
Design and Optimization of Cache Systems
for Small Cell Networks

Dissertation

submitted to

Université Côte d’Azur

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Author:

Guilherme IECKER RICARDO

Scheduled for defense on the September 9th, 2021, before a committee composed of:

Reviewers

Dr. Anastasios GIOVANIDIS Sorbonne Université - Lab LIP6, France

Prof. Francesco DE PELLEGRINI Université d’Avignon, France

Examiners

Prof. Daniel SADOC MENASCHÉ Universidade Federal do Rio de Janeiro, Brazil

Prof. Ilenia TINNIRELLO Università degli Studi di Palermo, Italy

Director

Dr. Giovanni NEGLIA Inria, France

Co-Director

Prof. Petros ELIA EURECOM, France

Co-Supervisor

Prof. Thrasyvoulos SPYROPOULOS EURECOM, France

Conception et Optimisation des Systèmes
de Cache pour les Réseaux Small Cell

Thèse

soumise à

Université Côte d’Azur

pour l’obtention du Grade de Docteur

présentée par:

Guilherme IECKER RICARDO

Soutenance de thèse prévue le 9 septembre 2021 devant le jury composé de:

Rapporteurs

Dr. Anastasios GIOVANIDIS Sorbonne Université - Lab LIP6, France

Prof. Francesco DE PELLEGRINI Université d’Avignon, France

Examinateurs

Prof. Daniel SADOC MENASCHÉ Universidade Federal do Rio de Janeiro, Brésil

Prof. Ilenia TINNIRELLO Università degli Studi di Palermo, Italy

Directeur de Thèse

Dr. Giovanni NEGLIA Inria, France

Co-Directeur de Thèse

Prof. Petros ELIA EURECOM, France

Co-Encadrant de Thèse

Prof. Thrasyvoulos SPYROPOULOS EURECOM, France

Abstract

Caching techniques have been extensively studied and deployed as powerful solutions

to performance improvement in a wide variety of computer systems. Motivated by new

technologies and challenges emerging from prospective cellular architectures, this thesis

proposes the design and analysis of novel caching techniques targeting the improvement

of mobile users’ quality of experience. We are particularly attentive to small cell networks

enabled with Coordinated Multi-Point (CoMP) Joint Transmissions (JT) technology.

First, we study the scenario where content placement is performed by a centralized

intelligence aware of previously estimated files popularities and the whole network topology.

The best content placement is obtained from solving an optimization problem that we

approximate by an efficient greedy algorithm. This solution depends on strict assumptions

and may fail to capture short-scale content’s popularity variability. However, it is useful

to determine performance bounds and to provide insights on the problem’s inherent

trade-offs.

Then, we introduce a dynamic framework, where each cache individually updates its

content on-the-fly as a response to arriving requests based on pre-defined caching policies.

The proposed caching policies define a set of probabilistic rules that take into account

the overall performance gain of any cache update operation. Our first policy achieves

implicit coordination between caches and asymptotically converge to the optimal cache

configuration under stationary request sequences. We also study the case where requests

are non-stationary and provide a policy that provides satisfactory practical results.

Finally, we present a set of experiments based on numerical simulations designed to

capture intrinsic attributes of real small cell networks. The empirical results confirm

the asymptotic convergence to an optimal solution of our first policy. We observe that

both proposed policies achieve desirable performance levels when exposed to either

stationary or non-stationary request sequences. Furthermore, our policies outperform

other state-of-the-art policies in all tested scenarios.

i

Abstract

ii

Abrégé

Les techniques de mise en cache ont été largement étudiées et déployées en tant que

solutions puissantes pour améliorer la performance d’une grande variété de systèmes

informatiques. Motivée par les nouvelles technologies et les défis émergeant des architec-

tures cellulaires prospectives, cette thèse propose la conception et l’analyse de nouvelles

techniques de mise en cache visant l’amélioration de la qualité d’expérience des utilisateurs

mobiles. Nous sommes attentifs aux réseaux dits small cell dotés de la technologie CoMP

Joint Transmissions.

Tout d’abord, nous étudions le scénario où le placement de contenu est effectué par

une intelligence centralisée conscience de la popularité des fichiers précédemment estimée

et de la topologie du réseau dans son ensemble. Le meilleur placement du contenu est

obtenu en résolvant un problème d’optimisation que nous approchons via un algorithme

glouton efficace. Cette solution dépend d’hypothèses strictes et peut ne pas capturer la

variabilité de popularité du contenu à petite échelle. Cependant, il est utile de déterminer

les limites de performance et de fournir des informations sur les compromis inhérents au

problème.

Ensuite, nous introduisons un cadre dynamique, dans lequel chaque cache met à jour

individuellement son contenu à la volée en réponse aux demandes entrantes en se basant

sur des politiques de mise en cache prédéfinies. Les politiques proposées définissent un

ensemble de règles probabilistes qui prennent en compte le gain de performance global de

toute opération de mise à jour du cache. Notre première politique réalise une coordination

implicite entre les caches et converge asymptotiquement vers la configuration de cache

optimale sous des séquences de demandes stationnaires. Nous étudions également le cas

où les demandes ne sont pas stationnaires et fournissons une politique qui donne des

résultats pratiques satisfaisants.

Enfin, nous présentons quelques expériences basées sur des simulations numériques

conçues pour capturer les attributs intrinsèques de véritables réseaux small cell. Les

résultats empiriques confirment la tendance asymptotiquement optimale de notre pre-

mière politique. Nous observons que nos politiques proposées atteignent des niveaux de

iii

Abrégé

performance souhaitables lorsqu’elles sont exposées à la fois à des séquences de demandes

stationnaires et non stationnaires. De plus, nos politiques surpassent les autres politiques

de pointe dans tous les scénarios testés.

iv

Acknowledgements

v

Acknowledgements

vi

Contents

Abstract . i

Abrégé [Français] . iii

Acknowledgements . v

Contents . vii

List of Figures . viii

1 Introduction 1

1.1 Background and Technologies Overview 1

1.1.1 Cache Systems . 1

1.1.2 Cache-Enabled Small-Cell Networks 8

1.1.3 Coordinated Multi-Point (CoMP) Technologies 9

1.2 Goals and Objectives . 10

1.3 Related Work . 11

1.3.1 Static Caching Solutions . 11

1.3.2 Dynamic Caching Solutions . 13

1.4 Contributions and Thesis Outline . 14

2 System Model and Operation 17

2.1 Network Model . 17

2.2 The Berlin Network . 18

2.3 Content Delivery . 19

2.4 Operation Example . 20

3 Static Caching Solutions 23

3.1 System Model and Operation . 24

3.2 Problem Definition . 27

3.3 Hit Rate Maximization . 27

3.4 Average Delay Minimization . 30

3.4.1 Homogeneous SNRs: Full-Coverage 33

3.4.2 Homogeneous SNRs: General Topology 37

3.4.3 Heterogeneous SNRs . 39

3.5 Special Case: Heterogeneous File Sizes . 40

vii

Contents

4 Dynamic Caching Solutions 45

4.1 System Model and Additional Notation 46

4.2 Optimal Caching for Stationary Requests 47

4.2.1 Modeling qLRU-∆ as a Markov Chain 52

4.2.2 Optimality of qLRU-∆ . 64

4.2.3 Application of qLRU-∆ . 67

4.3 Handling Non-Stationary Requests . 70

4.4 Special Case: Heterogeneous File Sizes . 74

5 Experimental Results 81

5.1 Experimental Setup . 82

5.1.1 Cellular Network . 82

5.1.2 Caching schemes . 83

5.1.3 Request Generation Mechanisms 85

5.2 qLRU-∆ Convergence to an Optimal Allocation 85

5.2.1 Convergence of qLRU-∆h – Hit Ratio 85

5.2.2 Convergence of qLRU-∆d – Average Delay 86

5.2.3 Convergence under different cache capacities 88

5.2.4 Convergence under different dBH and λf – Average Delay 88

5.2.5 The role of popularities in the convergence process 88

5.2.6 Convergence speed – Average Delay 90

5.3 Comparison with other Caching Policies 92

5.3.1 Effect of network density – Stationary requests 92

5.3.2 Effect of network density – Trace-based requests 94

5.3.3 Performance under heterogeneous SNRs 94

5.4 Special Case: Heterogeneous File Sizes . 97

5.4.1 Convergence Analysis . 98

5.4.2 Comparison with other Caching Policies 99

6 Conclusion 105

Appendices 107

A Proofs for Chapter 3 109

A.1 Proof of Proposition 1 . 109

A.2 Proof of Lemma 2 . 110

A.3 Proof of Proposition 3 . 111

A.4 Proof of Corollary 4 . 112

A.5 Proof of Proposition 5 . 114

A.6 Proof of Lemma 6 . 117

A.7 Proof of Proposition 9 . 120

viii

List of Figures

1.1 Data flowchart for a simple web caching example. 2

1.2 Change of paradigm: From classic client-server to CDN architecture. . . . 3

1.3 Practical LFU Operation Example (scheme extracted from [1]) 6

1.4 Practical LRU Operation Example (scheme extracted from [1]) 7

1.5 Classic cellular heterogeneous network with macro-, pico-, and femto-cells. 9

2.1 Example of a CCSC network with B = 3 BSs and its bipartite graph

representation. 18

2.2 Berlin network BSs position with different coverage area sizes. 19

2.3 Example of transmission situations emerging from the CCSC architecture. 21

3.1 Examples of different coverage area overlap levels for 2 BSs. 29

3.2 Extreme allocations regions for different setups. Axes are in log scale. . . 36

4.1 Poisson arrival process with rate β ·∆G(b)
f representing the MTF events

for file f at BS b. It is obtained from thinning the original Poisson process

of arriving requests from the different UEs for file f with rate λf,u with

probability p
(b)
f (u). 54

4.2 CTMC Xf (t) for B = 2 BSs. 56

4.3 Resistance graph Gf of DTMC X̂f (k) for B = 2 BSs. 61

4.4 Example of in-tree over Gf rooted at state 2 for B = 2 BSs. 62

4.5 Illustration of 2LRU-∆ operation from the perspective of a single BS b

when UE u has requested file f . 71

5.1 Convergence analysis: (a) hit ratio and (b) average delay as q tends to 0.

Setup: Berlin topology with density ρ = 5.9 BSs/UE, α = 1.2, dBH =

100 ms, and V = 10 dB. Besides the qLRU-∆ specialized implementation

and greedy algorithm corresponding to each metric, results are show for

qLRU and FIFO. 87

ix

List of Figures

5.2 Convergence analysis: (a) hit ratio and (b) average delay as cache capac-

ity C increases. Setup: Berlin topology with density ρ = 5.9 BSs/UE,

α = 1.2, dBH = 100 ms, V = 10 dB, and q = 0.001. Besides qLRU-∆

and greedy algorithms corresponding to each metric, results are shown for

qLRU and FIFO. 89

5.3 Convergence analysis: average delay provided by qLRU-∆d in comparison

with GreedyAD for increasing (left) Zipf exponent and (right) backhaul-

access delay. Setup: Berlin topology with density ρ = 5.9 BSs/UE,

V = 10 dB, and q = 0.001. 90

5.4 Convergence analysis: qLRU-∆h (left) and qLRU-∆d (right) starting the

simulation with the respective greedy allocation for different levels of noisy

popularity estimations, represented by variance σ2. The solid curves are

the average of 100 different simulation rounds. Setup: Berlin topology

with density ρ = 5.9 BSs/UE, α = 1.2, dBH = 100 ms, V = 10 dB, and

q = 0.001. 91

5.5 Convergence analysis: Evolution of the average delay (left) and hit ratio

(right) achieved by different policies versus the requests (plotted at every

100 requests). Setup: Berlin topology with density ρ = 9.4 BSs/UE,

α = 1.2, dBH = 100 ms, V = 10 dB, and q = 0.001. 92

5.6 Performance evaluation in terms of (a) Normalized average delay and (b)

hit ratio of various policies and greedy algorithms versus the network

density. Setup: Berlin topology with α = 1.2, dBH = 100 ms, V = 10 dB,

and q = 0.001. 93

5.7 Normalized average delay of various policies and greedy algorithms versus

the network density. Setup: Berlin topology with dBH = 100 ms, V =

10 dB, and q = 0.001. The request process is based on a real trace from

which requests were during 5 days. 95

5.8 The normalized average delay achieved by various policies versus the

SNR variation in (a) slow and (b) fast SNR variability regimes. Setup:

Berlin topology with density ρ = 5.9, dBH = 100 ms, q = 0.001, and base

SNR V0 = 10 dB. 96

5.9 Convergence Analysis: Average delay d̄ (left) and hit ratio (right) versus q.

Setup: Berlin topology with density ρ = 5.9, RBH = 100 Mbps, M = 10 ms,

V = 10 dB, C = 50.0 GB, Smin = 1.0 GB, and ∆S = 9.0 GB. 98

x

List of Figures

5.10 Convergence Analysis: Average delay d̄ (left) and hit ratio (right) versus the

requests. Results of qLRU-HS and qLRU-∆d are shown for q = 10−3 and

q = 10−4. Setup: Berlin topology with density ρ = 5.9, RBH = 100 Mbps,

M = 10 ms, V = 10 dB, C = 50.0 GB, Smin = 1.0 GB, and ∆S = 9.0 GB. 100

5.11 Performance Evaluation: Average delay (left) and hit ratio (right) achieved

by various policies versus increasing cache capacity. Setup: Berlin topology

with density ρ = 5.9, RBH = 100 Mbps, M = 10 ms, V = 10 dB, q = 10−3,

Smin = 1.0 GB, and ∆S = 9.0 GB. 101

5.12 Performance Evaluation: Average delay (left) and hit ratio (right) achieved

by various policies versus increasing network density. Setup: Berlin

topology with RBH = 100 Mbps, M = 10 ms, V = 10 dB, q = 10−3,

C = 30.0 GB, Smin = 1.0 GB, and ∆S = 9.0 GB. 102

5.13 Performance Evaluation: The ratio between the average delay achieved

by various policies and IGA versus size variability (left) and backhaul-

access overhead. Setup: Berlin topology with density ρ = 5.9 BSs/UE,

RBH = 100 Mbps, V = 10 dB, q = 10−3, C = 30.0 GB, and Smin = 1.0 GB.103

xi

List of Figures

xii

Chapter 1

Introduction

This introductory chapter provides an overview of the main technologies and challenges

that commonly motivate and shape the different problems studied in this thesis. We

present a summary of these problems and list the set of goals that we wish to achieve.

Then, we discuss the existing variants and solutions in a comprehensive list of related

work. Finally, we outline the thesis contributions and present how they are organized in

the next chapters.

1.1 Background and Technologies Overview

In this section we cover in detail the technological background of the problems we study

in the next chapters. First, we provide an overview of general cache systems and, then,

we discuss how they can be deployed in small-cell networks. Finally, we introduce the

Coordinated Multi-Point (CoMP) technology and emphasize what are the key aspects

for our models and solutions.

1.1.1 Cache Systems

Caching techniques have been studied as performance improvement solutions for a large

variety of data-oriented applications; from “high-level” applications, e.g., web (browser)

caching [2], to “low-level” computer systems, e.g., hierarchical memory schemes [3]. In

its broadest definition, cache is a hardware or software component that is able to store

and/or serve data at a lower cost, e.g., smaller retrieval latency, in comparison to the

original data server. A fundamental characteristic of cache systems is that the available

storage capacity is more limited than in the original data servers, so only a small fraction

of the whole catalog of files can be cached. The performance boost essentially comes from

1

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 2

the fact that a selection of the most “useful” files (according to a well defined objective)

can be cached and served at a lower cost. The subset of files comprising the cache current

state is referred to as the cache allocation (or cache configuration).

Example 1 (Standard Web Caching): Consider a classic internet-based client-server web

application. The standard data flow is the following: An HTTP request is issued by the

client, e.g., web browser, and go all the way through the internet to the back-end server;

then, the server sends back the requested page to the client. If caches are deployed on

the client side, whenever a new page needs to be retrieved from the server, the browser

may opt to retain a local copy of that page at its cache. Then, we introduced a shortened

data flow: Whenever a user revisits a web page, it may be rendered immediately directly

from the cache, without being downloaded from the server. We illustrate, in Figure 1.1,

how the data flow changes with the deployment of a cache system.

Figure 1.1 – Data flowchart for a simple web caching example.

The primary advantage of web caching, as it is the case for the majority of cache

systems, is to reduce the retrieval latency and, consequently, improve overall Quality

of Service (QoS) experienced by the application’s clients. There are many other ways

computer systems and applications can profit from cache systems. For example, additional

positive effects of web caching include the ability to (i) alleviate the original servers’

access traffic load, in case an excessive number of users is simultaneously querying the

server [4] and (ii) reduce the traffic in the intermediate links between the users and

remote servers, preventing congestion and misuse of network resources [5]. We discuss a

more complex cache system in the next example.

Example 2 (CDN Caching): In Content Delivery Networks (CDNs) [5], part of the content

provided by the original server is replicated into many different edge servers, sometimes

also referred to as Points of Presence (PoPs). Therefore, we move from a centralized

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 3

single-server architecture (Figure 1.2a) to a more distributed one, where content is placed

closer the end user (Figure 1.2b). Edge servers deployment strategy depends on the

CDN’s business model, e.g., based on geographical and economic characteristics. Besides

the advantages already discussed for the web caching example, this server replication

architecture may also provide other benefits, e.g., overall internet traffic reduction,

implementation of exclusive services and content to different edge servers, and so on.

(a) Classic Client-Server Architecture (b) CDN Architecture.

Figure 1.2 – Change of paradigm: From classic client-server to CDN architecture.

CDN caching can be seen as a generalization of the standard web caching technique,

where the caches at the edge-servers are able to serve multiple users with web pages and

other types of frequently downloaded files, such as music, videos, etc. In this context,

caching decisions tend to be more complex because caches take into consideration the

preference of multiple concurrent users, which is shaped by social and geographic aspects.

We discuss next how to evaluate cache solutions’ performance and what we should

consider in order to design efficient systems.

Performance of Cache Systems

The most intuitive way to evaluate the performance of a cache system is through the

(cache) hit rate (or hit ratio) metric. The cache hit is the event where a requested file is

found at the cache and hit rate is the number of hits relative to the total of requests. In

general, a high hit rate indicates that a considerable amount of requests are being served

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 4

directly from the cache, which intuitively suggests an efficient cache system.1

Therefore, considering hit rate as the main performance metric, a natural goal for any

caching strategy is to maximize the hit probabilities (of the lowest cost/closest) caches. A

major obstacle in doing so, is that we do not generally know which file will be requested

next. For this reason, some metric of file popularity is needed (or must be learned),

that captures the overall user preferences and/or request patterns. Files popularities

are central to the design and performance evaluation of cache systems, because they

define the probability of each file to be requested in the future. In an alternative web

caching implementation from Example 1, if the browser somehow knows before-hand an

estimation for the pages popularities, it could prefetch these pages and place them into

the cache and provide faster retrieval even upon a page’s first access.

The hit rate is widely adopted in related literature as a very versatile performance

metric. However, for some other applications, it may not be the most suitable metric to

evaluate the underlying cache system’s performance. For example, in the coded-caching

framework [6, 7], the concept of cache hit is not enough to characterize good QoS and to

capture the system’s trade-offs. As we will discuss in the next chapters, we can define

QoS for small-cell networks in terms of the average delay experienced by the user to

retrieve the requested file. In this case, achieving a high hit rate does not necessarily

mean that we are providing satisfactory QoS. Therefore, in these cases, popularities

alone are not enough to decide which files should be cached; other parameters must be

considered as well, e.g., the network topology.

Now, we can discuss cache solution strategies, i.e., how cache content can be managed,

targeting the optimization of a desired performance metric. Until the end of this

subsection, we exclusively focus on the hit rate as a performance metric, because it

provides a more intuitive notion of performance.

Cache Solution Frameworks

We categorize caching strategies into two different groups: static and dynamic cache

(solution) frameworks. Each cache framework establishes the general operation and

constraints of the underlying cache system.

In the static cache framework, the entire cache allocation is updated all at once every

fixed time interval. In this framework, there is a centralized oracle that is aware of the

whole system topology and parameters. Usually, in this kind of approach, the cache

system operation is split into two main phases:

1In a symmetric way, we can define the cache miss (i.e., the event where a requested file is not cached).
In this case, an efficient cache system may be characterized by a low cache miss rate.

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 5

1. the measurement phase, where requests are observed and application relevant

statistics, e.g., files popularities, users activity level, etc., may be estimated;

2. the placement phase, where files are fetched from the original data servers and

effectively stored at the cache server.

We focus on the placement phase. The idea is to find the cache allocation that is able

to optimize a performance metric of interest, assuming the statistics from the previous

measurement phase are available.

Example 3 (CDN Hit Ratio Maximization): In some related work, CDNs are studied in

the static framework (see Example 2), where the two phases take place on a daily-basis.

Usually, the measurement is performed during the day, when users are more active

and the data traffic is more intense (generating more data and more reliable statistics

estimations). Then, during the night, when the network resources are more abundant,

the cache content is updated, based on the previously estimated statistics. If we wish

to maximize the hit rate at one of the edge cache servers in this scenario, the solution

is rather trivial: it needs to cache all the most popular files among its users. If the

estimated popularities from the previous day represent the files probabilities of being

requested, by caching the most popular files, we maximize the expected cache hit rate of

the requests on the next day.

In the dynamic cache framework, the cache content is updated on-the-fly as new

requests arrive. In this thesis, we consider that the cache is structured as an ordered

queue and may admit files metadata or auxiliary data structures. Upon every request,

the cache may perform one or more of the following operations: (i) insert a new file,

(ii) evict (or remove) a cached file, or (iii) move a cached file from its current position

in the queue to a new position. The set of applicable operations and update rules are

specified by online caching policies, commonly referred to as just policies throughout this

thesis. Caching policies are designed aiming to converge to an allocation that is able to

provide a good performance on average.

One important aspect for the design of dynamic solutions is to understand the

underlying request process. In most of the related literature, request processes are often

modeled under the Independent Reference Model (IRM). In IRM, the request process

for each file is represented as a Poisson arrival process, with a rate that is related to its

popularity, and independent from the other files. We also refer to IRM-based request

processes as stationary processes. Although real systems usually have non-stationary

request processes, where files popularities may change drastically in short periods of

time [8], IRM is still able to provide useful insights.

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 6

Example 4 (LFU Caching Policy): Revisiting the CDN edge cache server hit rate max-

imization example, now in the dynamic framework, the classic ideal LFU policy is

well-known to achieve optimal results under IRM. The idea behind LFU is that the

cache server maintains a counter associated to every file in the catalog accounting the

number of times it has been requested. Whenever a file that is not cached is requested,

the least-frequently-used file, i.e., the one with the smallest counter, is evicted from the

cache to make room for the new file. In this case, the LFU policy was named after its

least-frequently-used eviction rule.

We illustrate LFU’s operation in Figure 1.3: In step 1, file “D” is requested and its

counter is incremented by 1, moving one position up in the queue (swapping places with

file “C”.) Then, in step 2, file “B” is requested, its counter is updated, but it does not

change its position in the queue. In step 3, file “F” is requested and it is not in the

cache, then the least-frequently-used file (the file at the rear of the queue), i.e., file “E”,

is evicted to make room for file “F” to be inserted (with a brand new counter.)

After some “warm-up” time (characterizing the transient phase), the cache converges

to the optimal allocation, i.e., storing the most frequently used (or the most popular)

files.

Figure 1.3 – Practical LFU Operation Example (scheme extracted from [1])

Although the ideal LFU policy is optimal under IRM, its implementation is com-

putationally costly. For some applications, keeping track on the request frequency of

cached files may be hard or infeasible.2 Moreover, according to [9], real request processes

have strong temporal locality property, where if a file is requested, then it is likely that

2It is also common to find the practical implementation of LFU, where caches maintain counters
only for the cached files. This simplification reduces the computational resources requirements for LFU
deployment, although the optimality guarantee may no longer hold.

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 7

the same file will be referenced again in the near future. There is temporal proximity

between consecutive requests to the same file. In this case, it is common to make efforts

to cache a copy of recently requested files to reduce the latency of subsequent requests.

The LFU policy may fail at capturing this notion of time, given that the counters reflect

the general request frequency and they are not sensitive to changes in popularity in a

short time scale.

Example 5 (LRU Caching Policy): In order to handle the issues pointed out previously,

i.e., (i) to provide a lighter computational implementation and (ii) to deal with non-

stationary request processes being sensitive to temporal locality, the LRU policy is a

strong candidate to replace LFU in more practical systems.

The LRU implements the following rules: Whenever a non-cached file is requested, it

is inserted at the front of the cache, pushing down in the queue all the other cached files.

If the cache is already full, the least-recently used file, i.e., the one at the rear of the

cache is evicted to make room for the new file. If a cached file is requested, it is moved

from its current position to the front of the cache, also shifting the in-between files one

position down in the queue.

We illustrate LRU’s operation in Figure 1.4: Files from “A” to “E” are requested in

sequence and inserted into the cache in that order, always pushing back older files one

position at every new insertion. Then, file “F” is requested and, because the cache is full,

the least-recently-used file (at the rear), i.e., file “A”, is evicted and “F” is inserted at

the front. Then, file “C” is requested and, since it is already in the cache, it is moved

from its current position (second-to-last) to the front of the cache. Finally, file “G” is

requested and is inserted at the front of the cache, causing file “B” eviction.

Figure 1.4 – Practical LRU Operation Example (scheme extracted from [1])

LRU does not require additional data structures and higher level computer operations,

so it tends to be computationally lighter than LFU. Moreover, the least-recently-used

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 8

eviction rule keeps files in the cache while they are still likely to be requested, promising

good results under real request processes. Due to these advantages, LRU and its variants,

e.g., qLRU (which inserts new content with probability q), are widely deployed in real

systems. Besides, our proposed policies, which we will discuss in Chapter 4, are built on

top of LRU’s basic operation rules.

1.1.2 Cache-Enabled Small-Cell Networks

With the ever-growing popularization of social media and on-demand video streaming,

cellular data consumption has experienced an unprecedented increase. According to

latest CISCO’s forecast [10], by 2023 there will be 13 billion mobile connections, showing

an increase of nearly 50% over 2018. Network densification is considered a key strategy

to cope with the traffic deluge in future networks [11]. For example, the standard

3G/4G macro-cell topology will be enriched by a large number of overlapping and often

heterogeneous cells (e.g., femto, pico), in order to improve both coverage and capacity [12].

On top this architecture, network slicing is a technique that allows virtualization

and sectorization of physical resources, e.g., routing and package switching, bandwidth,

and storage capacity. Network slicing enables customized and dedicated infrastructure

to specific applications and services, offering a profitable business model for network

operators to be considered in the design of 5G and beyond cellular architectures [13]. For

example, content providers, e.g., CDN operators and video streaming companies, may

reserve their own virtual slice on a cellular network comprising storage capacity in order

to empower their data distribution services with caching capabilities. By implementing

cache systems closer to the mobile users, companies are able to serve content with much

lower latency and, consequently, provide better QoS [14].

In this thesis, we consider a dense cellular network, where a significant fraction of

users is “covered” by several base stations (BSs), whose cells are said to “overlap.” BSs

are connected to the back-end servers through a high-latency backhaul network (also

called core network) and are able to fetch content in order to be served to mobile users.

We assume that network operators and content providers interplay closely, for example

via network slicing so that application-level cache systems may be deployed at every

BS [15]. By doing so, BSs function as front-end servers to the application users such

that cached content may be served directly from the BSs, promptly being transmitted

through the wireless channel.

Figure 1.5 shows the classic cellular heterogeneous architecture: “multiple tiers (or

layers) of networks of different cell sizes/footprints and/or of multiple radio access

technologies” [16], leading to overlapping cells. In this case, we have a macro-cell and its

1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 9

Figure 1.5 – Classic cellular heterogeneous network with macro-, pico-, and femto-cells.

subjacent smaller cells. In the same figure, we see that the different BSs are equipped

with caches and are independently connected to the internet via the backhaul network.

Moreover, user equipments (UEs) may be located in the overlapping coverage area of

multiple BSs.

On top of a small-cell network, the cache system must be designed to optimize a

performance metric of interest. Since we are interested in providing better QoS to mobile

users, we focus on the average delay to serve a request (for a UE to download a desired

file) as a user-centered metric. Intuitively, if the requested file is cached, it will be served

faster, so, in principle, the hit ratio may still be a reasonable performance metric to be

adopted. However, as we discuss in the next subsection, we add to our model a set of

cooperative transmission technologies that promise to provide an even better performance

(i.e., smaller delays) for content delivery in small-cell networks. We emphasize that, in

this case, higher hit ratio may not necessarily imply smaller experienced delay.

1.1.3 Coordinated Multi-Point (CoMP) Technologies

In standard macro cellular networks, e.g., LTE 3G/4G architecture, UEs at the cell

borders experience lower throughput than those closer to the BSs due to inter-cell

interference. This issue cannot be solved by simply increasing the transmitted power,

for example. Therefore, in order to provide a more even user experience throughout the

whole network, BSs must be able to (i) handle inter-cell interference and (ii) reduce the

gap between “cell edge” and “average” throughput.

1.2. GOALS AND OBJECTIVES 10

This was the motivation behind the conception of Coordinated Multi-Point (CoMP) [17]

technology. The term CoMP refers to the group of techniques where nodes (e.g., BSs)

coordinate or cooperate to mitigate and/or to exploit interference of the physical layer

(PHY). CoMP techniques are commonly categorized into three different groups: (i)

Dynamic Point Selection (DPS), (ii) Coordinated Scheduler / Coordinated Beamforming

(CS/CB), and (iii) Joint Transmissions (JT). In this thesis we focus exclusively on CoMP

JT, where, in short, two or more BSs coordinate their transmissions so the combined

received signal at the UE has enhanced power. The enhanced received power reflects

in a better Signal-to-Noise Ratio (SNR), which produces higher transmission rates and,

consequently, the UE experiences smaller delays to obtain the requested content.

Unfortunately, there are many incompatibilities between CoMP techniques and LTE-

like legacy systems that make CoMP performance far from its theoretical predictions or

even infeasible to be deployed on top of already existing infrastructures. However, as

suggested by [18,19], 5G and beyond cellular networks can be designed to implement the

necessary infrastructure, particularly on top of heterogeneous small-cells architectures,

with special effort to tackle synchronization in time and frequency, provision of accurate

channel state information (CSI) to the transmitter, and user scheduling and precoding.

On top of the small-cell network discussed in Section 1.1.2, we assume a distributed

implementation of CoMP JT: The network obtains channel information from the UEs

over a feedback link, whereas CSI synchronization control messages are directly exchanged

between BSs, e.g., via optical X2 interface [20]. By sharing the CSI related to a common

UE, the neighboring BSs are able to determine how beneficial CoMP JT is in this case.

Then, they dynamically self-organize into small cooperation groups (this process is called

CoMP clusterization) in order to jointly transmit data to the UE.

1.2 Goals and Objectives

This thesis investigates how to design cache systems deployed on top of small-cell

networks aiming to provide users better QoS. Our primary goal is to understand how

the combinatorial structure emerging from the small-cell architecture along with the

performance boost elements provided by CoMP influence caching strategies. Although

we explore both solution frameworks detailed in Section 1.1, we are mostly interested

in answering how efficient dynamic caching can be. In other words, we want to answer

whether the implementation of distributed online policies can converge to the optimal

allocation resulting from the static optimization. In order to systematically approach the

overall problem, our objectives are organized as follows:

1.3. RELATED WORK 11

1. Development of efficient algorithms to solve the static content placement opti-

mization problem and evaluation of how the optimal solutions are affected by the

system’s parameters.

2. Explore the open question regarding the existence of general (and computationally

efficient) distributed strategies for small-cell network coordination, which are able

to provide guarantees on global performance metrics.

In the next section, we discuss some related problems and caching solutions proposed

in other works in the scientific literature.

1.3 Related Work

In this section, we provide a bibliographic review on caching solutions, with a focus on

networks of caches. We cover the related work following the static and dynamic taxonomy

introduced in Section 1.1.1. In parallel, we explore some other caching problem variants

that will provide more insights on the big picture of how caching is being considered in

different applications and domains.

1.3.1 Static Caching Solutions

The idea of statically coordinating the placement of content in a network of cache servers

recently gained popularity when the authors in [21] and its extension [7] investigated such

problem under the name of FemtoCaching. Assuming that files have known popularities

and are requested according to IRM, the FemtoCaching problem is to find the content

allocation that minimizes the retrieval delay. Although the FemtoCaching problem was

proven to be NP-hard, the authors approached it as a submodular optimization problem

and efficiently solved it via a greedy algorithm, with 1
2 -approximation guarantee.

To the best of our knowledge, [22] was one of the first papers to explore, using the

idea of collaborative joint transmissions, the trade-off between hit rate and delay savings.

In this context, it might be more advantageous to eliminate copies of less popular files in

order to make room for multiple copies of more popular files, creating joint transmissions

opportunities and, consequently, reducing the experienced delay. The authors proposed

a first approach based on a heuristic with Maximum Ratio Transmission and a second

approach based on Zero-Forcing BeamForming. However, both approaches lack for

theoretical optimality guarantees. Introduced by [23], the average delay minimization in

FemtoCaching framework under CoMP assumption can be formulated as a combinatorial

optimization problem. Although this problem is NP-Hard, submodularity properties are

1.3. RELATED WORK 12

guaranteed under specific assumptions. Then, the greedy algorithm can again be used

to find a content allocation that is 1
2 far from the optimal. Reference [24] considers two

different CoMP techniques, i.e., joint transmission and parallel transmission, and derives

formulas for the hit rate using tools from stochastic geometry.

Authors of [25] included the bandwidth costs in the formulation, and proposed an

on-line algorithm for the solution of the resulting problem. This line of work has been

further extended in [26], which also considers the request routing problem. In [27], the

authors generalized the approach of [7, 21], providing a formulation for the joint routing

and placement problem that maximizes the hit ratio. The routing-caching problem was

later revisited in [28,29]. Still in the joint optimization context, other problem variants

consider different optimization metrics, e.g., energy saving [30, 31], and variables, e.g.,

user association [32–35]. The latter reference also considers content recommendation,

which is playing an important role in nowadays applications and cache systems design.

If we look at the application layer and consider recommendation systems solutions, [36]

and [37] explored the joint optimization of content placement and recommendation. The

idea is that the hit rate might increase if users accept the recommendation of an already

cached alternative content. This kind of problem has common elements with similarity

caching [38], an emerging caching framework that considers the benefit of serving a

similar cached content in exchange for some performance reduction.

Reference [39] revisited the optimal content placement problem within a stochastic

geometry framework and derived an elegant analytical characterization of the optimal

policy and its performance. In [40] the authors developed a few asynchronous distributed

content placement algorithms with polynomial complexity and limited communication

overhead (communication takes place only between overlapping cells), whose performance

was shown to be very good in most of the tested scenarios.

When files have different sizes, the problem (that was already NP-Hard in its

homogeneous-sizes variant) becomes significantly harder to approximate. In [41], a

computationally low-cost heuristic is proposed to find good solutions, although no opti-

mality guarantees are provided. A natural approach is to map this heterogeneous-sizes

problem variant to the Submodular Multiple Knapsack Problem (SMKP) or, more gener-

ally, to the Submodular General Assignment Problem (SGAP). Specifically, for SMKP, an

“unfeasible” greedy algorithm with optimality guarantees was proposed by [42] (we discuss

this idea in Chapter 3). Additionally, in the context of streaming algorithms, [43, 44]

proposed a computationally efficient algorithm with a satisfactory optimality guarantee

that is enough to motivate its application to recommendation systems, for example.

1.3. RELATED WORK 13

1.3.2 Dynamic Caching Solutions

A common drawback of the aforementioned works is the difficulty to find the adequate

timescale for popularity estimation that is long enough to provide accurate measurements

and still able to capture short-term variations. In any case, reliable popularity estimates

over small geographical areas may be very hard to obtain [45]. Instead, online policies,

such as LRU and its variants, are widely deployed because they do not require popularity

estimation. Additionally, they enjoy robust analytical performance evaluation tools, e.g.,

the celebrated Che’s approximation [46,47].

Another downside of static centralized solutions is that, in a dense cache network,

having a centralized oracle aware of the entire topology may not be feasible due to

the network structure complexity. Dynamic solutions with online policies do not face

the same issues because each cache takes individual decisions based on the experienced

requests and possibly some limited information exchange with neighboring caches.

Although they are devoted to a single-cache problem, [48, 49] provided important

insights for our proposed solutions, mainly when we discuss about scenarios with het-

erogeneous file sizes. The authors proposed an online caching policy originally designed

to minimize HD-RAM systems service time, that was later extended to general utility

functions. Similarly, [50,51] proposed a simulated annealing approach, which, in turn,

was adapted to an online caching policy.

Considering a dense cellular network, [52] introduced two caching policies: multi-

LRU-One and multi-LRU-All. In the former, each user is assigned to a reference BS.

When a user poses a request, its associated BS will update its cache, independently of

which BS provided the file. In the latter, all neighboring BSs update their caches. The

updates are based on the Least-Recently-Used (LRU) single-server policy.

Authors in [53, 54] proposed general framework to evaluate the performance of online

policies in systems with multiple caches. In [55], the authors designed a distributed

algorithm based on Gibbs sampling, which was shown to asymptotically converge to the

optimal allocation. In [56], the authors proposed a model based on Che’s and exponential

approximations able to evaluate the performances of interacting caching policies in a

dense cellular network. Moreover, they present a distributed online policy with provable

convergence properties for the FemtoCaching setup.

Non-IRM request processes, where files have time-varying popularities, were studied

for single-cache scenarios in [57]. Later, authors of [58] proposed a probabilistic approach

that outperforms other adaptive policies, including kLRU, under different trace-based

request processes.

1.4. CONTRIBUTIONS AND THESIS OUTLINE 14

In the heterogeneous-sizes problem variant, to the best of our knowledge, the current

scientific literature lacks for provably efficient dynamic solutions. In the single-cache

scenario, [59] proposed a caching policy that is based on the greedy criterion for hit rate

maximization. As we mentioned earlier, [50,51] proposed a simulated annealing approach,

which, in turn, was adapted to an online caching policy. However, when different file

sizes are considered, a common work-around is to split files into chunks of equal size, as

proposed in [60]. This approach is particularly suitable to video streaming applications.

For example, a modification of LRU is proposed in [61] for a single-server setup and [62]

introduce an MDP-based policy for networks of caches.

1.4 Contributions and Thesis Outline

Now we provide an outline of this work and we briefly summarize the contributions of

each of the following chapters.

In Chapter 3, we model the content placement of the static framework as an opti-

mization problem to minimize the average delay in small-cell networks. We prove the

optimization problem is NP-Hard and propose a greedy algorithm to find an approximate

solution. Assuming the network’s SNRs are homogeneous, the problem can be expressed

as a maximization of a monotone, submodular function subject to partition matroid

constraints, which grants the greedy algorithm a 1
2 -approximation guarantee. We study

the special case where all BSs overlap and extract important insights on the solutions

characteristics. The main contributions of this chapter are:

• We provide more insight on the static problem’s solution by studying a simple

scenario that we call full-coverage. In this case study, we prove conditions for the

optimal caching strategy to consist of replicating or diversifying contents throughout

the network.

• We formalize the static delay minimization problem of allocating contents in a

caching network with CoMP transmissions. We prove that the problem is NP-Hard.

• For the same problem, we prove that, under homogeneous transmission conditions,

the objective function is submodular, so the greedy algorithm provides a solution

with 1
2 -approximation ratio.

Part of the work included in Chapter 3 has been published/submitted in [63–65].

1.4. CONTRIBUTIONS AND THESIS OUTLINE 15

In Chapter 4, based on the static optimization problem defined in Chapter 3, we

propose a novel general-purpose caching policy, qLRU-∆, that asymptotically converges

to an optimal allocation under IRM request process. We observe the convergence for

the hit rate maximization and average delay minimization cases. In the end, with a few

modifications to its operation, we show that the policy may also converge to the optimal

allocation in the case where files have heterogeneous sizes. In another special case, we

tackle non-stationary request processes by proposing a new caching policy 2LRU-∆, that

promises good results in practice. The main contributions of this chapter are:

• We propose a distributed online caching policy, qLRU-∆, that, under a stationary

request process, achieves an optimal configuration as the parameter q tends to 0.

In this policy, BSs use only local information to update their cache states, taking a

probabilistic drift towards improving the problem’s objective.

• We show how the policy can be adapted to tackle the hit rate maximization problem

and average delay minimization problem and show empirically its convergence via

simulations.

• We also propose 2LRU-∆ policy that addresses the problem of non-stationary

requests, offering better performance in real scenarios.

• We propose a variant of qLRU-∆ that is able to handle the cases where files have

heterogeneous sizes. We call this policy qLRU-HS and prove that, when we consider

the performance gain relative to the file size (i.e., its cost-benefit), it converges to

an optimal allocation when q tends to 0

Part of the work included in Chapter 4 has been published/submitted in [64–66].

In Chapter 5, we first discuss the convergence of qLRU-∆ for different performance

metric and under different experimental setups. Then, we evaluate the performance of

qLRU-∆’s variant, qLRU-∆d and qLRU-∆h, for different network density levels, request

processes, and SNRs regimes. Finally, we consider the special case where files have

different sizes and observe qLRU-HS convergence and performance. Finally, we compare

the policies performance with other policies from the literature, using the optimal static

allocation as a baseline. The main contributions of this chapter are:

• Using an extensive set of simulations, we demonstrate qLRU-∆’s convergence

properties, and we observe both its ability to outperform other state-of-the-art

policies in all considered scenarios.

1.4. CONTRIBUTIONS AND THESIS OUTLINE 16

• We also show empirically that 2LRU-∆ outperforms other policies, including

qLRU-∆, for the case where files are requested according to a non-stationary

process.

• We propose a series of experiments to study qLRU-HS’s convergence in practice as

well as its performance with respect with other solutions from the literature.

Part of the work included in Chapter 5 has been published/submitted in [63–66].

Chapter 2

System Model and Operation

2.1 Network Model

In the rest of this thesis, we consider a small-cell network, which is a simplification

of the heterogeneous architecture introduced in Section 1.1.2 where all layers equally

participate in the content delivery process. Therefore, we do not make any distinction

between cells, i.e., macro, femto, and pico cells play the same role in the content provision.

Therefore, we define the CoMP-aided cache-enabled small-cell (CCSC) network model

as the small-cell network architecture deploying a cache system at the BSs level and

empowered with dynamic CoMP JT technology.

A generic instance of CCSC network consists of a set [B] of base stations (BSs)

arbitrarily located in a given area A ⊆ R2, where [n] denotes the set {1, . . . , n}. Moreover,

there is a set [U] of user equipments (UEs) spread across area A that can connect to at

least one BS.

We abstract the downlink channel, including fading effects (such as geographic barriers

and secondary interference sources), by encapsulating all the physical characteristics into

the Signal-to-Noise Ratio (SNR) quantity. Let V
(b)
u ∈ R+ be the SNR of the wireless

channel between BS b and UE u. If the channel SNR is below a minimum SNR value, Vmin,

we assume u and b cannot communicate, and set V
(b)
u = 0.

Because of the high density of BSs, each UE u will, in general, be within communication

range of multiple BSs. We denote by Iu =
{
b ∈ [B] : V

(b)
u > 0

}
the set of UE u’s

neighboring BSs, i.e., all BSs that have UE u within their coverage area and are able to

receive requests and transmit content back to u.

The most important aspects of CCSC networks is the way UEs are connected to

the BSs, which, in turn, will help describe how data should be allocated in the BSs

and available to the UE. It is very useful to represent small-cell networks as a bipartite

17

2.2. THE BERLIN NETWORK 18

graph. We provide an example for B = 3 BSs in Figure 2.1. There are two separate

groups of nodes, BSs and UEs, interconnected by edges representing the actual network’s

neighboring relationships. It may be useful to assign weights to the edges and nodes

of such graph trying to capture other system’s characteristics, e.g., edge weights are

expected download delays or available bandwidth, and node weights are UEs activity

levels (probability to generate a request). Whenever we mention the network topology or

network of caches, we are actually making a reference to the bipartite graph structure

with its possible weights.

Figure 2.1 – Example of a CCSC network with B = 3 BSs and its bipartite graph
representation.

We can control the cells sizes by changing the transmission power of each BS. Therefore,

a larger transmission power defines a larger coverage area, which in turn, will provide a

network with highly overlapped coverage areas. We define the density level ρ of a network

as the average number of BSs that each UE is connected to. In highly dense networks,

UEs are connected to many BSs on average and this affects (i) the number of possible

sources to download files from and (ii) the number of CoMP JT opportunities (also how

many BSs are available to participate in CoMP JTs). If we consider a fixed number of

UEs, for different density levels, we observe the formation of distinct user areas, where

we say that two areas are distinct if the covered UEs are in the transmission range of

different sets of BSs.

2.2 The Berlin Network

As an example of a CCSC network, we show in Figure 2.2 the Berlin network, where B =

10 T-mobile BSs are located in the city of Berlin. This scheme is extracted from [67].

We also use this network in our simulations described in Chapter 5.

2.3. CONTENT DELIVERY 19

(a) Small coverage area – small density (b) Large coverage area – large density

Figure 2.2 – Berlin network BSs position with different coverage area sizes.

Also in Figure 2.2, we show how much more overlap is created (i.e., how much

denser the network gets) by moving from a case where BSs have small coverage areas

(Figure 2.2a) to a case with larger coverage areas (Figure 2.2b). In Table 2.1, we see how

Berlin network density changes and its associated number of distinct user areas as we

increase the coverage area.

Coverage Radius [m] 10 25 50 100 150 200 250

Density ρ [BSs/UE]
1

(No overlap)
1.1 1.7 3.5 5.9 9.4

10
(Full overlap)

Number of distinct areas 10 17 37 78 66 17 1

Table 2.1 – Berlin network: the radius, in meters, defining the BSs circular coverage areas
and their corresponding network density ρ, in BSs/UE.

2.3 Content Delivery

In CCSC networks, the content delivery operation depends on the cache configuration

as well as the transmission conditions (SNRs) experienced by the UE at the moment

when the request for content is posed. Because CoMP techniques are supported, all the

neighboring BSs caching the file may coordinate to jointly transmit it to the UE. We

describe the network operation as follows:

1. When a UE has a request, it broadcasts an inquiry message to its neighboring BSs.

2. Then, according to the current cache state, there are three possibilities:

2.4. OPERATION EXAMPLE 20

(a) Cache miss: No cached copy of the requested content was found in the

neighborhood. Then, the UE sends a direct request to one of its neighboring

BSs, which will need to retrieve it from the content provider’s back-end server.

(b) “Sufficient” cache hit: One or more copies of the requested content were found

in the neighborhood. Then, the UE sends an explicit request to download the

content to one (or more) of the neighboring BSs caching it.

(c) “Insufficient” cache hit: One or more copies of the requested content were

found in the neighborhood, but for some reason, it is worthy to choose one

additional BS to retrieve a copy of the content from the backhaul network and

jointly transmit the file along with the BSs already caching the content.

We illustrate the network operation in the following example.

2.4 Operation Example

Consider a small scenario with a UE requesting a file to its 2 neighboring BSs where

its SNR with BS 1 is much greater than the SNR of BS 2, i.e., SNR1 � SNR2. In this

example, we describe in more detail how the network operates and delivers contents

to mobile users. In particular, this operation is based on the delay d(SNR) the user

experiences to download the requested content through the wireless channel, which is

inversely proportional to log of the SNR, i.e., d(SNR) ∝ log−1(1 + SNR). In this example,

we denote the delay to retrieve the content from the back-end server through the backhaul

network as dBH.

We show four possible transmission cases in Figure 2.3 and we describe them as

follows:

1. Cache Miss (Figure 2.3a): If the UE’s requested file is not found at the caches

of its neighboring BSs, the BS with the highest SNR (BS 1) will retrieve the file

from a back-end server and transmit it back to the UE. In this case, the UE will

experience a service time equal to the back-end server fetching time plus the time

to receive the file through the wireless channel, i.e., dBH + d(SNR1).

2. Cache “Sufficient” Hit (Figure 2.3b): This is the most standard case where the file

is found at one of the neighboring BSs cache, say the BS with the highest SNR,

and therefore it is directly transmitted without being fetched from the back-end

server. In this case, the UE will experience a service time equal to d(SNR1).

2.4. OPERATION EXAMPLE 21

(a) Cache miss (b) Cache (Single) “Sufficient” Hit

(c) Cache Multiple Hits (d) Cache “Insufficient” Hit

Figure 2.3 – Example of transmission situations emerging from the CCSC architecture.

2.4. OPERATION EXAMPLE 22

3. Multiple (“Sufficient”) Hits (Figure 2.3c): Thanks to CoMP JT, if the file is cached

at two or more neighboring BSs, it is jointly transmitted with a higher rate so the

UE will experience an even smaller delay, that we denote by d(SNR1 + SNR2).

4. Cache “Insufficient” Hit (Figure 2.3d): This is a very particular case where, even

when the file is found at a neighboring cache, it is more effective to retrieve an

additional copy from the back-end server and perform CoMP JT. For example,

the file is cached at BS 2 that has a very weak SNR with the UE, causing a very

long wireless channel transmission time, say d(SNR2). Then, BS 1 may opt to

download an extra copy of the requested file from the back-end server in order

to jointly transmit it along with BS 2. In this case, the UE will experience the

time to retrieve the file from the back-end server plus the joint transmission time

through the wireless channel, i.e., dBH + d(SNR1 + SNR2). Note that this is only

the case when dBH +d(SNR1 + SNR2) < d(SNR2). In general, scenarios with highly

heterogeneous BSs within range of a UE, the ones currently having a cached copy

might have weak SNRs, and the additional backhaul delay to fetch an extra copy

to the BS with highest SNR might be amortized by the better overall channel

performance. We note that it is possible to have multiple “insufficient” hits, i.e.,

multiple BSs cache the requested file but it is still worthy to include another BS

(for example, with significantly higher SNR).

Chapter 3

Static Caching Solutions

In this chapter, we discuss how to perform the static placement by solving a correspond-

ing optimization problem, given that other system’s parameters are known, e.g., files

popularities and network topology. First, we introduce the retrieval delay model based

on the CoMP-aided cache-enabled small-cell (CCSC) network (presented in Chapter 2).

Then, we formalize the general optimization problem and discuss its properties and

possible solutions. We show how the general problem may be adapted to maximize hit

rate, as in related literature, and to minimize the average delay. Extending the average

delay minimization case, we study in detail the particular scenario where SNRs are homo-

geneous for which we prove that the corresponding objective function is monotone and

submodular. As a consequence, a greedy algorithm enjoys a 1
2 -approximation guarantee.

We provide some more insight on the problem’s solution by evaluating a simple scenario

where BSs completely overlap. We confirm that the general delay minimization problem,

for heterogeneous SNRs, does not enjoy the same optimality guarantees by providing a

counter-example where submodularity condition does not hold. Finally, we discuss the

nuances of the delay minimization problem variant where files have heterogeneous sizes.

23

3.1. SYSTEM MODEL AND OPERATION 24

3.1 System Model and Operation

We consider a general instance of CCSC network as introduced in Section 2.1. Each BS

is equipped with a cache that can store up to C files from a catalog [F] = {1, . . . , F} of

files. We assume that the aggregate request process follows the IRM model: each request

is for file f with probability λf independently from the past, where λ1 ≥ λ2 ≥ · · · ≥ λF
and

∑
f∈[F] λf = 1. We refer to the probability λf as the popularity of file f . In general,

every file f ∈ [F] has size Sf , in bytes. However, most results of this chapter are for the

case where files have the same size, i.e., Sf = S,∀f ∈ [F], which is widely considered in

the literature (e.g., [23, 51,66,68,69]) as large files are often split into smaller chunks of

roughly equal sizes. In Section 3.5, we discuss the general case where files have different

sizes and the associated problem’s complexity and possible solutions.

We characterize the cache variables using a set notation, such that the ground set is

denoted by Ω = [B]× [F], where element (b, f) ∈ Ω represents the placement of file f in

BS b’s cache and we represent a cache allocation set by X ⊆ Ω. Let Ω(b) = {b} × [F] be

a subset of Ω representing the possible file placements in BS b. An allocation X ⊆ Ω is

feasible if it satisfies the caches capacity (cardinality) constraints, i.e.,∣∣∣X ∩ Ω(b)
∣∣∣ ≤ C, ∀b ∈ [B]. (3.1)

For simplicity, we consider that UEs are equally probable to generate a request, i.e.,

with probability 1
U . Because of the high density of BSs, each UE u will, in general, be

within communication range of multiple BSs. We remind that Iu =
{
b ∈ [B] : V

(b)
u > 0

}
is the set of UE u’s neighboring BSs, i.e., all BSs that have UE u within their coverage area

and are able to receive requests and transmit content back to u. Among u’s neighboring

BSs, under allocation X, a subset Ju,f (X) = {b ∈ Iu : (b, f) ∈ X} is actually caching f .

Retrieval Delay Model

Assume now that a set of BSs, B ⊆ Iu, uses CoMP to jointly transmit the same file f to

UE u. Then, the wireless channel access delay is given by

tu(B) ,
S

W · log2

(
1 +

∑
b∈B

V
(b)
u

) , (3.2)

where W is the channel bandwidth and we consider tu(∅) = +∞.

As discussed in Chapter 2, in order for UE u to pose a new request for file f , it

broadcasts an inquiry message for file f that is received by its neighboring BSs in Iu.

3.1. SYSTEM MODEL AND OPERATION 25

Then, according to the current cache state, UE u will experience a delay that is a

consequence of one of the following cases:

• If Ju,f (X) = ∅ (Cache Miss), the BS with the highest SNR, i.e., b∗ , arg max
b∈Iu

{
V

(b)
u

}
downloads f from the back-end server and then transmits it to u. In this case, u

experiences a delay of

dBH + tu({b∗}),

which consists of (i) the backhaul access delay to retrieve f from the back-end

servers, i.e., dBH, plus (ii) the wireless channel access delay to download from b∗,

i.e., tu({b∗}).

• If Ju,f (X) 6= ∅ (Cache Hit), then:

– If it is a “sufficient” hit, all BSs in Ju,f (X) can jointly transmit the file so u

will experience a retrieval delay of

tu(Ju,f (X)).

– Otherwise, if it is an “insufficient” hit, the BS with the highest SNR in

Iu \Ju,f (X), say it b′, can retrieve an additional copy of f and then the BSs in

Ju,f (X) ∪ {b′} can jointly transmit to u. The experienced delay in this case is

dBH + tu(Ju,f (X) ∪ {b′}).

The system will opt for the solution with the smallest delay.

Finally, we define the total experienced delay by UE u to download file f under

allocation X as

du,f (X) , min
(
tu(Ju,f (X)), dBH + tu(Ju,f (X) ∪ {b′})

)
, (3.3)

where b′ , arg max
b∈Iu\Ju,f (X)

{
V

(b)
u

}
. Note that Equation (3.3) also captures the delay when

misses at all caches occur, i.e., Ju,f (X) = ∅. In this case, Iu \ Ju,f (X) = Iu, so BS b′ = b∗

will fetch the file from the backhaul and transmit it to u.

We summarize in Table 3.1 the most important notation used throughout this chapter.

3.1. SYSTEM MODEL AND OPERATION 26

Table 3.1 – Notation Summary – Chapter 3

Symbol Description

[B] set of BSs [B] = {1, 2, . . . , B}
[U] set of UEs [U] = {1, 2, . . . , U}
[F] set of files [F] = {1, 2, . . . , F}
C cache capacity
S file size
λf popularity of file f
W channel bandwidth
dBH backhaul access delay

V
(b)
u SNR of the wireless channel between u and b
V SNR of all communicating pairs of BS-UE (homogeneous snr regime)
Ω ground set of possible placements
Iu set of UE u’s neighboring BSs
Ju,f (X) set of u’s neighboring BSs caching f under allocation X
tu(B) wireless channel access delay between u and BSs in B ⊆ Iu
du,f (X) experienced delay by u to get f under allocation X
gf (X,u) gain function
Gf (X) average gain function over all UEs
G(X) average gain over all UEs and files

∆s
(b)
u,f (X) marginal gain for u by caching f at b under X

1(e) indicator function for event e
H(X) hit ratio under allocation X
d̄(X) average experienced delay under allocation X
s̄(X) average delay saving provided by allocation X

∆s
(b)
u,f (X) marginal delay saving for u by caching f at b under X

Sf size of file f (heterogeneous file sizes)
RBH Backhaul transmission rate
M Backhaul latency
dBH
f backhaul-access delay for file f (heterogeneous file sizes)

3.2. PROBLEM DEFINITION 27

3.2 Problem Definition

Consider a non-negative utility set function gf (X,u) representing the performance gain

(under an arbitrary metric) experienced by UE u for delivering file f under allocation

set X. Then, we define the average performance gain over all UEs related to file f and

allocation X as

Gf (X) ,
1

U

∑
u∈[U]

λf · gf (X,u).

Our goal is to find a feasible allocation set X, i.e., satisfying the cardinality con-

straints (3.1), that maximizes the total average performance gain gf (·) for all f ∈ [F]:

Problem 1 (General Static Optimization – GSO):

(GSO) maximize
X⊆Ω

G(X) ,
∑
f∈[F]

Gf (X) (3.4)

subject to
∣∣∣X ∩ Ω(b)

∣∣∣ ≤ C, ∀b ∈ [B].

For the rest of this chapter, we will focus on finding practical solutions using the

submodular optimization framework [70]. In this case, it is important to define the

discrete derivative ∆G((b, f)|X) of the gain function G(·) as the marginal gain for adding

element (b, f) ∈ Ω to allocation X, i.e.,

∆G((b, f)|X) , G(X ∪ {(b, f)})−G(X), (3.5)

where we stress that the marginal gain of an element already in solution X is null, i.e.,

if (b, f) ∈ X, then ∆G((b, f)|X) = 0.

In the next sections, we present how the GSO problem may be specialized to different

performance metrics.

3.3 Hit Rate Maximization

A request for file f by UE u experiences a cache hit if Ju,f (X) 6= ∅, i.e., when UE u request

file f , it has a non-empty set of BSs caching the file under allocation X. By using the

indicator function that we denote as 1(·), we represent the cache hit as 1(Ju,f (X) 6= ∅).
The gain function in this case is simply the indicator function for a cache hit, i.e.,

gf (X,u) = 1(Ju,f (X) 6= ∅),

3.3. HIT RATE MAXIMIZATION 28

and the average gain over all UEs can be expressed as:

Gf (X) = Hf (X) , λf ·
1

U

∑
u∈[U]

gf (X,u)

= λf ·
1

U

∑
u∈[U]

1(Ju,f (X) 6= ∅),

where Hf (·) is the hit rate for a given file f ∈ [F].

We define the hit rate maximization problem as follows:

Problem 2 (Hit Rate Maximization Problem):

(HRMax) maximize
X⊆Ω

G(X) = H(X) ,
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

1(Ju,f (X) 6= ∅) (3.6)

subject to
∣∣∣X ∩ Ω(b)

∣∣∣ ≤ C, ∀b ∈ [B],

where function H(·) is the hit rate over all UEs and files.

In Problem 2, the solution is determined by (i) files popularities and (ii) network

topology. From now on, we focus on the latter; in particular, how the UEs are distributed

within the coverage areas. We show in Figure 3.1 three different UE distributions within

B = 2 BSs and discuss how the optimal cache allocation changes as we vary the network

topology.

In Figure 3.1a, BSs serve disjoint sets of UEs, so the optimal cache allocation X∗FR is

to store the C most popular files at each BS, we call this allocation full-replication. In the

other extreme, Figure 3.1b depicts a case where all UEs may connect to all BSs. In this

case, the optimal caching strategy is to diversify the available files, such that the two BSs

together cache the B · C = 2 · C most popular files, that we call full-diversity allocation

and denote by X∗FD. The interesting cases emerge when BSs partially overlap as in

Figure 3.1c. The optimal allocation X∗ is non-trivially obtained by solving Problem 2.

As proved by [68, 69], Problem 2 is NP-Hard. Therefore, in order to approximate

the optimal solution X∗ for a general network topology, we use the greedy algorithm

proposed in [68,69], which we call GreedyHR and describe in Algorithm 1. The same

authors also proved that objective (3.6) is a monotone, submodular set function and

that constraints (3.1) form a partition matroid. Therefore, GreedyHR enjoys a 1
2 -

approximation guarantee, i.e., if XGreedyHR is the solution provided by GreedyHR,

then H
(
XGreedyHR

)
≥ 1

2H (X∗).

Note that Algorithm 1 chooses the best pair (b∗, f∗) at every iteration, i.e., the one

with the largest marginal performance gain, in terms on hit rate H(·). As we discussed

3.3. HIT RATE MAXIMIZATION 29

(a) No Overlap (b) Full Overlap.

(c) Partial Overlap.

Figure 3.1 – Examples of different coverage area overlap levels for 2 BSs.

in Section 3.1, the marginal performance gain is characterized by the objective’s discrete

derivative, which, for the hit ratio maximization, is defined as follows

∆H((b, f)|X) , H(X ∪ {(b, f)})−H(X) (3.7)

=
∑
f ′∈[F]

λf ′ ·
1

U

∑
u∈[U]

1(Ju,f ′(X ∪ {(b, f)}))−
∑
f ′∈[F]

λf ′ ·
1

U

∑
u∈[U]

1(Ju,f ′(X))

=
∑
f ′∈[F]

λf ′ ·
1

U

∑
u∈[U]

(
1(Ju,f ′(X ∪ {(b, f)}))− 1(Ju,f ′(X))

)
= λf ·

1

|U(b)|
∑

u∈U(b)

1(Ju,f (X) = ∅),

where U(b) ⊆ [B] is the set of UEs that are covered by BS b. We obtain the last line

of the above equations by noting that for all files different from f and all users that

are not covered by b their contribution to the marginal gain is null. Also, in the hit

rate maximization, we only profit from making the first copy of file f available to UE u,

i.e., Ju,f (X) = ∅. Otherwise, there is no gain because the cache hit for this request is

already guaranteed at some BS.

3.4. AVERAGE DELAY MINIMIZATION 30

Algorithm 1: GreedyHR

input : [U], [F], [B], C,
Iu,∀u ∈ [U], Ju,f (·),∀u ∈ [U], ∀f ∈ [F], λf ,∀f ∈ [F], and H(·).

output : Allocation set X.
1 X ← ∅
2 while ∃b ∈ [B] :

∣∣X ∩ Ω(b)
∣∣ < C do

3 (b∗, f∗)← arg max
(b,f)∈Ω\X

{∆H((b, f)|X)}

4 X ← X ∪ {(b∗, f∗)}
5 end
6 return X

3.4 Average Delay Minimization

In this section we discuss cache solutions for the case where the performance metric is

given by the delay experienced by the UEs to have their requests served. In this case, for

a given allocation X, we define the average delay for a request over all UEs and files as

follows

d̄(X) ,
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

du,f (X), (3.8)

where du,f (·) is the delay defined in Equation (3.3).

We define the general average delay minimization problem as follows:

Problem 3 (Average Delay Minimization Problem):

(ADMin) minimize
X⊆Ω

d̄(X) =
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

du,f (X)

subject to
∣∣∣X ∩ Ω(b)

∣∣∣ ≤ C, ∀b ∈ [B].

Now, we define the delay saving experienced by UE u when the requested file f is

cached within allocation X as follows

su,f (X) , du,f (∅)− du,f (X), (3.9)

where du,f (∅) = dBH + tu({b∗}) is delay experienced by UE u as if no files were cached

(also defined in Equation (3.3)).1 Note that du,f (∅) is the same for all files so we can

drop the subscript with respect to files and simply write it as du(∅). Then, the average

1The value of du,f (∅) can be replaced with any arbitrarily large constant as long as su,f (X) is
guaranteed to be non-negative for all u, f , and X.

3.4. AVERAGE DELAY MINIMIZATION 31

delay saving provided by allocation X is defined as follows

s̄(X) ,
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

su,f (X) (3.10)

=
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

(du(∅)− du,f (X)) .

Now, using the notation introduced in Section 3.1, the performance gain function can

be defined as the delay saving (3.9), i.e.,

gf (X,u) = su,f (X).

Similarly, the average gain over all UEs for a given file f ∈ [F] in the current allocation

X is defined as

Gf (X) = λf ·
1

U

∑
u∈[U]

gf (X,u) = λf ·
1

U

∑
u∈[U]

su,f (X),

such that the expected gain of allocation X is

G(X) =
∑
f∈[F]

Gf (X)

=
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

su,f (X) = s̄(X).

Finally, consider the following optimization problem:

Problem 4 (Average Delay Saving Maximization Problem):

(DSMax) maximize
X⊆Ω

G(X) = s̄(X)

subject to
∣∣∣X ∩ Ω(b)

∣∣∣ ≤ C, ∀b ∈ [B],

Note that the objective function (3.10) of Problem 4 can be expressed as follows

s̄(X) =
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

(du(∅)− du,f (X))

=
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

du(∅)−
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

du,f (X)

3.4. AVERAGE DELAY MINIMIZATION 32

=
1

U

∑
u∈[U]

du(∅)− d̄(X)

= d̄0 − d̄(X),

where d̄0 = 1
U

∑
u∈[U] du(∅) is the average delay for a cache miss over all UEs and it

guarantees that s̄(·) is a non-negative function. Therefore, the Problem 4 is equivalent to

Problem 3 in the sense that they share the same set of global optimizers.

We discuss the complexity of Problem 3 and its provided maximization counterpart,

Problem 4, in detail later. However, it is noteworthy that, even in ideal setups such as

in a full overlap topology (that would generate a full-diversity allocation in the hit rate

maximization case), its solution is not always straightforward. This is the case because

the optimal allocation now depends on (i) the files popularities, (ii) network topology,

(iii) the quality of the wireless channel between BSs and UEs (given by the SNRs), and

(iv) the backhaul-access latency. Therefore, even in the full overlap topology, the optimal

solution of Problem 3 may be achieved through any cache allocation from full-replication

to full-diversity.

A natural way to approach Problem 3 (and, consequently, Problem 4) is via a greedy

algorithm, comparable to the one proposed for the hit rate maximization problem. In this

case, we call it GreedyAD and we present a general description in Algorithm 2. The

idea behind GreedyAD, similarly to GreedyHR, is to iteratively add the element that

provides the largest marginal performance gain. The most important results are stated

for maximization problems, then the marginal performance gain used in GreedyAD is

given by the discrete derivative of objective (3.10) that we define as follows

∆s̄((b, f)|X) , s̄(X ∪ {(b, f)})− s̄(X) (3.11)

= d̄0 − d̄(X ∪ {(b, f)})− (d̄0 − d̄(X))

= d̄(X)− d̄(X ∪ {(b, f)}).

Note that the average miss delay d̄0 does not affect the marginal gain and, thus, does not

play any role in GreedyAD.

In the next subsections, we aim to gradually build an intuition on the Problem 3’s

properties and solution characteristics. We start from an ideal scenario, which we call

full-coverage, and ease the assumptions until we reach the most general case where SNRs

are heterogeneous. We also study GreedyAD’s efficiency at each of these steps.

3.4. AVERAGE DELAY MINIMIZATION 33

Algorithm 2: GreedyAD

input : [U], [F], [B], C, dBH, V
(b)
u ,∀b ∈ [B], ∀u ∈ [U]

Iu,∀u ∈ [U], Ju,f (·),∀u ∈ [U], ∀f ∈ [F], λf ,∀f ∈ [F], and d̄(·).
output : Allocation set X.

1 X ← ∅
2 while ∃b ∈ [B] :

∣∣X ∩ Ω(b)
∣∣ < C do

3 (b∗, f∗)← arg max
(b,f)∈Ω\X

{
d̄(X)− d̄(X ∪ {(b, f)})

}
4 X ← X ∪ {(b∗, f∗)}
5 end
6 return X

3.4.1 Homogeneous SNRs: Full-Coverage

Now, we investigate a very simple instance of the problem, that we call full-coverage

scenario. It is useful to obtain more insights on the problem’s properties and solutions.

Moreover, we will be able to observe how the system’s parameters affect the optimal

cache allocations.

Assumptions and Specific Notation

The full-coverage scenario is based on two assumptions:

1. Homogeneous SNR regime, i.e., all non-zero SNRs have the same value V , i.e., ∀b, u,

if V
(b)
u > 0, then V

(b)
u = V .

2. Each UE u can connect to all BSs (Iu = [B],∀u ∈ [U]), so every UE has access to

(the same) aggregate cache capacity of B · C files.

The main idea behind these assumptions is to explore the problem in its simplest form,

where we eliminate the combinatorial structure of dense topologies, but retain the

advantage of caching multiple copies (exploiting CoMP JT to retrieve files faster). As a

matter of fact, under these assumptions, we can consider an equivalent system model

with a single UE and a single BS with total cache capacity for B · C files. In this case,

up to B copies of every file are allowed to be cached and the delay will be a function of

the number of cached copies of any given file.

3.4. AVERAGE DELAY MINIMIZATION 34

As a direct consequence, the wireless channel access delay (originally defined in (3.2))

can be simplified as

tu(B) =
S

W · log2

(
1 +

∑
b∈B

V
(b)
u

) =
S

W · log2

(
1 +

∑
b∈B

V

) =
S

W · log2 (1 + |B| · V)
,

where we remind that B is a generic set of BSs. Then, we can redefine the wireless

channel access delay simply as a function of an integer, representing the number of BSs

in set B, as follows

t(k) ,
S

W · log2(1 + V ·min(k,B))
, (3.12)

where the min(·) function guarantees that the delay does not decreases below its minimum

value allowed by the network topology; which enforces that the UE can not download

from more than B BSs. We consider t(0) = +∞.

The delay (originally defined in (3.3)) experienced by the UE to download file f under

allocation X is also a function of the number of cached copies of f in its neighboring

BSs, |Ju,f (X)| (note that the subscript u is redundant in this case, but we kept it to be

consistent with the general notation)

d(|Ju,f (X)|) , min
(
t(|Ju,f (X)|), dBH + t(|Ju,f (X)|+ 1)

)
. (3.13)

Problem Formulation

We define the general average delay minimization problem for the full-coverage scenario

as follows:

Problem 5 (Average Delay Minimization Problem for Full-Coverage):

(ADMin-FC) minimize
X⊆Ω

d̄(X) ,
∑
f∈[F]

λf · d(|Ju,f (X)|) (3.14)

subject to
∣∣∣X ∩ Ω(b)

∣∣∣ ≤ C, ∀b ∈ [B],

where function d̄(·) is the average experienced delay over all files.

We can define the average delay saving for the full-coverage scenario with respect to

a cache miss if a request is posed under allocation X, i.e.,

s̄(X) , d(0)− d̄(X),

where d(0) = dBH + t(1) is simply the delay upon a cache miss characterized by (3.13).

3.4. AVERAGE DELAY MINIMIZATION 35

Following the same reasoning from Section 3.4, the following problem is equivalent to

Problem 5:

Problem 5 (Delay Saving Maximization Problem for Full-Coverage):

(DSMax-FC) maximize
X⊆Ω

s̄(X) = d(0)− d̄(X) (3.15)

subject to
∣∣∣X ∩ Ω(b)

∣∣∣ ≤ C, ∀b ∈ [B].

We first observe that, in the full-coverage scenario, it is possible to efficiently compute

the optimal allocation:

Proposition 1: In the full-coverage scenario, an allocation provided by GreedyAD is

optimal.

We present the proof of Proposition 1 in Appendix A.1.

Optimal Solution and Extreme Allocations

For the upcoming results, we define locally optimal allocations as follows:

Definition 1: A cache allocation X is locally optimal, if it does not exist another alloca-

tion X ′ such that d̄(X ′) < d̄(X), where X ′ differs from X only by a single file at a single

cache.

First, we note that:

Lemma 2: In the full-coverage scenario, an allocation is optimal if and only if it is locally

optimal (Definition 1).

We present the proof of Lemma 2 in Appendix A.2.

Then, we characterize for the full-coverage scenario, the necessary and sufficient

conditions for the optimal allocation to be one of the two extreme ones: Full-diversity

(one copy of each of the B · C most popular files is stored in the network), and full-

replication (the C most popular files are cached in each one of the B BSs).

Proposition 3: In the full-coverage scenario, full-diversity is an optimal allocation if and

only if

λ1 · (d(1)− d(2)) ≤ λB·C · (d(0)− d(1)), (3.16)

and full-replication is an optimal allocation if and only if

λC+1 · (d(0)− d(1)) ≤ λC · (d(B − 1)− d(B)). (3.17)

3.4. AVERAGE DELAY MINIMIZATION 36

We present the proof of Proposition 3 in Appendix A.3.

As an application of the results above, Fig. 3.2 shows, for a full-coverage scenario,

for which regions of the parameter space (V, dBH) a full-diversity and full-replication

allocations are optimal. Files popularities are synthetically generated according to Zipf

law with exponent α.

Figure 3.2 – Extreme allocations regions for different setups. Axes are in log scale.

The optimal solution depends on parameters g, dBH in a complex way. Figure 3.2 (left)

shows that 5 separated regions are formed even in the simple setup with B = 2 BSs. For

a given value of g, for high values of dBH, we want to avoid paying the high retrieval cost

for as many contents as possible, and then full-diversity is optimal. As we diminish dBH,

the miss cost decreases and some form of replication is beneficial (mixed region), until we

reach a full replication region. However, if we keep reducing dBH, the optimal allocation

moves back to full-diversity (passing again through a mixed region). This happens

because, when dBH ≈ 0, d(1) = dBH + t(2) and d(2) = t(2) (because B = 2). This makes

the LHS of (3.16) approximately zero and smaller than the RHS. A more realistic setup

is provided in Fig. 3.2 (right). The fact that we cannot see the full-replication region is

caused by the low difference in popularity of files C and C + 1, for the specific values of

C and α.

However, given an instance of a generic topology, it is not guaranteed that both

directions of the conditions in Proposition 3 are going to be satisfied. For example,

consider a specific topology where BSs do not overlap at all. The optimal allocation is

full-replication, even if condition (3.16) holds. In this case (and for any topology different

3.4. AVERAGE DELAY MINIMIZATION 37

from full-coverage), condition (3.16) is necessary but not sufficient for full-diversity to be

the optimal allocation. Although Proposition 3 does not hold for general topologies, we

can still derive new conditions:

Corollary 4: For general network topologies, assuming homogeneous SNRs, the following

conditions hold: (i) Inequality (3.16) is a necessary condition for the full-diversity

allocation to be locally optimal, and (ii) inequality (3.17) is a sufficient condition for the

full-replication allocation to be locally optimal.

We present the proof of Corollary 4 in Appendix A.4.

Corollary 4 can be used to forecast the best caching strategy for a given network. If

files popularities, average SNR and backhaul access delay can be estimated, it is possible

to analytically measure how close is the optimal allocation to an “extreme” one. For

example, this may help develop an intuition on how beneficial CoMP joint transmissions

can be for a given network setting.

3.4.2 Homogeneous SNRs: General Topology

Now that we have explored the basic ideas on how the parameters influence the solution of

the delay minimization problem, we can move from the simple full-coverage scenario to a

general topology. We investigate how it affects the problem complexity and GreedyAD’s

solution quality.

Assumptions and Specific Notation

In this section, we consider general network topologies, but we retain the homogeneous-

SNRs assumption, i.e., all non-zero SNRs have the same value V , i.e., ∀b ∈ [B], u ∈ [U],

if V
(b)
u > 0, then V

(b)
u = V .

Here, we adapt the wireless channel access delay (originally defined in (3.2)) for UE u

to retrieve any file from any k BSs as follows

tu(k) ,
S

W · log2(1 + V ·min(k, |Iu|))
. (3.18)

The equation is similar to (3.12) defined for the full-coverage scenario, but notice now

that it is also a function of the UE, since each UE u may have a different total of available

BSs |Iu|. Consider tu(0) = +∞,∀u ∈ [U]. Then, we remark that the delay (originally

defined in (3.3)) experienced by UE u to download file f under allocation X is a function

3.4. AVERAGE DELAY MINIMIZATION 38

of the number of cached copies of f in its neighboring BSs, |Ju,f (X)|, i.e.,

du(|Ju,f (X)|) = min
(
tu(|Ju,f (X)|), dBH + tu(|Ju,f (X)|+ 1)

)
, (3.19)

where, in this case, we also need to specify which UE the experienced delay is related to.

Problem Formulation and Properties

We formalize the delay minimization problem assuming homogeneous SNRs as follows:

Problem 6 (Average Delay Minimization Problem for Homogeneous SNRs):

(ADMin-HomSNR) minimize
X⊆Ω

d̄(X) ,
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

du(|Ju,f (X)|) (3.20)

subject to
∣∣∣X ∩ Ω(b)

∣∣∣ ≤ C, ∀b ∈ [B].

where the objective (3.20) is the average experienced delay for a request over all UEs

and files and du(|Ju,f (X)|) is given by (3.19).

Differently from Problem 5, we note that it is hard to find Problem 6’s exact solution:

Proposition 5: Problem 6 is NP-Hard in the homogeneous SNR regime.

We present the proof of Proposition 5 in Appendix A.5.

Optimality of GreedyAD

In order to provide approximation guarantees for GreedyAD, we need to express

Problem 6 as a maximization problem. Similarly to what was done in the full-coverage

scenario, we write Problem 6 as a maximization of the average delay saving as follows:

Problem 6 (Delay Saving Maximization Problem for Homogeneous SNRs):

(DSMax-HomSNR) maximize
X⊆Ω

s̄(X) , d(0) − d̄(X) (3.21)

subject to |X ∩ Ω(b)| ≤ C, ∀b ∈ [B],

where d(0) , dBH + S
W log2(1+V) is the delay experienced upon a cache miss (the same

for all UEs in the homogeneous SNR scenario.) Function (3.21) is the average delay

saving for a request under allocation X related to the cache miss delay d(0).

Now, consider the following lemmas:

Lemma 6: Function (3.21) is monotone and submodular.

3.4. AVERAGE DELAY MINIMIZATION 39

We present the proof of Lemma 6 in Appendix A.6.

Lemma 7: Constraints (3.1) define a partition matroid.

This lemma was originally proved in [69, Lemma 2].

Finally, the following proposition provides the approximation guarantees for GreedyAD

in the homogeneous SNR regime.

Proposition 8: In the homogeneous SNR regime, GreedyAD is a 1
2 -approximation

algorithm for the maximization version of Problem 6, i.e.,

s̄
(
XGreedyAD

)
≥ 1

2
· s̄
(
XOPT

)
,

where XGreedyAD is a solution provided by GreedyAD and XOPT is an optimal one.

Proof. The maximization version of Problem 6 involves a monotone submodular set

function (Lemma 6), subject to a partition matroid constraint (Lemma 7). Therefore,

according to [71, Theorem 3.1], the greedy algorithm achieves a 1
2 -approximation ratio.

3.4.3 Heterogeneous SNRs

We emphasize that GreedyAD can also be used to approximate Problem 3 in the general

case, though it does not enjoy the same approximation guarantees as in the homogeneous

SNR scenario. The reason is that the objective function may no longer be submodular

when SNRs are heterogeneous. We illustrate an example below, which is consistent with

the general notation introduced in Section 3.1.

Example 6: Let X ⊂ X ′ ⊂ Ω and (b′, f ′) ∈ Ω\X ′. Consider a numerical setting consisting

of a catalog [F] and BSs [B] = {1, 2, 3, 4}. Let f1 ∈ [F], X = {(b1, f1)}, X ′ =

{(b1, f1), (b2, f1)}, and (b′, f ′) = (b3, f1). Additionally, consider that UE u is located

in the region covered by all BSs simultaneously, and the power-base SNRs are Vu =

[30.0, 30.0, 10.0, 100.0]. We consider dBH = 10.0ms, S = 1Mbit, and W = 5MHz.

We list below the experienced delay before and after adding a copy of f1 to BS b3 in

allocations X and X ′.

du,f1(X) = dBH + tu ({b1, b4}) = 38.4ms

du,f1(X ∪ {(b3, f1)}) = tu ({b1, b3}) = 37.3ms

du,f1(X ′) = tu ({b1, b2}) = 33.7ms

du,f1(X ′ ∪ {(b3, f1)}) = tu ({b1, b2, b3}) = 32.5ms

3.5. SPECIAL CASE: HETEROGENEOUS FILE SIZES 40

Then, we calculate and compare the gain for making such placement in both allocations

dBH + tu ({b1, b4})− tu ({b1, b3}) = 1.1 < 1.2 = tu ({b1, b2})− tu ({b1, b2, b3})

However, as shown in Section 3.4.2, if s̄(X) is submodular, the following must hold

du,f (X)− du,f (X ∪ {(b′, f ′)}) ≥ du,f (X ′)− du,f (X ′ ∪ {(b′, f ′)}).

Therefore, s̄(X) is not submodular in general.

Although GreedyAD does not enjoy the approximation guarantee (as in the homo-

geneous SNR scenario), we will see in Chapter 5 that it still provides reasonable results

in practice.

3.5 Special Case: Heterogeneous File Sizes

In this section we study the delay minimization problem in the scenario where files

have different sizes. We point out the main differences between such problem and its

homogeneous-sizes variant. In the end, we discuss a simple greedy algorithm that is able

to find a potentially non-feasible solution with approximation guarantees.

Assumptions and Specific Notation

We consider the general case where each file f ∈ [F] has size Sf in bytes. Note that, in

this case, the cache storage capacity C is given in terms of the total amount of data, also

in bytes. The cache storage capacity is now represented by the following set of knapsack

constraints ∑
(b,f)∈X∩Ω(b)

Sf ≤ C,∀b ∈ [B]. (3.22)

Some other elements from our network model must also be adapted to capture the

different sizes. First, the backhaul-access delay now depends on each file f

dBH
f ,M +

Sf
RBH

, (3.23)

where RBH is the backhaul network transmission rate and M is a constant that represents

any sort of latency for accessing the back-end servers (e.g., the round-trip time in the

backhaul network), henceforth generically referred to as backhaul latency.

For simplicity, in this section, we base the network operation on the homogeneous

SNR assumption and its corresponding notation adapted from Section 3.4.2 to the

3.5. SPECIAL CASE: HETEROGENEOUS FILE SIZES 41

heterogeneous sizes case. Therefore, the wireless channel access delay is a function of the

number of transmitting sources k but also depends on UE u and file f :

tu,f (k) ,
Sf

W ·log2 (1 + V ·min(k, |Iu|))
. (3.24)

The total delay experienced by UE u to retrieve file f from the cache allocation X is:

du,f (|Ju,f (X)|) , min
(
tu,f (|Ju,f (X)|), dBH

f + tu,f (|Ju,f (X)|+ 1)
)
. (3.25)

Problem Formulation and Solutions

Now, we consider the maximization of a generic gain function (3.4) subject to multiple

knapsack (cache capacity) constraints:

Problem 7 (Heterogeneous-Sizes (HetSize) General Problem):

(HetSize) maximize
X⊂Ω

G(X) =
∑
f∈[F]

Gf (X) =
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

gf (X,u) (3.26)

subject to
∑

(b,f)∈X∩Ω(b)

Sf ≤ C, ∀b ∈ [B].

The set of constraints (3.22) guarantees that any feasible solution meets each BS’s

cache capacity. Problem 7 is NP-Hard because it is a generalization of the single-cache

problem with capacity (“knapsack”) constraints, which is NP-Hard [72].

The following greedy algorithm may be used to find solutions for Problem 7: Starting

from empty caches (X = ∅), the algorithm iteratively finds the placement (b∗, f∗) that

maximizes the ratio between the delay gain and the file size given the current cache

allocation X and adds a copy of f∗ to b∗. Whenever the placement (b∗, f∗) makes b∗’s

occupancy reach or exceed its caching capacity, b∗ is considered “full” and disregarded in

the upcoming iterations. The algorithm stops when all BSs are “full.” We present a formal

description in Algorithm 3 and, from now on, we will refer to it as Infeasible Greedy

Algorithm (IGA), since the resulting allocation is likely to violate constraints (3.22).

Note that, IGA iteratively adds elements to the solution set based on their marginal

gain related to the sizes (equivalent to the concept of cost-benefit). We express this

relative marginal gain as the discrete derivative divided by the corresponding file size

∆G((b, f)|X)

Sf
=
G(X ∪ {(b, f)})−G(X)

Sf
. (3.27)

Problem 7 may be adapted to optimize any performance metric. For example, for

3.5. SPECIAL CASE: HETEROGENEOUS FILE SIZES 42

Algorithm 3: Infeasible Greedy Algorithm – IGA

input : [U], [F], [B], Sf ,∀f ∈ [F], G(·).
output : Solution set X and it is partitioned.

1 X ← ∅
2 while ∃b ∈ [B] :

∑
(b,f)∈X∩Ω(b) Sf ≤ C do

3 (b∗, f∗)← arg max
(b,f)∈Ω\X

{
∆G((b,f)|X)

Sf

}
4 X ← X ∪ {(b∗, f∗)}
5 end
6 return X

hit ratio maximization, we would simply need to make G(X) = H(X) as defined in

Section 3.3. However, in the rest of this section, we will focus on the delay minimization.

Average Delay Minimization

We now formalize a specialization of Problem 7 to the average delay minimization case.

Problem 8 (Heterogeneous-Sizes (HetSize) ADMin Problem):

(ADMin-HS) minimize
X⊂Ω

d̄HS(X) ,
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

du,f (|Ju,f (X)|) (3.28)

subject to
∑

(b,f)∈X∩Ω(b)

Sf ≤ C, ∀b ∈ [B].

The objective (3.28) is the average experienced delay for a request over all files

and UEs and du,f (·) is given by (3.25). Note that minimizing d̄HS(X) is equivalent to

maximize the delay saving s̄HS(X) , d̄
(0)
HS − d̄HS(X), where d̄

(0)
HS is the maximum miss

delay over all files and users.

Optimality of IGA

Consider a symmetric network topology where adding a copy of file f to any BS produces

the same performance gain, e.g., the full-coverage scenario (see Section 3.4.1). We remark

that Problem 8 can be directly mapped to the Submodular Multiple Knapsack Problem

(SMKP) [42,73] if the underlying network topology is symmetric:

Proposition 9: Problem 8 in the full-coverage setup is equivalent to SMKP.

We present the proof of Proposition 9 in Appendix A.7.

3.5. SPECIAL CASE: HETEROGENEOUS FILE SIZES 43

The SMKP objective function (3.28) was studied in Section 3.4.2 where we proved

that it is monotone and submodular and this result is insensitive to the fact that files

have different sizes. According to Proposition 9, instances of Problem 8 with symmetric

network topology, where BSs cover equivalent groups of UEs (e.g., full-coverage scenario,

see Section 3.4.1), can be directly mapped to a particular instance of SMKP. Authors

from [42] proved that IGA solves SMKP with a (1− 1
e)-approximation ratio.

Although it is a potentially unfeasible solution, the allocation provided by IGA

achieves an average delay that is not worse than (1− 1
e) of the optimal one. Unfortunately,

this approximation guarantee only holds for full-coverage setup. However, although IGA’s

solution is likely infeasible and the approximation guarantee is only valid for symmetric

setups, it can still be used as a heuristic to approximate the minimum achievable average

delay in general instances of Problem 8. We only use IGA as a comparison baseline for

the dynamic solutions introduced in Chapter 4.

3.5. SPECIAL CASE: HETEROGENEOUS FILE SIZES 44

Chapter 4

Dynamic Caching Solutions

In static solutions, there is a centralized entity aware of the files popularities and the

whole network topology. With this information, it is able to decide which files should

be cached at each BS, based on a given performance metric, e.g., hit ratio and average

delay. However, having all this information available is a very strong assumption and

is hardly satisfied in real systems. Moreover, static content placement is based on

time-average popularity estimations, which may fail to capture short-term popularity

variations. Regardless these drawbacks, we emphasize that static approaches are optimal

if the underlying request process is stationary, so we will still use them as comparison

baselines in our experiments in Chapter 5

In this chapter, we investigate how to overcome the aforementioned weaknesses of

the static framework through dynamic solutions for networks of caches based on online

policies. Initially, we propose qLRU-∆ online caching policy for asymptotic optimization

of different metrics and we prove its optimality under the Independent Reference Model

(IRM). Then, we show how qLRU-∆ can be specialized to solve the hit rate maximization

and average delay minimization problems. We propose a second policy that promises to

provide good results when the request process is not stationary. Finally, we show how we

can change qLRU-∆ in order to guarantee the asymptotically optimal behavior even in

the case where files have different sizes.

45

4.1. SYSTEM MODEL AND ADDITIONAL NOTATION 46

4.1 System Model and Additional Notation

Consider an arbitrary instance of the CoMP-aided cache-enabled small-cell (CCSC)

network described in Chapter 2.1 Because it is more convenient to describe the theoretical

results, we use a slightly different notation from Chapter 3. In this chapter, we represent

the allocation of a given file f ∈ [F], all over the cache servers, by a vector of binary

variables

Xf (t) =
(
X

(1)
f (t), . . . , X

(B)
f (t)

)
,

where X
(b)
f (t) ∈ {0, 1} indicates whether BS b caches file f (i.e., X

(b)
f (t) = 1) or not

(i.e., X
(b)
f (t) = 0). One first important difference is the dependence on time that we

represent by indexing the variables with t. We denote by X(t) ∈ {0, 1}B×F the allocation

matrix containing the variables for the entire catalog of files. Any specific assignment

for Xf (t) is generically represented by xf and, consequently, a generic assignment for

the allocation matrix is represented by x. Whenever it is needed to make a reference

to the static framework, which uses a set notation to represent the cache allocations,

we may consider, for a given allocation set X, its matrix counterpart by simply stating

that ∀(b, f) ∈ Ω, if (b, f) ∈ X, then X
(b)
f (t) = 1, otherwise X

(b)
f (t) = 0, at time instant t.

Recall from Section 1.1 that, in the dynamic framework, caches are structured as

ordered queues and are managed according to basic operations. From now on, we consider

a restricted set of operations where caches may (i) insert new files to cache, (ii) evict the

file at the rear, and (iii) move a given file from its current position to the front of the

cache (we often refer to it as move-to-the-front (MTF)). At this point, we focus on how

to represent insertions and evictions in the current matrix notation. Let e(b) ∈ {0, 1}B

be a vector that has entry b equals to 1 and all other entries equal to 0. In order to help

us describe the aforementioned cache operations, we introduce the notation below:

• xf ⊕ e(b) represents a new cache allocation where a copy of file f is added at BS b

if not already present (i.e., if x
(b)
f = 1, then xf ⊕ e(b) = xf). If x

(b)
f = 0, xf ⊕ e(b)

may be used to represent a cache insertion.

• xf 	 e(b) represents a new cache allocation where there is no copy of file”f at BS b

(note that, if x
(b)
f = 0, then xf 	 e(b) = xf). If x

(b)
f = 1, xf 	 e(b) may be used to

represent a cache eviction.

One or more actors of the system may profit from a performance gain offered by

1We have special interest in investigating caching solutions for CCSC such that our proposed techniques
and most of our experiments are based on this architecture. However, the results of this chapter may be
extended to any system consisting of network of caches.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 47

cache deployment, which is generically denoted by the utility function gf (Xf (t), u). Func-

tion gf (Xf (t), u) captures the gain for delivering file f to UE u under f ’s allocation Xf (t).

We assume that gf (0, u) = 0, i.e., if there is no cached copy of file f , the gain is zero.

Later in Section 4.2.3 we discuss application examples where the utility function is the

hit ratio or the average delay saving. We further define the marginal gain for delivering

file f to UE u under a specific allocation xf related to the copy of file f stored at BS b as

∆g
(b)
f (xf , u) , gf (xf , u)− gf

(
xf 	 e(b), u

)
. (4.1)

The marginal gain ∆g
(b)
f (xf , u) quantifies the performance improvement experienced by

UE u when the system moves from allocation xf 	 e(b) to allocation xf .

The gain gf (Xf (t), u) may be a random variable. For example, it may depend on the

instantaneous characteristics of the wireless channels in the CCSC network, or on some

user’s random choice like which BS the file will be downloaded from. We assume that,

conditionally on the network status Xf (t) and the UE u, these random variables are

independent from one request to the other and are identically distributed with expected

value E[gf (Xf (t), u)].

The last important change of notation with respect to Chapter 3 is that we represent

the set of UE u’s neighboring BSs that are currently caching file f simply as Ju,f . We

disregard the dependence on the current allocation matrix X because, as we will see later,

this whole information is not needed by our caching policies. Besides, the list of BSs Ju,f

may be directly provided by UE u, after inquiring its neighboring BSs.

Besides the basic notation introduced in Chapter 3, we summarize the most important

notation for this chapter in Table 4.1.

4.2 Optimal Caching for Stationary Requests

We assume the request process is stationary. In particular, requests for file f are issued

from UE u according to a Poisson arrival process with rate λf,u that is independent

of other files and UEs. We define the total expected gain per time unit of a given

placement xf as:

Gf (xf) =
∑
u∈[U]

λf,u · E [gf (xf , u)] . (4.2)

Note that Gf (·) is non-negative and non-decreasing, such that, for each xf and each b,

we have that Gf
(
xf ⊕ e(b)

)
≥ Gf (xf).

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 48

Table 4.1 – Notation Summary – Chapter 4

Symbol Description

Xf (t) vector of allocation variables for file f at time t
xf instance of f ’s allocation; particular assignment for Xf (t)
gf (Xf , u) gain function

∆g
(b)
f (xf , u) marginal gain

Gf (xf) expected gain

∆G
(b)
f (xf , u) marginal expected gain

Iu set of UE u’s neighboring BSs
Ju,f set of u’s neighboring BSs caching f
λu,f rate at which file f if requested by UE u
S file size
C cache capacity

p
(b)
f (u) move-to-the-front probability

β move-to-the-front probability’s normalization factor

q
(b)
f (u) insertion probability

δ insertion probability’s normalization factor

q(b) insertion parameter for BS b

T
(b)
c characteristic time at BS b
πf (xf) probability of file f to be cached in configuration xf

T
(b)
S,f sojourn time of file f at BS b

1(e) indicator function for event e
du,f (X) experienced delay by u to get f under allocation X

σ
(b)
f (u) insertion probability for 2LRU-∆

Sf size of file f (heterogeneous file sizes)
RBH Backhaul transmission rate
M Backhaul latency
dBH
f backhaul-access delay for file f (heterogeneous file sizes)

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 49

Finally, we define the marginal expected gain for caching a copy of file f at BS b

experienced by UE u under allocation xf as:

∆G
(b)
f (xf) , Gf (xf)−Gf

(
xf 	 e(b)

)
. (4.3)

The marginal expected gain ∆G
(b)
f (xf) can be interpreted as the expected gain when the

system moves from state xf 	 e(b) to state xf .

As discussed in Chapter 3, in the static framework, the allocation is defined once

and for all and remains unchanged over time. Then, we drop the time dependence of

variables X(t) in order to present the generic optimization problem:

Problem 1 (General Static Problem – Matrix Notation):

(GSO) maximize
X

G(X) ,
∑
f∈[F]

Gf (Xf) (4.4)

subject to
∑
f∈[F]

X
(b)
f = C ∀b ∈ [F], (4.5)

X
(b)
f ∈ {0, 1} ∀f ∈ [F],∀b ∈ [B].

We stress here that this formulation is fairly generic, as Gf (Xf) in Equation (4.4)

can capture any objective desired by the system designer, as long as it is non-negative

and non-decreasing in Xf . Moreover, in the case where files have uniform sizes, i.e.,

Sf = S,∀f ∈ [F], because gf (·) cannot decrease if a new copy of f is placed at any

BS, the optimal allocation is achieved when all caches are completely full, i.e., (4.5) are

equality constraints. Problem 1 is NP-hard, even in the case of the simple hit ratio

metric [7]; hence, efficient algorithmic solutions are only able to approximate the problem,

as discussed in Chapter 3.

In what follows, we introduce a new online caching policy (i.e., caches self-manage

their contents reacting to incoming users requests). We will show that, if each cache

individually deploys an instance of this policy, the entire network of caches asymptotically

converges to an allocation that optimizes Problem 1. This is the case even in the absence

of a priori knowledge about the request process and overall network structure.

qLRU-∆ Online Caching Policy

The qLRU-∆ online caching policy was built on top of the basic operations of plain

qLRU [53], i.e., upon each request, (i) new files are inserted with probability q causing

the least-recently-used one at the rear to be evicted and (ii) files found at the cache

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 50

are moved to the front. The main difference is that both operations are now performed

probabilistically and the corresponding probabilities depend on their expected performance

improvement, which is captured by the marginal gain, given in Equation (4.1). Upon a

request from UE u for file f , qLRU-∆ functions as follows:

• Each BS b neighboring UE u with a local copy of file f (i.e., b ∈ Ju,f) moves the

content to the front of the cache with probability proportional to the marginal gain

due to its local copy, i.e.,

p
(b)
f (u) = β ·∆g(b)

f (Xf (t), u), (4.6)

where the constant β guarantees that p
(b)
f (u) ∈ [0, 1], e.g.,

β =

(
max

f ′,u′,b′,xf ′

{
∆g

(b′)
f ′ (xf ′ , u

′)
})−1

. (4.7)

• At least one of the neighboring BSs without the content (i.e., those in Iu,f \ Ju,f)

will store an additional copy of f with probability

q
(b)
f (u) = q(b) · δ ·max

(
∆g

(b)
f (Xf (t)⊕ e(b), u), ε

)
, (4.8)

where q(b) ∈ (0, 1] is a dimensionless parameter, potentially different for every BS b,

constant ε > 0 guarantees that q
(b)
f (u) is always positive, and constant δ plays the

same role of β, e.g.,

δ =

(
max

f ′,u′,b′,xf ′

{
∆g

(b)
f (xf ′ ⊕ e(b), u)

})−1

. (4.9)

We formalize qLRU-∆ in Algorithm 4 from the perspective of a given BS b, where we

denote the least-recently-used file at the rear of the cache as frear.

Remark 1: The probability q
(b)
f (u) in (4.8) is analogous to q in the plain qLRU policy.

We note that setting q
(b)
f (u) = q, i.e., a constant value, suffices to prove the asymptotic

convergence of qLRU-∆ (see Proposition 10). However, we use the more elaborate

function (4.8), as this still guarantees convergence, but is able to react faster to transient

dynamics, be preferentially treating a larger marginal gain ∆g
(b)
f (Xf (t)⊕ e(b), u). This

can speed up the transient dynamics of the policy as will become evident in Chapter 5.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 51

Algorithm 4: General implementation of qLRU-∆ Caching Policy (for BS b)

Input: Ju,f , gf (·, ·).
1 if b ∈ Ju,f then

2 with probability p
(b)
f (u) in (4.6) do

3 Move-to-the-front f
4 end

5 else

6 with probability q
(b)
f (u) in (4.8) do

7 Evict file frear from the rear
8 Insert f to the front

9 end

10 end

Remark 2: Some information about the local neighborhood (e.g., how many additional

copies of the content are stored at close-by caches also serving that user) may be needed

to compute the marginal gains in (4.6) and (4.8). Such information, however, is limited,

and can be piggybacked on existing messages the UE sends to query such caches, or

even on channel estimates messages mobile devices regularly send to nearby BSs. In

Section 4.2.3 we detail what information needs to be exchanged when the system aims to

maximize the hit rate or to minimize the average delay.

We are going to prove that qLRU-∆ achieves a locally optimal configuration when the

values q(b) tend to 0. The result relies on two approximations: (i) the characteristic time

approximation (CTA) for caching policies (also known as Che’s approximation) [46,47]

and (ii) the exponentialization approximation (EA) for networks of interacting caches

originally proposed in [56].

Proposition 10: [high-level statement] Under CTA and EA, a network of qLRU-∆ caches

asymptotically achieves an optimal caching configuration when ∀b ∈ [B], q(b) → 0.

Before moving to the detailed proof, we provide some intuition about why this result

holds. We observe that, as q(b) converges to 0, cache b exhibits two different dynamics

with very different timescales: (i) the insertion of new files tends to happen progressively

more rarely (because q
(b)
f (u) converges to 0) while (ii) the frequency of MTFs for files

already in the cache is unchanged (p
(b)
f (u) does not depend on q(b)). A file f at cache b

is moved to the front with a probability proportional to ∆g
(b)
f (xf , u), i.e., proportional

to how much the file contributes to improve the performance metric of interest. This

is a very noisy signal: upon a given request, the file is moved to the front or not. At

the same time, as q(b) converges to 0, more MTFs occur between any two file evictions.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 52

The expected number of MTFs file f experiences is proportional to 1) how often it is

requested (λf,u) and 2) how likely it is to be moved to the front upon a request (p
(b)
f (u)).

Overall, the expected number of MTFs is proportional to
∑

u λf,u · E
[
∆g

(b)
f (xf , u)

]
,

i.e., its contribution to the expected gain. By the law of large numbers, the random

number of MTFs will be close to its expected value and it becomes likely that the least

valuable file in the cache occupies the last position. We can then think that, when a

new file is inserted in the cache, it will replace the file that contributes the least to the

expected gain. qLRU-∆ then behaves as a greedy algorithm that, driven by the request

process, replaces the least useful file in the cache at each insertion, until the network

converges to a cache allocation that provides maximum expected performance gain.

4.2.1 Modeling qLRU-∆ as a Markov Chain

In a dynamic cache system operating under qLRU-∆, the general cache allocation changes

over time as new requests arrive. If we consider Xf (t) as a random variable indicating the

allocation of file f throughout the caches at time t, we can define the stochastic process

(Xf (t), t ≥ 0) (4.10)

that characterizes the evolution of the caches’ contents starting from time t = 0.

Even for very simple definitions of function gf (·, ·), extracting useful insights from

the analysis of (Xf (t), t ≥ 0) may be an arduous and unfruitful task. In order to derive

useful results, we propose a simpler representation of such process that is based on two

approximations, CTA and EA, that we discuss next. Although they may appear as strong

assumptions at first, as we will discuss in Chapter 5, they have little impact in practice,

such that theoretical predictions will match the empirical results.

Characteristic Time Approximation

This is a standard approximation for a cache in isolation, and one of the most effective

approximate approaches for analysis of cache systems. At the moment, we focus on

a single cache (i.e., one BS in isolation), or equivalently on a cache b in a network

of B non-overlapping cells. CTA was first introduced in [47] and revisited in [46]. It

was originally proposed for LRU under the IRM request process, and it has been later

extended to different caching policies and different request processes [53, 57]. Here we

simply write ∆g
(b)
f (u) instead of ∆g

(b)
f (Xf , u), because we are considering a single cache.

Similarly, we write ∆G
(b)
f , instead of ∆G

(b)
f (Xf (t)).

The characteristic time T
(b)
c is the time a given file spends in cache b since its insertion

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 53

until its eviction in the absence of any subsequent request for it. In general, this quantity

depends in a complex way on the dynamics of requests for other files. Instead, CTA

assumes that T
(b)
c is a random variable independent from other files dynamics and with

an assigned probability distribution (the same for every file). This assumption makes it

possible to decouple the dynamics of the different files: upon a miss for file f , the file is

inserted and a timer with random value T
(b)
c is generated. When the timer expires, the

content is evicted from the cache.

Caching policies differ in (i) the distribution of T
(b)
c and (ii) what happens to the

timer upon a hit. For example, T
(b)
c is a constant under LRU, qLRU, 2LRU, and FIFO

and exponentially distributed under RANDOM. Upon a hit, the timer is renewed under

LRU, qLRU, and 2LRU, but not under FIFO and RANDOM. In what follows we will

only consider policies for which T
(b)
c is a constant. Under CTA, the instantaneous cache

occupancy can violate the hard buffer constraint, i.e., it is acceptable to have more files in

the cache than its real capacity. The value of T
(b)
c is obtained by imposing the expected

occupancy to be equal to the buffer size∑
f∈[F]

π
(b)
f = C, (4.11)

where π
(b)
f denotes the probability that content f is in cache b. Its expression as a function

of T
(b)
c depends on the specific caching policy [53]. Despite its simplicity, CTA was shown

to provide asymptotically exact predictions for a single LRU cache under IRM as the

cache size grows large [47,74,75].

Once inserted in the cache, a given content f will sojourn in the cache for a random

amount of time T
(b)
S,f , independently from the dynamics of other contents. T

(b)
S,f can be

characterized for the different policies. In particular, if the timer is renewed upon a hit,

as is the case for LRU-like policies, we have

T
(b)
S,f ,

∞∑
k=1

Yk · 1
(
Y1 < T (b)

c , . . . , Yk < T (b)
c

)
+ T (b)

c

=

N∑
k=1

Yk + T (b)
c ,

(4.12)

where N ∈ {0, 1, . . .} is the number of consecutive hits following a miss, and Yk is the

time interval between the k-th request following a miss and the previous content request.

For a finite number of UEs, requests for content f from UE u arrive according to a

Poisson process with rate λf,u. The time instants at which content f is moved to the front

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 54

Figure 4.1 – Poisson arrival process with rate β ·∆G(b)
f representing the MTF events

for file f at BS b. It is obtained from thinning the original Poisson process of arriving

requests from the different UEs for file f with rate λf,u with probability p
(b)
f (u).

are generated by thinning this Poisson process with probability p
(b)
f (u) = β · E[∆g

(b)
f (u)].

The resulting sequence is then also a Poisson process with rate λf,u ·β ·E[∆g
(b)
f (u)]. Finally,

as we illustrate in Figure 4.1, as request processes from different UEs are independent,

the aggregate cache updates with MTFs due to all UEs is a Poisson process with rate

β
U∑
u=1

λf,u · E
[
∆g

(b)
f (u)

]
= β ·∆G(b)

f .

As the aggregate cache updates follow a Poisson process with rate β ·∆G(b)
f , {Yk} are

i.i.d. truncated exponential random variables with rate β ·∆G(b)
f over the interval [0, T

(b)
c]

and their expected values are given by

E[Yk] =
1

β∆G
(b)
f

− T
(b)
c

eβ∆G
(b)
f T

(b)
c − 1

.

Moreover, the probability of no updates to occur during a time interval of length T
(b)
c

is e−β∆G
(b)
f T

(b)
c . Then N is distributed as a geometric random variable defined over

non-negative integer values with expected value

E[N] =
1− e−β∆G

(b)
f T

(b)
c

e−β∆G
(b)
f T

(b)
c

= eβ∆G
(b)
f T

(b)
c − 1.

We want to compute the expected value of the sojourn time T
(b)
S,f . Since N is

clearly a stopping point for the sequence {Yk}k, we can then apply Wald’s Lemma to

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 55

Equation (4.12), obtaining:

ν
(b)
f ,

1

E[T
(b)
S,f]

=
1

E[Y1] E[N] + T
(b)
c

=
β∆G

(b)
f

eβ∆G
(b)
f T

(b)
c − 1

. (4.13)

The quantity ν
(b)
f may be interpreted as file f ’s eviction rate at BS b, i.e., the rate at

which file f leaves the cache after its insertion at BS b.

Exponentialization Approximation

Now, we try to generalize the previous discussion to the case where up to B BSs may

overlap. Notice that the sojourn time of file f inserted at time t in cache b will now

depend on the whole state vector Xf (τ) for τ ≥ t, i.e., until it is evicted, file f ’s allocation

throughout the caches jointly dictates its permanence at any given cache. This is the case

because the file’s position is updated with probability (4.6) depending on the marginal

gain of the copy (and then on Xf (τ)).

Exponentialization Approximation (EA) consists in assuming that the stochastic

process (Xf (t), t ≥ 0) for file f can be simplified as a Continuous-Time Markov Chain

(CTMC). The set of states Sf of this CTMC is defined over all possible assignments

of Xf (t), i.e.,

Sf =
{
xf : ∀xf ∈ {0, 1}B

}
. (4.14)

Any transition from state xf to yf has a rate generically represented by ρ[xf → yf].

EA replaces then the original stochastic process with a set of CTMCs Xf (t), ∀f ∈ [F],

which are only coupled through the characteristic times T
(b)
c at the BSs. Similarly to

what was indicated for a single cache, we can determine the values T
(b)
c at each cache, by

imposing that: ∑
f∈[F]

∑
xf∈{0,1}B

x
(b)
f · πf (xf) = C,∀b ∈ [B], (4.15)

where πf (xf) denotes the stationary probability of CTMC Xf (t) to be at state xf .

In the paper where EA was originally proposed [56], the authors showed that this

CTMC representation and the related assumptions have no impact on any system metric

that depends only on the stationary distribution in the following cases:

1. isolated caches,

2. caches using RANDOM policy,

3. caches using FIFO policy as far as the resulting CTMC Xf (t) is reversible.

Numerical results in [56] show that the approximation is practically very accurate also in

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 56

more general cases. In Chapter 5, we provide experiments suggesting that the theoretical

results obtained from modeling qLRU-∆ dynamics under EA are also observed in practice,

even for the case of delay minimization in CCSC networks.

In Figure 4.2, we show an example of a CTMC Xf (t) for a given file f in a scenario

with B = 2 BSs. The set of states is defined as Sf = {(0, 0), (0, 1), (1, 0), (1, 1)} or simply

as Sf = {(0), (1), (2), (3)}. In what follows, we will discuss how to characterize the

transitions and their corresponding rates. In particular, we will see how the asymptotic

values of q(b) affect the transition rates.

xf = (1, 1)
(3)

xf = (1, 0)
(2)

xf = (0, 1)
(1)

xf = (0, 0)
(0)

ρ[(3)→ (2)]

ρ[(3)→ (1)]ρ[(2)→ (3)]

ρ[(2)→ (0)]

ρ[(1)→ (3)]

ρ[(1)→ (0)]

ρ[(0)→ (3)]

ρ[(0)→ (2)]

ρ[(0)→ (1)]

Figure 4.2 – CTMC Xf (t) for B = 2 BSs.

For a given content f , let xf and yf be two possible states of the CTMC Xf (t).

We write xf < yf whenever x
(b)
f ≤ y

(b)
f for each b and there is at least one b0 such

that x
(b0)
f < y

(b0)
f , and we say that yf is an ancestor of xf , and xf is a descendant of yf .

For example, in Figure 4.2, state (1) is an ancestor of state (0) (which is its descendant)

and (3) is an ancestor of all other states (which are all its descendants). Moreover, we

define the weight |xf | of state xf as the number of copies of file f stored in state xf ,

i.e., |xf | ,
∑

b x
(b)
f . If xf < yf and |xf | = |yf | − 1, we say that yf is a parent of xf

and xf is a child of yf . Again, in Figure 4.2, we see that (1), (0) characterizes a pair

parent-child, which is not case for (3), (0), for example.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 57

Now, observe that, by construction, transition rates in the CTMC are different from 0

only between pair of states xf and yf , such that xf < yf or yf < xf . For example,

states (1) and (2) do not have direct transitions. This is the case because there is zero

probability of a file being inserted at one BS exactly at the same time as it is evicted

from the other BS (when its sojourn time is over). For any pair of states xf and yf , such

that xf < yf , the transition xf → yf is called an upward transition, while yf → xf is

called a downward transition.

A downward transition can only occur from a parent to a child (|xf | = |yf | − 1),

because it is not possible that file f is evicted from both BSs exactly at the same time.

Consider a child-parent pair xf ,yf and let b0 be the index such that x
(b0)
f < y

(b0)
f . We

have that the downward rate is, in fact, file f ’s eviction rate at BS b0, given that the

CTMC is currently at state yf , i.e.,

ρ[yf→xf] = ν
(b0)
f (yf) =

β ·∆G(b0)
f (yf)

eβ·∆G
(b0)
f (yf)·T (b0)

c − 1
. (4.16)

Upward transitions can occur to states that are ancestors. The exact transition rate

between state xf and state yf with xf < yf can have a quite complex expression,

because it depends on the joint decisions of the BSs in Iu,f \ Ju,f . Upon a request for f ,

a transition xf → yf occurs, if |yf | − |xf | BSs independently store, each with probability

proportional to its parameter q(b), an additional copy of the content f in their local cache.

It follows that

ρ[xf→yf] ∝
∏

b | y(b)
f −x

(b)
f =1

q(b), (4.17)

where we use the symbol ∝ to indicate that two quantities are asymptotically proportional

for small q ∈ R. In other words, given two functions f(q) and g(q), we write f(q) ∝ g(q)

if and only if there exists a strictly positive constant a such that

lim
q→0

f(q)

g(q)
= a.

If a = 1, then we write f(q) ∼ g(q), following Bachmann-Landau notation, which means

that “f(q) is in the same order of g(q)” or that they are asymptotically equal.

For our analysis, we are only interested in how the upward rates depend on q(b) when

it converges to 0.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 58

Asymptotic transition rates

Specifically, as parameters q(b), ∀b ∈ [B] converges to 0, for every f ∈ [F], every upward

rate ρ[xf→yf] tends to 0. Therefore, the characteristic time T
(b)
C must diverge for all BSs.

If it were not the case at a given BS b, none of the files would be found in this cache

asymptotically, because upward rates would tend to zero, while downward rates, given by

Equation (4.16), would not. This would contradict the set of constraints (4.15) imposed

by the CTA. Therefore, in order to satisfy (4.15), for every BS b ∈ [B], T
(b)
C necessarily

diverges. More precisely, we must have that

T
(b)
C

(
q(b)
)

= Θ

(
log

1

q(b)

)
,∀b ∈ [B],

also in the Bachmann-Landau notation. In other words, there exist positive constants a
(b)
l

and a
(b)
u , such that

lim
q(b)→0

T
(b)
C

(
q(b)
)

log 1
q(b)

∈
[
a

(b)
l , a(b)

u

]
.

Given that the behavior T
(b)
C

(
q(b)
)
/ log(1/q(b)) is expected to be “smooth,” we assume

that there exist positive constants γb,∀b ∈ [B], such that 1
β·γb ∈ [a

(b)
l , a

(b)
u] and

T
(b)
C

(
q(b)
)
∼ 1

β · γb
· log

(
1

q(b)

)
.

The following lemma summarises the discussion of this section.

Lemma 11: Consider a pair of states xf and yf with xf < yf and a set of positive

constants {γb, ∀b ∈ [B]}, such that T
(b)
c (q(b)) ∼ 1

β·γb · log
(

1
q(b)

)
. If q(b) = qγb , then upward

transitions have rate

ρ[xf→yf] ∝ qγ
ᵀ(yf−xf),

and, if xf and yf form a pair of child-parent states, i.e., xf = yf 	 e(b0), then downward

transitions have rate

ρ[yf→xf] ∝ q∆G
(b0)
f (yf).

From now on, we will assume that there is a single insertion parameter q such

that q(b) = qγb . For each possible transition, we define its direct resistance to be the

exponent of the parameter q, then rf (xf ,yf) = γᵀ (y − x), rf (yf ,xf) = ∆G
(b0)
f (yf)

and rf (xf ,xf) = 0. Observe that the higher the resistance, the less likely the correspond-

ing transition.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 59

Stochastically stable states

Consider the Discrete-Time Markov Chain (DTMC) X̂f (k), obtained sampling the

CTMC Xf (t) with a period τ > 0, i.e., X̂f (k) = Xf (k · τ). Both X̂f (k) and Xf (t) have

the same set of states Sf and let Pf,q denote the transition probability matrix of X̂f (k)

for a specific value of parameter q. For q = 0, the set of files in the cache does not change,

each state is an absorbing one and any probability distribution is stationary for Pf,0.

For q > 0, the set of possible transitions of X̂f (k) is, in general, larger than the set

of possible transitions of Xf (t), as multiple transitions of Xf (t) can occur during the

period τ . For example, Xf (t) cannot move directly from xf to x′′f = xf 	 e(b1) 	 e(b2),

with |x′′f | = |xf | − 2, but during the interval τ it could move from xf to x′f = xf 	 e(b1)

and then from x′f to x′′f . The transition xf → x′′f is then possible for X̂f (k).

Furthermore, for any q > 0, the DTMC X̂f (k) is finite, irreducible,2 and aperiodic

and, therefore, admits a unique stationary distribution

πf,q = (πf,q(xf),∀xf ∈ Sf) .

From now on, we will focus on the asymptotic behaviour of the DTMC X̂f (k) when q

converges to 0. For small values of τ and of q, the probability of a direct transition xf → x′f
is proportional to

qr(xf ,x
′
f)τ + o

(
qr(xf ,x

′
f)
)

+ o(τ).

On the other hand, the probability of a sequence of transitions xf → x′f → x′′f to happen

within interval τ is smaller than

qr(xf ,x
′
f)+r(x′f ,x

′′
f)τ2 + o

(
qr(xf ,x

′
f)
)

+ o
(
qr(x

′
f ,x
′′
f)
)

+ o(τ).

These transitions may be neglected as their probabilities are o(τ) and their equivalent

resistances are equal to the sum of the direct transitions they are composed by. Therefore,

we can restrict ourselves to consider the same set of transitions as in Xf (t).3 Each

DTMC X̂f (k) has then transition rates proportional to a power of q, i.e.

Pf,q(xf ,x
′
f) ∝ qrf (xf ,x

′
f),

where we omit, from now on, the proportionality to τ .

2This is guaranteed if insertion probabilities in (4.8) are positive. In some specific settings, it may be

∆g
(b)
f (Xf (t)⊕ e(b), u) = 0 for each u. We can then consider q

(b)
f (u) = qγmax(∆g

(b)
f (Xf (t)⊕ e(b), u), ε)

with ε > 0, or simply q
(b)
f (u) = q.

3We omit self-loops in the resulting DTMC as they do not influence the outcome of our analysis.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 60

We end this discussion by introducing the concept of stochastically stable (SS) states

that will be important later to characterize the solution of Problem 1.

Definition 2: A state xf ∈ Sf is called stochastically stable if

lim
q→0

πf,q(xf) > 0.

These DTMCs were studied in a series of papers [76–78] by P. R. Kumar and his

coauthors, because of their relation with the MCs that appear in simulated annealing

problems, where rf (xf ,x
′
f) = max(C(x′f)− C(xf), 0) and C(xf) is a cost function we

want to minimize. In what follows, we will list as lemmas three results from these papers

that will be useful for the optimality proof.

The Modified Balance Equations and Potential Function

Consider a weighted graph Gf , whose nodes are the possible states xf ∈ {0, 1}B and

edges indicate possible direct transitions and have a weight equal to the corresponding

resistance. Given an in-tree4 T (xf) on Gf rooted at xf , we denote by rf (T (xf)) the

resistance of the in-tree, i.e., the sum of all resistances of the edges of T (xf). We also

denote by T(xf) the set of all in-trees rooted at state xf . We show in Figure 4.3 an

example of resistance graph Gf built over the DTMC X̂f (k) for B = 2 BSs and, in

Figure 4.4, we show an example of an in-tree of Gf rooted at state xf = (1, 0).

Finally, we denote by rf (xf) the resistance of the minimum weight in-tree in Gf
rooted to xf , i.e.,

rf (xf) , min
T ∈T(xf)

rf (T).

Intuitively, the resistance of a state is a measure of the general difficulty to reach state xf

from all other nodes. A consequence of the Markov Chain Tree Theorem (see for

example [80]) is that

Lemma 12: [78, Lemma 1] The stationary probabilities of the DTMC X̂f,q(k) have the

following expression

πf,q(xf) ∝ q
rf (xf)−min

x′
f

rf (x′f)

.

A consequence of Lemma 12 is that the stochastically stable states are those with

minimal resistance.
4In-trees, also known as anti-arborescences, are directed rooted trees with the edges pointed towards

the root node [79].

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 61

xf = (1, 1)
(3)

xf = (1, 0)
(2)

xf = (0, 1)
(1)

xf = (0, 0)
(0)

rf (3, 2)

rf (3, 1)rf (2, 3)

rf (2, 0)

rf (1, 3)

rf (1, 0)

rf (0, 3)

rf (0, 2)

rf (0, 1)

Figure 4.3 – Resistance graph Gf of DTMC X̂f (k) for B = 2 BSs.

Consider the following system of modified balance equations in the variables νf (x):
max

xf∈A,zf∈Ac
νf (xf)− rf (xf , zf) = max

xf∈A,zf∈Ac
νf (zf)− rf (zf ,xf),∀A ⊂ {0, 1}B

max
xf∈{0,1}B

νf (xf) = σ.
(4.18)

Lemma 13: [77, Theorem 3] For each σ, the system (4.18) admits a unique solution.

Solutions for different values of σ are translates of each other.

System (4.18) implicitly determines the set of stochastically stable states:

Lemma 14: [78, Theorem 4] Given {νf (xf)} the solution of system (4.18), it holds:

rf (xf)−min
x′f

rf (x′f) = σ − νf (xf).

In particular for our system, we can prove that

Lemma 15: The potential function

φf (xf) , Gf (xf)− γᵀxf

is a solution of system (4.18) (for a particular value of σ).

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 62

xf = (1, 1)
(3)

xf = (1, 0)
(2)

xf = (0, 1)
(1)

xf = (0, 0)
(0)

rf (3, 2)

rf (1, 0)

rf (0, 3)

Figure 4.4 – Example of in-tree over Gf rooted at state 2 for B = 2 BSs.

Proof. Consider the function:

φf (xf) , Gf (xf)− γᵀxf . (4.19)

We show that {φf (xf)} is a solution of the system (4.18) (for a particular value of σ).

To this purpose, for a given choice of the set A, we need to evaluate

max
xf∈A,zf∈Ac

φf (xf)− rf (xf , zf).

We start proving that the maximum is always achieved by a pair of parent-child nodes.

In particular, we show that for any two states x̂f ∈ A and ẑf ∈ Ac with rf (x̂f , ẑf) <∞
and |ẑf | > |x̂f |+1, (which imply that ẑf is an ancestor of x̂f), there exist two states x′f ∈ A
and y′f ∈ Ac, with y′f parent of x′f and

φf (x̂f)− rf (x̂f , ẑf) ≤ φf (x′f)− rf (x′f ,y
′
f). (4.20)

Consider a path from ẑf to x̂f that traverses states with strictly smaller weight (it is

obtained setting progressively to zero the elements that are equal to one in ẑf , but not

in x̂f). One of the edges of this path necessarily goes from a state in Ac to a state in A.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 63

These two states are respectively y′f and x′f . In fact,

φf (x̂f)− rf (x̂f , ẑf) = Gf (x̂f)− γᵀx̂f − γᵀ(ẑf − x̂f)

= Gf (x̂f)− γᵀẑf

≤ Gf (x′f)− γᵀẑf

= Gf (x′f)− γᵀx′f − γᵀ(y′f − x′f)− γᵀ(ẑf − y′f)

= φf (x′f)− rf (x′f ,y
′
f)− γᵀ(ẑf − y′f)

≤ φf (x′f)− rf (x′f ,y
′
f),

where the first inequality follows from the monotonicity of Gf (·), and the second from the

fact that zf is an ancestor of y′f and then ẑf − y′f is a vector with non-negative elements.

In addition note that by construction r(ẑf , x̂f) =∞ (i.e. given two states zf and xf

with |zf | > |xf |, we have r(zf ,xf) <∞ only if xf is a child of zf).

As a consequence we have that {φ(xf)} is a solution of system (4.18), if and only if

it is a solution of

max
xf∈A,zf∈Ac,
|zf |=|xf |±1

νf (xf)− rf (xf , zf)

= max
xf∈A,zf∈Ac,
|zf |=|xf |±1

νf (zf)− rf (zf ,xf), ∀A ⊂ {0, 1}B

max
xf∈{0,1}B

νf (xf) = σ.

(4.21)

We can then limit ourselves to check if φf (·) satisfies the aggregate balance equations

considering only the parent-child pairs. We prove a stronger relation, i.e., that for every

parent-child pair, φf (·) satisfies a pairwise balance equation. In fact, for every xf and yf

with yf = xf ⊕ e(b0) and parent of xf

φf (xf)− rf (xf ,yf) = Gf (xf)− γᵀxf − γᵀ(yf − xf)

= Gf (xf)− γᵀyf

= Gf (yf)−∆G
(b0)
f (yf)− γᵀyf

= φf (yf)− rf (yf ,xf).

It follows that {φ(xf)} is a solution of system (4.18).

A consequence of Lemmas 12 – 15 is that

Corollary 16: The set of SS states is the set of global maximizers of φf (xf).

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 64

For each content f we are then able to characterize which configurations are stochas-

tically stable as q converges to 0.

4.2.2 Optimality of qLRU-∆

We define the exponential-size linear expansion of Problem 1 as follows:

Problem 9 (GSO Linear Expansion):

maximize
af (xf),∀f,∀xf

∑
f∈[F]

∑
xf∈{0,1}B

Gf (xf) · af (xf) (4.22)

subject to
∑
f∈[F]

∑
xf∈{0,1}B

af (xf) · x(b)
f = C, ∀b ∈ [B] (4.23)

∑
xf∈{0,1}B

af (xf) = 1, ∀f ∈ [F] (4.24)

af (xf) ∈ {0, 1}, ∀f ∈ [F],∀xf ∈ {0, 1}B, (4.25)

where the original set of variables X
(b)
f ,∀b ∈ [B], f ∈ [F] is replaced with a new set

of indicator variables. For every file f ∈ [F] and each of its possible assignments xf

throughout the network of caches, the new variable af (xf) ∈ {0, 1} indicates whether

assignment xf is considered in the final solution (i.e., af (xf) = 1), or not (i.e., af (xf) = 0),

which is defined in (4.25). We adapt the cache capacity constraints in (4.23) and guarantee

that only one allocation assignment for each file is considered in the final solution by

imposing a new constraint set (4.24). Therefore, maximizing objective (4.22) subject to

constraints (4.23)–(4.25) is equivalent to solve Problem 1.

Then, we consider the continuous relaxation of Problem 9:

Problem 10 (GSO Continuous Relaxation):

maximize
αf (xf),∀f,∀xf

∑
f∈[F]

∑
xf∈{0,1}B

Gf (xf) · αf (xf) (4.26)

subject to
∑
f∈[F]

∑
xf∈{0,1}B

αf (xf) · x(b)
f = C, ∀b ∈ [B] (4.27)

∑
xf∈{0,1}B

αf (xf) = 1, ∀f ∈ [F] (4.28)

αf (xf) ≥ 0, ∀f ∈ [F],∀xf ∈ {0, 1}B, (4.29)

where we introduce the set of continuous variables {αf (xf) ∈ R : ∀f ∈ [F], ∀xf ∈ {0, 1}B}
to replace the original set of integer variables {af (xf)}. We keep only constraints (4.27)

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 65

and (4.28) from the previous formulation and include constraints (4.29). Note that

the combination of (4.28) and (4.29) enforces that feasible solutions are characterized

for αf (xf) ∈ [0, 1], ∀f ∈ [F],∀xf ∈ {0, 1}B.

The original optimization problem (Problem 1 and its linear expansion, Problem 9)

corresponds to the particular case, where we require that, for each f ∈ [F], there exists a

single state xf with αf (xf) = 1 and αf (x′f) = 0 for each x′f 6= xf . As the feasible set

of the relaxed Problem 10 includes the feasible set of Problem 1, the optimum value of

Problem 10 is at least as large as the optimal value of Problem 1.

Note how the capacity constraint in Problem 10 is similar to the relaxed constraint

considered by the CTA (see (4.15)). This suggests that the stationary probabilities πf (xf)

will play the role of the coefficients αf (xf).

Now we can state formally our result.

Proposition 10: Under CTA and EA, let {γb, b ∈ [B]} be the constants in Lemma 11.

Consider the spatial network of qLRU-∆ caches, where cache b sets parameter q(b) = qγb .

As q converges to 0, the stationary probabilities

{
πf,q(xf), f ∈ [F],xf ∈ {0, 1}B

}
converge to an optimal solution of Problem (4.26).

Proof. From Corollary 16 a state xf is stochastically stable if and only if it is a global

maximizer of φf (·), i.e., limq→0 πf,q(xf) > 0 if and only if xf is a maximizer of φf (·).
Let πf,0+(xf) , limq→0 πf,q(xf) denote the limit of the probability distribution. We

are now going to prove that the {πf,0+(xf), f ∈ [F],xf ∈ 0, 1B} is an optimal solution

for Problem 10.

Problem (4.26) is a convex problem. We can consider its Lagrangian function

L(α,χ, ζ) =−
∑
f∈[F]

∑
xf∈{0,1}B

αf (xf)Gf (xf)

+

B∑
b=1

χb

∑
f∈[F]

∑
xf∈{0,1}B

αf (xf)x
(b)
f − C

+
∑
f∈[F]

ζf

 ∑
xf∈{0,1}B

αf (xf)− 1

 ,

(4.30)

where α denotes the F2B vector of problem variables, χ denotes the B vector of Lagrange

multipliers relative to the capacity constraints, and ζ denotes the F vector of Lagrange

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 66

multipliers relative to the total mass to assign to each file.

According to [81, Thm. 3.4.1], vector α∗ is a (global) maximizer of Problem 10, if

there exists vectors χ∗ and ζ∗ such that

1) α∗ is feasible,

2) ∇L(α∗,χ∗, ζ∗)ᵀ (α−α∗) ≥ 0, ∀α ≥ 0.

We show that the following assignments satisfy the set of conditions indicated above
α∗f (xf) = πf,0+(xf), ∀f ∈ [F],xf ∈ {0, 1}B,

χ∗b = γb, ∀b ∈ [B],

ζ∗f = maxx′f∈{0,1}B φf (x′f), ∀f ∈ [F].

In fact, for any value q,
∑

f

∑
xf
x

(b)
f πf,q(xf) = C for each b,

∑
xf
πf,q(xf) = 1 for each f ,

and πf,q(xf) ≥ 0 for each f and xf . The same relations are also satisfied passing to the

limit when q converges to 0, then {πf,0+(xf)} is a feasible solution. Finally,

∂L(α,χ, ζ)

∂αf (xf)

∣∣∣∣α=α∗χ=χ∗

ζ=ζ∗

= −Gf (xf) +

B∑
b=1

γbx
(b)
f + max

x′f∈{0,1}B
φf (x′f)

= −φ(xf) + max
x′f∈{0,1}B

φf (x′f)= 0 if xf is stochastically stable,

> 0 otherwise.

Let Sf ⊂ {0, 1}B denote the set of stochastically stable states for file f . It follows that

∇L(α∗,χ∗, ζ∗)ᵀ (α−α∗) =
∑
f∈[F]

∑
xf∈{0,1}B

∂L(α,χ, ζ)

∂αf (xf)

∣∣∣∣α=α∗
χ=χ∗

ζ=ζ∗

× (αf (xf)− α∗f (xf))

=
∑
f∈[F]

∑
xf∈Sf

0× (αf (xf)− πf,0+(xf))

+
∑
f∈[F]

∑
xf /∈Sf

∂L(α,χ, ζ)

∂αf (xf)

∣∣∣∣α=α∗
χ=χ∗

ζ=ζ∗

× (αf (xf)− 0)

≥ 0.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 67

4.2.3 Application of qLRU-∆

As we discussed, qLRU-∆ can be adapted to optimize different utility functions Gf (·).
In this section we illustrate two specific case studies: hit rate maximization and delay

minimization with CoMP techniques. We first describe what form the general qLRU-∆

assumes in these cases and then illustrate with some experiments the convergence result

in Proposition 10.

Hit rate maximization

The gain is simply 1 from a hit and 0 from a miss, i.e.,

gf (Xf , u) = 1(Ju,f 6= ∅),

where 1(·) denotes the indicator function. According to (4.6) with β = 1, each BS b with

a local copy (b ∈ Ju,f) moves the content to the front of the cache with probability

p
(b)
f (u) = β ·∆g(b)

f (Xf (t), u)

= 1(Ju,f 6= ∅)− 1(Ju,f \ {b} 6= ∅)

= 1− 1(Ju,f \ {b} 6= ∅)

= 1(Ju,f \ {b} = ∅) = 1(Ju,f = {b}).

Similarly, from (4.8), for δ = 1, at least one of the BSs without the content (i.e., those

in Iu,f \ Ju,f) decides to store an additional copy of f with probability

q
(b)
f (u) = δ · q ·∆g(b)

f (Xf (t)⊕ e(b), u)

= q · (1(Ju,f ∪ {b} 6= ∅)− 1(Ju,f 6= ∅))

= q · (1− 1(Ju,f 6= ∅)) = q · 1(Ju,f = ∅).

qLRU-∆h Online Caching Policy

Upon a miss (Ju,f = ∅), at least one cache decides to retrieve the content with probability q.

Upon a hit (Ju,f 6= ∅), the cache serving the content brings it to the front if and only if no

other BS is caching f (i.e., |Ju,f | = 1). We name this specialized version of qLRU-∆ to

maximize the hit ratio as qLRU-∆h and we present its formal description in Algorithm 5.

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 68

Algorithm 5: qLRU-∆h Caching Policy (for BS b)

Input: Iu, Ju,f .
1 if b ∈ Ju,f and |Ju,f | = 1 then
2 Move-to-the-front f
3 else
4 with probability q do
5 Evict file frear from the rear;
6 Insert f to the front;

7 end

8 end

Delay minimization with CoMP

In this case, we define the performance gain function directly as the experienced delay

saving related to the maximum delay possible, i.e.,

gf (Xf , u) = d(0) − du,f (Xf)

= d(0) −min
(
tu(Ju,f), dBH + tu(Ju,f ∪ {b′})

)
,

where we adapt the experienced delay originally defined in (3.3) to the matrix notation

and d(0) , maxu′,f ′,x′f {du′,f ′(x
′
f)} is a bound on the retrieval time, e.g., equal to the sum

of the backhaul delay and the maximum delay on the transmission channel. Note that

∆g
(b)
f (xf , u) = gf (xf , u)− gf (xf 	 e(b), u) (4.31)

= d(0) − du,f (xf)−
(
d(0) − du,f (xf 	 e(b))

)
= du,f (xf 	 e(b))− du,f (xf),

where d(0) cancels out and then the choice of its value is irrelevant for the algorithm.

The total expected delay gain per request for file f in a fixed allocation xf is then

Gf (xf) =
∑
u∈[U]

λf,u · E [gf (xf , u)] (4.32)

= λf ·
1

U

∑
u∈[U]

(d(0) − du,f (xf)), (4.33)

where we make λf,u = λf · 1
U . Finally, we adapt our reference maximization problem, by

4.2. OPTIMAL CACHING FOR STATIONARY REQUESTS 69

simply considering

G(x) =
∑
f∈[F]

Gf (xf)

=
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

(d(0) − du,f (Xf))

= d(0) −
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

du,f (Xf).

When UE u requests file f , each BS b with a local copy (b ∈ Ju,f) moves the content

to the front of the cache with probability

p
(b)
f (u) = β ·∆g(b)

f (xf) (4.34)

= β ·
(
du,f (xf 	 e(b))− du,f (xf)

)
,

where β , maxu′,f ′,b′,x′f

(
du′,f ′(x

′
f 	 e(b′))− du′,f ′(x′f)

)
guarantees that p

(b)
f (u) ∈ (0, 1].

Similarly, from (4.8), at least one of the BSs without the content (i.e., all BSs in

Iu,f \ Ju,f) decides if storing an additional copy of f with probability

q
(b)
f (u) = q · δ ·∆g(b)

f (xf ⊕ e(b)) (4.35)

= q · δ ·
(
du,f (xf)− du,f (xf ⊕ e(b))

)
,

where δ , maxu′,f ′,b′,x′f

(
du′,f ′(x

′
fe

(b′))− du′,f ′(x′f)
)

has the same role as β so it guaran-

tees that q
(b)
f (u) ∈ (0, 1].

qLRU-∆d Online Caching Policy

Upon a request (u, f), given the current cache allocation xf :

• All neighboring BSs caching f (∀b ∈ Ju,f) move f to the front of the cache with

probability p
(b)
f (u), given by (4.6), otherwise they cache f .

• The remaining BSs (∀b ∈ Iu\Ju,f), with probability q
(b)
f (u) given by (4.8), evict the

file at the rear of the cache and insert f at the front.

We name this specialized version of qLRU-∆ to maximize the delay saving (or

to minimize the average delay) as qLRU-∆d and we present its formal description in

Algorithm 6 from the individual perspective of each BS b.

4.3. HANDLING NON-STATIONARY REQUESTS 70

Algorithm 6: qLRU-∆d Caching Policy (for BS b)

Input: Iu, Ju,f , V
(b′)
u , ∀b′ ∈ Iu, and dBH

1 if b ∈ Ju,f then

2 with prob. p
(b)
f (u) in (4.34) do

3 Move-to-the-front f
4 end

5 else

6 with prob. q
(b)
f (u) in (4.35) do

7 Evict file at the rear
8 Insert f to cache

9 end

10 end

Remark 3: From equations (3.3) and (4.31) we see that probabilities p
(b)
u,f and q

(b)
u,f depend

on the allocation of file f at nearby BSs or, more precisely, on (i) the aggregate SNR all

BSs in Ju,f can achieve when transmitting to u (i.e.,
∑

b′∈Ju,f V
(b′)
u), (ii) the SNR V

(b)
u of

the local channel from b to u, and (iii) the backhaul delay dBH. In cellular networks, each

UE takes SNR measurements of BSs within range [82]. Thus, the information needed to

set q
(b)
u,f and p

(b)
u,f can be obtained with negligible overhead simply being piggybacked in

uplink communication from u to the BSs.

4.3 Handling Non-Stationary Requests

While qLRU-∆ converges to a local optimum for stationary popularities, the slow insertion

process, required by qLRU-∆ to converge (see Proposition 10), can become problematic

in practice, when some files are popular over a short time scale: A new file gets a chance

to be inserted in the cache on average by every 1/q requests, and by that time, its

popularity may have declined. In order to gain in reactivity, we propose 2LRU-∆ online

caching policy.

In 2LRU-∆, each BS maintains two storage layers: A physical cache and a virtual

cache. The physical cache stores the actual files, while the virtual cache stores files’

identification data. The identification for file f is denoted by ID(f). Here, we introduce

the support variables Ĵu,f indicating the set of u’s neighboring BSs caching file ID(f). The

two-layers structure along with the least-recently-used eviction rule are the core of plain

2LRU. On top of these characteristics, 2LRU-∆ additionally performs insertions and

moves-to-the-front (MTFs) with probability proportional to the marginal performance

gain, given in Equation (4.3).

4.3. HANDLING NON-STATIONARY REQUESTS 71

Figure 4.5 – Illustration of 2LRU-∆ operation from the perspective of a single BS b
when UE u has requested file f .

2LRU-∆ Online Caching Policy

Upon a request (u, f), given the current physical xf :

• All neighboring BSs caching ID(f) (∀b ∈ Ĵu,f) move ID(f) to the front of the

virtual cache; then:

– Each BS b ∈ Ĵu,f storing file f in the physical cache, i.e., b ∈ Ju,f , moves f to

the front of the physical cache with probability

p
(b)
f (u) = β ·∆g(b)

f (xf , u),

given by Equation (4.6),

– Each of the remaining BSs, i.e., ∀b ∈ Iu \ Ĵu,f , evicts the file at the rear of

the physical cache and inserts file f to the front.

• The remaining BSs (∀b ∈ Ĵu,f\Ju,f), with probability

σ
(b)
f (u) = δ ·∆g(b)

f (xf , u),

evict the ID at the rear of the virtual cache and insert ID(f) at the front.

4.3. HANDLING NON-STATIONARY REQUESTS 72

We formalize 2LRU-∆ caching policy in Algorithm 7 from the individual perspective

of each BS b. As qLRU-∆, 2LRU-∆ has constant complexity in time and number of

messages.

Algorithm 7: 2LRU-∆ Caching Policy (for BS b)

Input: Iu, Ju,f , Ĵu,f , and g
(b)
f (·, ·)

1 if b ∈ Ĵu,f then
2 Move-to-the-front ID(f) at virtual cache
3 if b ∈ Ju,f then

4 with prob. p
(b)
f (u) in Equation (4.6) do

5 Move-to-the-front f at physical cache
6 end

7 else
8 Evict file at the rear of physical cache
9 Insert f to physical cache

10 end

11 else

12 with prob. σ
(b)
f (u) in Equation (4.3) do

13 Evict file’s ID at the rear of virtual cache
14 Insert ID(f) to virtual cache

15 end

16 end

Remark 4: We do not provide theoretical guarantees for 2LRU-∆ similar to those of

qLRU-∆. However, its two-layer structure works as a more responsive filter, which

makes it easier for 2LRU-∆ to reflect short-term popularity variabilities. This fact makes

2LRU-∆ more reactive than qLRU, whose insertion rate may be drastically reduced by

parameter q. This feature is particularly favorable for scenarios where the request process

has strong temporal locality, which is a characteristic often observed in practice [9].

Additionally, we consider an insertion probability depending on the average delay in order

to tune the filter to be more selective towards files that may be supposed to reduce more

the delay. Therefore, 2LRU-∆ is a strong candidate to cope with the delay minimization

problem under non-stationary request processes, as we observe empirically in Chapter 5.

In what follows we discuss how to adapt 2LRU-∆ to approach hit ratio and average

delay minimization cases.

4.3. HANDLING NON-STATIONARY REQUESTS 73

2LRU-∆h Online Caching Policy

We name this specialized version of 2LRU-∆ to maximize the hit ratio as 2LRU-∆h

and we present its formal description in Algorithm 8 from the individual perspective of

each BS b.

In this case, the MTF probability is analogous to qLRU-∆h, i.e., p
(b)
f (u) = 1 if BS b

is the only BS neighboring UE u and physically caching file f , otherwise p
(b)
f (u) = 0.

Moreover, considering δ = 1, the insertion probability is given by

σ
(b)
f (u) = δ ·∆g(b)

f (xf ⊕ e(b), u)

= 1(Ju,f ∪ {b} 6= ∅)− 1(Ju,f 6= ∅)

= 1− 1(Ju,f 6= ∅)

= 1(Ju,f = ∅),

i.e., for each BSs missing file f ’s ID at the virtual cache, if no BSs cache ID(f), then it

evicts the ID at the rear and insert ID(f) to the front, if ID(f) is not already present.

Algorithm 8: 2LRU-∆h Caching Policy (for BS b)

Input: Iu, Ju,f , and Ĵu,f
1 if b ∈ Ĵu,f then
2 Move-to-the-front ID(f) at virtual cache
3 if b ∈ Ju,f then
4 if |Ju,f | = 1 then
5 Move-to-the-front f at physical cache
6 end

7 else
8 Evict file at the rear of physical cache
9 Insert f to physical cache

10 end

11 else
12 if |Ju,f | = 0 then
13 Evict file’s ID at the rear of virtual cache
14 Insert ID(f) to virtual cache

15 end

16 end

4.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 74

2LRU-∆d Online Caching Policy

We name this specialized version of 2LRU-∆ to maximize the average delay saving (or

to minimize the average delay) as 2LRU-∆d and we present its formal description in

Algorithm 9 from the individual perspective of each BS b.

In this case, we have the MTF probability defined as

p
(b)
f (u) = β ·∆g(b)

f (xf) = β ·
(
du,f (xf 	 e(b))− du,f (xf)

)
(4.36)

and the insertion probability as

σ
(b)
f (u) = δ ·∆g(b)

f (xf ⊕ e(b)) = δ ·
(
du,f (xf)− du,f (xf ⊕ e(b))

)
. (4.37)

Algorithm 9: 2LRU-∆d Caching Policy (for BS b)

Input: Iu, Ju,f , Ĵu,f , and du,f (·)
1 if b ∈ Ĵu,f then
2 Move-to-the-front ID(f) at virtual cache
3 if b ∈ Ju,f then

4 with prob. p
(b)
f (u) in Equation (4.36) do

5 Move-to-the-front f at physical cache
6 end

7 else
8 Evict file at the rear of physical cache
9 Insert f to physical cache

10 end

11 else

12 with prob. σ
(b)
f (u) in Equation (4.37) do

13 Evict file’s ID at the rear of virtual cache
14 Insert ID(f) to virtual cache

15 end

16 end

4.4 Special Case: Heterogeneous File Sizes

In this section, we consider that each file f ∈ [F] has size Sf , given in bytes, which may

be different from the other files. In this case, the cache capacity C must be given in

terms of the total amount of data, also in bytes. Then, we consider the following static

optimization problem

4.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 75

Problem 7:

(GSOHetSize) maximize
x1,x2,...,xF

G(x) ,
∑
f∈[F]

Gf (xf)

subject to
∑
f∈[F]

Sf · x
(b)
f ≤ C ∀b ∈ [F],

x
(b)
f ∈ {0, 1} ∀f ∈ [F],∀b ∈ [B].

We propose a caching policy that is a variant of qLRU-∆ and is able to asymptotically

converge to the allocation that optimizes Problem 7. We call the policy qLRU-HS, as it

is inspired by qLRU and takes explicitly into account files with heterogeneous sizes, and

its operation depends on the quantity

∆g
(b)
f (Xf (t), u)

Sf
=
g

(b)
f (Xf (t), u)− g(b)

f

(
Xf (t)	 e(b), u

)
Sf

, (4.38)

which is the marginal gain of performance UE u experiences thanks to the copy of file f

at BS b given f ’s allocation in the whole network divided by file f ’s size (i.e., its marginal

gain per byte occupied in the cache).

We describe qLRU-HS operation as follows: Upon a request (u, f), given the current

allocation Xf :

• All neighboring BSs caching f (∀b ∈ Ju,f) independently move f from its current

position in the queue to the front with probability

p
(b)
f , β ·

∆g
(b)
f (Xf (t), u)

Sf
, (4.39)

where constant β ensures that p
(b)
f ∈ (0, 1], e.g.,

β = min
u′,f ′,x′f>0

 Sf ′

∆g
(b′)
f ′ (x′f , u

′)

 . (4.40)

• For the remaining BSs (∀b ∈ Iu\Ju,f): (i) If there is enough cache space, f is

directly inserted at the front, (ii) otherwise, with probability

q
(b)
f (u) = qγb , (4.41)

for some positive constant γb, each BS decided to individually evict from the rear

4.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 76

enough files to make room for f and insert it to the front. We refer to the file at

the rear of the cache as frear.

We formalize qLRU-HS policy in Algorithm 10 from the perspective of each BS b.

Algorithm 10: qLRU-HS Caching Policy (for BS b)

Input: Iu, Ju,f , g
(b)
f (·), Sf ,∀f ∈ [F], and X

(b)
f ,∀f ∈ [F].

1 if b ∈ Ju,f then

2 with probability p
(b)
f in (4.39) do

3 Move-to-the-front f
4 end

5 else

6 if C −
∑

f ′∈[F] Sf ′ ·X
(b)
f ′ ≥ Sf then

7 Insert f to the front;
8 else

9 with probability q
(b)
f (u) do

10 while C −
∑

f ′∈[F] Sf ′ ·X
(b)
f ′ < Sf do

11 Evict file frear from the rear;
12 end
13 Insert f to the front;

14 end

15 end

16 end

Proposition 17: Under IRM, CTA, and EA, a network of qLRU-HS caches asymptotically

achieves an optimal caching configuration, when q → 0, even if files have different sizes.

The optimality proof for qLRU-HS policy follows the same steps of the optimality

proof for qLRU-∆ described in Section 4.2.2. We revisit each step of the proof and point

out the differences.

First, under CTA and EA, a network of qLRU-HS caches may be modeled with the

same group of CTMCs. However, we observe that the result in Lemma 11 is adapted to

the marginal gain function ∆g
(b)
f (Xf (t), u) related to the file size Sf , so the transition

rates are defined as follows:

• Upward transition: ρ[xf → yf] ∝ qγ>(yf−xf),

• Downward transition: ρ[yf → xf] ∝ q
∆G

(b0)
f

(yf)

Sf (with a single different BS b0).

4.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 77

Consequently, the direct resistance of upward and downward transitions are, respectively,

rf (xf ,yf) = γ>(yf − xf) and rf (yf ,xf) =
∆G

(b0)
f (yf)

Sf
. After these first changes, the

potential function is redefined to

φf (xf) ,
Gf (xf)

Sf
− γ> · xf . (4.42)

Note that Lemmas 12, 13, and 14 are not affected by the sizes heterogeneity. However,

because the potential function has a new shape, Lemma 15 must be adapted as well. In

other words, we need to show that

Lemma 18 (Equivalent of Lemma 15 for qLRU-HS): max
xf∈A,yf∈Ac

{φf (xf)− rf (xf ,yf)}

is achieved by a pair of parent-child nodes in the resistance graph Gf .

Proof. Let x̂f and ẑf be two nodes in Gf such that x̂f ∈ A, ẑf ∈ Ac, and |ẑf | > |x̂f |+ 1.

The transition x̂f → ẑf has resistance rf (x̂f , ẑf). Now, consider a path from x̂f to

ẑf that traverses nodes with strictly larger weights. By construction, there exists a

pair (x′f ,y
′
f) in this path, such that x′f ∈ A and y′f ∈ Ac. Then,

φf (x̂f)− rf (x̂f , ẑf)

=
Gf (x̂f)

Sf
− γ>x̂f − rf (x̂f , ẑf) by def. of φf (·)

=
Gf (x̂f)

Sf
− γ>x̂f − γ>(ẑf − x̂f) by def. of rf (·, ·)

=
Gf (x̂f)

Sf
− γ>ẑf

≤
Gf (x′f)

Sf
− γ>ẑf by monotonicty of Gf (·)

=
Gf (x′f)

Sf
− γ>x′f − Sfγ>(y′f − x′f)− γ>(ẑf − y′f)

= φf (x′f)− γ>(y′f − x′f)− γ>(ẑf − y′f) by def. of φf (·)

= φf (x′f)− rf (x′f ,y
′
f)− γ>(ẑf − y′f) by def. of rf (·, ·)

≤ φf (x′f)− rf (x′f ,y
′
f) ẑf − y′f is non-negative

Moreover, transitions to ancestors are not valid in the MCs, so we set the reverse edges’

resistances to infinite in Gf , i.e., rf (ẑf , x̂f) = +∞. As a consequence, the system of

4.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 78

modified balance equations can be simplified, considering only parent-child pairs

max
xf∈A,yf∈Ac

|yf |=|xf |+1

νf (xf)− rf (xf ,yf) =

= max
xf∈A,yf∈Ac

|yf |=|xf |+1

νf (yf)− rf (yf ,xf), ∀A ⊂ {0, 1}B

max
xf∈A

νf (xf) = σ

(4.43)

Finally, we show that, for every pair parent-child , φf (·) satisfies a pairwise balance

equation. Consider a parent-child pair xf ,yf such that yf = xf ⊕ e(b0). Then,

φf (xf)− rf (xf ,yf) =
Gf (xf)

Sf
− γ>xf − rf (xf ,yf) by def of φf (·)

=
Gf (xf)

Sf
− γ>xf − γ>(yf − xf) by def. of r(·, ·)

=
Gf (xf)

Sf
− γ>yf

=
Gf (xf)

Sf
−
Gf (yf)

Sf
+
Gf (yf)

Sf
− γ>yf

=
Gf (yf)

Sf
−

∆G
(b0)
f (yf)

Sf
− γ>yf by def. of ∆G

(b0)
f (·)

= φf (yf)−
∆G

(b0)
f (yf)

Sf
by def. of φf (·)

= φf (yf)− rf (yf ,xf) by def. of r(·, ·)

Therefore, {φf (xf),∀xf ∈ {0, 1}B} is the solution of the system (4.43).

Now, following the same reasoning used to define Problem 10, we consider the linear

continuous relaxation of the original static problem for heterogeneous file sizes (Problem 7)

as follows:

4.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 79

Problem 11 (GSOHetSize Linear Continuous Relaxation):

maximize
{αf (xf)}

∑
f∈[F]

∑
xf∈{0,1}B

αf (xf)Gf (xf) (4.44)

subject to
∑
f∈[F]

∑
xf∈{0,1}B

αf (xf) · Sf · x
(b)
f = C, ∀b ∈ [B]

∑
xf∈{0,1}B

αf (xf) = 1, ∀f ∈ [F]

αf (xf) ≥ 0, ∀f ∈ [F],∀xf ∈ {0, 1}B.

Note that we can replace the inequality constraints from Problem 7 with equality

constraints, since the fractional variables enforce that optimal solutions are achieved

with total cache utilization. Then, the Lagrangian function of Problem 11 objective

function (4.44) is

L(α,χ, ζ) =−
∑
f∈[F]

∑
xf∈{0,1}B

αf (xf)Gf (xf)

+
B∑
b=1

χb

∑
f∈[F]

∑
xf∈{0,1}B

αf (xf) · Sf · x
(b)
f − C

+
∑
f∈[F]

ζf

 ∑
xf∈{0,1}B

αf (xf)− 1

 .

(4.45)

Finally, we show that the following assignments satisfy the set of KKT conditions
α∗f (xf) = πf,0+(xf), ∀f ∈ [F],xf ∈ {0, 1}B,

χ∗b = γb, ∀b ∈ [B],

ζ∗f = Sf ·maxx′f∈{0,1}B φf (x′f), ∀f ∈ [F].

In fact, for any value q,
∑

f

∑
xf
x

(b)
f πf,q(xf) = C for each b,

∑
xf
πf,q(xf) = 1 for

each f , and πf,q(xf) ≥ 0 for each f and xf . The same relations are also satisfied passing

to the limit when q converges to 0, then {πf,0+(xf)} is a feasible solution. Finally,

∂L(α,χ, ζ)

∂αf (xf)

∣∣∣∣α=α∗χ=χ∗

ζ=ζ∗

= −Gf (xf) +

B∑
b=1

γbSfx
(b)
f + Sf · max

x′f∈{0,1}B
φf (x′f)

= −
Gf (xf)

Sf
+

B∑
b=1

γbx
(b)
f + max

x′f∈{0,1}B
φf (x′f)

4.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 80

= −φ(xf) + max
x′f∈{0,1}B

φf (x′f)= 0 if xf is stochastically stable,

> 0 otherwise.

Let Sf ⊂ {0, 1}B denote the set of stochastically stable states for file f . It follows that

∇L(α∗,χ∗, ζ∗)ᵀ (α−α∗) =
∑
f∈[F]

∑
xf∈{0,1}B

∂L(α,χ, ζ)

∂αf (xf)

∣∣∣∣α=α∗
χ=χ∗

ζ=ζ∗

× (αf (xf)− α∗f (xf))

=
∑
f∈[F]

∑
xf∈Sf

0× (αf (xf)− πf,0+(xf))

+
∑
f∈[F]

∑
xf /∈Sf

∂L(α,χ, ζ)

∂αf (xf)

∣∣∣∣α=α∗
χ=χ∗

ζ=ζ∗

× (αf (xf)− 0)

≥ 0.

Chapter 5

Experimental Results

In the previous chapters, we have presented static and dynamic caching solutions for a

network of interacting caches. The solutions may be deployed to optimize any performance

metric of interest, although we specifically show how to adapt the generic framework to

maximize the hit ratio or to minimize the average experienced delay in CCSC networks.

We are particularly interested in the delay minimization problem with CoMP. In this case,

we were able to derive theoretical results, among which we highlight the most important

ones below:

• In the static framework, a greedy algorithm, GreedyAD, is able to find an

allocation whose corresponding average delay is not worse than 1
2 of the optimal in

the ideal scenario where SNRs are homogeneous and popularities are stationary.

• In the dynamic framework, if the request process is stationary and follow IRM,

an online caching policy, qLRU-∆d, is expected to asymptotically converge to the

optimal allocation as the insertion parameter q tends to 0.

The experiments in this chapter were primarily designed to investigate whether and

at which level the above theoretical results are preserved empirically in more realistic

setups. Some of the questions we aim to answer with our numerical simulations include,

but are not limited to,

1. Given that our theoretical results were obtained under some approximations, how

small should parameter q be such that the proposed specialized variants of qLRU-∆,

i.e., qLRU-∆h for hit ratio maximization and qLRU-∆d for delay minimization,

are able to converge to their respective optimal allocations?

2. How much loss of performance do qLRU-∆’s variants experience when exposed to

81

5.1. EXPERIMENTAL SETUP 82

non-stationary request processes? Are 2LRU-∆’s variants for hit ratio maximization,

2LRU-∆h, and delay minimization, 2LRU-∆d, better suitable in this case?

3. How do our proposed solutions compare with other state-of-the-art solutions under

CCSC networks with different characteristics?

5.1 Experimental Setup

In this section, we first present in detail the common elements of our methodological

approach and, then, we discuss the characteristics of the different experimental setups

considered in the upcoming analysis.

5.1.1 Cellular Network

We simulate a cellular network based on the Berlin topology, presented in Chapter 2,

consisting of B = 10 BSs geographically fixed (see Figure 2.2). There are 100 UEs

randomly and statically placed, such that the network density ρ, i.e, the average number

of BSs covering each UE, is controlled by simply adjusting the BSs coverage areas, which

can be achieved in practice, for example, by tuning their transmission power. In our

experiments, as discussed in Chapter 2, we focus on the distinct user areas. For simplicity,

we assume that all UEs inside the same user area enjoy homogeneous transmission

characteristics towards their common neighboring BSs. It is important to notice that,

although the number of UEs is fixed, the number of distinct user areas may change with

the network density.

We emphasize that, the important aspects for us are the underlying bipartite structure

between clients and servers and the quantitative difference in performance offered by the

multiple possibilities of content placement into BSs. For this reason, in order to keep our

experimental setup simple, it is reasonable to assume that all BSs transmit at the same

power and, therefore, have the same coverage areas.

We consider that all BSs operate in the same base frequency f0 but use orthogonal

channels with the same bandwidth W = 5 MHz, e.g., for BS b ∈ [B], the channel is

defined within [f0 + (b− 1) ·W, f0 + b ·W] The main experiments of this chapter consider

only the scenario where files have homogeneous sizes, such that Sf = S = 1.0 Mbytes,

∀f ∈ [F]. Each cache can store up to 100.0 Mbytes of data that allows C = 100 files,

i.e., less than 1% of the catalog in the stationary request scenario (consisting of F = 106

files), which is inline with studies about small cell caching [69,83]. Since all files have the

same size and assuming that the backhaul network offers uniform transmission rates to

all BSs, we fix the backhaul-access delay to dBH = 100.0 ms. Unless mentioned otherwise,

5.1. EXPERIMENTAL SETUP 83

we will assume in the first scenarios homogeneous file sizes, for simplicity; we will later

revisit this assumption and simulate heterogeneous files sizes as well.

5.1.2 Caching schemes

Besides the greedy algorithms presented in Chapter 3 and the online policies proposed in

Chapter 4, we implemented the following solutions from related work in our simulations:

• FIFO. The standard first-in first-out: new files are inserted at the front of the

cache, pushing the rest of the files closer to the rear, and evicting the last file. Note

that files are not moved to the front upon a cache hit.

• qLRU. It is a variant of plain LRU (see Example 5 in Chapter 1), where the

insertion of new files, which causes the eviction of the least-recently-used file at the

rear, takes place with probability q.

• multi-LRU-One and multi-LRU-All [52]. In multi-LRU-One, a single neigh-

boring BS bu ∈ Iu is associated to UE u in advance. Upon request (u, f), only

BS bu updates its cache. In multi-LRU-All, all UE u’s neighboring BSs, ∀b ∈ Iu,

update their caches. The updates and insertions are based on plain LRU.

• LFU-All. Each BS keeps track of how often every file has been requested within

its own coverage area. Whenever a file that is not cached is requested, the least-

frequently-requested cached file is evicted to make room for it. We use the ideal

implementation, where each BS keeps data structures accounting for the request

frequency of all files in the catalog (not only the cached files).

5.1. EXPERIMENTAL SETUP 84

P
ar

am
et

er
V

al
u

es
E

x
p

er
im

en
ts

(s
u
b

se
ct

io
n
)

B
an

d
w

id
th

W
=

5
M

H
z

A
ll

ex
p

er
im

en
ts

F
il
es

si
ze

S
=

1
M

b
y
te

s
5.

2.
1-

5.
3
.3

M
in

im
u
m

fi
le

si
ze

S
m

in
=

1
G

b
y
te

s
5.

4.
1,

5.
4
.2

F
il
e

si
ze

va
ri

at
io

n
∆
S

=
9

G
b
y
te

s
5.

4.
1,

5.
4
.2

∆
S
∈
{0
,1

3
,2

5,
37
,4

9}
5.

4.
2

C
ac

h
e

ca
p
ac

it
y

C
=

10
0

5.
2.

1,
5.

2
.2

,5
.2

.4
-5

.3
.3

C
∈
{1

0,
30
,1

00
,3

00
,1

00
0,

30
00
,1

00
00
,3

00
00
,1

00
00

0,
30

00
00
,1

00
00

00
}

5.
2.

3
C

=
50

G
b
y
te

s
5.

4.
1,

5.
4
.2

C
∈
{1

0,
30
,1

00
,3

00
,1

00
0,

30
00
,1

00
00
,3

00
00
}

G
b
y
te

s
5.

4.
2

B
ac

k
h
au

l-
ac

ce
ss

d
el

ay
d

B
H

=
10

0
m

s
5.

3.
1-

5.
3
.3

B
ac

k
h
au

l
ra

te
R

B
H

=
10

0
M

b
p

s
5.

4.
1,

5.
4
.2

B
ac

k
h
au

l
la

te
n

cy
M

=
10

m
s

5.
4.

1
M
∈
{3
,1

0,
30
,1

00
,3

00
,1

00
0
}

m
s

5.
4.

2

N
et

w
or

k
d
en

si
ty

ρ
=

5.
9

B
S
s/

U
E

5.
2.

1-
5.

2
.6

,5
.3

.3
,5

.4
.1

,5
.4

.2
ρ
∈
{1
.1
,1
.7
,3
.5
,5
.9
,9
.4
}

B
S
s/

U
E

5.
3.

1,
5
.3

.2
,

5
.4

.2

Z
ip

f
ex

p
on

en
t

α
=

1.
2

5.
2.

1-
5.

3
.1

,5
.4

.1
,5

.4
.2

α
∈
{0
.0
,0
.3
,0
.6
,0
.9
,1
.2
,1
.5
}

5.
2.

4

S
N

R
V

=
10

d
B

5.
2.

1-
5.

3
.2

,5
.4

.1
,5

.4
.2

B
as

e
S
N

R
V

0
d
B

5.
3.

3

S
N

R
va

ri
ab

il
it

y
∆
V
∈
{1
,3
,5
,7
,9
}

d
B

5.
3.

3

In
se

rt
io

n
p

ar
am

et
er

q
=

0.
00

1
5.

2.
3-

5.
3
.3

,
5
.4

.2
q
∈
{0
.0

00
1,

0
.0

01
,0
.0

1,
0.

1
,1
}

5.
2.

1,
5.

2
.2

,5
.4

.1

T
ab

le
5.

1
–

L
is

t
of

p
ar

am
et

er
va

lu
es

an
d

th
ei

r
as

so
ci

at
ed

ex
p

er
im

en
ts

5.2. QLRU-∆ CONVERGENCE TO AN OPTIMAL ALLOCATION 85

5.1.3 Request Generation Mechanisms

We simulate a discrete-time process, where, at every step, a UE is chosen uniformly

at random to generate the next request for a file. The following request processes are

considered:

• Stationary Request Process: At every request, a file is chosen from a catalog

of F = 106 files according to a Zipf law with exponent α = 1.2, unless otherwise

stated. Simulations have (i) a warm up phase, which should comprise the transient

period where the policies are still converging, and (ii) a measurement phase, where

we can extract statistics about the resulting allocation. In this case, each phase

consists of 100 million requests.

• Non-stationary Request Process: The idea is to simulate a realistic request process

based on a trace provided by Akamai Content Delivery Network [84], which is

described in more details in [49]. The trace consists of 17 million requests generated

throughout 5 consecutive days.

5.2 qLRU-∆ Convergence to an Optimal Allocation

According to Proposition 10, under stationary request processes, as q tends to 0, qLRU-∆

converges to an optimal allocation. In our first experiments, our goal is to observe this

convergence in practice. We consider the Berlin topology with density of ρ = 5.9 BSs/UE

and the stationary request process with α = 1.2. Initially, we show empirical evidences

confirming that, for qLRU-∆h and qLRU-∆d, the resulting allocations indeed converge to

the optimal ones. Then, we observe that this behavior is retained in different experimental

setups by changing some parameters, such as cache capacity, backhaul-access delay, and

Zipf exponent. Finally, we show how additional information on the files’ popularities may

influence the convergence process and we finish our analysis discussing about the speed

at which policies that we used in the performance evaluation (see Section 5.3) converge

to an optimal allocation.

5.2.1 Convergence of qLRU-∆h – Hit Ratio

Figure 5.1a (left) shows the hit rate achieved by GreedyHR and by qLRU-∆h for

different values of q. As q decreases, qLRU-∆h’s hit rate converges to that of GreedyHR.

The hit rate of qLRU also improves for smaller q. For a single cache, qLRU coincides

with qLRU-∆h and it is then implicitly maximizing the hit rate when q converges to 0.

But in a networked setting, the deployment of qLRU at each cache does not perform

5.2. QLRU-∆ CONVERGENCE TO AN OPTIMAL ALLOCATION 86

as well because each cache is myopically maximizing its own hit rate without taking

into account the presence of the other caches. Instead, qLRU-∆h correctly takes into

account the marginal contribution the cache can bring to the whole system. Finally,

FIFO achieves the lowest hit rate as the sojourn time of each content inserted in the

cache is roughly the same, independently from its popularity.

We also compare how different the content allocations of qLRU-∆h, qLRU, and

FIFO are from the allocation of GreedyHR. To this purpose, we define the occupancy

vector, whose component i contains the number of copies of file i present in the network

averaged during the measurement phase. We then compute the cosine distance1 of the

occupancy vectors of the specific online policy and Greedy-h. Figure 5.1a (right) shows

how such distance decreases as q decreases, indicating that the files GreedyHR stores

tend to be cached longer and longer under qLRU-∆h, and to a lesser extent under qLRU.

The allocations of FIFO and GreedyHR are instead quite far.

Observation 1: Under stationary request process, qLRU-∆h converges to the solution

provided by GreedyHR as q → 0.

5.2.2 Convergence of qLRU-∆d – Average Delay

To investigate the convergence of qLRU-∆d, we consider the homogeneous SNR regime

with SNR V = 10dB, for all connected pairs BS-UE. This assumption is particularly

important because the greedy algorithm, GreedyAD, converges to the optimal allocation

if SNRs are homogeneous, thus working as a more reliable comparison baseline. We aim

to show empirically that, as q tends to 0, qLRU-∆d converges to a static solution similar

to the one provided by GreedyAD.

Figure 5.1b (left) shows the average delay of qLRU-∆d and GreedyAD for different

values of q. As q decreases, qLRU-∆d’s average delay converges to GreedyAD’s one.

Furthermore, Figure 5.1b (right) shows that, this gradual proximity in the average is

not an accident. We observe that, as q decreases, the distance between qLRU-∆d

and GreedyAD decreases, indicating that qLRU-∆d tends to store the same files

GreedyAD stores.

Observation 2: Under stationary request process, qLRU-∆d converges to the solution

provided by GreedyAD as q → 0.

1The cosine distance between vectors u and v is given by dist(u, v) = 1− 〈u,v〉
‖u‖2‖v‖2

, where 〈·, ·〉 denotes
the inner product.

5.2. QLRU-∆ CONVERGENCE TO AN OPTIMAL ALLOCATION 87

(a) Hit ratio maximization: Hit ratio (left) and allocation distance (right) versus insertion
parameter q.

(b) Average delay minimization: Average delay (left) and allocation distance (right) versus
insertion parameter q.

Figure 5.1 – Convergence analysis: (a) hit ratio and (b) average delay as q tends to 0.
Setup: Berlin topology with density ρ = 5.9 BSs/UE, α = 1.2, dBH = 100 ms, and
V = 10 dB. Besides the qLRU-∆ specialized implementation and greedy algorithm
corresponding to each metric, results are show for qLRU and FIFO.

5.2. QLRU-∆ CONVERGENCE TO AN OPTIMAL ALLOCATION 88

5.2.3 Convergence under different cache capacities

Figures 5.2a and 5.2b show the hit ratio and average delay, respectively, of online policies

and greedy algorithms as we increase the cache capacity per BS. We fix q = 0.001 for

qLRU-∆ and qLRU. In both scenarios, qLRU-∆ outperforms all other online policies

and it closely follows the result of the corresponding greedy policy. Note that the strange

shape of FIFO curves is an artefact of the semi-log graph as shown by the inserts.

Observation 3: For sufficiently small q, qLRU-∆ achieves results close to the optimal ones

with respect to hit ratio maximization and average delay minimization across different

cache capacities.

5.2.4 Convergence under different dBH and λf – Average Delay

Figure 5.3 shows the average delay achieved by GreedyAD and qLRU-∆ for different

values of Zipf exponent α (left) and backhaul-access delay dBH (right), when q = 0.001.

We observe that the two curves almost match for all different parameter choices, indicating

that the convergence is also achieved in multiple settings.

Observation 4: For sufficiently small q, qLRU-∆d achieves delays close to GreedyAD

across different backhaul-access delays and popularity distributions.

5.2.5 The role of popularities in the convergence process

If some knowledge about content popularity is available, it can be exploited to determine

the initial content to allocate in the caches using the offline greedy algorithms, i.e.,

GreedyHR and GreedyAD, when the metric of interest is the hit ratio or the delay,

respectively. We consider noisy popularity estimations in order to decide how to populate

the cache initially according to different metrics (resulting from the corresponding greedy

algorithm). We show through an experiment in Figure 5.4 that qLRU-∆ can modify

the initial cache configuration and improve performance. The left figure considers the

hit ratio as objective, the right one the delay. The ground truth popularity follows a

Zipf distribution with α = 1.2 (as in the previous experiments) and noisy popularity

estimations are available: they are obtained multiplying true popularities by random

values from a log-normal distribution with expected value 1.0 and variance eσ
2 − 1 (σ2 is

the variance of its logarithm). If σ2 = 0, estimated popularity values coincide with the

true ones, but the larger the variance σ2, the less accurate the estimations.

The horizontal dashed lines indicate the performance of the corresponding initial cache

configuration under the true request process. The solid curves show the performance

5.2. QLRU-∆ CONVERGENCE TO AN OPTIMAL ALLOCATION 89

(a) Hit ratio maximization: hit ratio versus cache capacity.

(b) Average delay minimization: average delay versus cache capacity.

Figure 5.2 – Convergence analysis: (a) hit ratio and (b) average delay as cache capacity C
increases. Setup: Berlin topology with density ρ = 5.9 BSs/UE, α = 1.2, dBH = 100 ms,
V = 10 dB, and q = 0.001. Besides qLRU-∆ and greedy algorithms corresponding to
each metric, results are shown for qLRU and FIFO.

5.2. QLRU-∆ CONVERGENCE TO AN OPTIMAL ALLOCATION 90

Figure 5.3 – Convergence analysis: average delay provided by qLRU-∆d in comparison
with GreedyAD for increasing (left) Zipf exponent and (right) backhaul-access delay.
Setup: Berlin topology with density ρ = 5.9 BSs/UE, V = 10 dB, and q = 0.001.

over time of qLRU-∆h (left) and qLRU-∆d (right) with q = 10−3. We observe that

the curves converge to the same value, that is slightly worse than the initial one when

popularity estimations are exact (σ2 = 0), but better in all other cases. This result shows

that qLRU-∆ can effectively improve performance even when popularity estimates are

available. Interestingly, one may expect that the time needed for qLRU-∆ to reach the

steady state performance depends on the accuracy of the initial popularity estimates (the

more accurate, the less changes would be needed to reach the final cache allocation), but

the dependence, if present at all, is very small.

Observation 5: qLRU-∆ can provide performance improvements even when the initial

cache allocation was statically determined by inaccurate popularity estimations.

We remark that available popularity information may also be used to tune qLRU-

∆’s parameters to speed-up the transient. For example, we can modify the insertion

probability, in Equation (4.8), to favor the files the greedy algorithm would have put in

the cache. This change is in the same spirit of introducing the factor ∆g
(b)
f (Xf (t)⊕e(b), u)

to the insertion probability in qLRU-∆ definition (in Equation (4.8)). As we discussed

at the end of Section 4.2, these changes likely improve convergence speed, but do not

affect the steady-state and then qLRU-∆’s optimality guarantees.

5.2.6 Convergence speed – Average Delay

Now, for a fixed network density ρ = 9.4 BSs/UE and for each online policy, we show the

evolution throughout the simulation of the average delay Figure 5.5 (left) and the hit

5.2. QLRU-∆ CONVERGENCE TO AN OPTIMAL ALLOCATION 91

Figure 5.4 – Convergence analysis: qLRU-∆h (left) and qLRU-∆d (right) starting the
simulation with the respective greedy allocation for different levels of noisy popularity
estimations, represented by variance σ2. The solid curves are the average of 100 different
simulation rounds. Setup: Berlin topology with density ρ = 5.9 BSs/UE, α = 1.2,
dBH = 100 ms, V = 10 dB, and q = 0.001.

ratio Figure 5.5 (right) every 100 requests. In this experiment, we wish to observe the

convergence process of the policies that we will compare later in the next section. Files

popularities follow a Zipf law with exponent α = 1.2 and we also take V = 10 dB and

dBH = 100 ms. We fix q = 0.001 for qLRU-∆ variants.

First, it is important to note that all policies reach convergence within the total

number of requests they were exposed to during the simulation. Then, we highlight that

qLRU-∆ variants have worse performance in the beginning due to the lower insertion

rate (caused by small parameter q), until the point where they stabilize and present

better results (after 107 requests in this scenario). In addition to their noticeably faster

convergence, 2LRU-like policies reach performance levels close to the qLRU-∆ variants.

This fact reveals 2LRU-∆ higher reactivity and suggests its suitability for dealing with

non-stationary request processes.

Observation 6: Despite their slightly worse performance under stationary request pro-

cesses, 2LRU-∆ variants policies present faster convergence in comparison to qLRU-∆.

5.3. COMPARISON WITH OTHER CACHING POLICIES 92

Figure 5.5 – Convergence analysis: Evolution of the average delay (left) and hit ratio
(right) achieved by different policies versus the requests (plotted at every 100 requests).
Setup: Berlin topology with density ρ = 9.4 BSs/UE, α = 1.2, dBH = 100 ms, V = 10 dB,
and q = 0.001.

5.3 Comparison with other Caching Policies

In the first set of experiments of this section, we still assume the homogeneous SNR regime

and study the policies performance over networks with different densities. We evaluate

the results for stationary and non-stationary request processes. Finally, we investigate

the policies in a more realistic scenario, where, BSs are exposed to a non-stationary

requests process and we consider the heterogeneous SNR regime.

5.3.1 Effect of network density – Stationary requests

We consider the homogeneous SNR regime with V = 10dB, for all connected pairs BS-UE.

We fix the BSs positions and vary the transmission range to achieve network densities

from 1.1 (almost isolated BSs) to 9.4 (highly overlapped network, with approximately 73%

of UEs covered by all 10 BSs), see Table 2.1. We fix q = 0.001 for qLRU-∆ variants.

In the first setting, we assume a stationary request process. In Figure 5.6a, we show

the normalized average delay as function of the network density, for different policies and

algorithms. The qLRU-∆d result is very close to the GreedyAD one, reasserting its

convergence across different densities. qLRU-∆d reaches performance gains of up to 20%

related to GreedyHR and other policies targeting hit ratio maximization. If compared

to multi-LRU-All and multi-LRU-One, qLRU-∆d achieves gains of up to 27%.

5.3. COMPARISON WITH OTHER CACHING POLICIES 93

(a) Normalized Average delay versus network density.

(b) Hit ratio versus network density.

Figure 5.6 – Performance evaluation in terms of (a) Normalized average delay and (b) hit
ratio of various policies and greedy algorithms versus the network density. Setup: Berlin
topology with α = 1.2, dBH = 100 ms, V = 10 dB, and q = 0.001.

5.3. COMPARISON WITH OTHER CACHING POLICIES 94

Observation 7: Under stationary requests, qLRU-∆ outperforms state-of-the-art policies,

presenting nearly optimal results.

In Figure 5.6b, we show the hit ratio corresponding to the experiment previously

described. Policies like qLRU-∆h and 2LRU-∆h outperform other policies as they are

designed to maximize the hit ratio, even though they have inferior performance in terms

of average delay (see Figure 5.6a).

Observation 8: As expected, policies targeting the hit ratio in general perform worse in

terms of average delay.

5.3.2 Effect of network density – Trace-based requests

In the second setting, we assume the non-stationary request process. The greedy allocation

in this case was determined by estimating the files popularities over 5 days. However, real

request processes exhibit strong temporal locality features. Static allocations based on

time-average popularities smooth out the variability over short time scales. Consequently,

we see in Figure 5.7 that GreedyAD and GreedyHR perform worse than most policies.

Observation 9: Under non-stationary requests, static solutions tend to perform worse

than online policies.

On the contrary, 2LRU-∆ variants are highly reactive and may be able to capture

short-time popularity variations, offering better performance. Figure 5.7 shows that indeed

2LRU-∆d outperforms both GreedyAD and qLRU-∆d by 12% and 6%, respectively.

Moreover, 2LRU-∆d provides performance gains of around 15% in comparison with

2LRU-∆h and 23% in comparison with multi-LRU-All.

Observation 10: Under non-stationary requests, 2LRU-∆ outperforms all other policies.

5.3.3 Performance under heterogeneous SNRs

In the online policies simulations, at every request (u, f), the SNRs V
(b)
u ,∀b ∈ Iu are

chosen uniformly at random within a range, i.e., V
(b)
u ∈ [V0 −∆V, V0 + ∆V]. For the

static solutions, we simply calculate in advance the average experienced delay for each

UE to download from k = 0, . . . , |Iu| cached copies, and apply the greedy algorithm.

We consider the same Berlin topology, with density of 5.9 BSs/UE, on average, and file

requests follow again the Akamai trace. Moreover, we consider two different scenarios for

SNR variability:

5.3. COMPARISON WITH OTHER CACHING POLICIES 95

Figure 5.7 – Normalized average delay of various policies and greedy algorithms versus the
network density. Setup: Berlin topology with dBH = 100 ms, V = 10 dB, and q = 0.001.
The request process is based on a real trace from which requests were during 5 days.

• Slow SNR variability regime: the randomly generated SNRs can be considered

constant from the moment the request is posed until it is served. Whenever an

additional copy must be retrieved (in case of cache miss or insufficient hit), the BS

with the highest SNR, i.e., b′ in Equation (3.3), (jointly) transmits the file.

• Fast SNR variability regime: In an attempt to represent adverse transmission

conditions, we consider that SNRs may change over a timescale corresponding to

the backhaul retrieval time. As a consequence, the BS b′ that retrieves an additional

copy may not have the highest SNR by the time the copy is available. In our

simulations, BS b′ is chosen independently at random.

First, in Figure 5.8a, we show the performance of the caching policies under slow

SNR variability regime. We present the average delay versus the SNR variation ∆V . In

this setup, we fix the base SNR to V0 = 10 dB and its variability ranges from ∆V = 1 dB

to ∆V = 9 dB. We observe that all curves decrease for smaller values of SNR variation

(∆V ∈ [1.0, 7.0]). The average delay tends to increase again for larger SNR variation

(∆V ≥ 9.0) for the hit ratio maximization schemes. The fact that the BS with the highest

SNR serves the requested file mitigates the miss cost for the delay-based schemes. Our

proposed policies also outperform other schemes. The maximum observed performance

5.3. COMPARISON WITH OTHER CACHING POLICIES 96

(a) Slow SNR variability regime: normalized average delay versus SNR variability.

(b) Fast SNR variability regime: normalized average delay versus SNR variability.

Figure 5.8 – The normalized average delay achieved by various policies versus the SNR
variation in (a) slow and (b) fast SNR variability regimes. Setup: Berlin topology with
density ρ = 5.9, dBH = 100 ms, q = 0.001, and base SNR V0 = 10 dB.

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 97

gain (related to 2LRU-∆ and multi-LRU-All) moderately increases with ∆V , going

from 13% to around 15%.

Observation 11: The proposed policies outperform other state-of-the-art solutions and

the SNR variation has low impact on the techniques’ relative performance gains.

The SNR variability may be interpreted as the BSs using different transmission

powers, which is a common characteristic of real heterogeneous cellular networks (e.g., in

an overlay of femto, pico, and macro cells). The previous experimental result suggests

that dynamic policies are resilient to different transmission conditions and may achieve

satisfactory results even in these scenarios.

In a similar fashion, in Figure 5.8b, we show the performance of the caching policies

under fast SNR variability regime. All policies present a strictly increasing behavior.

This fact is explained by Jensen’s inequality, since the delay is now a convex random

function: Given V = V0 + ∆V and V ′ = V0 −∆V , the delay reduction achieved with the

larger V is smaller than the delay increase due to the smaller V ′.

Observation 12: In a scenario with more unstable transmission conditions (fast SNR

variability), the average delay strictly increases with the SNR variation.

5.4 Special Case: Heterogeneous File Sizes

In this last part, we turn our attention to heterogeneous file sizes, and the proposed

algorithms, IGA and qLRU-HS, addressing the delay minimization problem stated in

Problem 8. In this section, we focus on the general delay minimization problem with

heterogeneous file sizes (Problem 7). First, as theoretically stated in Section 4.4, our

study may suggest a theoretical analysis of qLRU-HS convergence to the optimal cache

allocation when q(b) tends to 0. We assume that q(b) = q, ∀b ∈ [B] and adapt qLRU-HS

operation to specifically minimize the average delay in the homogeneous SNR regime.

We evaluate qLRU-HS performance in different scenarios by comparing it against

other policies from related literature, including:

• qLRU-∆d that we introduced in Section 4.2 and proved to by optimal under IRM

if the sizes are homogeneous.

• greedy-dual-size [85], it aims to maximize the hit ratio in a single-cache setup,

considering sizes are heterogeneous. We consider that all BSs run an instance of

greedy-dual-size and react independently to each request in their cell. We refer to

such operation as GDSize-All, where we append the suffix “All” in analogy to

multi-LRU-All in [52].

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 98

• IGA greedy algorithm [42], as discussed in Section 3.5, its average delay reduction

is guaranteed to be (1− 1/e) far from the optimal in symmetric setups. Thus, we

use it as a lower bound for the other policies.

Once again, we consider the Berlin topology with B = 10 BSs, where all BSs have

the same cache capacity, i.e., C(b) = C, ∀b ∈ [B], and can store up to C = 50 GB. Unless

otherwise specified, we consider that the backhaul network is able to transmit data at

RBH = 100 Mbps with backhaul latency M = 10 ms. The wireless channel bandwidth is

W = 5 MHz and all connected pairs BS-UE have fixed SNR of V = 10 dB.

In our simulations, we consider that, at every request, a file is chosen from a catalog

of F = 104 files with probability determined by a Zipf law with exponent α = 0.8.

As indicated by [86], real file sizes may be represented by a truncated exponential

distribution. We randomly generate the file sizes according to an exponential distribution

within the interval [Smin, Smin +∆S]. Unless otherwise specified, we consider Smin = 1 GB

and ∆S = 9 GB. As in the previous experiments with stationary request process, we split

the simulation into warm-up and measurement phases, each having 107 requests.

5.4.1 Convergence Analysis

According to Proposition 17, as q tends to 0, qLRU-HS converges to an optimal allocation.

In our first experiments, our goal is to observe this convergence in practice. We consider

the Berlin topology with density of ρ = 5.9 BSs/UE.

Figure 5.9 – Convergence Analysis: Average delay d̄ (left) and hit ratio (right) versus q.
Setup: Berlin topology with density ρ = 5.9, RBH = 100 Mbps, M = 10 ms, V = 10 dB,
C = 50.0 GB, Smin = 1.0 GB, and ∆S = 9.0 GB.

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 99

In Figure 5.9, we show the average delay (left) and the hit ratio (right) versus the

parameter q. As a reference, we include the result of IGA for the same setup, which

is independent of parameter q. We emphasize that, although IGA may be unfeasible,

its delay saving is not farther than (1 − 1/e) from the optimal. As we observe in

Figure 5.9 (left), qLRU-HS gets closer to IGA as q decreases, suggesting its convergence

to the optimal allocation. In addition to qLRU-HS results, we also plot the results

for qLRU-∆d, that is also guaranteed to converge to the minimum delay as q vanishes,

but only when files have all the same size [64]. However, qLRU-∆d converges to a

value of average delay larger than qLRU-HS’s one. This is due to fact that qLRU-∆d,

while trying to minimize the delay, tends to store large files, that indeed incur large

transmission delay, ignoring that they also occupy a large amount of space in the cache.

In particular, given two files f1 and f2 with λf1 > λf2 and Sf2 � Sf1 , qLRU-∆d would

prefer f2, while our caching policy qLRU-HS correctly bias its choices in favor of f1 that

leads to a larger benefit for byte occupied in the cache. From Figure 5.9 (right), we see

that, for this particular scenario, better average delay is associated with a better hit

ratio, which is not always necessarily the case.

In Figure 5.10, we show the average delay (left) and the hit ratio (right) versus the

number of requests in the simulation. For this plot, we simulate qLRU-HS and qLRU-∆d

for q = 10−3 and q = 10−4, and we indicate the results of IGA as reference. As we

observe in Figure 5.10 (left), the average delay achieved by each policy decreases over

time, and reaches its minimum value after about 106 requests (105 requests per BS).

Observation 13: For sufficiently small q, qLRU-HS shows to be sensitive to different files

sizes in practice, achieving delays close to IGA and outperforming qLRU-∆d.

5.4.2 Comparison with other Caching Policies

Now, we compare the performance of qLRU-HS with other caching solutions in different

scenarios. From now on, we consider q = 10−3 for qLRU-HS and qLRU-∆d.

In Figure 5.11, we show the performance for different values of caching capacity,

ranging from C = 10 GB to C = 100 TB. We present the average delay (left) and the

hit ratio (right) versus the cache capacity size C. qLRU-HS provides a more efficient

management of the cache, outperforming all other policies and presenting results close

to the IGA ones. The difference of performance across policies is maximal for smaller

values of C. In particular, for C = 10 GB, qLRU-HS achieves a delay about 20% smaller

than GDSize-All. As expected, when the capacity increases, all policies perform better

because they can store more files and also differences reduce until all policies perform

equally when the cache is so large to be able to store the whole catalog.

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 100

Figure 5.10 – Convergence Analysis: Average delay d̄ (left) and hit ratio (right) versus
the requests. Results of qLRU-HS and qLRU-∆d are shown for q = 10−3 and q = 10−4.
Setup: Berlin topology with density ρ = 5.9, RBH = 100 Mbps, M = 10 ms, V = 10 dB,
C = 50.0 GB, Smin = 1.0 GB, and ∆S = 9.0 GB.

In Figure 5.12, we fix the cache capacity to C = 30 GB and observe the policies’

performances for different levels of density, from ρ = 1.4 BSs/UE to ρ = 9.1 BSs/UE. We

control the network density by simply increasing the BSs’ transmission range, although

we keep constant the SNR to V = 10 dB. In this scenario, qLRU-HS again outperforms

all other policies and has results close to the IGA ones.

We observe in Figure 5.12 (left) that all policies experience a delay reduction as ρ

increases. The reason is that the aggregate cache available to each UE gets larger with ρ,

then more files are found in the neighboring BSs. Because of the larger aggregate cache,

the difference between qLRU-HS and qLRU-∆ becomes slightly smaller as ρ increases

(similarly to Figure 5.11). On the contrary, the performance gap with GDSize-All

increases: the fact that all BSs in Iu react to a request from u leads to poor coordination.

Observation 14: For different aggregate storage capacities and network densities, qLRU-

HS presents results close to IGA and outperforms other caching policies from the liter-

ature that promise to handle either sizes heterogeneity or cases with multiple caches.

Figure 5.13 shows the average delay d̄P achieved by policy P normalized by the

average delay d̄IGA achieved by IGA. Results are presented for different size variability

(captured by the parameter ∆S), on the left, and backhaul latency M , on the right. For

these experiments, we fix the network density to ρ = 5.9 BSs/UE. We chose to show the

results in a normalized fashion due to the large excursion of d̄P values when both ∆S

and M change.

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 101

Figure 5.11 – Performance Evaluation: Average delay (left) and hit ratio (right) achieved
by various policies versus increasing cache capacity. Setup: Berlin topology with density
ρ = 5.9, RBH = 100 Mbps, M = 10 ms, V = 10 dB, q = 10−3, Smin = 1.0 GB, and
∆S = 9.0 GB.

In Figure 5.13 (left) we evaluate d̄P/d̄IGA for fixed Smin = 1 GB and change the ∆S

from ∆S = 0 (homogeneous file sizes) to ∆S = 49 GB. We first observe that qLRU-HS

and qLRU-∆ both have results close to IGA in the homogeneous size case. The more

heterogeneous is the catalog, in terms of size, the noisier is the convergence process. This

happen because, at every cache miss, the number of insertions is not proportional to

the number of evictions, leading to “asymmetric” cache updates. For example, (i) the

insertion of a single large file can lead to the eviction of many other files and (ii) the

insertion of a small file may cause the eviction of a large file, producing unused storage

space at the cache. This fact explains why the relative performance of all dynamic

policies worsens when size variability increases. Despite the increasing trend shared by all

policies, we observe that qLRU-HS is always the closest to IGA. Interestingly, although

GDSize-All has the worst performance, it is less sensitive to the variability of file sizes.

Observation 15: Higher size variability implies a noisier convergence process, causing

the online policies to perform worse in practice.

Finally, one interesting aspect in our model is how the backhaul latency constant

affects the policies operation and results. In Figure 5.13 (right), we show d̄P/d̄IGA when

the backhaul latency increases from M = 30 ms to M = 1 s. In this case, we fixed

Smin = 1 GB and the size variability to ∆S = 9.0 GB. In this experiment, we also

observe dynamic policies perform worse in comparison to IGA as the backhaul latency M

increases. When M becomes larger, the optimal caching strategy changes from a scenario

where it is convenient to store more copies of the same files across the BSs’ caches (to

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 102

Figure 5.12 – Performance Evaluation: Average delay (left) and hit ratio (right) achieved
by various policies versus increasing network density. Setup: Berlin topology with
RBH = 100 Mbps, M = 10 ms, V = 10 dB, q = 10−3, C = 30.0 GB, Smin = 1.0 GB, and
∆S = 9.0 GB.

create CoMP opportunities) to a scenario where file diversity across caches is preferred

because it minimizes cache misses that cause the largest delay. This means that, for

large enough values of backhaul latency, qLRU-∆ and qLRU-HS take an equivalent

strategy, to diversify files throughout the network of caches. However, qLRU-∆ still

erroneously prefer to store large files. This leads to qLRU-∆ storing on average less files,

which decreases the hit probability and, in turn, worsens qLRU-∆’s performance. On the

contrary, GDSize-All correctly prefer the smallest files, but, as all caches react at the

same time, BSs tend to have similar cache content. This replication of files throughout

the BSs is suboptimal for high latency, which explains GDSize-All’s worse performance.

Observation 16: In scenarios with high miss cost, e.g., high backhaul access overhead,

qLRU-HS has shown to find a good balance between files sizes and popularities in com-

parison with other policies.

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 103

Figure 5.13 – Performance Evaluation: The ratio between the average delay achieved
by various policies and IGA versus size variability (left) and backhaul-access overhead.
Setup: Berlin topology with density ρ = 5.9 BSs/UE, RBH = 100 Mbps, V = 10 dB,
q = 10−3, C = 30.0 GB, and Smin = 1.0 GB.

5.4. SPECIAL CASE: HETEROGENEOUS FILE SIZES 104

Chapter 6

Conclusion

In this thesis we proposed static and dynamic caching solutions for both hit ratio

maximization and average delay minimization problems in CoMP-aided cache-enabled

small-cell (CCSC) networks. We formulated a general static optimization problem that

can be adapted to different metrics. Considering the delay minimization in CCSC

networks, we first provided insightful theoretical results on the problem’s solution using

a simple scenario that we called full-coverage, where all UEs can communicate with all

BSs and their respective SNRs are homogeneous.

Then, we discussed that, if we consider a general topology while still assuming

homogeneous SNRs, the problem becomes hard to solve but a greedy algorithm is able to

provide solutions with a 1
2 -approximation guarantee. Unfortunately, we concluded that

the same guarantee does not hold for the general case where SNRs are heterogeneous.

Finally, we discussed about the heterogeneous file sizes case and suggested a static

solution based on greedy algorithm that enjoys an approximation guarantee. Although

the provided solution is potentially infeasible, it may still be used as a comparison baseline

in our experiments.

Then, we moved to the dynamic framework and started to discuss caching solutions

based on online policies. We started assuming a stationary request process based on

IRM and proposed the general-purpose caching policy qLRU-∆. We proved that, under

CTA and EA, a network of qLRU-∆ caches converge to an optimal allocation when

parameter q tends to 0. We study two different cases where qLRU-∆ may be adapted

to solve either the hit ratio maximization problem or the average delay minimization

problem. The policy qLRU-∆ has a simple implementation, is trivially enabled by current

mobile networks, and demands limited information on the local cache neighborhood.

Nevertheless, the reduced insertion rate caused by small values of q makes qLRU-∆

less reactive, and then less suitable to systems with realistic request processes where files

105

106

popularities are subject to strong temporal locality. In order to handle this scenario, we

proposed 2LRU-∆ policy, which may also be adapted to different performance metrics.

Although 2LRU-∆ does not provide optimality guarantees, it is more reactive than

qLRU-∆ and promises to have better performance in practice, as we confirmed later in

our experiments. Our last contribution regarding dynamic solutions was a novel caching

policy, qLRU-HS, that adapts qLRU-∆ to the heterogeneous file sizes case. We proved

that a network of qLRU-HS caches asymptotically converges to an optimal allocation

if q tends to 0.

In the last part, we investigated our proposed algorithms and policies’ performance

experimentally through numerical simulations. First, we focused on observing qLRU-∆’s

and its variants’ convergence to an optimal allocation under stationary request processes

in practice. We gradually reduced the value of q and were able to verify the convergence,

not only in terms of the measured hit ratio and average delay, but also in terms of

the decreasing distance between the resulting cache allocations and the optimal ones

(provided by greedy algorithms). This optimal trend was also observed in different

experimental setups for sufficiently small q. It is also noteworthy that qLRU-∆ achieved

better performance in comparison with other state-of-the-art policies. This was also the

case for qLRU-HS, when the files have different sizes. In the end, under a non-stationary

request process based on Akamai’s trace, 2LRU-∆ outperforms other policies in all tested

scenarios.

We conclude that our proposed algorithms and policies provide desirable performance

in practice and constitute a set of very simple and versatile techniques. For these reasons,

we believe they can be attractive to many applications and even be considered potential

candidates as de facto caching solutions for CDNs and future mobile network architectures.

In the future, we consider investigating an extension of our dynamic policies in which

caching and routing decisions are jointly designed to provide better QoS. In other words,

our policies would delineate rules to decide which files to store at which cache as well

as how the request should be served, still considering collaborative transmissions as a

potential performance booster.

Appendices

107

Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 1

Proposition 1: In the full-coverage scenario, an allocation provided by GreedyAD is

optimal.

Proof. For every file f ∈ [F], we generate B objects f (1), . . . , f (B) with weight w(f (k)) =

λf (d(k− 1)− d(k)) > 0. In fact, each object f (k) represents the k-th copy of file f that is

cached among the BSs. We gather in F = {f (1), . . . , f (B), ∀f ∈ [F]} all objects generated

this way. The total weight of any subset A ⊂ F is w(A) =
∑
e∈A

w(e).

We observe that any cache allocation X can be mapped to a set A ⊂ F such that

w(A) = s̄(X) and |A| = B · C. In fact, let kf be the number of copies of file f in

allocation X, then A = {f (i) : 1 ≤ i ≤ kf , ∀f ∈ [F], kf > 0} has the desired property. The

opposite also holds, any set A = {f (i) : 1 ≤ i ≤ kf ,∀f ∈ [F], kf > 0} with |A| = B · C
can be mapped to an allocation X, such that w(A) = s̄(X). The mapping is detailed in

Algorithm 11.

Consider the problem:

maximize
A⊂F

w(A),

subject to |A| = B · C.
(A.1)

This is a weight maximization problem, so a greedy algorithm finds the optimal

solution A∗ if, and only if, the constraints form a matroid (see [87]). A∗ can be

written as A∗ = {f (i) : 1 ≤ i ≤ kf ,∀f ∈ [F], kf > 0}. Suppose it is not the case, i.e.,

∃f | f (k) ∈ A∗ but f (h) 6∈ A∗, for some h < k. Then, there is a set A′ = A∗\{f (k)}∪{f (h)},
such that w(A′) > w(A∗), contradicting the optimality of A∗.

As A∗ = {f (i) : 1 ≤ i ≤ kf , ∀f ∈ [F], kf > 0}, A∗ can be mapped to an allocation X∗

109

A.2. PROOF OF LEMMA 2 110

Algorithm 11: Mapping

input : A set A
output : Allocation set X

1 X ← ∅
2 i← 0
3 for f ∈ [F] do
4 if kf > 0 then
5 for h ∈ [kf] do
6 X ← X ∪ {((i mod B) + 1, f)}
7 i← i+ 1

8 end

9 end

10 end

with s̄(X∗) = w(A∗). We claim that X∗ is an optimal solution of Problem 5. In fact, any

other allocation X can be mapped to a set A with s̄(X) = w(A) ≤ w(A∗) = s̄(X∗).

Finally, consider the ordered set of choices of GreedyAD for Problem 5, and map

them to corresponding elements of A (the h-th choice of a copy of f by GreedyAD

corresponds to add f (h) to A). These choices are possible choices for the greedy algorithm

in the problem defined in (A.1). It follows that GreedyAD provides an optimal solution

for Problem 5.

A.2 Proof of Lemma 2

Lemma 2: In the full-coverage scenario, an allocation is optimal if and only if it is locally

optimal (Definition 1).

Proof. The necessary part is trivial: If an allocation is optimal, it provides the minimum

delay among all possible allocations.

To prove the sufficient part, we consider a locally optimal allocation X. We prove

that X is optimal by contradiction.

Consider the problem introduced in the proof of Proposition 1. The optimal greedy

algorithm iteratively builds a solution generating the following sequence of allocations:

A∗0 = ∅,A∗1,A∗2, . . . ,A∗B·C . We observe that each A∗i corresponds to a valid allocation.

Let A be the set corresponding to X. We order the elements in A in decreasing

order of their weights, generating the following sequence: A0 = ∅,A1, . . . ,AB·C . We

assume that A is not optimal, i.e., w(A∗) > w(A). Then, there is an index h, such that

w(A∗h) > w(Ah) and w(A∗m) = w(Am), for m < h. Let Ah = Ah−1 ∪ {f̄ (h)}. Then, there

A.3. PROOF OF PROPOSITION 3 111

is an element f̂ (k) ∈ A∗h ∩ Ach, such that,

w(f̂ (k)) = w(A∗h)− w(A∗h−1)

> w(Ah)− w(Ah−1) = w(f̄ (h)).

Moreover, f̂ (k) 6∈ A as w(Am)− w(Am−1) is not increasing.

Consider h′ = max{l|f̄ (l) ∈ A} ≥ h. It holds that w(f̄ (h′)) ≤ w(f̄ (h)) < w(f̂ (k)). Also,

k′ = min{l|f̂ (l) /∈ A} ≤ k. It holds w(f̂ (k′)) ≥ w(f̂ (k)).

If Ã = A \ {f̄ (h′)} ∪ {f̂ (k′)}, then w(Ã) > w(A) and Ã has been obtained from A
replacing a single element, which contradicts the fact that X is locally optimal.

A.3 Proof of Proposition 3

Proposition 3: In the full-coverage scenario, full-diversity is an optimal allocation if and

only if

λ1 · (d(1)− d(2)) ≤ λB·C · (d(0)− d(1)),

and full-replication is an optimal allocation if and only if

λC+1 · (d(0)− d(1)) ≤ λC · (d(B − 1)− d(B)).

Proof. As provided by Lemma 2, in the full-coverage scenario, an allocation is optimal iff

it is not possible to replace any file in a cache and reduce the expected delay d̄. Let us

consider first the full-diversity allocation. It is evident that it cannot be advantageous

to replace one of the B · C most popular files with a less popular file j > B · C. The

full-diversity allocation is then optimal iff it is not worthy to replace any file i ∈ [B · C]

with an additional copy of a file j ∈ [B · C] \ {i}. This is the case if and only if:

λi · dBH ≥ λj · (d(1)− d(2)), ∀i ∈ [B · C], j ∈ [B · C] \ {i},

i.e., the delay increase due to the cost to retrieve i through the backhaul is larger than

the delay decrease due to the possibility to have two BSs jointly transmitting j. The

minimum of the left-hand side of the inequality above is achieved when i = B · C (the

least popular file in cache), and the maximum of the right-hand side is achieved when

j = 1 (most popular file). Then, the set of inequalities above is satisfied if and only if

λB·C · dBH ≥ λ1 · (d(1)− d(2)) ,

A.4. PROOF OF COROLLARY 4 112

i.e., we can restrain to consider the possibility to replace the least popular of the B · C
files with an additional copy of the most popular file 1.

The reasoning for the full-replication allocation is similar: in this case we need to

ensure that replacing one of the B copies of file C with (a first copy of) file C + 1 does

not reduce the expected delay, i.e.,

λC+1 · dBH ≤ λC · (d(B − 1)− d(B)).

A.4 Proof of Corollary 4

Corollary 4: For general network topologies, assuming homogeneous SNRs, the following

conditions hold: (i) Inequality (3.16) is a necessary condition for the full-diversity

allocation to be locally optimal, and (ii) inequality (3.17) is a sufficient condition for the

full-replication allocation to be locally optimal.

Proof. We prove each part of the corollary separately:

First, we want to show that, for general topologies, if full-diversity is locally optimal,

then (3.16) holds. Let X be a full-diversity allocation and X ′ be an allocation that

differs from X by a single file, i.e., and X ′ = (X \ {(b, f1)}) ∪ {(b, f2)}, for any b ∈ [B]

and f1, f2 ∈ [F], such that (b, f1) ∈ X, and (b, f2) 6∈ X. Let ku,f = |Ju,f (X)| and

k′u,f = |Ju,f (X ′)|. If full-diversity is locally optimal, then:

d̄(X) ≤ d̄(X ′)⇔
∑
u∈[U]

1

U

∑
f∈[F]

λf · d(ku,f) ≤
∑
u∈[U]

1

U

∑
f∈[F]

λf · d(k′u,f).

We denote by U(b) the set of users covered by BS b. Notice that, ∀u 6∈ U(b), d(ku,f) =

d(k′u,f) so their contributions to the LHS and RHS of the inequality above cancel out.

Similarly, all files different from f1 and f2 will have equal contributions on both sides,

also being cancelled out. Then, we can write:

d̄(X) ≤ d̄(X ′)⇔

⇔ 1

|U(b)|
∑

u∈U(b)

(λf1 · d(ku,f1) + λf2 · d(ku,f2))

≤ 1

|U(b)|
∑

u∈U(b)

(
λf1 · d(k′u,f1

) + λf2 · d(k′u,f2
)
)

A.4. PROOF OF COROLLARY 4 113

⇔ 1

|U(b)|
∑

u∈U(b)

λf2 ·
(
d(ku,f2)− d(k′u,f2

)
)

≤ 1

|U(b)|
∑

u∈U(b)

λf1 ·
(
d(k′u,f1

)− d(ku,f1)
)
.

(A.2)

Observe that ∀u ∈ U(b), 2 ≥ k′u,f2
> ku,f2 ≥ 0. Then, it holds that:

λf2 · (d(1)− d(2)) ≤ 1

|U(b)|
∑

u∈U(b)

λf2 ·
(
d(ku,f2)− d(k′u,f2

)
)
. (A.3)

Similarly, ∀u ∈ U(b), ku,f1 = 1 and k′u,f1
= 0. Then:

1

|U(b)|
∑

u∈U(b)

λf1 ·
(
d(k′u,f1

)− d(ku,f1)
)

= λf1 · (d(0)− d(1)). (A.4)

Putting together (A.3) and (A.4) with (A.2), we obtain:

λf2 · (d(1)− d(2)) ≤ 1

|U(b)|
∑

u∈U(b)

λf2 ·
(
d(ku,f2)− d(k′u,f2

)
)

≤ 1

|U(b)|
∑

u∈U(b)

λf1 ·
(
d(k′u,f1

)− d(ku,f1)
)

= λf1 · (d(0)− d(1)). (A.5)

Then, we have that:

d̄(X) ≤ d̄(X ′)⇒ 1

|U(b)|
∑

u∈U(b)

λf2 ·
(
d(ku,f2)− d(k′u,f2

)
)

≤ 1

|U(b)|
∑

u∈U(b)

λf1 ·
(
d(k′u,f1

)− d(ku,f1)
)
⇒

⇒ λf2 · (d(1)− d(2)) ≤ λf1 · (d(0)− d(1)).

In particular, we can take f1 = B · C, f2 = 1, and b such that (b, 1) 6∈ X and we

obtain:

λ1(d(1)− d(2)) ≤ λB·C · (d(0)− d(1)).

Therefore, if full-diversity is locally optimal, then (3.16) holds.

Second, we want to show that, for general topologies, if (3.17) holds, then full-

replication is locally optimal. Equivalently, we prove that if full-replication is not locally

optimal, then (3.17) does not hold. If a full-replication allocation Y is not locally optimal,

A.5. PROOF OF PROPOSITION 5 114

then there exists b, f1, f2, with (b, f1) ∈ Y , (b, f2) 6∈ Y , such that (Y \ {(b, f1)})∪{(b, f2)}
has a smaller delay than Y . Note that every file C < f ≤ f2 leads to an even larger

reduction to the delay, so we consider f2 = C + 1 and Y ′ = (Y \ {(b, f1)}) ∪ {(b, C + 1)}.
Let ku,f = |Ju,f (Y)| and k′u,f = |Ju,f (Y ′)|. Using a similar reasoning to the first part of

the proof, we have that:

1

|U(b)|
∑

u∈U(b)

λC+1 ·
(
d(ku,C+1)− d(k′u,C+1

)
>

1

|U(b)|
∑

u∈U(b)

λf1 ·
(
d(k′u,f1

)− d(ku,f1)
)
.

(A.6)

Observe that ∀u ∈ U(b), ku,C+1 = 0 and k′u,C+1 = 1. Then, it holds that:

λC+1 (d(0)− d(1)) =

=
1

|U(b)|
∑

u∈U(b)

λC+1 ·
(
d(ku,C+1)− d(k′u,C+1

)
.

(A.7)

Also, ∀u ∈ U(b), ku,f1 = B and k′u,f1
= ku,f1 − 1. Then:

1

|U(b)|
∑

u∈U(b)

λf1 ·
(
d(k′u,f1

)− d(ku,f1)
)

=

= λf1 · (d(B − 1)− d(B)).

(A.8)

Putting together (A.7) and (A.8) with (A.6), we obtain:

λC+1 · (d(0)− d(1)) > λf1 · (d(B − 1)− d(B)) ≥ λC · (d(B − 1)− d(B))

that contradicts (3.17).

Therefore, if (3.17) holds, then full-replication is locally optimal.

A.5 Proof of Proposition 5

Proposition 5: Problem 6 is NP-Hard in the homogeneous SNR regime.

Proof. We want to show that the FemtoCaching problem [69] can be reduced to Problem 6.

The Homogeneous-SNR version of the FemtoCaching problem has the following objective:

minimize
X⊆Ω

d̄F (X) =
1

U

∑
u,f

λf ·
(
1(Ju,f (X) = ∅) · dBH + t(1)

)
, (A.9)

A.5. PROOF OF PROPOSITION 5 115

that is subject to the capacity constraints (3.1), where d̄F (X) is the average delay for

the FemtoCaching problem and t(1) = S
∗W · log2(1 + V) is given by (3.18) dropping

subscript u, since every UE is covered by at least one BS.

Assume further that popularities can be written as rational numbers, i.e.,

λf =
mf

n
,mf , n ∈ N, ∀f ∈ [F]. (A.10)

We observe that, given any two allocations X,X ′, such that, d̄F (X) 6= d̄F (X ′), it

holds that:

∣∣d̄F (X)− d̄F (X ′)
∣∣ =

=

∣∣∣∣∣∣ 1

U

∑
u,f

λf · (1(Ju,f (X)) · dBH + t(1))− 1

U

∑
u,f

λf · (1(Ju,f (X ′)) · dBH + t(1))

∣∣∣∣∣∣
(A.11)

=
1

n · U

∣∣∣∣∣∣
∑
u,f

mf · ((1(Ju,f (X)) · dBH + t(1))− (1(Ju,f (X ′)) · dBH + t(1)))

∣∣∣∣∣∣ (A.12)

=
dBH

n · U

∣∣∣∣∣∣
∑
u,f

mf ·
(
1(Ju,f (X))− 1(Ju,f (X ′))

)∣∣∣∣∣∣ (A.13)

≥ dBH

n · U
. (A.14)

Equality (A.11) is the direct application of the FemtoCaching problem’s objective (A.9).

We use the popularities’ rational notation in (A.10) to derive (A.12). The absolute part

of (A.13) always results in a positive integer, which leads to inequality (A.14).

We take a large enough value for the SNR V , such that the following holds:

dBH

n · U
> t(1). (A.15)

Then, Problem 6’s objective can be written as:

d̄(X) =
1

U

∑
u,f

λf · du(|Ju,f (X)|) (A.16)

=
1

U

∑
u,f

λf · (1(Ju,f (X) = ∅) · du(0) + 1(Ju,f (X) 6= ∅) · du(|Ju,f (X)|)) (A.17)

=
1

U

∑
u,f

λf ·
(
1(Ju,f (X) = ∅) · (dBH + t(1)) + 1(Ju,f (X) 6= ∅) · t(1)

A.5. PROOF OF PROPOSITION 5 116

−1(Ju,f (X) 6= ∅) · t(1) + 1(Ju,f (X) 6= ∅) · du(|Ju,f (X)|)) (A.18)

=
1

U

∑
u,f

λf ·
(
1(Ju,f (X) = ∅) · dBH + t(1)

)
− 1

U

∑
u,f

λf · 1(Ju,f (X) 6= ∅) (t(1)− du(|Ju,f (X)|)) (A.19)

= d̄F (X)− 1

U

∑
u,f

λf · 1(Ju,f (X) 6= ∅) · (t(1)− du(|Ju,f (X)|)). (A.20)

Equality (A.16) is an adaptation of Problem 6’s objective to the homogeneous SNR

regime, where we replace the general delay function (3.3) with (3.19). Equation (A.17)

comes from the fact that, if Ju,f (X) = ∅ (i.e., cache miss), the delay is du(0) = dBH + t(1)

or, if Ju,f (X) 6= ∅ (i.e., cache hit), the delay is du(|Ju,f (X)|). Note that this decomposition

is at first redundant, given that definition (3.19) covers both miss and hit cases. We

obtain (A.19) by simply putting the indicator functions from (A.18) in evidence. Finally,

we observe that the first term in (A.19) is exactly the definition of the FemtoCaching

objective function, which yields (A.20).

Observe that du(|Ju,f (X)|)) < t(1), then the following relation holds:

d̄F (X) ≥ d̄(X) ≥ d̄F (X)− t(1). (A.21)

Now, we prove that, given two allocations X,X ′,

d̄F (X) < d̄F (X ′)⇔ d̄(X) < d̄(X ′) (A.22)

and then solving Problem 6 brings the solution to the Homogeneous-SNR FemtoCaching

Problem.

First, we prove d̄F (X) < d̄F (X ′)⇒ d̄(X) < d̄(X ′):

Hypothesis 1: d̄F (X) < d̄F (X ′)

d̄(X) ≤ d̄F (X) by (A.21)

≤ d̄F (X ′)− dBH

n · U
by Hyp. 1 and (A.14)

< d̄F (X ′)− t(1) by (A.15)

≤ d̄(X ′) by (A.21)

A.6. PROOF OF LEMMA 6 117

Second, we prove d̄(X) < d̄(X ′)⇒ d̄F (X) < d̄F (X ′):

Hypothesis 2: d̄(X) < d̄(X ′)

d̄F (X ′) ≥ d̄(X ′)

> d̄(X)− t(1)

≥ d̄F (X) by (A.21)

Then, because both implications hold, (A.22) also holds and, therefore, the Homogeneous-

SNR FemtoCaching Problem can be reduced to Problem 6. Because the Homogeneous-

SNR FemtoCaching Problem is NP-hard [69] and we can reduce it to Problem 6, then

Problem 6 is NP-hard.

A.6 Proof of Lemma 6

The following lemma will assist in the proof Lemma 6:

Lemma 19: For any u and any k1, k2 ∈ Z+, such that k1 ≤ k2, the following inequality

holds:

tu(k1)− tu(k1 + 1) ≥ tu(k2)− tu(k2 + 1). (A.23)

Proof. Let h(x) = S
W log2(1+g·x) . Function h can be written as a function composition

h(x) = (w◦y)(x), where w(x) = S
W log2(x) = S ln(2)

W ·
(

1
ln(x)

)
and y(x) = 1+g ·x. Function y

is affine. Function w first and second derivatives are, respectively, w′(x) = S ln(2)
W ·

(
−1

x ln2(x)

)
and w′′(x) = S ln(2)

W ·
(

ln(x)+2

x2 ln3(x)

)
. For x > 1, w′(x) < 0, which makes w decreasing, and

w′′(x) > 0, which makes w convex. Because h is the composition of a convex decreasing

function and an affine increasing function, h is also a convex decreasing function for x > 1.

Moreover, because tu is the point-wise maximum between h and constant S
W log2(1+|Iu|·g) ,

tu is a non-increasing convex function. This means that the function l(k) = tu(k)−tu(k+1)

is also non-increasing. Therefore, inequality (A.23) holds.

Now, we remind Lemma 6 below and proceed with its proof:

Lemma 6: The objective function in Equation (3.21) is monotone and submodular.

Proof. We separate the proof of Lemma 6 in two parts, one for each property of s̄(X).

Monotonicity: Let X ⊂ X ′ ⊂ Ω and consider the case where X ′ = X ∪ {(b′, f ′)}.
We can apply this argument item-by-item to prove the case for general X and X ′. By

A.6. PROOF OF LEMMA 6 118

definition, the set function (3.21) is monotone if:

s̄(X) ≤ s̄(X ′)⇔ d̄(X) ≥ d̄(X ′)

⇔
∑
u,f

λf · du(|Ju,f (X)|) ≥
∑
u,f

λf · du(|Ju,f (X ′)|) (A.24)

We observe that ∀f 6= f ′, the LHS equals the RHS in (A.24), so we focus on cases where

f = f ′. Similarly, we consider only the set of UEs covered by BS b′, that we call U(b′).

Then, (A.24) becomes:

s̄(X) ≤ s̄(X ′)⇔ λf ′
∑

u∈U(b′)

(
du(|Ju,f ′(X)|)− du(|Ju,f ′(X)|+ 1)

)
≥ 0.

Notice that tu(k) is non-increasing, which makes du(k) non-increasing as well (see (3.19)).

Then, du(|Ju,f ′(X)|)− du(|Ju,f ′(X)|+ 1) ≥ 0 and, therefore, (3.21) is monotone.

Submodularity: Let X ⊂ X ′ ⊂ Ω and (b′, f ′) ∈ Ω\X ′. The set function (3.21) is

submodular if:

s̄(X ∪ {(b′, f ′)})− s̄(X) ≥ s̄(X ′ ∪ {(b′, f ′)})− s̄(X ′)⇔

⇔ d̄(X)− d̄(X ∪ {(b′, f ′)} ≥ d̄(X)− d̄(X ∪ {(b′, f ′)}

⇔
∑
u,f

λf ·
(
du(|Ju,f (X)|)− du(|Ju,f (X ∪ {(b′, f ′)})|)

)
≥
∑
u,f

λf ·
(
du(|Ju,f (X ′)|)− du(|Ju,f (X ′ ∪ {(b′, f ′)})|)

)
We observe that ∀f 6= f ′, the LHS equals the RHS in the inequality above, so we

focus on cases where f = f ′. Similarly, we consider only the set of users covered by BS

b′, i.e., U(b′).

Then, the inequality above becomes:

λf ′
∑

u∈U(b′)

du(|Ju,f ′(X)|)− du(|Ju,f ′(X)|+ 1)

≥ λf ′
∑

u∈U(b′)

du(|Ju,f ′(X ′)|)− du(|Ju,f ′(X ′)|+ 1).
(A.25)

We will prove (A.25) by showing that for each u, it holds that

du(|Ju,f ′(X)|)− du(|Ju,f ′(X)|+ 1) ≥ du(|Ju,f ′(X ′)|)− du(|Ju,f ′(X ′)|+ 1)

and, since it refers to a single file f ′, we can simplify the notation defining k = |Ju,f ′(X)|

A.6. PROOF OF LEMMA 6 119

and k′ = |Ju,f ′(X ′)|. If we prove the inequality above for k′ = k + 1, then it will hold

∀k′ ≥ k + 1. Thus, we need to show that ∀u ∈ U(b′),

du(k)− du(k + 1) ≥ du(k + 1)− du(k + 2). (A.26)

However, the delay du is the minimum of two functions (see (3.19)). We observe that

du(k) = tu(k)⇒ du(k + 1) = tu(k + 1). In fact,

du(k) = tu(k)⇒

⇒ tu(k) ≤ dBH + tu(k + 1)⇒

⇒ tu(k)− tu(k + 1) ≤ dBH ⇒

⇒ tu(k + 1)− tu(k + 2) ≤ dBH ⇒ (by Lemma 19)

⇒ du(k + 1) = tu(k + 1).

Then, we need to consider only four cases:

Case (I): du(k) = tu(k), du(k+1) = tu(k+1), and du(k+2) = tu(k+2). Then, (A.26)

is written as:

tu(k)− tu(k + 1) ≥ tu(k + 1)− tu(k + 2),

which is always true by Lemma 19.

Case (II): du(k) = dBH + tu(k + 1), du(k + 1) = tu(k + 1), and du(k + 2) = tu(k + 2).

Then, (A.26) is written as:

dBH + tu(k + 1)− tu(k + 1) ≥ tu(k + 1)− tu(k + 2)

dBH ≥ tu(k + 1)− tu(k + 2),

which is true as du(k + 1) = tu(k + 1) and then tu(k + 1) ≤ dBH + tu(k + 2).

Case (III): du(k) = dBH+tu(k+1), du(k+1) = dBH+tu(k+2), and du(k+2) = tu(k+2).

Then, (A.26) becomes:

dBH + tu(k + 1)− dBH + tu(k + 2)

≥ dBH + tu(k + 2)− tu(k + 2)⇔

⇔ dBH ≤ tu(k + 1)− tu(k + 2),

A.7. PROOF OF PROPOSITION 9 120

which is true as du(k + 1) = dBH + tu(k + 2) and then tu(k + 1) > dBH + tu(k + 2).

du(k + 1) = dBH + tu(k + 2)⇔ tu(k + 1) > dBH + tu(k + 2).

Case (IV): du(k) = dBH + tu(k + 1), du(k + 1) = dBH + tu(k + 2), du(k + 2) =

dBH + tu(k + 3). This case is analogous to Case (I).

A.7 Proof of Proposition 9

Proposition 9: Problem 7 in the full-coverage setup is equivalent to SMKP.

Proof. Consider an instance of SMKP where Ω = {f (k) : ∀(f, k) ∈ [F] × [B]} is the

ground set. The abstract element f (k) represents the k-th copy of file f in the cache

network. We consider a set of bins (knapsacks) [B], where each bin has capacity C. We

represent the solution set by X ⊆ Ω, which is partitioned according to the set of bins,

i.e., X =
(
X(1), . . . , X(B)

)
. For any feasible solution X, its elements may be arbitrarily

placed into the available bins as long as the knapsack capacity constraints are satisfied:∑
f (k)∈X(b)

Sf ≤ C,∀b ∈ [B]. (A.27)

Now, we define a profit function d : Ω→ R+ as follows:

d(f (k)) , λf ·
1

U

∑
u∈[U]

(du,f (k − 1)− du,f (k)) = λf · (df (k − 1)− df (k)) , (A.28)

where we can just drop references to multiple UEs, such that df (k) = du,f (k),∀u ∈ [U]

and consider a single UE due to the network symmetry.

Now we define the number of copies of file f in a given solution X as

k(f)
max(X) , arg max

k
{f (k) : ∀f (k) ∈ X}, (A.29)

where we consider k
(f)
max(X) = 0 if there is no element associated to file f in X.

Then, the goal is to find a feasible solution X, i.e., satisfying knapsack capacity

constraints, that maximizes the total profit:

D(X) ,
∑

f (k)∈X

d(f (k)) (A.30)

A.7. PROOF OF PROPOSITION 9 121

=
∑
f∈[F]

k
(f)
max(X)∑
k′=1

λf ·
1

U

∑
u∈[U]

(du,f (k − 1)− du,f (k)) (A.31)

=
∑
f∈[F]

λf ·
1

U

∑
u∈[U]

(
du,f (0)− du,f (k(f)

max(X))
)

(A.32)

=
∑
f∈[F]

λf ·
(
df (0)− df (k(f)

max(X))
)

(A.33)

=
∑
f∈[F]

λf · df (0)−
∑
f∈[F]

λf · df (k(f)
max(X)) (A.34)

=
∑
f∈[F]

λf · df (0)−
∑
f∈[F]

λf · df (|Ju,f (X)|) (A.35)

= d̄
(0)
HS − d̄(X) (A.36)

= s̄HS(X) (A.37)

We start replacing the definition of the profit function and pointing out that we can

cover all elements in X by replacing the sum over the elements of X with a double sum,

one for the files and another for the number of copies. Then, we use the telescopic sum to

eliminate the sum over k′, obtaining (A.32). We remove the reference to UEs (A.33), since

it is a symmetric scenario and they can all be represented as a single UE. In (A.34), we

split the equation for the case with 0 copies and the case with k
(f)
max(X) copies. In (A.35),

we note that k
(f)
max(X) is actually equivalent to the number of copies of f available to

the UE under allocation X, i.e., |Ju,f (X)|. We note that the second term of (A.35)

actually characterizes the average delay over all (heterogeneous-size) files, as we adapt

from Problem 5. Finally, in line (A.36). Therefore, solving this instance of SMKP is

equivalent of maximizing the delay saving under the full-coverage scenario.

A.7. PROOF OF PROPOSITION 9 122

Bibliography

[1] “MS Windows NT kernel description,” https://xuri.me/2016/08/13/

lru-and-lfu-cache-algorithms.html, accessed: 2021-06-01.

[2] M. Rabinovich and O. Spatscheck, Web caching and replication. Addison-Wesley

Boston, USA, 2002, vol. 67.

[3] S. A. Przybylski, Cache and memory hierarchy design: a performance directed

approach. Morgan Kaufmann, 1990.

[4] C. Kopparapu, Load balancing servers, firewalls, and caches. John Wiley & Sons,

2002.

[5] M. Hofmann and L. R. Beaumont, Content networking: architecture, protocols, and

practice. Elsevier, 2005.

[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans.

Information Theory, vol. 60, no. 5, pp. 2856–2867, 2014. [Online]. Available:

https://doi.org/10.1109/TIT.2014.2306938

[7] K. Shanmugam et al., “Femtocaching: Wireless video content delivery through

distributed caching helpers,” IEEE Transactions on Information Theory, vol. 59,

no. 12, pp. 8402–8413, 2013.

[8] E. Leonardi and G. L. Torrisi, “Modeling least recently used caches with shot

noise request processes,” SIAM Journal on Applied Mathematics, vol. 77, no. 2, pp.

361–383, 2017.

[9] S. Traverso et al., “Temporal Locality in Today’s Content Caching: Why It Matters

and How to Model It,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 5, pp. 5–12,

Nov. 2013.

[10] CISCO, “Cisco annual internet report (2018–2023),” CISCO, Tech. Rep., March

2020.

123

https://xuri.me/2016/08/13/lru-and-lfu-cache-algorithms.html
https://xuri.me/2016/08/13/lru-and-lfu-cache-algorithms.html
https://doi.org/10.1109/TIT.2014.2306938

BIBLIOGRAPHY 124

[11] N. Bhushan et al., “Network densification: the dominant theme for wireless evolution

into 5g,” IEEE Communications Magazine, vol. 52, no. 2, pp. 82–89, Feb. 2014.

[12] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. T.

Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the dominant theme

for wireless evolution into 5g,” IEEE Communications Magazine, vol. 52, no. 2, pp.

82–89, 2014.

[13] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung, “Network

slicing based 5g and future mobile networks: mobility, resource management, and

challenges,” IEEE communications magazine, vol. 55, no. 8, pp. 138–145, 2017.

[14] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video delivery over hetero-

geneous cellular networks: Optimizing cost and performance,” in IEEE INFOCOM

2014 - IEEE Conference on Computer Communications, 2014, pp. 1078–1086.

[15] C. Tsai and M. Moh, “Cache management for 5g cloud radio access

networks,” in Proceedings of the 12th International Conference on Ubiquitous

Information Management and Communication, ser. IMCOM ’18. New York,

NY, USA: Association for Computing Machinery, 2018. [Online]. Available:

https://doi.org/10.1145/3164541.3164559

[16] H. Sun and R. Q. Hu, Heterogeneous cellular networks. John Wiley & Sons, 2013.

[17] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana,

“Coordinated multipoint transmission and reception in LTE-advanced: deployment

scenarios and operational challenges,” IEEE Communications Magazine, vol. 50,

no. 2, pp. 148–155, Feb. 2012.

[18] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P. Mayer,

L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts, performance, and

field trial results,” IEEE Communications Magazine, vol. 49, no. 2, pp. 102–111,

2011.

[19] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Ster-

nad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint,

and massive mimo in 5g,” IEEE communications magazine, vol. 52, no. 5, pp. 44–51,

2014.

[20] K. Manolakis, “Impairments in coordinated cellular networks: Analysis, impact on

performance and mitigation,” Ph.D. dissertation, TU Berlim, 11 2014.

https://doi.org/10.1145/3164541.3164559

BIBLIOGRAPHY 125

[21] N. Golrezaei et al., “Femtocaching: Wireless video content delivery through dis-

tributed caching helpers,” in IEEE INFOCOM 2012, March 2012, pp. 1107–1115.

[22] W. C. Ao and K. Psounis, “Distributed caching and small cell cooperation for fast

content delivery,” in Proceedings of the 16th ACM International Symposium on

Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’15. New York, NY,

USA: Association for Computing Machinery, 2015, p. 127–136. [Online]. Available:

https://doi.org/10.1145/2746285.2746300

[23] A. Tuholukova, G. Neglia, and T. Spyropoulos, “Optimal cache allocation for Femto

helpers with joint transmission capabilities,” in IEEE ICC 2017, 21-25 May 2017,

Paris, France, Paris, France, 05 2017.

[24] Z. Chen, J. Lee, T. Q. S. Quek, and M. Kountouris, “Cooperative caching and

transmission design in cluster-centric small cell networks,” IEEE Transactions on

Wireless Communications, vol. 16, no. 5, pp. 3401–3415, May 2017.

[25] K. Naveen et al., “On the interaction between content caching and request assignment

in cellular cache networks,” in 5th Workshop on All Things Cellular: Oper., Applic,

and Challenges. ACM, 2015.

[26] Y. M. Saputra, H. T. Dinh, D. Nguyen, and E. Dutkiewicz, “A novel mobile edge

network architecture with joint caching-delivering and horizontal cooperation,” IEEE

Transactions on Mobile Computing, pp. 1–1, 2019.

[27] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms for mobile

data caching in small cell networks,” IEEE Transactions on Communications, vol. 62,

no. 10, pp. 3665–3677, Oct 2014.

[28] Y. Cui and D. Jiang, “Analysis and optimization of caching and multicasting in

large-scale cache-enabled heterogeneous wireless networks,” IEEE transactions on

Wireless Communications, vol. 16, no. 1, pp. 250–264, 2016.

[29] Z. Chen, J. Lee, T. Q. Quek, and M. Kountouris, “Cooperative caching and transmis-

sion design in cluster-centric small cell networks,” IEEE Transactions on Wireless

Communications, vol. 16, no. 5, pp. 3401–3415, 2017.

[30] F. Guo, H. Zhang, X. Li, H. Ji, and V. C. Leung, “Joint optimization of caching and

association in energy-harvesting-powered small-cell networks,” IEEE Transactions

on Vehicular Technology, vol. 67, no. 7, pp. 6469–6480, 2018.

https://doi.org/10.1145/2746285.2746300

BIBLIOGRAPHY 126

[31] H. Wu, H. Lu, F. Wu, and C. W. Chen, “Energy and delay optimization for cache-

enabled dense small cell networks,” IEEE Transactions on Vehicular Technology,

vol. 69, no. 7, pp. 7663–7678, 2020.

[32] B. Dai and W. Yu, “Joint user association and content placement for cache-enabled

wireless access networks,” in 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 3521–3525.

[33] Y. Wang, X. Tao, X. Zhang, and G. Mao, “Joint caching placement and user

association for minimizing user download delay,” Ieee Access, vol. 4, pp. 8625–8633,

2016.

[34] W. Jing, X. Wen, Z. Lu, and H. Zhang, “User-centric delay-aware joint caching

and user association optimization in cache-enabled wireless networks,” IEEE Access,

vol. 7, pp. 74 961–74 972, 2019.

[35] L. E. Chatzieleftheriou, G. Darzanos, M. Karaliopoulos, and I. Koutsopoulos, “Joint

user association, content caching and recommendations in wireless edge networks,”

ACM SIGMETRICS Performance Evaluation Review, vol. 46, no. 3, pp. 12–17, 2019.

[36] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache hits:

Improving performance through recommendation and delivery of related content,”

IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1300–1313,

2018.

[37] M. Costantini, T. Spyropoulos, T. Giannakas, and P. Sermpezis, “Approximation

guarantees for the joint optimization of caching and recommendation,” in IEEE ICC

2020, Dublin, Ireland, 06 2020.

[38] A. Sabnis, T. S. Salem, G. Neglia, M. Garetto, E. Leonardi, and R. K. Sitaraman,

“Grades: Gradient descent for similarity caching,” in IEEE Conference on Computer

Communications (INFOCOM), 2021.

[39] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in cellular networks,”

in IEEE ICC 2015, June 2015, pp. 3358–3363.

[40] K. Avrachenkov, J. Goseling, and B. Serbetci, “A low-complexity approach to

distributed cooperative caching with geographic constraints,” Proc. ACM Meas.

Anal. Comput. Syst., vol. 1, no. 1, pp. 27:1–27:25, Jun. 2017.

BIBLIOGRAPHY 127

[41] T. M. Ayenew, D. Xenakis, N. Passas, and L. Merakos, “A novel content placement

strategy for heterogeneous cellular networks with small cells,” IEEE Networking

Letters, vol. 2, no. 1, pp. 10–13, 2019.

[42] X. Sun, J. Zhang, and Z. Zhang, “Deterministic algorithms for the submodular

multiple knapsack problem,” 2020, arXiv:2003.11450.

[43] M. Garetto, E. Leonardi, and G. Neglia, “Similarity caching: Theory and algorithms,”

in IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,

2020, pp. 526–535.

[44] Q. Yu, L. Xu, and S. Cui, “Streaming algorithms for news and scientific literature

recommendation: Monotone submodular maximization with a d-knapsack constraint,”

IEEE Access, vol. 6, pp. 53 736–53 747, 2018.

[45] M. Leconte et al., “Placing dynamic content in caches with small population,” in

IEEE INFOCOM 2016, 2016.

[46] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems: modeling, design

and experimental results,” Selected Areas in Communications, IEEE Journal on,

vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[47] R. Fagin, “Asymptotic miss ratios over independent references,” Journal of Computer

and System Sciences, vol. 14, no. 2, pp. 222 – 250, 1977.

[48] G. Neglia et al., “Access-time aware cache algorithms,” in ITC-28, September 2016.

[49] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and D. Tsigkari, “Access-

time-aware cache algorithms,” ACM Trans. Model. Perform. Eval. Comput. Syst.,

vol. 2, no. 4, pp. 21:1–21:29, Nov. 2017.

[50] G. Neglia, D. Carra, and P. Michiardi, “Cache policies for linear utility maximization,”

RR-9010, Inria, Tech. Rep., January 2017.

[51] ——, “Cache Policies for Linear Utility Maximization,” IEEE/ACM Transactions

on Networking, vol. 26, no. 1, pp. 302–313, 2018. [Online]. Available:

https://doi.org/10.1109/TNET.2017.2783623

[52] A. Giovanidis and A. Avranas, “Spatial multi-lru caching for wireless networks with

coverage overlaps,” SIGMETRICS Perform. Eval. Rev., vol. 44, no. 1, pp. 403–405,

Jun. 2016.

https://doi.org/10.1109/TNET.2017.2783623

BIBLIOGRAPHY 128

[53] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the performance

analysis of caching systems,” ACM Trans. Model. Perform. Eval. Comput. Syst.,

vol. 1, no. 3, pp. 12:1–12:28, May 2016.

[54] ——, “A unified approach to the performance analysis of caching systems,” ACM

Transactions on Modeling and Performance Evaluation of Computing Systems (TOM-

PECS), vol. 1, no. 3, pp. 1–28, 2016.

[55] A. Chattopadhyay, B. B laszczyszyn, and H. P. Keeler, “Gibbsian on-line distributed

content caching strategy for cellular networks,” IEEE Transactions on Wireless

Communications, vol. 17, no. 2, pp. 969–981, Feb 2018.

[56] E. Leonardi and G. Neglia, “Implicit coordination of caches in small cell networks

under unknown popularity profiles,” IEEE Journal on Selected Areas in Communi-

cations, vol. 36, no. 6, pp. 1276–1285, June 2018.

[57] M. Garetto, E. Leonardi, and S. Traverso, “Efficient analysis of caching strategies

under dynamic content popularity,” in IEEE INFOCOM 2015, April 2015, pp.

2263–2271.

[58] S. Tarnoi, W. Kumwilaisak, V. Suppakitpaisarn, K. Fukuda, and Y. Ji, “Adaptive

probabilistic caching technique for caching networks with dynamic content popularity,”

Computer Communications, vol. 139, pp. 1–15, 2019.

[59] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms,” in Proceedings

of the USENIX Symposium on Internet Technologies and Systems on USENIX

Symposium on Internet Technologies and Systems, ser. USITS’97. USA: USENIX

Association, 1997, p. 18.

[60] G. Rossini, D. Rossi, M. Garetto, and E. Leonardi, “Multi-terabyte and multi-

gbps information centric routers,” in IEEE INFOCOM 2014 - IEEE Conference on

Computer Communications, 2014, pp. 181–189.

[61] E. Friedlander and V. Aggarwal, “Generalization of lru cache replacement policy with

applications to video streaming,” ACM Transactions on Modeling and Performance

Evaluation of Computing Systems (TOMPECS), vol. 4, no. 3, pp. 1–22, 2019.

[62] M. Choi, A. No, M. Ji, and J. Kim, “Markov decision policies for dynamic video deliv-

ery in wireless caching networks,” IEEE Transactions on Wireless Communications,

vol. 18, no. 12, pp. 5705–5718, 2019.

BIBLIOGRAPHY 129

[63] G. I. Ricardo, G. Neglia, and T. Spyropoulos, “Caching policies for delay minimization

in small cell networks with joint transmissions,” in IEEE ICC 2020, Dublin, Ireland,

06 2020.

[64] G. I. Ricardo, A. Tuholukova, G. Neglia, and T. Spyropoulos, “Caching policies

for delay minimization in small cell networks with coordinated multi-point joint

transmissions,” IEEE/ACM Transactions on Networking, 2021.

[65] G. I. Ricardo, G. Neglia, and T. Spyropoulos, “Caching heterogeneous size content

in small cell networks with comp joint transmissions,” Technical Report, 2021.

[Online]. Available: http://www-sop.inria.fr/members/Guilherme.Iecker-Ricardo/

papers/qlruhs.pdf

[66] G. Neglia, E. Leonardi, G. I. Ricardo, and T. Spyropoulos, “A Swiss Army Knife for

Dynamic Caching in Small Cell Networks,” 2021, to appear.

[67] “Openmobilenetwork.” [Online]. Available: openmobilenetwork.org/

[68] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and G. Caire, “Femto-

caching: Wireless video content delivery through distributed caching helpers,” in

2012 Proceedings IEEE INFOCOM, March 2012, pp. 1107–1115.

[69] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, “Fem-

tocaching: Wireless content delivery through distributed caching helpers,” IEEE

Transactions on Information Theory, vol. 59, no. 12, pp. 8402–8413, Dec 2013.

[70] A. Krause and D. Golovin, “Submodular function maximization.” Tractability, vol. 3,

pp. 71–104, 2014.

[71] A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin, “Simultaneous placement and

scheduling of sensors,” in 2009 International Conference on Information Processing

in Sensor Networks. IEEE, 2009, pp. 181–192.

[72] M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu, “Caching is hard—even in

the fault model,” Algorithmica, vol. 63, no. 4, pp. 781–794, 2012.

[73] Q. Yu, E. L. Xu, and S. Cui, “Submodular maximization with multi-knapsack

constraints and its applications in scientific literature recommendations,” in 2016

IEEE global conference on signal and information processing (GlobalSIP). IEEE,

2016, pp. 1295–1299.

http://www-sop.inria.fr/members/Guilherme.Iecker-Ricardo/papers/qlruhs.pdf
http://www-sop.inria.fr/members/Guilherme.Iecker-Ricardo/papers/qlruhs.pdf
openmobilenetwork.org/

BIBLIOGRAPHY 130

[74] P. R. Jelenkovic, “Asymptotic approximation of the move-to-front search cost distri-

bution and least-recently used caching fault probabilities,” The Annals of Applied

Probability, vol. 9, no. 2, pp. 430–464, 1999.

[75] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation

for LRU cache performance,” in Proceedings of the 24th International Teletraffic

Congress, 2012, p. 8.

[76] D. P. Connors and P. R. Kumar, “Balance of recurrence order in time-inhomogenous

markov chains with application to simulated annealing,” Probability in the Engineer-

ing and Informational Sciences, vol. 2, no. 2, pp. 157–184, 1988.

[77] ——, “Simulated annealing type markov chains and their order balance equations,”

SIAM Journal on Control and Optimization, vol. 27, no. 6, pp. 1440–1461, 1989.

[78] M. Desai, S. Kumar, and P. R. Kumar, “Quasi-Statically Cooled Markov Chains,”

Probability in the Engineering and Informational Sciences, vol. 8, no. 1, pp. 1–19,

1994.

[79] K. Mehlhorn and P. Sanders, Algorithms and data structures: The basic toolbox.

Springer Science & Business Media, 2008.

[80] V. Anantharam and P. Tsoucas, “A proof of the markov chain tree theorem,” Statistics

& Probability Letters, vol. 8, no. 2, pp. 189 – 192, 1989.

[81] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, Mass: Athena Scientific,

Sep. 1999.

[82] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution: From

Theory to Practice. Wiley, 2011.

[83] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to cache with no

regrets,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications,

2019, pp. 235–243.

[84] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A Platform for

High-performance Internet Applications,” SIGOPS Oper. Syst. Rev., vol. 44, no. 3,

pp. 2–19, Aug. 2010.

[85] Shudong Jin and A. Bestavros, “Popularity-aware greedy dual-size web proxy caching

algorithms,” in Proceedings 20th IEEE International Conference on Distributed

Computing Systems, 2000, pp. 254–261.

BIBLIOGRAPHY 131

[86] T. Mihretu Ayenew, D. Xenakis, N. Passas, and L. Merakos, “A novel content

placement strategy for heterogeneous cellular networks with small cells,” IEEE

Networking Letters, vol. 2, no. 1, pp. 10–13, 2020.

[87] J. Edmonds, “Matroids and the greedy algorithm,” Mathematical programming, vol. 1,

no. 1, pp. 127–136, 1971.

	Abstract
	Abrégé [Français]
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Background and Technologies Overview
	1.1.1 Cache Systems
	1.1.2 Cache-Enabled Small-Cell Networks
	1.1.3 Coordinated Multi-Point (CoMP) Technologies

	1.2 Goals and Objectives
	1.3 Related Work
	1.3.1 Static Caching Solutions
	1.3.2 Dynamic Caching Solutions

	1.4 Contributions and Thesis Outline

	2 System Model and Operation
	2.1 Network Model
	2.2 The Berlin Network
	2.3 Content Delivery
	2.4 Operation Example

	3 Static Caching Solutions
	3.1 System Model and Operation
	3.2 Problem Definition
	3.3 Hit Rate Maximization
	3.4 Average Delay Minimization
	3.4.1 Homogeneous SNRs: Full-Coverage
	3.4.2 Homogeneous SNRs: General Topology
	3.4.3 Heterogeneous SNRs

	3.5 Special Case: Heterogeneous File Sizes

	4 Dynamic Caching Solutions
	4.1 System Model and Additional Notation
	4.2 Optimal Caching for Stationary Requests
	4.2.1 Modeling qLRU-Δ as a Markov Chain
	4.2.2 Optimality of qLRU-Δ
	4.2.3 Application of qLRU-Δ

	4.3 Handling Non-Stationary Requests
	4.4 Special Case: Heterogeneous File Sizes

	5 Experimental Results
	5.1 Experimental Setup
	5.1.1 Cellular Network
	5.1.2 Caching schemes
	5.1.3 Request Generation Mechanisms

	5.2 qLRU-Δ Convergence to an Optimal Allocation
	5.2.1 Convergence of qLRU-Δh – Hit Ratio
	5.2.2 Convergence of qLRU-Δd – Average Delay
	5.2.3 Convergence under different cache capacities
	5.2.4 Convergence under different dBH and λf – Average Delay
	5.2.5 The role of popularities in the convergence process
	5.2.6 Convergence speed – Average Delay

	5.3 Comparison with other Caching Policies
	5.3.1 Effect of network density – Stationary requests
	5.3.2 Effect of network density – Trace-based requests
	5.3.3 Performance under heterogeneous SNRs

	5.4 Special Case: Heterogeneous File Sizes
	5.4.1 Convergence Analysis
	5.4.2 Comparison with other Caching Policies

	6 Conclusion
	Appendices
	A Proofs for Chapter 3
	A.1 Proof of Proposition 1
	A.2 Proof of Lemma 2
	A.3 Proof of Proposition 3
	A.4 Proof of Corollary 4
	A.5 Proof of Proposition 5
	A.6 Proof of Lemma 6
	A.7 Proof of Proposition 9

