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Abstract

We develop a novel method for carrying out model selection for Bayesian autoen-
coders (BAEs) by means of prior hyper-parameter optimization. Inspired by the
common practice of type-II maximum likelihood optimization and its equivalence
to Kullback-Leibler divergence minimization, we propose to optimize the distribu-
tional sliced-Wasserstein distance (DSWD) between the output of the autoencoder
and the empirical data distribution. The advantages of this formulation are that we
can estimate the DSWD based on samples and handle high-dimensional problems.
We carry out posterior estimation of the BAE parameters via stochastic gradient
Hamiltonian Monte Carlo and turn our BAE into a generative model by fitting a
flexible Dirichlet mixture model in the latent space. Consequently, we obtain a
powerful alternative to variational autoencoders, which are the preferred choice in
modern applications of autoencoders for representation learning with uncertainty.
We evaluate our approach qualitatively and quantitatively using a vast experimental
campaign on a number of unsupervised learning tasks and show that, in small-
data regimes where priors matter, our approach provides state-of-the-art results,
outperforming multiple competitive baselines.

1 Introduction

The problem of learning useful representations of data that facilitate the solution of downstream
tasks such as clustering, generative modeling and classification, is at the crux of the success of many
machine learning applications [see, e.g., 5, and references therein]. From a plethora of potential
solutions to this problem, unsupervised approaches based on autoencoders [10] are particularly
appealing as, by definition, they do not require label information and have proved effective in tasks
such as dimensionality reduction and information retrieval [20].

Autoencoders are neural network models composed of two parts, usually referred to as the encoder
and the decoder. The encoder maps input data to a set of lower-dimensional latent variables. The
decoder maps the latent variables back to the observations. The bottleneck introduced by the
low-dimensional latent space is what characterizes the compression and representation learning
capabilities of autoencoders. It is not surprising that these models have connections with principal
component analysis [4], factor analysis and density networks [33], and latent variable models [28].

In applications where quantification of uncertainty is a primary requirement or where data is scarce,
it is important to carry out a Bayesian treatment of these models by specifying a prior distribution
over their parameters, i.e., the weights of the encoder/decoder. However, estimating the posterior

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



distribution over the parameters of these models, which we refer to as Bayesian autoencoders (BAEs),
is generally intractable and requires approximations. Furthermore, the need to specify priors for a
large number of parameters, coupled with the fact that autoencoders are not generative models, has
motivated the development of Variational Autoencoders (VAEs) as an alternative that can overcome
these limitations [25]. Indeed, VAEs have found tremendous success and have become one of the
preferred methods in modern machine-learning applications [see, e.g., 26, and references therein].

To recap, three potential limitations of BAEs hinder their widespread applicability in order to achieve
a similar or superior adoption to their variational counterpart: (i) lack of generative modeling
capabilities; (ii) intractability of inference and (iii) difficulty of setting sensible priors over their
parameters. In this work we revisit BAEs and deal with these limitations in a principled way. In
particular, we address the first limitation in (i) by employing density estimation in the latent space.
Furthermore, we deal with the second limitation in (ii) by exploiting recent advances in Markov chain
Monte Carlo (MCMC) and, in particular, stochastic gradient Hamiltonian Monte Carlo (SGHMC) [9].
Finally, we believe that the third limitation (iii), which we refer to as the difficulty of carrying out
model selection, requires a more detailed treatment because choosing sensible priors for Bayesian
neural networks is an extremely difficult problem, and this is the main focus of this work.

Contributions. Specifically, in this paper we provide a novel, practical, and elegant way of per-
forming model selection for BAEs, which allows us to revisit these models for applications where
VAEs are currently the primary choice. We start by considering the common practice of estimating
prior (hyper-)parameters via type-II maximum likelihood, which is equivalent to minimizing the
Kullback-Leibler divergence (KL) between the distribution induced by the BAE and the data generat-
ing distribution. Because of the intractability of this objective and the difficulty to estimate it through
samples, we resort to an alternative formulation where we replace the KL with the distributional
sliced-Wasserstein distance (DSWD) between these two distributions. The advantages of this formu-
lation are that we can estimate the DSWD based on samples and, thanks to the slicing, we can handle
large dimensional problems. Once BAE hyper-parameters are optimized, we estimate the posterior
distribution over the BAE parameters via SGHMC [9], which is a powerful sampler that operates
on mini-batches and has proven effective for Bayesian deep/convolutional networks [45, 52, 23].
Furthermore, we turn our BAE into a generative model by fitting a flexible mixture model in the
latent space, namely the Dirichlet Process Mixture Model (DPMM). We evaluate our approach
qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised
learning tasks, with particular emphasis on the challenging task of generative modeling when the
number of observations is small.

2 Preliminaries on Bayesian Autoencoders

An autoencoder (AE) is a neural network parameterized by a set of parameters w, which transforms
an unlabelled dataset, x def

= {xn}Nn=1, into a set of reconstructions f def
= {fn}Nn=1, with xn, fn ∈ RD.

An AE is composed of two parts: (1) an encoder fenc which maps an input sample xn to a latent code
zn ∈ RK ,K � D; and (2) a decoder fdec which maps the latent code to a reconstructed datapoint
fn. In short, f = f(x;w) = (fdec ◦ fenc)(x), where we denote w := {wenc,wdec} the union of
parameters of the encoder and decoder.

The Bayesian treatment of AEs dictates that a prior distribution p(w) is placed over all parameters
of fenc and fdec and the posterior is inferred using Bayes’ rule. For the sake of presentation, we can
consider a BAE as a classic Bayesian neural network (BNN) for a supervised learning task [34, 37],
where we have labels y def

= {yn}Nn=1 associated with each input point xn. From this perspective, we
can write the posterior on w as follows:

p(w |y,x) =
p(y |w,x)p(w)

p(y |x)
, (1)

where p(y |w,x) is the likelihood defined by the network architecture and the denominator—
p(y |x)—constitutes the marginal likelihood. In order to keep the notation uncluttered, we can
drop the explicit dependency on x as input, which leads to:

p(w |y) =
p(y |w)p(w)

p(y)
, (2)
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We observe that for an AE the labels y are the same as the datapoints x, meaning that the likelihood
is computed in x.

Likelihood model. Before giving an in-depth treatment on priors for BAEs in the next section, we
briefly discuss the likelihood, which can be chosen according to the type of data. Firstly, we assume
factorization of the likelihood on the datapoints, i.e. p(y |w) =

∏N
n=1 p(yn |w). Secondly, given

that our experiments mainly focuses on image datasets where pixel values are normalized in the [0, 1]
range, we will use the continuous Bernoulli distribution [31]:

p(yn |w) =

D∏
i=1

K(λi)λ
yn,i

i (1− λi)1−yn,i := p(yn | fn), (3)

where K(λi) is a properly defined normalization constant [31] and λi = fi(xn;w) = fn,i ∈ [0, 1] is
the i-th output from the BAE given the input xn. We note that, as fn depends deterministically on
w, we will use the above expression to refer to both p(yn |w) and p(yn | fn), where the latter term
will be of crucial importance when we define the functional prior induced over the reconstruction f .
Finally, we remark that in the Bayesian scheme both the prior and likelihood are modeling choices. In
fact, in our experiments we explore an additional likelihood model, namely the truncated Gaussian,
and we show how the problem of selecting good priors is orthogonal to the choice of the likelihood.

Inference. Although the posterior over the BAE parameters is analytically intractable, it can
be approximated by variational methods or using MCMC sampling. Within the large family of
approximate Bayesian inference schemes, SGHMC [9] allows us to sample from the true posterior
by efficiently simulating a Hamiltonian system [38]. Unlike more traditional methods, SGHMC can
scale up to large datasets by relying on noisy but unbiased estimates of the potential energy function
U(w) = −

∑N
n=1 log p(yn |w)− log p(w). These can be computed by considering a mini-batch of

size M of the data and approximating
∑N
n=1 log p(yn |w) ≈ N

M

∑
j∈IM log p(yj |w), where IM

is a set of M random indices. More details on SGHMC can be found in the Appendix.

Pathologies of standard priors. The choice
of the prior is important for the Bayesian treat-
ment of any model as it characterizes the hy-
pothesis space [34, 36]. Specifically for BAEs,
one should note that placing a prior on the pa-
rameters of the encoder and decoder has an im-
plicit effect on the prior over the network output
(i.e. the reconstruction). In addition, the highly
nonlinear nature of these models implies that
interpreting the effect of the architecture is theo-
retically intractable and practically challenging.
Several works argue that a vague prior such as
N (0, 1) is good enough for some tasks and mod-
els, like classification with convolutional neural
networks (CNNs) [49].

Ouput with Output with
Input N (0, 1) Prior Optimized Prior

MNIST

OOD

CELEBA

OOD

Figure 1: Realizations sampled from different pri-
ors given an input image. OOD stands for out-of-
distribution.

However, for BAEs this is not enough, as illustrated in Fig. 1. The realizations obtained by sampling
weights/biases from aN (0, 1) prior indicate that this choice provides poor inductive bias. Meanwhile,
by encoding better beliefs via an optimized prior, which is the focus of the next section, the samples
can capture main characteristics intrinsic to the data, even when the model is fed with out-of-
distribution inputs.

3 Model Selection for Bayesian Autoencoders via Prior Optimization

One of the main advantages of the Bayesian paradigm is that we can incorporate prior knowledge
into the model in a principled way. Let us assume a prior distribution pψ(w) on the parameters of
the AE network, where now we are explicit on the set of (hyper-)parameters that determine the prior,
i.e., ψ. Specifying the prior is easy, e.g., a Gaussian. Determining the effective functional prior, i.e.,
the prior over the network output f is not trivial due to the complex nonlinear forms of fenc and fdec,
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which induce a non-trivial effect on the output (functional) prior:

pψ(f) =

∫
f(x;w)pψ(w)dw, (4)

where, as before, f = f(x;w) is the functional output of the BAE. Although pψ(f) cannot be
evaluated analytically, it is possible to draw samples from it.

Prior parameterization. The only two requirements needed to design a parameterization for the
prior are: to be able to (1) draw samples from it and (2) to compute its log-density at any point. The
latter is required by many inference algorithms such as SGHMC. We consider a fully-factorized
Gaussian prior over weights and biases at layer l:

p(wl) = N (wl;µlw , σ
2
lw), p(bl) = N (bl;µlb , σ

2
lb

), (5)

Notice that, as we shall see in § 3.2 and § 3.3, in order to estimate our prior hyper-parameters, we will
require gradient back-propagation through the stochastic variables wl and bl. Thus, we treat these
parameters in a deterministic manner by means of the reparameterization trick [42, 25].

3.1 Another route for Bayesian Occam’s razor

A common way to estimate hyper-parameters (i.e., prior parameters ψ) is to rely on the Bayesian
Occam’s razor (a.k.a. empirical Bayes), which dictates that the marginal likelihood pψ(y) should be
optimized with respect to ψ. There are countless examples where such simple procedure succeeds
in practice [see, e.g., 41, 21]. We note however that marginal likelihood maximization for a large
number of hyper-parameters can suffer from overfitting [41, 40]. Nevertheless, we do not expect
significant overfitting issues in our setting, as we focus on data that are characterized by a high level
of structure (i.e. images). As we have seen, regular choices for the prior completely fail to capture the
properties of such highly-structured outputs.

The marginal likelihood is obtained by marginalizing out the outputs f and the model parameters w,

pψ(y) =

∫
p(y | f)pψ(f)df , (6)

where p(y | f) and pψ(f) are given by Eq. 3 and Eq. 4, respectively. Unfortunately, in our context it
is impossible to carry out this optimization due to the intractability of Eq. 6.

Classic results in the statistics literature draw parallels between maximum likelihood estimation
(MLE) and KL minimization [2],

arg max
ψ

∫
π(y) log pψ(y)dy = arg min

ψ

∫
π(y) log

π(y)

pψ(y)
dy︸ ︷︷ ︸

KL[π(y) ‖ pψ(y)]

, (7)

where π(y) is the true data distribution. This equivalence provides us with an interesting insight on
an alternative view of marginal likelihood optimization as minimization of the divergence between
the true data distribution and the marginal pψ(y).

This alternative view allows one to obtain a viable optimization strategy that relies on an empirical
estimate of the data distribution π̃(y). This presents additional challenges however, as the empirical
evaluation and optimization of KL divergences remains a well-known challenging problem [13].
Although it is possible to evaluate KL (or any other f -divergence) empirically by leveraging results
from convex analysis [39], we have opted to substitute KL with an alternative metric that is more
convenient from a computational perspective. We are inspired by recent works on generative
adversarial networks [3, 16] and Bayesian neural networks [45], where it is shown that the Wasserstein
distance can be estimated efficiently using samples only, even for high-dimensional distributions.
We thus employ the Wasserstein distance as a surrogate for KL divergence, so that we avoid the
challenges of empirical KL estimation.

To summarize: (1) we would like to do prior selection by carrying out type-II MLE; (2) the MLE
objective is analytically intractable but the connection with KL minimization allows us to (3) swap
the divergence with the Wasserstein distance, yielding a practical framework for choosing priors.
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3.2 Matching the marginal distribution to the data distribution via Wasserstein distance
minimization

Given the two probability measures π and pψ , both defined on RD for simplicity, the p-Wasserstein
distance between π and pψ is given by

W p
p (π, pψ) = inf

γ∈Γ(π,pψ)

∫
‖y − y′‖pγ(y,y′)dydy′ , (8)

where Γ(π, pψ) is the set of all possible distributions γ(y,y′) such that the marginals are π(y) and
pψ(y′) [47]. While usually analytically unavailable or computationally intractable, for D = 1 the
distance has a simple closed form solution, that can be easily estimated using samples only [27].

The distributional sliced-Wasserstein distance (DSWD) takes advantage of this result by projecting
the estimation of distances for high-dimensional distributions into simpler estimation of multiple
distances in one dimension. The projection is done using the Radon transformR, an operator that
maps a generic density function ϕ defined in RD to the set of its integrals over hyperplanes in RD,

Rϕ(t,θ) :=

∫
ϕ(r)δ(t− r>θ)dr , ∀t ∈ R , ∀θ ∈ SD−1 , (9)

where SD−1 is the unit sphere in RD and δ(·) is the Dirac delta [17]. Using the Radon transform, for
a given direction (or slice) θ we can project the two densities π and pψ into one dimension and we
can solve the optimal transport problem in this projected space. Furthermore, to avoid unnecessary
computations, instead of considering all possible directions in SD−1, DSWD proposes to find the
optimal probability measure of slices σ(θ) on the unit sphere SD−1,

DSW p(π, pψ) := sup
σ∈MC

(
Eσ(θ)W

p
p

(
Rπ(t,θ),Rpψ(t,θ)

))1/p

, (10)

where, for C > 0, MC is the set of probability measures σ such that Eθ,θ′∼σ
[
θ>θ′

]
≤ C (a

constraint that aims to avoid directions to lie in only one small area). The direct computation of
DSWp in Eq. 10 is still challenging but admits an equivalent dual form,

sup
h∈H

{(
Eσ̄(θ)

[
W p
p

(
Rπ(t, h(θ)),Rpψ(t, h(θ))

)])1/p

− λCEθ,θ′∼σ̄
[∣∣h(θ)>h(θ′)

∣∣]}+ λCC , (11)

where σ̄ is a uniform distribution in SD−1,H is the set of functions h : SD−1 → SD−1 and λC is a
regularization hyper-parameter. The formulation in Eq. 11 is obtained by employing the Lagrangian
duality theorem and by reparameterizing σ(θ) as push-forward transformation of a uniform measure
in SD−1 via h. Now, by parameterizing h using a deep neural network with parameters φ, defined as
hφ, Eq. 11 becomes an optimization problem with respect to the network parameters. The final step
is to approximate the analytically intractable expectations with Monte Carlo integration,

max
φ

{[
1

K

K∑
i=1

[
W p
p

(
Rπ(t, hφ(θi)),Rpψ(t, hφ(θi))

)]]1/p

− λC
K2

K∑
i,j=1

|hφ(θi)
>hφ(θj)|

}
+ λCC ,

with θi ∼ σ̄(θ). Finally, we can use stochastic gradient methods to update φ and then use the
resulting optima for the estimation of the original distance. We encourage the reader to check the
detailed explanation of this formulation, including its derivation and some practical considerations
for implementation, available in the Appendix.

3.3 Summary

We aim at learning the prior on the BAE parameters by optimizing the marginal pψ(y) obtained after
integrating out the weights from the joint pψ(y,w). The connection with empirical Bayes and KL
minimization suggests that we can find the optimal ψ? by minimizing the KL between the true data
distribution π(y) and the marginal pψ(y) . However, matching these two distributions is non-trivial
due to their high dimensionality and the unavailability of their densities. To overcome this problem,
we propose a sample-based approach using the distributional sliced 2-Wasserstein distance (Eq. 11)
as objective:

ψ? = arg min
ψ

[
DSW2

(
pψ(y), π(y)

)]
. (12)
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This objective function is flexible and does not require the closed-form of either pψ(y) or π(y). The
only requirement is that we can draw samples from these two distributions. Note that we can sample
from pψ(y), by first computing f after sampling from pψ(w) and then perturbing the generated f by
sampling from the likelihood p(y | f). For the continuous Bernoulli likelihood this operation can be
implemented by using the reparameterization form that allows to backpropagate gradients [31].

4 Experiments

Competing approaches. We compare our proposal with a wide selection of methods from the
literature. For autoencoding methods, we choose the vanilla VAE [25], the β-VAE [19] and WAE
(Wasserstein AE) [43]. In addition, we consider models with more complex encoders (VAE +
Sylvester flows [46]), generators (2-stage VAE [11]), and priors (VAE + VampPrior [44]). For
CELEBA we also include a comparison with Generative Adversarial Networks (GANs), with the
vanilla setup of NS-GAN [15, 32] and the more recent DiffAugment-GAN [53, 24]. Finally, we also
compare against BAE with the standardN (0, 1) prior. Unless otherwise stated, all models—including
ours—share the same latent dimensionality (K = 50). We defer a more detailed description of these
models and architectures to the Appendix.

Generative process. Differently from VAEs and other methods, deterministic and Bayesian AEs are
not generative models. To generate new samples with BAEs we employ ex-post density estimation
over the learned latent space, by fitting a density estimator pϑ(z) to {zi = Ep(wenc |y)[fenc(xi;wenc)]}.
In this work, we employ a nonparametric model for density estimation based on Dirichlet Process
Mixture Model (DPMM) [7], so that its complexity is automatically adapted to the data; see also [6]
for alternative ways to turn AEs into generative models. After estimating pϑ(z), a new sample can be
generated by drawing znew from pϑ(z) and f new = Ep(wdec |y)[fdec(znew;wdec)].

Evaluation metrics. To evaluate the reconstruction quality, we use the test log-likelihood (LL),
which tells us how likely the test targets are generated by the corresponding model. The predictive
log-likelihood is a proper scoring rule that depends on both the accuracy of predictions and their
uncertainty [14]. To assess the quality of the generated images, instead, we employ the widely
used Fréchet Inception Distance (FID) [18]. We note that, as GANs are not inherently equipped
with an explicit likelihood model, we only report their FID scores. Finally, all our experiments and
evaluations are repeated four times, with different random training splits.

4.1 Analysis of the effect of the prior

To demonstrate the effect of our model selection strategy, we consider scenarios in the small-data
regime where the prior might not be necessarily tuned on the training set. In this way we are able to
impose inductive bias beyond what is available in the training data. We investigate two cases:
• MNIST [29]: We use 100 examples of the 0 digits to tune the prior. The training set consists of

examples of 1-9 digits, whereas the test set contains 10 000 instances of all digits. We aim to
demonstrate the ability of our approach to incorporate prior knowledge about completely unseen
data with different characteristics into the model.

• FREY-YALE [12]: We use 1 956 examples of FREY faces to optimize the prior. The training set
and test set are comprised of YALE faces. We demonstrate the benefit of using a different dataset
but from the same domain (e.g. face images) to specify the prior distribution.

Visual inspection. Fig. 2 shows some qualitative results (additional images are available in the
Appendix), while Fig. 3 shows the convergence of the Wasserstein distance during prior optimization
in our proposal. From a visual inspection we see that, on MNIST, by encoding knowledge about the
“0” digit into the prior, the BAE can reconstruct this digit fairly well although we only use “1” to “9”
digits for inference (differently from the BAE with standard prior). Similarly, on FREY-YALE, we see
that by encoding knowledge from another dataset in the same domain, the optimized prior can impose
a softer constraint compared to using directly this dataset for inference. In addition, if we use directly
the union of FREY and YALE faces for training (methods denoted with a F), VAE yields images that
are similar to FREY instead of YALE faces, while generated images from BAE with N (0, 1) prior
are of lower quality. This again highlights the advantage of our approach to specifying an informative
prior compared to using that data for training. Another important benefit of our Bayesian treatment
of AEs is that we can quantify the uncertainty for both reconstructed and generated images. The last
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MNIST (N = 200) FREY-YALE (N = 500)

Reconstructed Generated Reconstructed Generated

Ground Truth

VAE

F VAE

N (0, 1) BAE

FN (0, 1) BAE

BAE + Optim. prior

Uncertainty

Figure 2: Qualitative evaluation for MNIST and YALE. Here, F indicates using
the union of the training data and the data used to optimize prior to train the
model. The last row depicts standard deviation of reconstructed/generated images
estimated by BAE using the optimized prior.
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Figure 3: Convergence of
the proposed Wasserstein
minimization scheme.
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Dimension of latent space

Ablation study on latent dimensionality (MNIST - Test LL)

VAE F β-VAE F BAE +N (0, 1) Prior F BAE + Optim. Prior

Figure 4: Test log-likelihood (LL) of MNIST and YALE. Left: test LL as a function of training size; Right: test
LL as a function of latent dimensionality.

row of Fig. 2 illustrates the uncertainty estimate corresponding to the BAE with optimized prior on
MNIST and YALE datasets. Our model exhibits increased uncertainty for semantically and visually
challenging pixels such as the left part of the second “0” digit image in the MNIST example. We also
observe that the uncertainty is greater for generated images compared to reconstructed images as
illustrated in the YALE example. This is reasonable because the reconstruction process is guided by
the input data rather than synthesizing new data according to a random latent code.

Visualization of inductive bias on MNIST. To have an
intuition of the inductive bias induced by the optimized
prior, we visualize a low-dimensional projection of parame-
ters sampled from the prior and the posterior [22]. As we
see in Fig. 5, the hypothesis space induced by the N (0, 1)
prior is huge, compared to where the true solution should
lie. Effectively this is another visualization of the famous
Bayesian Occam’s razor plot by David MacKay [35], where
the model has very high complexity and poor inductive bi-
ases. On the other hand, by considering our proposal to do
model selection, the hypothesis space of the optimized prior
is reduced to regions close to the full posterior. Additional
visualizations are available in the Appendix.

−60−50−40−30

−3

−2

−1

N (0, 1) Prior Samples from true posterior
Optim. Prior

Figure 5: Visualization in 2D of samples
from priors and posteriors of BAE’s param-
eters. The setup is the same as before with
MNIST.

Quantitative evaluation. For a quantitative analysis we rely on Fig. 4, where we study the effect
on the reconstruction quality of different training sizes (on the left) and different latent dimensions
(on the right). Since we observed that the results of VAE variants are not significantly different,
we only show the results for β-VAE and we leave the extended results to the Appendix. From this
experiment we can draw important conclusions. The BAE with optimized priors clearly outperforms
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Reconstructions Generated Samples

Ground Truth

WAE [43]

VAE [25]

β-VAE [19]

VAE + Sylveser Flows [46]

VAE + VampPrior [44]

2-Stage VAE [11]

BAE +N (0, 1) Prior

BAE + Optim. Prior (Ours)

NS-GAN [15]

DiffAugment-GAN [53]

6500

7000

Test log-likelihood (↑)

500 1000 2000 4000

100

200

300

Training size

FID (↓)

Figure 6: Qualitative (left) and quantitative evaluation (right) on CELEBA. The markers and bars represent the
means and one standard deviations, respectively. In the (left) figure, the sizes of training data and the data for
optimizing prior are 500 and 1000, respectively. The higher the log-likelihood (LL) and the lower FID the better.

the competing methods (and the BAE with standard prior) in the inference task for all training sizes,
with slightly diminishing effect for larger sets, as expected. This pattern also holds when looking at
different latent dimensions (Fig. 4, right), where regardless of the dimensionality of the latent space,
BAEs with optimized priors achieve the best performance.

4.2 Reconstruction and generation of CELEBA

We now look at a more challenging benchmark, the CELEBA dataset [30]. For our proposal, we use
1 000 examples that are randomly chosen from the original training set to learn the prior distribution.
The test set consists of about 20 000 images. The goal of this experiment is to evaluate whether
sacrificing part of the training data to specify a good prior is beneficial when compared to using
that data for training the model. Fig. 6 shows qualitative results for the competing methods, their
corresponding test LLs and FIDs for different training dataset sizes. In terms of test log-likelihoods
(LLs) (Fig. 6, top right), we observe two clear patterns: (i) that BAE approaches perform considerably
better than other methods and (ii) the VAE with Sylvester flows performs consistently poor across
dataset sizes. This latter observation indicates that having a more expressive posterior for the encoder
is not helpful when considering the small training sizes used in our experiments. More importantly,
we see that the BAE using the optimized prior significantly outperforms other methods despite using
less data for inference. These results largely agree with the quality of the reconstructions (first column
of images in Fig. 6, left) in that BAE methods provide more visually appealing reconstructions when
compared to other approaches.

We now evaluate the quality of the generated images (second column of images in Fig. 6, left)
along with their FID scores [18]. Visually, it is clear that images generated from VAEs (standard, β,
Sylvester and Wasserstein Autoencoder (WAE)) are very poor. This failure may originate from the
fact that the aggregated posterior distribution of the encoder is not aligned with the prior on the latent
space. This problem is more prominent in the case of small training data, where the encoder is not
well-trained. The VampPrior tackles this problem by explicitly modeling the aggregated posterior,
while 2-stage VAE uses another VAE to estimate the density of the learned latent space. By reducing
the effect of the aggregated posterior mismatch, these strategies improve the quality of the generated
images remarkably. These results are consistent with their corresponding FID scores (Fig. 6, bottom
right) where we also see that BAE using the optimized prior consistently outperforms all variants of
VAEs and NS-GAN. Finally, we see that DiffAugment-GAN, with the exception of using a training
size of 500, yields better FID scores. However, this is not surprising as this model uses much more
complex network architectures [24], combined with a powerful differentiable augmentation scheme.
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VAE (FID: 299.73± 5.21)

VAE + Sylvester Flows (FID: 238.95± 16.95)

VAE + VampPrior (FID: 127.05± 6.18)

2-Stage VAE (FID: 97.77± 1.01)

BAE withN (0, 1) Prior (FID: 84.11± 4.09)

BAE with Optim. Prior (FID: 62.75± 3.61)

Figure 7: Qualitative and quantitative evaluation of generated samples with the truncated Gaussian likelihood
[8]. Here, we use 500 CELEBA samples for inference.

More importantly, it is clear that with few training samples our method generates more semantically
meaningful images then all other approaches, including DiffAugment-GAN.

The effect of the likelihood. As previously mentioned, in the Bayesian paradigm, the likelihood
represents a modeling choice to be made in addition to the choice of the prior. Our empirical
evaluation was predominantly conducted with the continuous Bernoulli likelihood. This likelihood
maybe not be an ideal choice for colored images because it biases pixel values to the extremes, which
results in saturated images. For the CELEBA dataset, we additionally consider the truncated Gaussian
likelihood [8], which is another valid alternative for [0, 1]-valued data (results summarized in Fig. 7).
We observe that indeed the colors in the images generated by this likelihood are more realistic and
less saturated compared to those generated by the continuous Bernoulli. Still the problem of selecting
a good prior is present, as it can be seen for methods like e.g. VAE. For our proposed approach we
haven’t made strong assumptions on the likelihood (just the ability to sample from it) and as such it is
flexible and not tied to a specific choice. These results show that our method is not only quantitatively
but also qualitatively better than the competing approaches and confirm that the benefits from our
framework are independent of the choice of likelihood. In Appendix, we show more qualitative and
numerical results of reconstruction and generation with the truncated Gaussian likelihood.

4.3 Prior adjustment versus posterior tempering

We have shown that the proposed framework for adjusting
the prior is compatible with standard Bayesian practices, as
it emulates type-II maximum likelihood. In other words, the
distribution fitting that we induce by means of Wasserstein
distance minimization relates to the marginal output of BAEs,
very much in the same spirit of marginal likelihood maximiza-
tion. The distribution is fit considering all possible functions,
when marginalized through the likelihood, creating an implicit
regularization effect. Our scheme does not give more weight to
particular training instances, but it simply restricts the hypothe-
sis space. This is unlike posterior tempering [51, 22, 48, 1, 50],
which is commonly defined as pτ (w |y) ∝ p(y |w)

1/τ
p(w),

where τ > 0 is a temperature value. With τ < 1, tempering is
known to improve performance in the case of small training
data and using miss-specified priors, but it corresponds to ar-
tificially sharpening the posterior by over-counting the data τ
times.
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the data points are over-counted).
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To demonstrate the differences with our proposal, we setup
a comparison on MNIST. In the empirical comparison of
Fig. 8, we consider different temperatures and different sets
of data points used to optimize the prior. As expected, the
tempered posterior quickly collapses on the mode, while the
posterior after our treatment retains a sufficiently constant
variance, regardless of the number of data points used. It
is also interesting to notice that with the N (0, 1) prior, the
best temperature is τ = 0.1, while for our approach that
optimizes the prior is τ = 1, further confirming that the
model now is well specified (Fig. 9).

5 Conclusions

In this work, we have reconsidered the Bayesian treatment of autoencoders (AE) in light of recent
advances in Bayesian neural networks. We have addressed the main challenge of BAEs, so that
they can be rendered as viable alternative to generative models such as VAEs. More specifically, we
have found that the main limitation of BAEs lies in the difficulty of specifying meaningful priors in
the context of highly-structured data, which is ubiquitous in modern machine learning applications.
Consequently, we have proposed to specify priors over the autoencoder weights by means of a
novel optimization of prior hyper-parameters. Inspired by connections with marginal likelihood
optimization, we derived a practical and efficient optimization framework, based on the minimization
of the distributional sliced-Wasserstein distance between the distribution induced by the BAE and the
data generating distribution. The resulting hyper-parameter optimization strategy leads to a novel way
to perform model selection for BAEs, and we showed its advantages in an extensive experimental
campaign.

Limitations and ethical concerns. Even if theoretically justified and empirically verified with
extensive experimentation, our proposal for model selection still remains a proxy to the true marginal
likelihood maximization. The DSWD formulation has nice properties of asymptotic convergence
and computational tractability, but it may represent only one of the possible solutions. At the same
time, we stress that the current literature does not cover this problem of BAEs at all, and we believe
our approach is a considerable step towards the development of practical Bayesian methods for
representation learning in modern applications characterized by large-scale structured data (including
tabular and graph data, which are currently not covered). At the same time, the accessibility to
these models to a wider audience and different kind of data might help to widespread harmful
applications, which is a concern shared among all generative modeling approaches. An ethical
analysis of the consequences of Bayesian priors in unsupervised learning scenarios is also worth an
in-depth investigation, which goes beyond the scope of this work.
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