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Abstract— Roundabouts are intersections which require un-
derstanding the intentions of other road users to be crossed
safely. In this paper, we investigate on the nature and variation
of driving risk in roundabouts, to allow connected vehicles
to quickly assess a personalized and real-time level of risk
associated with crossing a roundabout. First, Time To Collision
(TTC) information is extracted from real roundabout vehicle
tracks. Then, a supervised machine learning model to assess
the probability for a given vehicle to exit the roundabout at the
next available exit is trained. Finally, a risk metric is defined
based on TTC thresholds and risk probability, which is found
to show a strong correlation with the coefficient of variation of
TTC values over a roundabout. Once integrated in knowledge-
centric frameworks such as Vehicular Knowledge Networking,
the obtained risk knowledge has a potential to support driver
assistance systems in roundabouts.

I. INTRODUCTION

Connected and Autonomous Vehicles (CAV) face a variety
of challenging driving situations in ever more complex road
infrastructures designed with human-driven vehicles in mind.
Despite an increasing driving intelligence, complex road
infrastructures or the proximity of vulnerable road users are
expected to alter CAV driving strategies to avoid potential
risky or complex driving situations. Specific driving contexts
including low visibility, occlusion, yield type intersections
requiring interacting with human-driven vehicles, as well
as congested traffic conditions have been studied to be
challenging to navigate autonomously for CAV, especially
when more than one of the specific contexts mentioned are
involved [1]. Such situations may cause CAVs to return
control to a human supervising driver, cruise at a reduced
speed, or stop completely [2].

Roundabouts are yield-type intersections which require
understanding the intentions of other road users. Several
works have focused on the impact of introducing CAV traffic
in roundabouts through calibrated micro simulations [3, 4,
5]. While CAVs have been found to reduce the number of
sequential, i.e., rear-end type conflicts for penetration rates
above 50%, findings are mixed for lower penetration rates.
[3] and [4] detected an increase in the number of conflicts
in roundabouts for lower CAV penetration rates. While the
overall amount of conflicts decreased for low penetration
rates in [5], roundabouts have been subject to disproportion-

ately more sequential conflicts caused by a human-driven
rear vehicle following a CAV front vehicle than the reversed
situation. As such, the definition of sequential conflicts-based
risk metrics in roundabouts is a key to support the safe
crossing of roundabouts by CAVs in mixed traffic scenarios
featuring a majority of human-driven vehicles.

Given the ability to assess the level of risk in any round-
about, CAVs could dynamically adapt their driving behavior
to human-driven vehicles to improve passenger safety. We
refer to the ability of real time risk assessment as driving
risk knowledge. We make a distinction between information
and knowledge as introduced in [6], which gives a generic
definition of knowledge applied to CAVs. Unlike information
which is defined as static content, knowledge refers to a
model able to produce abstract content from a set of input
information. As an example, in a rear-end collision warning
system, the distance between two vehicles as well as the
speed of both vehicles is information. On the other hand,
a process able to infer the minimal inter-vehicle distance
after which the car following situation becomes risky is
knowledge.

Works have considered the definition of driving risk
knowledge in vehicular networks to improve passenger
safety. For example, in [7], driving risk knowledge is created
in a microscopic driving simulator considering crossing,
merging, sequential, and diverging conflicts. Generally, esti-
mating driving risk is a complex task. The perception of risk
is subjective, and what is deemed safe by a given passenger
might be considered risky by another [8]. What is more, risk
perception varies among countries and differing driving laws.
For example, overtaking on the inside is considered risky in
most European countries, but permitted under certain con-
ditions in California. As such, the definition of driving risk
knowledge rather than static risk information is a promising
approach as it has the potential to be personalized for each
CAV based on passenger preferences and local context.

The Time To Collision (TTC) between two vehicles is a
commonly used objective risk indicator, or Surrogate Safety
Measure (SSM). It is an information defined as the remaining
time to a collision between a following and a front vehicle,
should both vehicles maintain a constant velocity. A standard
approach to create TTC-based driving risk knowledge is to



consider a TTC threshold under which a situation is flagged
risky. Various TTC thresholds can be defined to adapt to
different road users and contexts. Early research suggested
critical TTC thresholds of 1 to 1.5 seconds, and considered
values up to 5 seconds to enable collision avoidance sys-
tems on highways [9]. More recently, crash statistics-based
research found the average pre-crash TTC value at time
of braking to vary between 1.1 and 1.4 seconds [10]. As
such, decreasing TTC thresholds can be used to represent
increasing levels of risk.

It is challenging to select a relevant TTC threshold to
determine whether a situation is risky, given the subjectivity
of driving risk definitions. As such, it is not trivial to
define TTC-based driving risk knowledge which can adapt
to the preferred risk thresholds of various CAVs. Thus, the
contributions of this paper are threefold. First, TTC values
are computed from real, drone-captured roundabout tracks.
Then, a model is trained to assess the probability for a
vehicle to exit the roundabout in a given situation. Based on
the probability of roundabout exit, a risk metric is defined
by weighting critical TTC values with the probability of
occurrence of the risk, i.e., the following vehicle not exiting
before a potential collision. Finally, this novel TTC-based
risk metric in roundabouts, along with traditional TTC-based
risk estimators, are found to follow a close linear relationship
with the variation of TTC values in the roundabout. In turn,
this linear relationship can be distributed as knowledge in ve-
hicular networks following vehicular knowledge networking
approaches [6]. As such, personalized risk knowledge can
be distributed in vehicular networks, matching the preferred
risk threshold definition of each vehicle and context.

The rest of the article is organized as follows: Section II
describes the augmentation of the RounD dataset through the
computation of TTC values for vehicles inside roundabouts.
In Section III, a model is defined and trained to estimate the
probability of exiting the roundabout for a vehicle in a given
position. Using the knowledge of TTC values and roundabout
exit probability, Section IV describes TTC-based risk metrics
applicable for roundabouts. Section V documents a strong
linear relationship between the coefficient of variation of
TTC values in a roundabout and TTC-based risk metrics.
It describes the research applicability of the findings of this
paper, while Section VI summarizes the article.

II. ROUND: TIME TO COLLISION EXTRACTION

In this part, the RounD dataset is considered to obtain
roundabout vehicle tracks. After introducing the considered
roundabout, the process of augmenting the dataset by TTC
values computation is described.

A. The RounD Dataset

The RounD dataset contains drone-captured vehicle tracks
extracted from three German roundabouts. It is provided by
Krajewski et al. [11]. It provides realistic vehicle tracks on
roundabouts, which we use as a basis to evaluate TTC-based
risk in real roundabout mobility. The measurement-related
positioning error is typically less than 10cm. Track data is

Fig. 1: Layout of the Considered Roundabout [11]

divided into 24 recordings, each containing 15 minutes of
data. Out of the 24 provided recordings, 22 were extracted
from a unique roundabout which we use in the study. Vehicle
track data is available at a rate of 25 pictures per second
and includes data on the position, heading angle, velocity,
and acceleration of each vehicle. Figure 1 illustrates the
roundabout featuring extensive track data which was used in
this study. It is a two-lane roundabout featuring four entries
and four single-lane exits.

To assess the evolution of risk in the considered round-
about, we augment the dataset by computing TTC values
for pairs of vehicles driving in the circular lanes of the
roundabout. The TTC is a metric for potential collisions
involving a following and a front vehicle. As such, the first
step to compute TTC values for vehicles in the circular lanes
of the roundabout is the definition of a procedure front(v)
to detect the vehicle which is directly in front of a given
vehicle v.

B. Front Vehicle Detection

To begin with, the considered roundabout is augmented
with discrete cells to facilitate the detection of front vehicles.
First, the circular part of the roundabout is divided into
virtual lanes of WL width each. Then, each virtual lane is
itself split into Nslices slices of 2π

Nslices
rad arc measure. In

turn, this allows the definition of discrete position coordinates
for vehicles in the roundabout of the form (L, S). L and
S represent, respectively, the identifier of the virtual lane
and the virtual lane slice where the centroid of a vehicle is
located. This discrete coordinate system can then be used to
facilitate the detection of front vehicles. To avoid artifacts
during front vehicle computation, the width of each lane
as well as the number of slices per lane should be chosen
such that two vehicles cannot simultaneously have the same
coordinates in the discrete coordinate system. Given the size
of passenger vehicles featured in the RounD dataset, we set
WL = 2.25m and Nslices = 30.

Figure 2 illustrates the definition of virtual lanes and slices
over the considered roundabout through blue-colored lines.
Vehicles are represented by red boxes and annotated with



Fig. 2: Front Vehicle Detection and TTC Computation

Algorithm 1 Detection of a Front Vehicle in RounD Tracks

– Let front_slice(L, S) a function which returns the adjacent
slice of S in lane L in anti-clockwise direction.

– Let intersects(S, v) a function which returns whether v has a
non-null intersection with slice S.

– Let V the set of vehicles currently in the roundabout area.

procedure front(v)
1: Let Nslices the number of slices of each lane.
2: Let c the centroid of vehicle v.
3: Let L the ID of the lane containing c.
4: Let S the slice of ID i of Lane L, where c is located.
5: Let i← 0.
6: Let S_iterate← S.
7: Let front_v ← null.
8: while i < Nslices

2
and front_v = null do

9: S_iterate← front_slice(L, S_iterate)
10: for all w ∈ V \ {v} do
11: if intersects(S_iterate, w) then
12: front_v ← w
13: break
14: end if
15: end for
16: i← i+ 1

17: end while
18: return front_v

their unique identifier in the considered track file. Then,
each vehicle v whose centroid is located in the circular
part of the roundabout is considered for TTC computation,
which starts with the detection of front(v). The circular
part of the roundabout is defined as the area covered by
virtual lanes as illustrated in Figure 2. Finally, front(v)
is computed following the process described in pseudocode
in Algorithm 1. The unique slice where the centroid of v
is located is found. Then, the presence of any vehicle is
iteratively checked in the Nslices

2 next front slices.

(a) TTC Computation in a Circular Roundabout Area

(b) Limits of TTC Computation in Roundabouts

Fig. 3: Roundabout TTC Computation and Challenges

C. TTC Computation

Once the front vehicle front(v) of v has been identified,
the TTC value for the [v, front(v)] pair of vehicles can be
computed.

In straight road segments, the computation of the TTC for
a pair of vehicles [v, front(v)] is expressed as the fraction
of the Cartesian plane distance between v and front(v) over
their instantaneous velocity difference. In this context, both
vehicles are assumed to drive in a straight line. On the other
hand, vehicles crossing a roundabout are typically following
its curve. As such, straight-line distance cannot be used to
compute an accurate TTC value.

In a roundabout context, as illustrated by Figure 3a, we
assume that vehicles follow a circular trajectory around
the center of the roundabout when computing the distance
between v and front(v). It is computed as the length of the
circle arc between the central front point of v and the central
back point of front(v). Then, the TTC is computed based
on the instantaneous velocities of the two vehicles, as:

TTC =
R · θ

vback − vfront



Fig. 4: Inputs for Roundabout Exit Probability Assessment

III. A MODEL FOR EXIT PROBABILITY ESTIMATION

The computation of TTC values in roundabouts as de-
scribed in Section II can support the detection of risky
situations. As introduced in [9, 10], TTC values under a
threshold TTCth < 1.5s have been associated with a
higher collision risk in highway traffic. This approach is well
adapted in the case of highways, where vehicles mostly stay
in the same lanes and have few opportunities to exit.

However, even when critical TTC values are computed
in roundabouts, vehicles may potentially take an exit before
being exposed to a collision risk. As illustrated by Figure 3b,
TTC values are computed assuming the following vehicle
will remain in the roundabout. As such, they may be under
a risky threshold, yet not constitute a serious risk if the
following vehicle exits the roundabout before having the
opportunity to encounter the front vehicle. In turn, the fact
that vehicles may exit the roundabout before encountering
a risk, thus nullifying the risk for a subset of low TTC
situations, should be accounted for.

In the context of car following situations in multilanes
straight-line roads, [12] used a lane-change probability as-
sessment model to weight the collision risk with the prob-
ability of lane changes by vehicles. Similarly, we train a
supervised machine learning model aiming at computing the
probability of a vehicle to exit a roundabout in a given
situation. Provided the ability to accurately estimate that
probability, false positives of risk detected for low TTC
values where the following vehicle is likely to exit the
roundabout can be eliminated.

A. Model Definition

We aim to train a model to output the probability of a
vehicle v exiting at the next available exit of the roundabout,
given the following input, as shown in Figure 4:

• The relative heading α ∈ [−180, 180] degrees of v. A
value of α = 0 means that v is strictly following the
curve of the roundabout. A positive value indicates that
v is driving towards the inner lanes of the roundabout.
On the contrary, a negative value indicates that v is
driving towards the outer lanes.

• The straight-line distance between the central front point
of v and the next available exit of the roundabout.

• The discrete identifier L of the current virtual lane
where v is located starting from L = 0 for the outermost
lane of the roundabout.

We choose α as a key input feature of the model as it is
anticipated to show a strong correlation with the intention of
drivers to exit or not exit a roundabout at the next available
exit. We also provide two additional features allowing to
assess the distance of a given vehicle to the next available
exit. Moreover, these three features can easily be sensed
in real situations by a CAV, allowing to ease the potential
application of the roundabout exit model in real situations.

Logistic regression is an adapted model implementation,
as (i) the class to estimate is binary, i.e., exit or not exit at
the next junction, and (ii) it can be used not only to classify
whether a vehicle will exit but to estimate the exit probability
of the vehicle, which is a key asset as it allows to weigh
the collision risk. Moreover, in autonomous vehicle control
scenarios, the behavior of vehicles can be finely adapted to
the exit probability of potentially conflicting vehicles.

B. Training Data Collection

To train a supervised machine learning model to pro-
duce the probability of exit at the next available exit
from the described input, training samples are extracted
from the 22 recordings of the considered roundabout. For
each frame of each vehicle whose centroid is present
in the circular part of the roundabout, the described
[heading, distance, virtual lane] position input is ex-
tracted. Then, it is labeled by whether the vehicle exited
the roundabout at the next available exit. In total, 2269561
labeled training samples were extracted from the available
data.

Figure 5 illustrates a fraction of the obtained training
samples as a scatter plot. It involves vehicles driving in
the innermost virtual lane of the roundabout, as defined
in Section II. The blue-colored points represent situations
where the vehicle exits the roundabout at the next available
exit after position input collection. The red-colored points
represent situations where it stays in the roundabout. A clear



Fig. 5: Roundabout Exit Data for Vehicles in the Innermost
Lane

Fig. 6: Model Estimation of the Probability of Exiting the
Roundabout for Vehicles in the Innermost Lane

pattern can be identified in the training samples. When a
vehicle is close to the next exit, it is likely to exit only if
it is clearly headed towards the outside of the roundabout.
On the contrary, vehicles heading towards the inside of the
roundabout are more likely not to exit.

C. Model Evaluation

The obtained training samples are shuffled and divided
into a training set and a validation set of, respectively, 80%
and 20% of the overall training samples. They are used
to train an exit probability estimation logistic regression
model. The model reaches an exit prediction accuracy of
91% on the validation set, and is able to output a probability
of roundabout exit. Figure 6 illustrates the probability for
vehicles in the innermost lane of the roundabout to exit at
the next available exit, based on their current relative heading
and distance to next exit.

IV. TTC-BASED RISK METRICS FOR ROUNDABOUTS

Based on the computation of TTC values and of the
probability for vehicles to exit a roundabout, we define
roundabout-wide risk metrics to evaluate a real-time under-
standing of the risk level in a roundabout.

For each of the 22 recordings of the considered round-
about, a roundabout exit probability model is trained based
on training samples extracted from the 21 other recordings.
Each of the 22 accordingly trained models features a predic-
tion accuracy above 90%. Then, each recording is replayed
frame by frame. For each frame, TTC values for each pair
of vehicles located in the circular lanes of the roundabout
are computed. Based on the exit probability model and the
TTC values for each recording, roundabout-wide driving risk
indicators are computed for various thresholds of risk.

As introduced in Section I, different critical TTC Thresh-
olds should be used for different contexts to accurately repre-
sent risk. Moreover, TTC thresholds may be personalized for
each CAV. In [13], human drivers have been allowed to tweak
TTC threshold values to adapt them to their preferred driving
behavior, while dynamic threshold update schemes have been
studied which adapt to a learned human driver behavior
in [14]. As such, the risk indicators defined in this section
can be computed for various TTC thresholds, matching the
preferences of different CAVs and road contexts.

We consider the TTC threshold values
TTCth ∈ [1, 2, 3, 4, 5, 6] seconds. While values up
to 5 seconds have been used as conservative thresholds
to trigger collision avoidance systems in [9], values
between 1 and 2 seconds have been associated with a
critical risk of rear-end collision [9, 10]. As such, we
consider TTCth ∈ [1, 2] to be associated with strong risk,
TTCth ∈ [3, 4] with medium risk, and TTCth ∈ [5, 6] with
more conservative values of low risk of rear-end collision.

In turn, for each threshold TTCth ∈ [1, 2, 3, 4, 5, 6] sec-
onds, the following risk indicators are computed:

1. The number of risky events in a subset of the recording,
i.e., the amount of situations where a pair of vehicles
(v1, v2) featured a TTC value under the TTCth thresh-
old. A timeout of 1 second is enforced before counting
another risk situation for a same pair of vehicles.

2. The accumulated time spent under TTCth by vehicles
over the course of a subset of the recording, i.e., the
accumulated Time-Exposed TTC (TET) of vehicles of
the recording. It measures the time of exposition to
critical TTC values, as introduced by [15].

3. The exit probability-weighted accumulated TET of
vehicles of a subset of the recording.

The second indicator, i.e., the accumulated TET over a
subset of a recording, is computed as follows:

• Before the start of the computation, the risk indicator
RTET is initialized, RTET ← 0.

• For each frame, and for each pair of vehicles (v1, v2),
if the computed TTC value is below TTCth, update
RTET as,



RTET ← RTET + 1
F , with F = 25Hz the frame rate.

RTET does not handle the case where a roundabout exit is
located between v1 and v2, and v1 the rear vehicle exits the
roundabout before having a chance to encounter the risk. As
such, RTET includes false positives of driving risk, where a
low TTC value should not have been considered risky, as the
following vehicle exited before potentially encountering the
danger. To address this consideration, the third indicator is
defined, i.e., the exit probability-weighted accumulated TET
RpTET , which is defined as follows:

• Before the start of the computation, RpTET ← 0.

• For each frame, and for each pair of vehicles (v1, v2),
if the computed TTC value is below TTCth, update
RpTET as,

RpTET ← RpTET + risk_probability(v1,v2)
F .

• risk_probability(v1, v2) ={
1 if no exit between v1 and v2.
Pexit(v1) the probability of v1 exiting, otherwise.

At the end of each recording subset, the obtained risk
metrics are normalized by the exact recording time in sec-
onds and the number of vehicles having crossed the circular
part of the roundabout in that time. This allows for an
understanding of the real-time risk level in a roundabout, for
various TTCth ∈ [1, 2, 3, 4, 5, 6] thresholds. In turn, road
users may obtain real-time knowledge about the level of
risk in a roundabout, personalized to match their preferred
conception of the risk threshold.

V. TTC VARIATION AND RISK KNOWLEDGE

After having defined roundabout-wide risk metrics based
on TTC values and the probability of vehicles to exit from
the circular lanes of the roundabout, we investigate on the
evolution of roundabout risk through time. In particular, we
aim to study whether any correlation can be found between
the variation of TTC values in a roundabout and the average
level of driving risk in that roundabout. In order to assess
the variation of TTC values over a roundabout without
introducing a scale-related bias, we consider a normalized
metric, which is the coefficient of variation or Relative
Standard Deviation (RSD) of TTC values.

A. General Setup

To perform the evaluation, each of the 22 available 15
minutes-long recordings were sliced into a set of subrecord-
ings, each of a duration of T = 450 seconds. For each
subrecording, the risk metrics as detailed in Section IV are
computed for TTC thresholds of TTCth ∈ [1, 2, 3, 4, 5, 6].
What is more, we investigate on the link between the defined
risk metrics and the seasonality or variation of TTC values
over the course of the subrecording. For each frame of the
subrecording, the set of available TTC values which fall
in the range [0, TTCmax] seconds are averaged. Thus, a
single average TTC value is computed for each frame of

the subrecording, i.e., at a rate of F = 25Hz. Finally, the
coefficient of variation, i.e., RSD of the obtained averaged
TTC values over the course of the subrecording is computed.

B. Impact of Positioning Error

In realistic driving environments, CAVs are subject to
errors when estimating their relative and absolute position.
Global Navigation Satellite Systems based positioning error
is typically mitigated by sensor fusion and Real time Kine-
matic (RTK) algorithms on-board CAVS. In [16], accuracy in
the order of magnitude of a centimeter for both absolute and
relative positioning is achieved through cooperative sensing.

To evaluate the realistic applicability of the results of this
work, we introduce various levels of positioning-related noise
when computing TTC values. Uncorrelated positioning errors
are introduced in the computation of TTC values:

• Positioning errors are sampled from a normal distri-
bution N (0, σ2) of mean 0.0m, and whose standard
deviation σ defines the spread of the error.

• When computing a TTC value between a pair of
vehicles [v, front(v)], a value of positioning error
is sampled independently for both vehicles and tem-
porarily added to their respective positions. Then, the
computation of the TTC is performed as described in
Section II-C using the altered positions.

• The process described in Section V-A is performed for:
(i) No positioning error, (ii) σ = 0.3m, (iii) σ = 0.5m,
(iv) σ = 1m and (v) σ = 5m.

C. Results

We observe a linear relationship between the RSD of TTC
values and each roundabout-wide risk metric. The correlation
is further strengthened after tuning the computation param-
eters to T = 450s and TTCmax = 7.5s.

Figure 7a illustrates the linear relationship between the
RSD of TTC values in the roundabout and metrics of risk
defined following a TTC threshold of TTCth = 2 seconds.
The leftmost, center, and rightmost graphs, respectively plot
the (i) number of risky situations, (ii) accumulated TET,
and (iii) roundabout exit probability-weighted accumulated
TET metrics as defined in Section IV. The 95% prediction
and confidence intervals of the linear regression are shown
by, respectively, the gray-dashed and gray-filled areas. The
outlier at a RSD value of 0.55 has been obtained from a
recording where three vehicles were parked in the innermost
lane of the roundabout, thus increasing the amount of rear-
end conflicts and RSD of TTC values.

Figure 7b illustrates the impact of positioning error for all
considered values of TTCth. As in Figure 7a, the leftmost,
center, and rightmost graphs, respectively consider the three
risk metrics as defined in Section IV. For each TTCth risk
threshold value, the r2 coefficient of determination of the
linear relationship between the RSD of TTC values and the
considered risk metric is showed under different positioning
errors in blue-colored curves. The errorless r2 refers to the
r2 value obtained when no positioning error was added to
the TTC computations.



(a) Strong Risk with a TTC Threshold of 2s

(b) Impact of Positioning Error for Considered TTC Thresholds

Fig. 7: Linear Relationship between TTC Variation and Defined Risk Metrics

In turn, strong linear relationships between the RSD of
TTC values and risk metrics can be observed for TTC
threshold values up to TTCth = 3.0 seconds. A weaker
correlation can be observed for higher threshold values,
which correspond to situations of less risk.

Moreover, for each value of TTCth, an estimation of the
impact of different levels of positioning error on risk metrics
assessment is shown as a bar chart. For each value of posi-
tioning error σ, the fit error of the obtained linear regression
line on ground truth errorless (RSD, risk) data points is
compared with that of the original errorless regression line.
First, the original root-mean-square error (RMSE) of the fit
of the errorless regression line on the ground truth data points
is computed. Then, for each positioning error σ, the RMSE
of the obtained regression line is computed from the same
ground truth data points. Each bar illustrates the relative
increase of RMSE in percents between the errorless and the
error-featuring case. 95% confidence intervals are attached
to each RMSE and r2 values, which were obtained after
running 20 distinct computations for each value of σ.

It can be observed that the exit probability-weighted risk
metric as defined in Section IV is more robust to positioning
errors than both other metrics. Positioning errors up to 1.0
meter feature an increase in RMSE of less than 10%. Such
positioning error can be considered conservative considering
existing RTK approaches, e.g., as in [16].

D. Discussion

Through the findings described in this paper, real-time
knowledge on the level of risk in a roundabout can be com-
puted from the RSD of TTC values in a roundabout. What

is more, the obtained risk knowledge can be personalized
to various thresholds of TTC. Knowledge can be created
from 450 seconds of TTC data history in the roundabout to
determine the average exposure to a personalized level of
risk as defined by each CAV.

Through vehicular knowledge networking techniques as
introduced in [6], the RSD of TTC values can be dissemi-
nated in vehicular networks so that each vehicle can indepen-
dently obtain a level of risk which matches its preferred TTC
threshold, i.e., understanding of risk. In turn, the roundabout
driving risk knowledge can be used as a support to the
automated driving features of CAVs, so that they can adapt
their driving behavior to the expected level of risk.

The obtained results complete and relate to other works
in the field of the impact of TTC variation on risk. [17]
demonstrated a relationship between the volatility, i.e., micro
variations of TTC values and the severity of crashes in high-
way environments. What is more, [18] investigated on the
derivative of TTC values for pairs of vehicles and identified
patterns in TTC variation which relate to a transition from a
normal situation to a situation of risk.

As future work, the ability to transfer knowledge created
from one roundabout to another will be further studied. We
aim to investigate the applicability of knowledge created
from RounD roundabouts to new and unknown cases. More-
over, we considered risk as defined by rear-end conflicts,
measured through TTC. As future work, other types of
conflicts could be considered, including lane changes or
merging conflicts at entrance and exit junctions, to refine
the computation of TTC or compute complementary SSMs.



VI. CONCLUSION

Certain road infrastructures and driving situations are
difficult to negotiate autonomously for CAV. In some cases,
a slow down, a complete stop of the vehicle, or a take-
over of driving features by a human supervising driver may
be triggered. To reduce the likelihood of such events and
improve CAV passenger comfort, the development of risk
metrics and risk-reasoning is a key to let CAVs better un-
derstand their environment and adapt their driving behavior
accordingly. In this study, we investigated on driving risk
in roundabouts using real tracks extracted from the RounD
dataset. Roundabout-wide driving risk metrics were defined
which take into account both the occurrence of critical
TTC values and the probability of occurrence of the risk,
i.e., the probability of the following vehicle not exiting
the roundabout beforehand. What is more, a strong linear
relationship between the variation of TTC values and the
defined roundabout-wide risk metrics allows CAVs to extract
personalized driving risk knowledge from roundabouts. In
turn, the driving behavior of CAVs in roundabouts can be
adapted in real time according to their personalized risk
thresholds.
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