickr Twitter
Residual noise [6] 72.80% 93.15% 72.49%
Single-stream Noiseprint (Our) 87.6% 95.8% 91.5%
Two-stream (Our) 99.32% 99.67% 97.83%

Table I: Comparison of patch-level classification precision
for each class of the UCID Social dataset. The proposed
Noiseprint-based single-stream CNN and the proposed two-
stream CNN are compared with the method based on resid-
ual noise presented in [6].

CNN accordingly. By comparing the performance of the two
different encoding methods on three test sets, separately,
we acknowledge only a slight performance improvement
(recall difference < 0.5%, where recall = TP

TP+FN) for
our proposed encoding compared to the one proposed by
[2]. Moreover, the model convergence speed is faster when
using our encoding, with about 20% fewer epochs required
in the training phase. Due to these two advantages we adopt
our encoding for the two-stream CNN.

D. Two-stream CNN evaluation

For the evaluation of the two-stream network, we follow a
similar approach to single-stream evaluation, by evaluating
the performances on the three datasets separately and re-
porting the classification performances for the three classes:
Facebook, Flickr, and Twitter. Also, for sake of comparison
with the state of the art, we adopt the same protocol as in
the article [6], and perform the evaluation in two steps: first,
we evaluate classification performances at patch level, then
at image level.

1) Patch-level evaluation: We firstly present the results
for the patch-level evaluation. For a comparison with the
SOTA method based on residual noise [6], we report in Table
I the classification precision. The results show that the two-
stream CNN achieves better performance values than [6] and
has further improved the classification precision compared
to the single-stream Noiseprint method.

To have a direct comparison with the results of the SOTA
DCT-based method [2], we provide the confusion matrices
for the three datasets as the authors of [2] did in their paper.
The results are validated with a 5 repetition SRRSV and
indicate that the patch-level performance of the proposed
method is higher compared to the one in the DCT-based
paper [2], see Table II.

2) Image-level evaluation: If we consider the original
issue of finding the source SN of a given image, we need to
perform the evaluation at the image level. In order to obtain
the classification for the entire image, we simply extract all
the 64× 64 pixels non-overlapping patches from the image,
and we classify each of them using the trained CNN. We
then consider the majority-voted class as the predicted class
for the entire image. However, the distribution of the number
of patches per image (i.e. image size) is different for each

UCID Social Our [2] Our [2] Our [2]
Facebook Flickr Twitter

Facebook 97.60% 96.15% 0.20% 0.19% 2.20% 3.66%
Flickr 0.00% 0.03% 100% 99.79% 0.00% 0.18%

Twitter 0.67% 0.59% 0.13% 0.11% 99.30% 99.30%

Social Public Our [2] Our [2] Our [2]
Facebook Flickr Twitter

Facebook 97.30% 94.00% 2.52% 6.00% 0.18% 0.00%
Flickr 7.11% 1.76% 89.61% 92.13% 3.28% 6.11%

Twitter 0.10% 0.00% 3.49% 13.47% 96.41% 86.53%

IPLab Our [2] Our [2] Our [2]
Facebook Flickr Twitter

Facebook 97.30% 94.00% 2.52% 6.00% 0.18% 0.00%
Flickr 7.11% 1.76% 89.61% 92.13% 3.28% 6.11%

Twitter 0.10% 0.00% 3.49% 13.47% 96.41% 86.53%

Table II: Two-stream CNN evaluation: Confusion matrix for
the patch-level classification of the UCID Social, Social
Public and IPLab datasets, among Facebook, Flickr, and
Twitter and comparison with the SOTA DCT-based work
[2].

class (Facebook, Flickr, Twitter) in the three datasets (see
Figure 6). Therefore, some classes can be underrepresented
compared to the others, like Twitter, for example, in the
Social Public dataset has an overall number of patches much
lower than the other SNs, as illustrated in Figure 7. This
unbalanced partition may lead to a bias in the model, as
it will learn features of some classes rather than others. In
order to fix this issue, we modify the weight of each training
sample to be inversely proportional to the number of patches
from an image: the weight of a sample coming from an
image with N patches is therefore 1

N . However, because we
want to keep the overall weight balanced for each class, we
also multiply the weight by the average number of patches
per image. The final weight for a sample wNk, from an
image with N patches of class k, is therefore defined by the
number of patches |Pk| and total number of images Ik of
class k (see Eq. 4).

wNk =
|Pk|
|Ik|
· 1
N

(4)

In order to obtain an equal number of samples for each
class in the dataset with the help of an infinite data generator
(protocol introduced in section IV-B), we need to modify the
weight definition given above and consider the frequency
of appearance of the generated patches. For example, the
frequency Fk of appearance of a patch from a given image
in the training set is defined by its number N of patches or
the associated weight |Pk| (see Figure 5). In order to obtain a
new class weight factor fk (also mentioned in section IV-B)
that is balanced according to the number of patches per
image and per class, we combine this frequency Fk with
the proposed weight wNk (see Eq. 6).

Fk = N · 1

|Pk|
=

N

|Pk|
(5)

fk = wNk ∗ Fk =
|Pk|
|Ik|
· 1
N
· N
|Pk|

=
1

|Ik|
(6)

Figure 7: Comparison between the distribution of the number
of patches per image in the Facebook, Flickr, and Twitter
classes of the Social Public dataset. Flickr has many large
(> 600 patches) images, while Twitter has only very small
images.

Therefore, the overall weight for all the patches from a given
image during the training phase depends only on the number
of images per class |Ik|, which is perfectly balanced in
our datasets. This will provide the same exact weight for
each image in the training phase, regardless of its class and
number of patches.

We tested the proposed weighting technique by training
the CNN without and with the sample weights. The image-
level performance increased from an average 89% to 95%
recall when tested on the Social Public dataset and from
95% to 98% recall on the IPLab.

The image-level comparison between the performance
obtained by the proposed two-stream CNN, trained with
the sample weight, and the SOTA methods [6] and [2], is
shown in table III and IV, respectively. The proposed method
outperforms the state of the art for all tests except for the
classification of Twitter images on Social Public, where the
DCT-based method [2] achieves 100% correct classification
while our achieves 98.67% (see Table IV).

UCID Social Facebook Flickr Twitter
Two-stream (Our) 100% 99.80% 98.62%
Residual noise [6] 87.35% 97.42% 87.73%

Table III: Two-stream evaluation: Comparison of image-
level classification precision for each class of the UCID
Social dataset. The proposed two-stream CNN is compared
with the method based on residual noise in [6].

UCID Social Our [2] Our [2] Our [2]
Facebook Flickr Twitter

Facebook 98.20% 97.37% 0.20% 0.00% 1.40% 2.63%
Flickr 0.00% 0.00% 100% 100% 0.00% 0.00%

Twitter 0.00% 0.00% 0.00% 0.00% 100% 100%

Social Public Our [2] Our [2] Our [2]
Facebook Flickr Twitter

Facebook 91.21% 88.24% 0.00% 0.00% 8.79% 11.76%
Flickr 0.00% 0.99% 98.15% 97.03% 1.85% 1.98%

Twitter 0.10% 0.00% 1.23% 0.00% 98.67% 100%

IPLab Our [2] Our [2] Our [2]
Facebook Flickr Twitter

Facebook 97.86% 96.01% 2.14% 3.99% 0.00% 0.00%
Flickr 2.45% 1.68% 97.55% 97.06% 3.28% 1.26%

Twitter 0.00% 0.00% 0.00% 1.26% 100% 98.74%

Table IV: Two-stream evaluation: Confusion matrix for the
image-level classification of the UCID Social,Social Public
and IPLab datasets among Facebook, Flickr, and Twitter and
comparison with the SOTA DCT-based work [2].

V. CONCLUSION

This paper proposes an improvement to the SOTA ap-
proaches that address the problem of image source social
network (SN) identification with the use of a two-stream
convolutional neural network (CNN). The key elements of
the proposed methodology are: the development of a two-
stream CNN that takes as input both DCT-block and PRNU
features for the classification of the images; the use of the
Noiseprint generated pattern for the PRNU-feature extrac-
tion; a new DCT-block encoding method to make quantiza-
tion artifacts more detectable; and the analysis and proposal
of solutions for issues related to unbalanced datasets, from
assuring balanced patch-level CNN training, to unbiased
image-level classification. We showed that Noiseprint can
be used for SN identification and produces higher results
compared to previous works based on residual noise. We
took care of using balanced datasets and to maximize the
image-level performances by using a patch-level majority-
vote based approach. We evaluated our method using three
different SN datasets and three SNs: Facebook, Flickr,
and Twitter. The results produced by our two-stream CNN
outperform those of the state of the art, both at patch- and
image-level.

REFERENCES

[1] R. Agarwal, D. Khudaniya, A. Gupta, and K. Grover. Image
forgery detection and deep learning techniques: A review. In
2020 4th International Conference on Intelligent Computing
and Control Systems (ICICCS), pages 1096–1100, 2020.

[2] I. Amerini, T. Uricchio, and R. Caldelli. Tracing images back
to their social network of origin: A cnn-based approach. In
2017 IEEE Workshop on Information Forensics and Security
(WIFS), pages 1–6, 2017.

[3] Irene Amerini, Tiberio Uricchio, Lamberto Ballan, and
Roberto Caldelli. Localization of jpeg double compression
through multi-domain convolutional neural networks. 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), pages 1865–1871, 2017.

[4] B. Balamurugan, S. Maghilnan, and M. R. Kumar. Source
camera identification using spn with prnu estimation and
enhancement. In 2017 International Conference on Intelligent
Computing and Control (I2C2), pages 1–6, 2017.

[5] Alexandre Berthet and Jean-Luc Dugelay. A review of data
preprocessing modules in digital image forensics methods
using deep learning. In 2020 IEEE International Conference
on Visual Communications and Image Processing (VCIP),
pages 281–284, 2020.

[6] R. Caldelli, I. Amerini, and C. T. Li. Prnu-based image
classification of origin social network with cnn. In 2018 26th
European Signal Processing Conference (EUSIPCO), pages
1357–1361, 2018.

[7] R. Caldelli, R. Becarelli, and I. Amerini. Image origin clas-
sification based on social network provenance. IEEE Trans-
actions on Information Forensics and Security, 12(6):1299–
1308, 2017.

[8] Davide Cozzolino and Luisa Verdoliva. Noiseprint: A cnn-
based camera model fingerprint. IEEE Transactions on
Information Forensics and Security, PP:1–1, 05 2019.

[9] Chiara Galdi, Frank Hartung, and Jean-Luc Dugelay.
Socrates: A database of realistic data for source camera recog-
nition on smartphones. In Proceedings of the 8th International
Conference on Pattern Recognition Applications and Methods
- Volume 1: ICPRAM,, pages 648–655. INSTICC, SciTePress,
2019.

[10] Oliver Giudice, Antonino Paratore, Marco Moltisanti, and Se-
bastiano Battiato. A classification engine for image ballistics
of social data. In Sebastiano Battiato, Giovanni Gallo, Rai-
mondo Schettini, and Filippo Stanco, editors, Image Analysis
and Processing - ICIAP 2017, pages 625–636, Cham, 2017.
Springer International Publishing.

[11] J. Lukas, J. Fridrich, and M. Goljan. Digital camera iden-
tification from sensor pattern noise. IEEE Transactions on
Information Forensics and Security, 1(2):205–214, 2006.

[12] D. Pan, L. Sun, R. Wang, X. Zhang, and R. O. Sinnott. Deep-
fake detection through deep learning. In 2020 IEEE/ACM In-
ternational Conference on Big Data Computing, Applications
and Technologies (BDCAT), pages 134–143, 2020.

[13] A. Roy, R. S. Chakraborty, U. Sameer, and R. Naskar.
Camera source identification using discrete cosine transform
residue features and ensemble classifier. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1848–1854, 2017.

[14] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers. Deep convolutional neural
networks for computer-aided detection: Cnn architectures,
dataset characteristics and transfer learning. IEEE Transac-
tions on Medical Imaging, 35(5):1285–1298, 2016.

[15] Qing Wang and Rong Zhang. Double jpeg compression
forensics based on a convolutional neural network. EURASIP
Journal on Information Security, 2016:1–12, 2016.

[16] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S.
Davis. Learning rich features for image manipulation detec-
tion. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1053–1061, 2018.

