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Abstract
In recent years the automatic speaker verification (ASV)

community has grappled with vulnerabilities to spoofing attacks
whereby fraudsters masquerade as enrolled subjects to provoke
illegitimate accepts. Countermeasures have hence been devel-
oped to protect ASV systems from such attacks. Given that
recordings of speech contain potentially sensitive information,
any system operating upon them, including spoofing counter-
measures, must have provisions for privacy preservation. While
privacy enhancing technologies such as Homomorphic Encryp-
tion or Secure Multi-Party Computation (MPC) are effective in
preserving privacy, these tend to impact upon computational ca-
pacity and computational precision, while no available spoof-
ing countermeasures preserve privacy. This paper reports the
first solution based upon the combination of shallow neural
networks with secure MPC. Experiments performed using the
ASVspoof 2019 logical access database show that the proposed
solution is not only computationally efficient, but that it also im-
proves upon the performance of the ASVspoof baseline coun-
termeasure, all while preserving privacy.

Index Terms: Secure multi-party computation, privacy-
preservation, automatic speaker verification, spoofing

1. Introduction
Automatic speaker verification (ASV) technology provides a
low-cost and reliable biometric solution to person authentica-
tion [1]. While deployed in a growing range of practical ap-
plications such as for online banking and call centers, ASV sys-
tems are susceptible to spoofing attacks [2, 3], referred to as pre-
sentation attacks according to the ISO/IEC 30107-1:2016 stan-
dard1. Spoofing attacks are launched by fraudsters who mas-
querade as other enrolled subjects to gain illegitimate access to
resources protected by biometric recognition.

Spoofing countermeasures have been developed to help
protect ASV systems from such attacks. These take the form of
auxiliary systems which operate upon speech signals in a simi-
lar fashion to ASV systems in order detect to deflect attacks. In
many use case scenarios, both ASV and spoofing countermea-
sure systems are implemented as remote, cloud-based services,
requiring the transmission of speech data, potentially involv-
ing insecure infrastructure. Since speech signals can contain
a wealth of sensitive information, such as the speaker’s age,
gender, ethnicity, emotional and health condition [4], privacy
preservation solutions are needed to prevent eavesdroppers from
intercepting and exploiting speech data for nefarious purposes.
Adequate safeguards are now mandated by privacy law world-
wide, e.g. the well-known General Data Protection Regulation

1https://www.iso.org/standard/53227.html

(GDPR) in Europe which contains specific clauses relevant to
biometric data such as speech [5].

From the user perspective, privacy concerns can be averted
by processing speech data locally so that speech data need never
be shared with an online service provider. This solution, though,
requires the service provider’s models to be distributed to the
user device. Models potentially stem from the collection of
massive quantities of proprietary data and result from tremen-
dous research and development effort. With service providers
being reluctant to put their intellectual property in jeopardy,
this solution is impractical. The solution is then some form
of privacy-enhancing technology, involving advanced crypto-
graphic primitives such as Homomorphic Encryption or se-
cure Multi-Party Computation (MPC). These techniques sup-
port computation upon encrypted data without the need for a
user to share their speech data or a service provider to share
their model. Both HE and MPC have been applied successfully
to support privacy-preserving computation upon speech data,
e.g. for privacy-preserving speaker verification [6, 7]. The lit-
erature also shows some efforts to bring privacy preservation to
anti-spoofing for other biometric characteristics [8, 9].

In this paper, we present the key challenges in privacy-
preserving voice biometric anti-spoofing and the first solution.
We propose PRIVASP, an efficient shallow neural network ar-
chitecture combined with secure MPC and consider two dif-
ferent scenarios. Since our focus is upon privacy preservation
for anti-spoofing and not ASV, for simplicity we assume that
the latter is performed on the user device. Nonetheless, our
solution is applicable to scenarios in which ASV is also per-
formed remotely. In the first scenario, anti-spoofing is per-
formed by an independent service provider. The anti-spoofing
service provider outsources its model in clear text form to a
cloud service provider. In the second scenario, only a protected
model is shared with the cloud service provider. Speech data
is protected in both cases. The difference between these two
scenarios is hence the level of trust granted to the cloud ser-
vice provider and hence the implied level of privacy preserva-
tion with regards to the model.

We have evaluated our system on the ASVspoof 2019 Log-
ical Access database. Experiments show that the new approach
to privacy-preserving anti-spoofing even performs better than
the ASVspoof 2019 baseline system and is also computationally
efficient. To the best of our knowledge, it is the first reported so-
lution to privacy-preserving voice biometric anti-spoofing.

2. Secure computation
In this section, we introduce secure MPC and further overview
existing privacy-preserving solutions for neural networks in
general and ASV, in particular.



2.1. Secure multi-party computation
Secure Multi-Party Computation (MPC) was firstly proposed by
Yao in 1982 as a two-party computation (2PC) solution to the
Millionaires’ problem [10].

MPC protocols enable multiple parties to jointly and se-
curely compute a function f over their inputs and reveal noth-
ing but the output of the function. Existing MPC solutions are
based on Yao’s garbled circuits [11] or secret sharing (additive
or Boolean) [12, 13]. In our work, we use a 2PC protocol that
makes use of additive secret sharing. More specifically, private
input data (secret s) is split into two pieces (two secret shares),
namely 〈s〉1 and 〈s〉2 and distributed among two non-colluding
parties (P0 and P1) (see Figure 1). One of the shares is cho-
sen randomly, e.g. 〈s〉1, and the second share is: 〈s〉2 = s
- 〈s〉1. The secret shares on their own reveal no information
about the original value s but together they recover it perfectly
(s = 〈s〉1+ 〈s〉2). Each party later performs computations over
their shares in order to finally obtain their output. While the
addition operation is directly translated to the addition of the
shares, the multiplication operation requires the storage of ad-
ditional coefficients and the interaction among the two parties
(see [12]).

MPC protocols usually consider two types of adversaries
who can corrupt a subset of the contributing parties [14]: (i)
passive (or semi-honest/honest-but-curious) adversaries strictly
follow the protocol specification and are curious to extract infor-
mation of the other parties’ inputs; (ii) active adversaries who
can arbitrarily deviate from the protocol.

2.2. Privacy preserving Neural Network solutions
There exist a large number of solutions proposed to build
privacy-preserving Neural Networks (see [15] for a survey).
Most of these solutions are client-server based and consider a
scenario whereby the client protects its input from the server
(i.e., model provider) and the model provider protects its model
parameters from the client. These approaches can be classi-
fied into four main categories: (i) MPC-based solutions such
as [16]; (ii) Homomorphic Encryption (HE)-based techniques,
like [17, 18]; (iii) Hybrid solutions such as [19] and [17] that
combine the use of MPC and HE; and, (iv) Trusted Execution
Environment (TEE)-based solutions like in [20] that perform
the operations in an isolated environment [21], e.g. Intel Soft-
ware Guard Extensions (SGX).

More recent studies focused on the design of privacy-
preserving speech processing solutions based on Neural Net-
works. The authors in [22] propose an approach based on 2PC
and TEEs. On the other hand, Nautsch et al. [23, 24] use HE and
MPC to protect the input biometric templates for speaker recog-
nition. While these solutions aim to guarantee user privacy, they
only consider the problem of speaker/speech recognition and do
not focus on their security against spoofing. In this work, we
propose the first privacy-preserving voice anti-spoofing scheme
that is based on a customized shallow Neural Network that is
compatible with MPC. This solution is presented in the next
section.

3. PRIVASP
In this section, we provide a description of PRIVASP by first
introducing the actual environment and further introducing two
versions of PRIVASP. The main difference between the two
versions is the level of trust anti-spoofing services gives to the
cloud servers with respect to access to the model’s parameters.

3.1. Environment
We consider a scenario whereby an individual/user tries to au-
thenticate himself/herself to an ASV system, e.g. smart speaker
such as Google Home, using a voice command. During the
verification process of the identity of the user, the ASV system
needs to check if the input data, i.e. the user’s voice, is spoofed
or not. With this aim, the latter exploits an anti-spoofing service
to detect whether the system is under spoofing attacks or not.
This anti-spoofing service owns an anti-spoofing Neural Net-
work model that it outsources to some cloud service providers.
In this work, the cloud service provider is represented by two
servers.

In this scenario, since the ASV system is using an exter-
nal anti-spoofing service to detect spoofing attacks, the input to
this service should remain confidential against the service and
the cloud servers. On the other hand, the anti-spoofing service
does not wish to reveal the anti-spoofing model to its customers
(the ASV system here) as this can be considered as an asset
and hence should remain confidential. Additionally, the cloud
servers may also be considered as potential adversaries against
the privacy of the model. We propose to use multi-party com-
putation to address these privacy requirements and consider all
parties involved in computation as honest-but-curious. The ac-
tual solution is described in the next section.

3.2. Proposed solution
In this section, we describe our new solution PRIVASP that is
based on the use of 2PC.

Current ASV systems implementing spoofing countermea-
sures are highly accurate and efficient. Yet, directly applying
MPC to these systems is challenging due to the complexity
of their underlying building blocks. For example, solutions in
[25, 26] consider deep neural networks with a non-negligible
number of non-linear operations which would result in a sig-
nificant increase in the inference time with MPC. Additionally,
these systems work with real numbers whereas MPC only sup-
ports integers; The conversion of real numbers into integers
causes an information loss problem and hence decreases the ac-
curacy of the system.

Therefore, we propose to design a spoofing countermeasure
from scratch in order for it to be compatible with MPC. The
new solution PRIVASP builds a shallow neural network with
one hidden linear layer and one ReLU activation layer and trun-
cates the parameters. Thanks to this new architecture, MPC can
easily be integrated. In section 4.2, we show that the accuracy
of PRIVASP remains efficient.

In the following two sections we explain how MPC is used
in PRIVASP and suggest two versions of it as illustrated in Fig-
ure 1. In both versions, the input is secretly shared among the
two cloud servers. On the other hand, while in the first ver-
sion, the anti-spoofing service fully trusts the cloud and sends
the model parameters in clear, in the second version, in addition
to the input, the model parameters are also secretly shared. The
first version is represented in red in Figure 1, where the same
model is shared between the servers, and the second version is
represented in blue in which the model is secretly shared.

3.2.1. Scenario 1: PRIVASP with Model privacy against the
client
The client generates two additive secret shares of the input, i.e.
the user’s voice matrix, and sends them to the two non-colluding
servers. Both servers have the same model M and the additive
secret shares and perform the classification task, i.e. spoofing
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Figure 1: Scenario 1: PRIVASP with Model privacy against the client (red arrows). Scenario 2: PRIVASP with model privacy against
both the client and the cloud servers (blue arrows).

detection over the shares. The trained anti-spoofing model is
kept hidden from the client and never leaves the servers’ side.

As previously mentioned, in this first version of PRIVASP,
the model is revealed to the cloud servers and this may suffer
from intellectual property problems. Therefore, in the next sec-
tion, we propose a second version of PRIVASP which ensures
model privacy against the cloud servers.

3.2.2. Scenario 2: PRIVASP with model privacy against both
the client and the cloud servers

The basic idea behind this second version is to use the con-
cept of 2PC, where each server receives one secret share of the
client’s data and the model provider’s model and invoke a 2PC
protocol to securely compute the spoofing detection without
gaining any knowledge about the inputs. The trained model is
kept hidden from the two servers and the client, and the model’s
input and output are only revealed to the client.

4. Experimental setup
This section describes the ASVspoof 2019 LA database, evalua-
tion metrics, baselines of the challenge and competing, state-of-
the-art countermeasure and PRIVASP implementation details.
Note that all the countermeasure systems concerned in the ex-
periments are single systems, which means that they are not the
result of the fusion of many individual systems.

4.1. ASVspoof 2019 LA database, baselines and evaluation
metrics
Experiments were performed using the publicly available
ASVspoof 2019 logical access (LA) database [27]. The LA
subset is a collection of bona fide utterances and 6 different
spoofing attacks for the training and development partitions and
13 unseen spoofing attacks for the evaluation partition. The at-
tacks were generated using state-of-the-art text-to-speech (TTS)
and voice conversion (VC) techniques. There were two differ-
ent evaluation metrics for the ASVspoof 2019 Challenge. The
primary metric is the tandem detection cost function (t-DCF)
[28] and Equal Error Rate (EER) [29] is kept as the secondary
metric.

Two different baseline systems were provided for the
ASVspoof 2019 Challenge edition. Baseline B01 consists of
constant Q cepstral coefficients (CQCCs) feature set along with
512 Gaussian Mixture Model (GMM) as a back-end classi-

fier. [30, 31]. The number of bins per octave is kept to 96
and the re-sampling period is set to 16 within the bandwidth
range of 15 Hz to 8 kHz. The 30-dimensional static coefficients
(includes zeroth coefficients) along with their delta and delta-
delta feature vector are extracted resulting in 90-dimensional
features. Baseline B02 consists of linear frequency cepstral
coefficients (LFCCs) feature set along with 512 GMM as a
back-end classifier [32]. The bandwidth used here is from
30 Hz to 8 kHz. LFCCs are extracted using a 512-point dis-
crete Fourier transform applied to windows of 20 ms with 50%
overlap. 60-dimensional features are computed that include
20-dimensional static coefficients (includes zeroth coefficients)
along with their delta and delta-delta feature vector. Three post-
evaluation systems were also used for comparison purposes.
They are the high-spectral resolution linear frequency cepstral
coefficient system with a conventional Gaussian mixture model
classifier (LFCC-GMM) [33], the RawNet2 [26] system and the
ResNet18-SP [25] system. Note that the last two systems, well
known in the literature, are complex deep neural networks im-
plying millions of parameters.

4.2. Implementation details of PRIVASP
PRIVASP uses LFCC features as the front-end. The processing
to extract the audio features is as follows. The speech wave-
form is frame-blocked using a sliding window of 30 ms with
a 15 ms shift. We extract 30 linear frequency cepstral coeffi-
cients from the first 1500 ms of each utterance (note that if the
length of the utterance is less than 1500 ms, we merely repeat
it). The obtained matrix is then vectorized into a column vector
of 2970 elements. A shallow neural network with one hidden
layer and ReLU activation function has been used as back-end.
Two variants of PRIVASP in terms of numbers of neurons have
been evaluated: PRIVASP-1024 and PRIVASP-512, which use
1024 and 512 nodes, respectively. The network is trained with
the Adaptive Moment Estimation (Adam) algorithm with the bi-
nary cross-entropy loss. The model chosen is the one with the
lowest loss value during the training phase. In the experiments,
a PC with a 6-core Intel i5-9400F processor at 2.9GHz, a GPU
GeForce GTX 1050 with 4GB memory, and 64GB RAM was
employed. We used PyTorch framework 2 to build the NN and
to implement PRIVASP we utilized the Pysyft 3 library [34] that
supports MPC within Pytorch.

2https://pych.org/
3https://github.com/OpenMined/PySyft



Table 1: Average inference time in ms per utterance.

system / type PRIVASP-1024 PRIVASP-512 B01 B02 LFCC-GMM RawNet2 ResNet18-SP
plaintext 2.8 2.7 339.9 89.9 100.6 12.0 2.8

scenario 1 95.8 59.9 - - - - -
scenario 2 349.6 208.1 - - - - -

5. Experimental results
The evaluation follows a threefold objective: i) analyzing the
performance of countermeasures, ii) assess privacy-preserving
algorithms, and iii) evaluate the computational costs.

Table 2 and Table 3 show experimental results in terms of
pooled EER and min t-DCF for the two baselines, B01 and
B02, the high-spectral-resolution LFCC, RawNet2, ResNet18-
SP, and our proposed PRIVASP-1024 and PRIVASP-512 sys-
tems. In order to assess detection performance without compro-
mising privacy, two sets of experiments were carried out for the
two PRIVASP systems for the ciphertext scenarios 1 and 2. In
the development partition, Table 2, all the systems perform quite
well. PRIVASP-1024 and PRIVASP-512 have a perfect perfor-
mance even in the two PRIVASP scenarios. Regarding the eval-
uation partition, Table 3, as expected, PRIVASP-1024 performs
slightly better than PRIVASP-512 in plaintext, 7.03%/0.1485
EER/min-tDCF. Of note, is that there is no drop in performance
in the two PRIVASP scenarios. A comparison with other sys-
tems also demonstrates the effectiveness of PRIVASP, which
performs better than RawNet2 and the two baselines B01 and
B02.

In terms of efficiency, Table 1 shows the average time in
ms to infer whether an utterance is bona fide or spoof. Due to
its reduced number of neurons, PRIVASP-512 is more efficient
than PRIVASP-1024 in both plaintext and ciphertext scenarios.
In particular, in scenario 2, an utterance is detected as bona
fide or spoof in 350ms and 208ms for PRIVASP-1024 and
PRIVASP-512, respectively. This time is close to B01 (plain-
text) and however acceptable in real-time applications. Sce-
nario 1, in which the privacy of models is not taken into ac-
count, an utterance is detected as bona fide or spoof in 95ms
and 60ms for PRIVASP-1024 and PRIVASP-512, respectively,
which is better than the systems B01, B02, and LFCC-GMM,
all in the plaintext scenario. Finally, the plaintext efficiency
of PRIVASP systems is comparable to the two deeper networks
RawNet2 and ResNet18-SP. Although these measurements may
seem odd, they are justified by the fact that we did not use GPUs
to evaluate PRIVASP.

6. Conclusions
In this work, we propose PRIVASP, the first privacy-preserving
solution to voice anti-spoofing. Rather than considering pri-
vacy as an add-on, we adopt a privacy by-design approach. The
spoofing countermeasure is designed from scratch so that it is
compatible with the computational capacity of secure multi-
party computation, thereby ensuring efficient privacy preser-
vation and reliable spoofing detection. The approach is based
upon a shallow neural network with only one layer and a ReLU
activation function. Experiments were performed on the recent
ASVspoof 2019 Logical Access database. Two scenarios were
considered, depending on whether or not the spoofing counter-
measure service providers reveal their model to the cloud ser-
vice provider. Results confirm the computational efficiency of
the system, as well as its ability to discriminate bona fide from

Table 2: Performance for the ASVspoof 2019 LA development
partition in terms of pooled EER and min t-DCF for the two
baselines, B01 and B02, the high-spectral-resolution LFCC,
RawNet2, ResNet18-SP and our proposed PRIVASP-1024 and
PRIVASP-512 systems. PRIVASP systems are also evaluated in
privacy-preserving scenario 1 and 2.

system type EER [%] min-tDCF
B01 plaintext 0.43 0.0123
B02 plaintext 2.71 0.0663

LFCC-GMM plaintext 0.00 0.0000
RawNet2 plaintext 1.09 0.0362

ResNet18-SP plaintext 0.07 0.0018

PRIVASP-1024
plaintext 0.00 0.0000

scenario 1 0.00 0.0000
scenario 2 0.00 0.0000

PRIVASP-512
plaintext 0.00 0.0000

scenario 1 0.00 0.0000
scenario 2 0.00 0.0000

Table 3: Same as in Table 2 for the evaluation partition.

system type EER [%] min-tDCF
B01 plaintext 9.57 0.2366
B02 plaintext 8.09 0.2116

LFCC-GMM plaintext 3.50 0.0904
RawNet2 plaintext 5.54 0.1547

ResNet18-SP plaintext 6.82 0.1140

PRIVASP-1024
plaintext 7.03 0.1485

scenario 1 7.02 0.1481
scenario 2 7.02 0.1481

PRIVASP-512
plaintext 7.10 0.1549

scenario 1 7.13 0.1550
scenario 2 7.13 0.1550

spoofed utterances despite the use of a shallow underlying net-
work. PRIVASP can be used for real-time applications while
protecting both the user’s private speech data as well as the in-
tellectual property of the service provider’s model. In our fu-
ture work, we intend to explore the potential of our approach to
bring privacy preservation to state-of-the-art anti-spoofing sys-
tems that provides enhanced performance, and alternative cryp-
tographic primitives whose integration has no impact on com-
putational capacity or accuracy.
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“Sok: Cryptography for neural networks,” in IFIP International
Summer School on Privacy and Identity Management. Springer,
2019, pp. 63–81.

[16] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure frame-
work for private deep learning,” 2020.

[17] B. Bozdemir, O. Ermis, and M. Önen, “ProteiNN: Privacy-
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