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Abstract—Radio Link Failure (RLF) is a challenging problem
in 5G networks as it may decrease communication reliability and
increases latency. This is against the objectives of 5G, particularly
for the ultra-Reliable Low Latency Communications (uRLLC)
traffic class. RLF can be predicted using radio measurements
reported by User Equipment (UE)s, such as Reference Signal Re-
ceive Power (RSRP), Reference Signal Receive Quality (RSRQ),
Channel Quality Indicator (CQI), and Power HeadRoom (PHR).
However, it is very challenging to derive a closed-form model
that derives RLF from these measurements. To fill this gap, we
propose to use Machine Learning (ML) techniques, and specifi-
cally, a combination of Long Short Term Memory (LSTM) and
Support Vector Machine (SVM), to find the correlation between
these measurements and RLF. The RLF prediction model was
trained with real data obtained from a 5G testbed. The validation
process of the model showed an accuracy of 98% when predicting
the connection status (i.e., RLF). Moreover, to illustrate the
usage of the RLF prediction model, we introduced two use-cases:
handover optimization and UAV trajectory adjustment.

I. INTRODUCTION

Radio Link Failure (RLF) is an important criterion in
modern wireless networks, including 5G. RLF is critical for
services requiring high reliability, which is one of the key
features of 5G, such as those supported by ultra-Reliable Low
Latency Communications (uRLLC) class [1]. RLF impacts
principally network services that involve high-mobile devices,
such as vehicles and flying drones.
Indeed, combining highly mobile users, at high altitude like
Unmanned Aerial Vehicle (UAV) [2], with the current limited
number of deployed 5G cells and their small coverage due to
wider frequency bands’ usage [3] (which make the radio link
between the User Equipment (UE) and the base station more
susceptible to blockage and degradation leading to sudden
interruption of the communication link), may yield to frequent
RLF. RLF corresponds to a disconnection from the network,
which strongly impacts sensitive services, such as UAV safety,
where RLF increases the network latency and, in the worst
cases, to UAV’s losses and collisions. In this context, it is
important that 5G tackles the RLF issue to improve reliability
by, for instance, predicting when a mobile device has a high
probability of seeing a RLF and take the appropriate action,
like anticipating the Handover or updating the trajectory of the
UAVs.
RLF can be estimated by measuring radio key indicators such
as Reference Signal Receive Power (RSRP), Reference Signal
Receive Quality (RSRQ), Channel Quality Indicator (CQI),
and Power HeadRoom (PHR). By combining this information,

it is possible to know the quality of the radio channel, hence
the probability of RLF. However, deriving a closed-form of
the RLF distribution probability is very challenging. To fill this
gap, we propose in this paper to use Machine Learning (ML) to
predict the RLF relying on the measurement of RSRP, RSRQ,
CQI, and PHR. The output of the ML model will be used
as input by third tiers applications to improve the reliability
of 5G networks. Therefore, we will propose two applications
that rely on the RLF prediction model: (1) an application that
optimizes the handover in the context of O-RAN [4]; (2) an
application that adapts UAVs trajectory to avoid RLF in the
context of ETSI MEC framework [5].

The contributions of this work are manifolds:
• We propose a ML model based on LSTM to predict the

future trend of radio channel measurements, taking into
account the evolution of past measurements.

• We propose a novel method based on SVM to classify
the connectivity status (connectivity/ no connectivity) of
UEs according to radio channel measurements and hence
predict RLF.

• We trained and tested the framework on a real dataset
using a 5G testbed based on OpenAirInterface (OAI)
platform [6].

• We present two use cases where the RLF prediction can
be used. The first one is handover enforcement, and the
second one is UAV trajectory modification. These use
cases are aligned with O-RAN and MEC architecture,
respectively.

The paper is organized as follows: Section 2 provides
needed background to understand our approach and state-of-
the art solutions to predict connectivity loss. Our approach is
presented in Section 3 and evaluated in Section 4. We conclude
the paper in Section 5.

II. BACKGROUND

A. Radio Measurements
Different metrics are considered to measure the radio chan-

nel quality, among these metrics, the most used are:
Reference signal Receive Power (RSRP): defined as the

linear average received power (in Watts) of the signals that
carry cell-specific Reference Signals (RS) within the frequency
bandwidth. RSRP provides a cell-specific signal strength met-
ric. This measurement is mainly used for handover decisions.
It enables the base station to rank different candidate cells
according to their signal strength.



Reference Signal Strength Indicator (RSSI): defined as
the total received power observed by the UE from all sources,
including serving and non-serving cells, adjacent channel
interference, and thermal noise within the measurement band-
width. RSSI is not reported as a measurement in the 3GPP
standard since [7], instead it is used to compute the RSRQ
measurement.

Reference Signal Receive Quality (RSRQ): provides a
cell-specific signal quality metric. Similar to RSRP, this metric
is used mainly for handover and cell re-selection decisions.
RSRQ enables the base station to rank different candidate cells
according to their signal quality. It is used in scenarios, where
RSRP measurements do not provide sufficient information to
perform reliable mobility decisions. RSQR is computed as
follows: RSRQ = N∗RSRP

RSSI

Where N is the number of Resource Blocks (RBs) of the
bandwidth, RSRP indicates the wanted signal strength, RSRQ
enables the combined effect of signal strength and interference
to be reported efficiently.

Channel Quality Indicator (CQI): It is an indicator car-
rying the information on how good/bad the communication
channel quality is. It is reported by UEs to indicate to the
base station the level of modulation and coding the UE could
operate (i.e., means choosing the transport block size) [8],
which in turn can be directly converted into throughput.

Power headroom (PHR): indicates how much transmission
power is left for a UE to use in addition to the power being
used by the current transmission. If the PHR value is negative,
it indicates that the UE is already transmitting with greater
power than it is allowed to use.

B. Related works

In [9], the authors used deep learning to reduce RLF when
performing the handover process. They relied on the measured
RSRP of the serving cell and the strongest neighbor cell to
predict if the future handover (1-2 sec ahead) will succeed
or fail. The work in [10] presented a clustering method to
group cells with similar handovers’ behavior to trigger early
handovers without requesting the measurements of each UE.
However, these works are based only on computer simulation,
limiting the usability of the proposed solutions when they are
deployed in real networks.

The authors in [11] proposed a deep learning approach
to predict RLF according to RSRP measurements. But, the
authors considered only RLF that may occur when a UE
switches between a 4G and a 5G cell; hence RLF is not used
to optimize network operations.

Besides, these works are focused only on handover, while
other 5G use-cases may need information about RLF. Indeed,
we can mention the UAV control use case, as the UAV
controller needs to be notified whenever the drone may lose
connectivity. This will allow for updating the drone trajectory
to avoid RLF. Another use case is the smart video streaming
use case, where gNB may schedule more resources for UEs
to anticipate RLF by buffering more data.
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Fig. 1. Framework overview

III. PROPOSED FRAMEWORK

As indicated earlier, our main objective in this work is the
early detection of radio connectivity loss and anticipation of
RLF. To achieve this objective, we first conducted a campaign
to measure RSRQ, RSRP, PHR, and CQI using a 5G testbed
based on OAI. Second, we analyzed radio measurements
and found a correlation between some measurements (RSRQ,
PHR, and CQI) and connectivity status (i.e., there is connectiv-
ity or not). RSRP did not contribute explicitly to the correlation
since it is implicitly used to compute the RSRQ metric (section
II-A). Nevertheless, applying this correlation directly to the
reported measurements leads to derive the connectivity status
only when the measurements are collected. Therefore, there is
a need to predict how radio measurements will evaluate in the
near future. Based on this prediction, we used a classifier to
find the correlation with the connectivity status (i.e., RLF).
Once RLF is predicted, third-party components can consume
this information (i.e., radio connectivity loss events) for tar-
geted UEs aiming at applying policies to avoid RLF, such as:

• Mobility Management application that takes handover
decisions before link failure.

• UAV Trajectory Modification application that updates the
pre-flight drone trajectory whenever the radio connectiv-
ity might be lost.

In the following sections, we will start by describing the
RLF prediction model (Figure 1). We will show how this
model can be used to optimize handover and update UAVs’
trajectories.

A. Radio Link Failure Prediction model

1) Design: The RLF prediction model is structured into
five stacked layers (Figure 2):

• Input layer: Composed of three-time windows; a window
for each radio information (i.e., CQI, RSRQ, PHR). A
time window is a vector that keeps the N last radio
information collected from the RAN at the current time-
step t.

• LSTM layer: LSTM is an improved version of RNN,
designed to forecast time series data. The advantage of
LSTM compared to RNNs is that the former deals with
vanishing and exploding gradient problems. In RNNs,
the gradient problem becomes smaller due to long data
sequences. Hence, the network parameter updates become
insignificant, which means no real learning is achieved.
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Fig. 2. RLF Prediction Model design

Besides the existing hidden state of RNNs, LSTM in-
troduces the cell state to make the gradient computation
more stable ( avoid exploding or vanishing).
LSTM can learn the order dependence between items in
a sequence and the context required to make predictions
in time series forecasting problems.
The key function of LSTM is its ability to use a local
memory (i.e., learn when it needs to memorize or forget
the information) to extract temporal information from
time sequences. Then, it uses this information to predict
the future value at time t+ p, p > 0.

• Fully Connected layer: This layer will sum the vector
from the output of the LSTM layer to produce one
predicted value.

• SVM layer: This layer takes the predicted values of
(CQI, RSRQ, PHR) and classifies them into two classes
(connectivity/ no connectivity).

• Output layer: This layer represents the final connectivity
state at time t+ p.

2) Data Collection: Although many recent works used deep
learning algorithms to predict the channel quality, they mainly
rely on simulation to generate data for the learning step.
However, it is well-accepted that simulation has limitations
to reproduce the behavior of real networks. In our work,
we trained the RLF prediction model using data collected
from a testbed based on OAI. We collected (CQI, PHR, and
RSRQ) values when both the connectivity is available and non-
available (i.e., RLF). We labeled the data (i.e., the tuple CQI,
PHR, and RSRQ) by 1 if there is connectivity, 0 otherwise.

3) Data Pre-processing: After collecting the data and cre-
ating the data set, we cleaned the latter by removing the
static values as we are more interested in the data trend over

time (up/down). This manipulation made the prediction more
accurate. We also needed to format the data before feeding the
model. The LSTM’s input data is structured into a 3D vector
(samples, time-steps, features), while the SVM’s input data is
structured into a 2D vector (samples, features). This step is
mandatory to keep the integrity between different layers and
improve the overall model accuracy.

4) Training process: During this step, we trained the
LSTMs and the SVM models separately using the Keras
framework [12]. We used the Adam optimizer [13] to have an
adaptive learning rate. It is important to note that for this kind
of forecasting model, two main problems arise. The first one is
over-fitting. It means that the model will learn too much about
the particularities of the training data and would not be able to
generalize the model to new data. In this case, the predicted
signal matches exactly the real signal in the same data set,
even if the latter is very complex. The second problem is that
the model generates a signal that follows the real signal instead
of predicting it. To overcome the first problem, we followed
many techniques. First, we used two separate data sets, one
for training and one for testing. Moreover, we used a Dropout
layer after the LSTM hidden layer. In neural networks, some
units may fix up the mistakes of other units leading to complex
coordination, which, in turn, yields to overfitting as these
coordinations do not generalize to unseen data.
Meanwhile, the Dropout layer randomly ignores neurons dur-
ing a particular forward or backward pass. Hence, it will
break up situations where network layers coordinate to correct
mistakes from prior layers, making the model more robust and
reducing the overfitting effect. We also used L2 regularization
to push the model weights to 0 to have a less complex model,
and hence less over-fitting.



To overcome the second-mentioned problem, we used the
Teacher Forcing [14] method. It is a method for training RNNs
that uses the output from a previous time step as an input.
When the RNN is trained, it can generate a sequence using
the previous output as current input, contrary to the standard
method that uses real data as an input during the training
phase.

B. Examples of application using the RLF prediction model

In this section, we describe how the RLF prediction model
can be used via two representatives applications or services:
Improving the handover using O-RAN architecture and opti-
mizing UAVs trajectory based on ETSI MEC architecture.
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Fig. 3. RLF Prediction in O-RAN scenario

1) RLF prediction as an O-RAN xApp: According to O-
RAN terminology, we assume that the RLF prediction modules
and mobility management applications are run as xAPP. The
mobility management xApp uses the input of the RLF xApp
to optimize handover, which means, whenever an RLF is
predicted, the network will trigger an early handover to avoid
disconnection from the network.

The considered use-case is described in Figure 3. The
RLF prediction is located at O-RAN Near Real-Time (Near-
RT) RAN Intelligent Controller (RIC). It fetches the latest
radio information (CQI, RSRQ, and PHR) available for a
specific/set of UEs from the E2 interface. It keeps a history
of past information organized as a time window for each
UE and predicts connectivity loss. On the other hand, the
Mobility Management service is located at O-RAN Near-RT
as a xApp. It consumes RLF prediction events from the RLF
prediction xApp to trigger the handover procedure whenever
the connectivity is lost. It should be noted that in O-RAN, RIC
Non-RT is responsible for training ML models and pushing
them to RIC Near-RT modules. Therefore, we assume that
RLF prediction xApp receives the trained models from the
RIC Non-RT and updates the local models significantly when
the inference error increases.

2) RLF prediction as a MEC application: In this use case
scenario, we assume that the RLF prediction module is de-
ployed as a MEC service available to other MEC applications.
In this scenario, the MEC application is a UAV Trajectory
Modification Application. The latter is deployed at the edge
as it has to send commands to update the trajectory of UAVs
requiring low latency communications. Figure 4 illustrates the
relationship between all the components. The RLF prediction
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Fig. 4. RLF Prediction in MEC scenario

module collects the CQI, RSRQ, and PHR via the MEC Radio
Network Information Service (RNIS) [15] API. This API is
provided by the MEC Platform (MEP) through MP2 interface.
To recall, the RNIS enables third-party applications to fetch
radio measurements for a specific/set of UEs to accomplish
data analytic or optimization jobs. The RLF prediction module
uses the measurements from the RNIS and predicts whenever
the connectivity will be lost for a set of UEs. If a connectivity
loss is predicted, the RLF prediction application sends a
notification to the UAV Trajectory modification application
via the MP1 interface, informing the connectivity status of the
near future of the concerned list of UEs. The UAV Trajectory
Modification Application uses the prediction events from the
RLF Prediction Application and modifies the UAV trajectory
in order to avoid link failure.

IV. PERFORMANCE EVALUATION

This section is divided into two parts. The first one is
dedicated to the LSTM model evaluation of CQI, RSRQ,
and PHR measurements, while the second part focuses on
the classification model. We compared two algorithms: Neural
Networks (NN) and SVM. We tested the classifier within two
cases; the first is when the algorithm gets its input directly
from the test data-set, while the second one gets its input from
the LSTM models.

We used a different data-set for testing to avoid over-fitting
and ensure that our results are not dependant on a particular
data set. Two main metrics are used to evaluate the LSTM
model:

Accuracy: the ratio of the number of correct predictions to
the total number of input samples.

Accuracy =
Number of correct predictions

Total number of prediction made

Precision: the number of correct positive results divided by
the number of positive results predicted by the classifier.

Precision =
True Positives

True Positives+ False Positives



Recall: the number of correct positive results divided by the
number of all relevant samples (i.e., all samples that should
have been identified as positive).

Recall =
True Positives

True Positives+ False Negatives

F1 score: the balance between precision and recall.

F1 Score = 2 ∗ 1
1

Recall +
1

Precision

It tells how precise the classifier is (how many instances it
classifies correctly), as well as how robust it is.

Root Mean Square Error (RMSE): the distance between the
predictions and the real observations.

RMSE =

√√√√ 1

T
∗

T−1∑
t=0

(realt − predictedt)2

A. LSTM models Evaluation

We varied the LSTM parameters and tuned them to achieve
the best performances: 1 LSTM hidden layer with 20 percep-
trons, trained for 100 epochs with a batch size of 50 samples.
We used a dropout layer with a rate of 0.2.
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Fig. 5. RMSE variation over past and future timesteps

Figure 5 illustrates the impact of changing the time window
size (how many past samples the LSTM takes as input) and
the future time-step (the prediction’s time-step) on the RMSE.
We remark that if the LSTM does not consider enough past
samples, the error is high. The model is not able to predict
the data. However, when more than 20 samples are used, we
observe that the error starts to converge to a smaller value,
0.1 approximately. It should be noted that LSTM is able to
forget information; then, even if we continue to increase the
window size, the model keeps using only the needed number
of past samples to decrease the prediction error. Besides, we
noticed that when the future time-step increases, the error
increases. This indicates that the model is not able to predict
the measurements correctly for the long-term future.
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Figures 6, 7, 8 illustrate, respectively, a part of the data-set
plotted with the predicted values of CQI, PHR, and RSRQ.
The test data-set is shifted in time to compare the real values
and the predicted ones easier. We used 50 samples as input,
and we predict five time-steps in the future. The generated
results show the accuracy of our LSTM model to estimate the
measurement, i.e., CQI, PHR, and RSRQ.

B. Classification model Evaluation

TABLE I
CLASSIFIER MODEL METRICS

metric SVM (%) NN (%)
Accuracy 98,44 99,25
Precision 97,76 96,14

Recall 96,56 99,59
F1 score 97,15 97,78

For the sake of comparison, we tested two algorithms:
SVM and a Neuron Network (NN) classifier. Table I compares
the performance of the algorithms according to performance
metrics. We notice that NN performs slightly better than SVM
when the real measurements are used as input directly from the
dataset. However, when we consider the LSTM’s prediction
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output as input, we can see that SVM is slightly better for the
same metrics (Table II).

TABLE II
OVERALL MODEL METRICS

metric SVM (%) NN (%)
Accuracy 98,03 97,95
Precision 91,42 91,21

Recall 97,81 97,53
F1 score 94,32 94,08

CONCLUSION

In this paper, we addressed the challenge of predicting radio
link failure (RLF) in 5G networks. To predict RLF, we used
a machine learning model that combines both LSTM and
SVM using the radio measurement, composed of RSRQ, CQI,
and PHR. To train the RLF prediction model, we generated
a data set that matches the tuple RSRQ, CQI, and PHR
with connectivity state (available or not) using a 5G testbed
based on OAI. The RLF prediction model was able to predict
98,03 % of connectivity status using the collected data set.
Besides, we presented two use-case scenarios that exploit
the RLF prediction module to optimize UE mobility (i.e.,
Handover Optimization) and UAV trajectory. Both scenarios
were aligned with two well-accepted architectures in 5G, O-
RAN, and MEC.
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