



### **Evolutive Network Architecture for Speech Deepfake Detection**

Wanying Ge

#### Digital Security Department, EURECOM, France

Sept. 2nd, 2021





## Introduction

### Speech anti-spoofing

- To distinguish between human speech and replayed/synthetic speech

## • Problem

- Hand-crafted model architectures require lots of human effort
- We try to
  - Explore automatic approaches to learn the network architecture







### PC-DARTS for anti-spoofing (INTERSPEECH2021)

- Architecture search with LFCC feature
- Raw PC-DARTS (ASVspoof 2021 Workshop)
  - Architecture search with Raw waveform





## **Related Works**

#### NEAT - NeuroEvolution of Augmenting Topologies [1]

- We tried performing NEAT on raw audio waveform [2], to generate the network architecture automatically. But it's slow & no good results.

#### DARTS - Differentiable ARchiTecture Search [3]

- Inspired by the successful DARTS applications to speech task[4, 5], we turn our focus to Neural Architecture Search (NAS) algorithms, that instead of completely building the network & connections, the structure and inside connections are selected from a fix set of convolutional operations, which are proved relatively faster & good learning ability

Stanley, Kenneth O., and Risto Miikkulainen. "Evolving neural networks through augmenting topologies." Evolutionary computation 10.2 (2002): 99-127.
Valenti, Giacomo, et al. "An end-to-end spoofing countermeasure for automatic speaker verification using evolving recurrent neural networks." Odyssey. 2018.
Liu, Hanxiao, et al. "Darts: Differentiable architecture search." in Proc. ICML 2019.

[4] Mo, Tong, et al. "Neural architecture search for keyword spotting." Proc. Interspeech 2020.

[5] Ding, Shaojin, et al. "Autospeech: Neural architecture search for speaker recognition." Proc. Interspeech 2020.





# **Differentiable Architecture Search**<sup>[3]</sup>

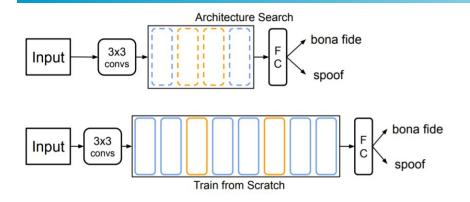


Figure 1. An illustration of architecture search stage and train from scratch stage

- **Cells** are stacked in both stages
- Node X<sup>n</sup> (feature map) are connected with operations in the search space

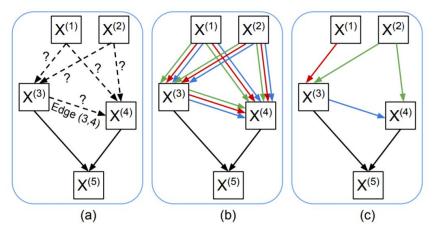


Figure 2. An illustration of cell during architecture search

- Operations are assigned with **learnable** weights
- Weights are optimised during searching
- But searching is computationally demanding

[3] H. Liu, et al., "DARTS: Differentiable Architecture Search," in Proc. ICML 2019.





# Partial channel connections<sup>[6]</sup>

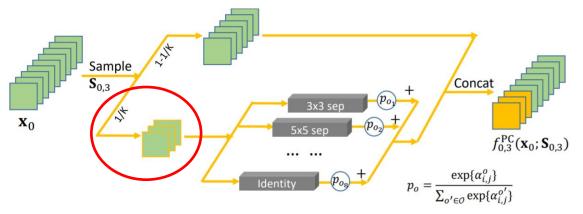


Figure 3. 1/k of the channels are selected and the others are left and stay unchanged

[6] Y. Xu, et al., "PC-DARTS: Partial channel connections for memory-efficient architecture search," in ICLR 2020.







Table 1. Comparison between original DARTS and PC-DARTS

|            |          | Search Cost Best Architecture |                  |                |
|------------|----------|-------------------------------|------------------|----------------|
| Model size | Systems  | <b>GPU-days</b>               | <b>Train Acc</b> | <b>Dev Acc</b> |
| (L = 4,    | DARTS    | 0.29                          | 98.80            | 97.21          |
| C = 16)    | PC-DARTS | 0.15                          | 99.97            | 100            |

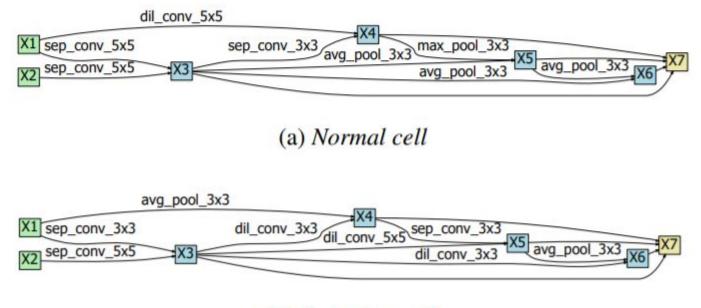
Table 2. Results on ASVspoof2019 LA database

| Systems            | Features | min-tDCF | EER  | Params      |
|--------------------|----------|----------|------|-------------|
| Res2Net [26]       | CQT      | 0.0743   | 2.50 | 0.96M       |
| Res2Net [26]       | LFCC     | 0.0786   | 2.87 | 0.96M       |
| PC-DARTS (16, 64)  | LFCC     | 0.0914   | 4.96 | 7.51M       |
| PC-DARTS $(4, 16)$ | LFCC     | 0.0992   | 5.53 | 0.14M       |
| LCNN [27] [28]     | LFCC     | 0.1000   | 5.06 | 10 <b>M</b> |
| LCNN [27] [28]     | LPS      | 0.1028   | 4.53 | 1 <b>0M</b> |
| LFCC-GMM [25]      | LFCC     | 0.2116   | 8.09 | -           |
| Res2Net [26]       | LPS      | 0.2237   | 8.78 | 0.96M       |
| CQCC-GMM [25]      | CQCC     | 0.2366   | 9.57 | -           |
| Deep Res-Net [29]  | LPS      | 0.2741   | 9.68 | 0.31M       |





\_



(b) Reduction cell







- Automatically searching for the network architecture for speech spoofing detection
- Partial channel connection helps to reduce memory cost and improve efficiency
- Achieved competitive performance against other hand-crafted deep neural networks





# From LFCC to Waveform

#### Input features

- Mostly, time-frequency (T-F) representations, like CQCC, LFCC.

### Problem

- T-F calculations will lose part of the input information

- Same model architecture trained on different features obtain different result

### • We try to

- Directly fed audio waveform to the network



|             | Input     | Operations | Pre-processing   | Classifier |
|-------------|-----------|------------|------------------|------------|
| T-F Feature | 2D matrix | Conv2D     | 2 Conv<br>layers | FC         |
| Raw signal  | 1D vector | Conv1D     | Sinc layer       | GRU + FC   |





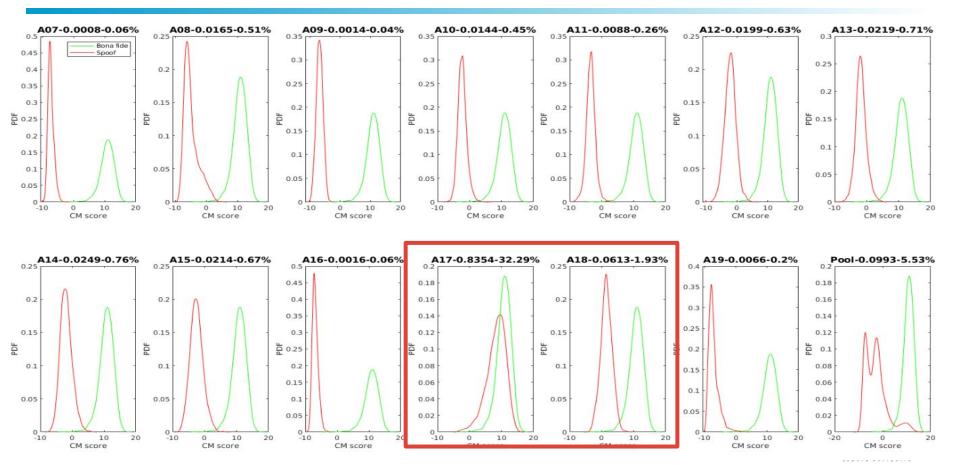
## **Results**

|             | Fixed    |      | Learnable |      |
|-------------|----------|------|-----------|------|
| Туре        | min-tDCF | EER  | min-tDCF  | EER  |
| Mel         | 0.0517   | 1.77 | 0.0899    | 3.62 |
| Inverse-Mel | 0.0700   | 3.25 | 0.0655    | 2.80 |
| Linear      | 0.0926   | 3.29 | 0.0583    | 2.10 |
| Conv_0      | ×        | ×    | 0.0733    | 2.49 |

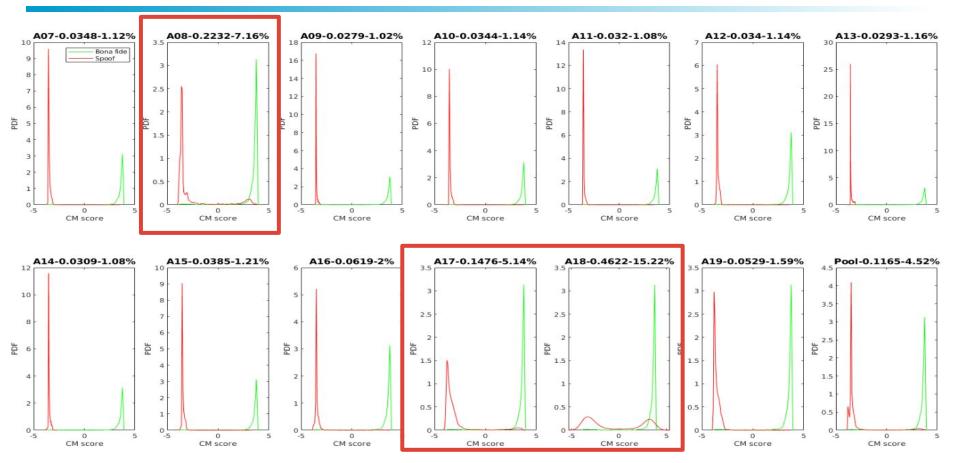




## **Score distribution - LFCC**



## **Score distribution - Raw waveform**



# Thanks



