
Towards an Optimal MEC Resources Dimensioning
for Vehicle Collision Avoidance System: A Deep

Learning Approach
Bouziane Brik and Adlen Ksentini
EURECOM, Sophia Antipolis, France

Email: name.surname@eurecom.fr

Abstract—Collision detection and avoidance between vehicles
is one of the key services envisioned in the Internet of Vehicles
(IoV). Such services are usually deployed at the Multi-access Edge
Computing (MEC) to ensure low latency communication and thus
guarantee real-time reactions to avoid collisions between vehicles.
In order to maximize the coverage of the road and ensure that
all vehicles are connected to an optimal MEC host (in terms
of geographical location), the collision avoidance application
needs to be instantiated on all the MEC hosts. This may add
a burden on the computing resources available at the latter. In
this paper, we propose an AI-empowered framework that aims
to optimize the computing resources at the MEC hosts. Our
framework uses deep learning to (1) predict the vehicle density
to be served by a MEC host and (2) derive the exact computing
resources required by the collision detection application to run
optimally. We evaluate the proposed framework using a real
dataset representing vehicle mobility in a big city. Obtained
results show the accuracy of our prediction model and hence,
the efficiency of our resources assignment framework to exactly
deduce the optimal computing resources needed by each instance
of the application.

Index Terms—Internet of Vehicles, Collision Avoidance, MEC,
Deep Learning, LSTM, 5G

I. INTRODUCTION

In the vision of 5G and the Internet of Vehicles (IoV),
connected vehicles and autonomous driving are among the
key envisioned applications; they impact not only mobile
operators as well as car manufacturers business, but also our
everyday life [1]. Connected vehicles and autonomous driving
involve several components, such as sensors, actuators, and
applications, which need to coordinate in order to achieve
the envisioned autonomy of vehicles. Among the critical
services towards autonomous driving is the collision detec-
tion/avoidance system. It consists of continuously collecting
data from vehicles and using these data to predict collisions
and communicate alerts or send commands to vehicles in
order to avoid collisions with other vehicles. The collision
detection/avoidance service comprises (1) an application that
runs at the vehicles and collects data, such as GPS coordinates,
speed, acceleration, and (2) a remote application hosted at the
cloud infrastructure that runs a collision detection algorithm.
The latter may send control commands to the vehicles, when
deemed appropriate, such as reduce speed, change direction,
or break. One of the main requirements to run the collision
avoidance service, in 5G and beyond, is to dispose of a

low-latency connection between the client and server-side of
the application, i.e., between the vehicles and the remote
application sitting in the infrastructure. To ensure low-latency
communication, it is envisioned to deploy several instances of
the collision application. For instance, at the road intersections
and close to base stations using Multi-access Edge Computing
(MEC) [2]. This ensures that each vehicle is connected to
the closed application instance, which guarantees low latency
communication. To recall, MEC consists of deploying com-
putation capability (hosts) close to the end-users, for instance,
at the vicinity of base stations [3]. Thus, all data can be
treated locally without involving the remote cloud server,
hence reducing latency and the traffic to carry throughout the
network. MEC hosts are distributed all over the network, con-
stituting a distributed and low-latency computation resource
for delay-sensitive applications, like vehicle collision detec-
tion/avoidance applications. Indeed, the latter need low latency
communication with the remote vehicles since the control
commands, such as break or reduce speed, need to be received
by the vehicles in near real-time to react to any threat and avoid
collisions. As mentioned earlier, one pertinent solution is to
locate several instances of the collision detection application
at the MEC, hence reducing the end-to-end communication
latency. The different instances can be used to cover all the
road intersections; each vehicle shall always be in contact
(connected) with an instance of the application. However,
duplicating the number of instances of the application may add
a burden on the MEC host computing resources, such as CPU
usage, memory, storage, etc. It is worth noting that MEC host
resources are limited compared to central cloud servers. In this
context, it is vital for MEC operators (generally the network
operator) to optimize the MEC resource usage, particularly
when considering that 5G will rely, among others, on MEC to
support services that require low-latency such as data caching,
Virtual and Augmented Reality (VR/AR), etc. Hence, ensuring
an efficient share of the MEC computing resources is critical.
In this paper, we propose a novel framework that relies on

Deep Learning (DL) to predict vehicles’ mobility and ac-
cordingly assign computing resources to the vehicle collision
detection application instances, aiming at better optimizing the
overall MEC resources and ensuring optimal functioning of the
service (i.e., guaranteeing low response time). The proposed
framework predicts using DL, and more precisely Long Short-

Fig. 1. The Envisioned Architecture and Deployment.

Term Memory (LSTM), the mobility of the vehicles, and
according to their positions in the network, it derives the
needed MEC resources. On one hand, increase MEC resources
for the collision avoidance application instances that serve a
high number of vehicles; on the other hand, reduce these re-
sources for the instances that cover a low number of connected
vehicles. The contributions of this paper are as follows:

• Define an AI-empowered framework that relies on ETSI
MEC to optimally deploy the vehicle collision detection
and avoidance service.

• Train and build a DL module based on LSTM, using a
real dataset to predict the vehicles’ mobility.

• Devise a resource assignment algorithm that runs at the
MEC orchestrator (MEO) and considers the mobility pre-
diction of vehicles when assigning computing resources
to the running application instances.

The rest of the paper is organized as follows. Section II
provides state of the art on the usage of MEC to support
vehicles collision detection and avoidance systems, whereas
Section III describes our proposed framework in terms of
mobility prediction model as well as resource assignment
algorithm. Section IV is devoted to the performance evaluation
of the proposed framework evaluation and the obtained results
analysis. Finally, conclusions are drawn in Section V.

II. RELATED WORK

Employing the MEC system to optimize the collision detec-
tion and avoidance service in IoV has been rarely explored in

the literature. Only a few works exist. These works usually
start by collecting vehicles’ mobility information in real-
time before detecting collisions and alerting the concerned
vehicles. In [4], the authors address one of the relevant classes
of automotive services, called the Extended Virtual Sensing
(EVS) services, which among others, shows the benefit of
using edge computing resources in the context of autonomous
driving. Particularly, the authors focus on the EVS application
that supports vehicle collision avoidance at intersections be-
fore describing its implementation using the OpenAirInterface
MEC platform [5]. The EVS application identifies possible
collisions by performing in real-time the distances between
vehicles.
An enhanced Collision Avoidance (eCA) service is proposed
in [6]. eCA is deployed at the edge of the network and
comprises mainly two algorithms: (i) Collision Avoidance
Algorithm (CAA), which first determines the vehicle’s next
trajectory via the positional information included in the peri-
odic beacons and then detects if two vehicles are on a collision
path or not. In particular, the next vehicles’ trajectories are
predicted by projecting the next vehicles’ positions onto curve
or straight segments. This projection depends on the status of
the blinking lights; (ii) Collision Avoidance Strategy (CAS),
which notifies the vehicles potentially involved in a collision
regarding the action needed to avoid it.
In [7], the collision avoidance application for vehicular net-
works is extended to benefit vulnerable users, e.g., pedestri-
ans and bicycles, equipped with a smartphone. The authors

proposed a MEC-based collision avoidance system. Through
Basic Safety Message (BSM), this system periodically collects
users’ information such as position, acceleration, speed, and
heading, in order to estimate users’ trajectories and avoid
collision between them.
Although the above works addressed the collision avoidance
issue between vehicles through the MEC system, they did
not consider the MEC resources usage given the limited
capacity of MEC hosts compared to the centralized cloud
servers. Another drawback we can mention is the collision
detection scheme that depends mainly on the performance of
the collision avoidance system. In fact, these works are based
on simple schemes to estimate the next trajectories of mobile
users, for instance, by only determining the distances between
vehicles in real time [4], or reading the status of the blinking
lights [6]; while in this paper, we explore the usage of DL to
predict vehicles mobility and use this prediction to improve
the management of MEC computing resources.

III. PROPOSED FRAMEWORK

A. Architecture

As stated earlier, we assume that the collision avoidance
application is duplicated (i.e., several instances) and deployed
on all the MEC hosts of a network operator, allowing to
cover, with low-latency access, a large geographical area. We
recall that a MEC host includes a virtualization platform that
runs applications’ instances in the form of Virtual Machines
(VM) or Containers. Each MEC host has a computing capacity
depending on the used hardware, which is limited compared to
a centralized cloud. Fig. 1 depicts the envisioned architecture.
We assume that a MEC host is deployed to cover a specific
geographical location, which corresponds to a set of gNBs (5G
Base station) organized in a Tracking Area (TA). A TA is a
concept used in cellular networks, which consists of grouping
together a set of cells. The aim is to optimize the mobility
management algorithm by simplifying the procedures inside
a TA group. In Fig. 1, MEC host1 covers a geographical
location composed of TA1 and TA2. All connected vehicles
moving in this area are served by the collision avoidance
application instantiated at MEC host1. If a vehicle moves from
TA2 to TA3, then it will be served by the collision avoidance
application instantiated in MEC host2. It is important to note
that the redirection of the traffic from collision avoidance ap-
plication instance 1 to instance 2 is transparent to the vehicles.
Indeed, to ensure a seamless redirection of the traffic to the
new instance, we rely on Domain Name Service (DNS). The
DNS servers record the IP addresses of the running application
instances along with their geographical location. Therefore,
when a vehicle tries to connect to the MEC application, it has
to resolve the service’s URL to an IP address. In this case,
the DNS server will send the IP address of the closest MEC
application instance. To avoid the DNS cache’s impact at the
vehicle, we use a small value of the Time To Leave (TTL)
of a cache entry, leading to often the resolution of URL of
service.

One crucial challenge to successfully deploy collision avoid-
ance applications in the context of IoV is to ensure broad
coverage of the network with low latency connectivity. This
can be achieved in 5G by using MEC and duplicating the
application on all the MEC hosts to guarantee a broad coverage
of the network, hence the road. Obviously, as the number
of application instance increases, the consumed overall MEC
resources increases. In this work, we assume that one instance
of the application can efficiently handle, without increasing the
response time, N connected vehicles. Indeed, the application’s
response time is a critical metric to ensure low end-to-end la-
tency. In the context of a virtualized environment in MEC, the
collision application instance will run as a MEC application
(MEapp) on top of a virtualization platform as a Container
or a VM. Therefore, a MEapp instance will use a certain
number of computing resources, namely virtual CPU (vCPU),
which should be optimal to ensure a low response time of
the running service. We assume that a MEapp consuming X
vCPU can optimally (keep a low response time) handle N
users. To handle 2N , then 2X CPUs are needed. Later we
will describe how we can obtain these values.
To recall in MEC, the MEC Orchestrator (MEO) manages the
Life Cycle Management (LCM) and orchestrates the comput-
ing resources of the MEapps. It is in charge of deploying the
MEapps on top of the Virtualized platform at the MEC host.
The MEapps are described using an Application Descriptor
(AppD), which includes configuration information, such as the
application image, and the computing resources needed by the
application. The MEO then is in charge of requesting the CPU
resources and updating the request if deemed appropriate by
scaling up or down the needed CPU, i.e., increase or decrease
the number of vCPU assigned to a MEapp. For more details on
ETSI MEC architecture, interfaces, and components, readers
may refer to [8].
In this work, our objective is to derive at the MEO, for each
MEapp instance, the needed number of vCPU, by finding
a trade-off between optimizing the MEC host computing
resources and ensuring low response time to optimally run
the service. Intuitively, one solution would be that each time a
vehicle (or a batch of vehicles) has moved from one MEC host
to another MEC host, the resource management algorithm runs
at the MEO computes the needed vCPU for each application
instance it manages. However, this solution requires continu-
ous tracking of vehicles’ mobility at the network layer, which
is difficult to enforce. Accordingly, we propose to leverage the
above-mentioned solution with a mobility prediction model
using LSTM to anticipate the update of resources (vCPU)
needed by each MEapp instance. The aim is to not only
optimize the MEC resources, but also ensure that a MEapp
instance performs optimally (low response time) considering
the number of vehicles connected to it.
The proposed algorithm runs at the MEO, as shown in Fig. 1. It
is composed of two modules, the first one, namely the mobility
prediction module, which takes as inputs the vehicle GPS
coordinates obtained from the collision avoidance MEapps (via
Mp1 interface [8]) and predicts through the LSTM module,

the next position of the vehicles; while the second module,
namely LCM decision, uses the predicted next vehicle posi-
tions to derive the needed computing resources (vCPU) of each
MEapp instance, which allow to optimally run the collision
avoidance service. The MEO enforces the LCM decisions via
the MEC Edge Platform Manager (MEPM), which according
to ETSI, is in charge of updating the CPUs resources of the
running MEapps through the MEC host/Edge Virtualization
Infrastructure Manager (MEP/VIM) [8]. The global algorithm
runs as follows:

• Initialise the configuration of all MEapp instances of the
collision avoidance application with X0 CPUs.

• Epoch Loop
1) Mobility prediction: Receive a batch of GPS coor-

dinate from the MEapp
2) Mobility prediction: Predict the new location of

vehicles for epoch t + 1, and hence the number of
users to be connected for each MEapp instance.

3) LCM: run a decision algorithm that (1) takes as
inputs the predicted number of served vehicle per
MEapp for t + 1, (2) extracts the necessary com-
puting resources according to the predicted number,
and (3) changes the configuration of the MEapp in-
stances, through the MEPM, if deemed appropriate.

In the next sections, we will detail the mobility and re-
sources prediction as well as LCM modules.

B. Vehicles mobility prediction model

To predict the vehicles’ mobility, we use deep Recur-
rent Neural Networks (RNN) with Long-Short-Term-Memory
(LSTM) algorithm. The main procedures are: the dataset,
designing the neuronal network, training the neuronal network,
and testing the network. The three first steps are described in
the following sub-sections, while the last step is described in
the performance evaluation section.

1) Taxis Mobility Data: We use real and publicly available
taxi trace data, which is composed of 464019 records and
gathered over 30 days in San Francisco (USA) [9]. This dataset
was collected in May 2008 and contains mobility traces in
terms of GPS coordinates of approximately 500 taxis. Each
taxi is equipped with a GPS module and sends periodically,
each 10 sec, its location (Timestamp, ID, Geo-coordinates) to
a central server.
It is worth noting that we consider the San Francisco map as (n
x m) grid cells, and we translate each taxi’s GPS coordinates
to a cell ID. The dataset is used to provide actual taxis’
GPS coordinates to our mobility prediction model in order to
predict the next ones, and hence the vehicles’ next location,
which is used as input by the resource assignment algorithm to
update or not the assigned computing resources to the running
MEapp instances. We use this dataset rather than simulated
GPS coordinates to validate our algorithm under real mobility
traces.

2) Design of Taxis Mobility Prediction Model: RNN with
LSTM algorithm is well-suited to classify, process, and predict
time series, given time lags of unknown duration [10]. In fact,

RNN with LSTM algorithm is capable of learning long-term
dependencies between input data by using an internal memory
to remember past data in memory. This makes it suitable for
our problem to predict the next location of vehicles (Cell IDs)
based on the past one.

Input trajectory of k points:

Input sequence : X′𝑡 ൌ ሺ𝑙ᇱ𝑡 𝑘
, … , 𝑙ᇱ

𝑡 1
, 𝑙ᇱ

𝑡ሻ

Input Layer

LSTM

LSTM

LSTM

Prediction result:

l't+1

Output Layer

‐

>

>

‐

Fig. 2. Basic LSTM-Based prediction Model of vehicles location.

Fig. 2 illustrates our LSTM-based vehicles mobility pre-
diction model. The prediction process comprises three main
steps. The input vehicle’s trajectory is first processed by
a fully connected input layer with 56 neurons where each
vehicle’s position (Cell ID) is mapped to a 56-dimensional
feature tensor. Then, the resulted sequence is sent to a deep
RNN composed of three stacked LSTM layers, each with 56
neurons.
Each LSTM layer considers the previous LSTM layer’s output
as input and feeds its output to the next LSTM layer. Finally, a
fully connected output layer with 45 neurons maps the output
of the last LSTM layer to the cell ID, corresponding to the
predicted vehicle’s cell ID of the next time-step, lt+1. We
argue the usage of 45 neurons by the fact that we divided the
San Francisco map into 45 cells,
Finally, the training of the model phase aims at minimizing the
distance between the predicted and real location of vehicles
(Cell ID). Hence, we choose the Mean Squared Error (MSE)
as the loss function and adopt the Stochastic Gradient Descent
algorithm to update the neural network parameters [11].

C. LCM Resources Assignment

As indicated earlier, the LCM module runs the decision
algorithm that may request resources update for the running
instances of the collision avoidance MEapp. Let assume v(),
loc(), u() as vectors that respectively represent the vCPU
used by a MEapp, the location of a MEapp (MEC server
ID), and the number of vehicles connected to a MEapp. The
index of the vector corresponds to the collision avoidance
MEapp instance number. We note by v t, u t, the value
of the vectors at epoch t. At the initial epoch (t = 0) we

note v 0 = {c0, c0, . . . , c0}, and u 0 = {0, .., 0}, where c0
corresponds to the initial configuration of the MEapp (i.e.
number of vCPU), u 0 is the initial number of connected
vehicles to the collision avoidance application. The decision
algorithm is detailed in Algorithm 1, where N is the number
of instances, Change() is a vector of Boolean, and C(X) is
a function that gives the necessary vCPU to optimally handle
X users. C(X) is an integer value between 1 and M . Note
that C(X) can be derived by benchmarking an instance of
the collision avoidance application, which can be obtained by
simulation or using a real deployment. The C(X) function aims
to indicate the number of users that can be handled by one
instance while ensuring the computing latency very low, hence
reducing the response time.
Firstly, the decision algorithm considers as input the predicted
number of vehicles to be served by each MEapp instance for
the next epoch. Secondly, it verifies if the current number of
vCPU used by the MEapp is not optimal (more resources are
needed or over usage of the resources). If so, then an update of
the resources is requested. Finally, for all the MEapp instances
that need an update, a request is sent to the MEPM.

IV. PERFORMANCE EVALUATION

We divide the performance analysis of the proposed frame-
work into two parts: (1) the performance and accuracy of
the mobility prediction module, and (2) the LCM resource
assignment performances. For the first part, we used the
Tensorflow engine to implement our RNN with the LSTM-
based prediction model [12]. In addition, we compared our
learning model with two other learning algorithms: (i) RNN
with Gated Recurrent Unit (GRU) based model, which is
similar to LSTM, but has fewer parameters than LSTM, as it
lacks an output gate [13]. (ii) Convolutional Neural Network
(CNN) based model, a deep learning algorithm designed to
process arrays of data, and can also be applied for time series
forecasting problems [14]. Table I presents the considered
parameters to compare the three algorithms. For the sake of
fairness in terms of comparison, the three algorithms share the
same activation function and optimizer (Stochastic Gradient
Descent).
For the second part, we simulated a distributed MEC system
that covers the city of San Francisco. The city map has been
divided into (n x m) grid cells. We assume that the grid cells
are covered by six MEC hosts, and each one (host) is in
charge of covering a set of cells. Besides, we assume that
each collision avoidance instance needs one vCPU to manage
two vehicles. It should be noted that this number can be fixed
by benchmarking the application in real deployment or by
simulation. Finally, we suppose that each MEC host has 15
vCPU, which means that a MEapp instance may get at a
maximum of 15 vCPU; thus, it can manage up to 30 vehicles.
We then compare our resources assignment scheme to a static
scheme that assigns a fixed number of vCPU (10 vCPU) to
each MEapp instance, whatever the vehicles’ density (i.e., the
number of vehicles to be served by a MEapp instance). We
focus on two main metrics to validate our scheme: overloaded

TABLE I
IMPLEMENTATION PARAMETERS.

Parameters Values
Dataset
Number of records 464019
Number of cars 500
Collection time period May 2008
Percentage of training set 80% of the dataset
Percentage of test set 20% of the dataset
Deep Learning
Deep learning Tool Tensorflow
LSTM timestamp Window 60
Activation functions Relu (hidden layers)

Softmax (output layer)
Optimizer Stochastic Gradient Descent

(SGD)
Loss function Mean Squared Error
Learning rate 0.01
Dropout 0.2
Batch size 50 samples
Number of epoch [20, 60] epochs
MEC
Number of MEC Hosts 6 hosts
Number of vCPU 15 vCPU

MEapp instances (i.e., the demand exceeds servers capacity
in terms of vCPU resources) and over-provisioned MEapp
instances (i.e., less than 20% of MEapp’s vCPU resources are
used); which corresponds, respectively, to a high response time
of the application instance, and an under optimal usage of the
MEC host computing resources.

A. Mobility Prediction Evaluation

Figs. 3-(A) compares the considered learning algorithms’
performances in terms of Mean Squared Error (MSE) on the
test dataset, aiming at validating the performances of our
prediction model using unseen data, i.e., data that the models
have not seen before. We remark that our LSTM-based model
minimizes the MSE compared to the other algorithms even
when we increase the number of test samples. We also observe
that CNN and RNN with GRU generate almost the same
performances. To validate these results, we depict in Fig. 3-
(B) a comparison between the real and predicted cars’ cell ID
values of ten test samples. Mostly, we notice that the predicted
cell IDs using the LSTM-based model are similar to the real
cell ID values. However, RNN with GRU and CNN algorithms
fail in predicting the correct cell ID for some test samples. For
instance, test samples ID = 2, 3, 8 and 9. These results confirm
Fig. 3-(A) results, i.e., the efficiency and the accuracy of the
LSTM-based model in predicting cars’ cell IDs.

B. Resource Assignment Evaluation

Fig. 4-(A) and Fig. 4-(B) represent, respectively, the vehicle
density under the coverage of each MEC host (and hence the
vehicles’ number to be served by a MEapp instantiated at the
MEC host) during a rush hour (from 8 am to 9 am), and the
number of overloaded MEapp instances during that hour. The
number of overloaded MEapp instances is a critical metric
for the service-level performance as an overloaded MEapp

(A) (B)

Fig. 3. Performances comparison between learning algorithms. (A) Mean Squared Error on test dataset. (B) Real and Predicted cell ID values.

means high response time, which degrades the performance
and may lead to safety issues. From Fig. 4-(A), we observe
that the vehicle density is high; most of the MEapp has more
than 20 vehicles to serve, which requires more than 10 vCPU.
We remark in Fig. 4-(B) that our scheme keeps the number
of overloaded MEapp instances very low compared to the
static scheme. We argue this by the fact that the LSTM-based
model can predict the density of vehicles in each group of
cells and hence can anticipate the needed vCPU resources
of the collision avoidance instances (i.e., MEapp instances),
which allows adapting to the vehicles’ density to be served.
However, by fixing the vCPU value to be used by each
MEapp instance, the static scheme results in a high number
of overloaded MEapp instances. This is mainly due to the
fact that the demand (vehicle density) exceeds the MEapp
instances’ capacity (i.e., 20 vehicles), which can clearly be
observed in Fig. 4-(A).

Fig. 5-(A) and Fig. 5-(B) illustrate, respectively, the vehicle
density during the low traffic hours (from 3 pm to 4 pm) and
the number of over-provisioned MEapp instances during that
hour. From Fig. 5-(A), we observe that the vehicle density is
low, and most of the MEC host covers less than 10 vehicles,
which requires only 5 vCPU. We notice from Fig. 5-(B) that
again, our scheme minimizes the number of over-provisioned
MEapp instances compared to the static scheme. In fact,
anticipating the required resources also helps to reduce the
number of over-provisioned MEapp instances, as the LCM
computes exactly the needed number of vCPU to use with the
current vehicle density to serve. However, in the static scheme,
several MEapps are over-provisioned. Only 5 over 10 vCPU
are used to manage the current vehicle density, which leaves
5 unused and cannot be assigned to another MEapp instance
in the MEC host.
To summarize, we can deduce that our resources assignment
algorithm’s performance depends mainly on the accuracy of
the LSTM-based prediction model. The generated results show
the efficiency of our LSTM-based model to estimate the
number of vehicles at each cell, which in turn improves the
efficiency of our resources assignment algorithm in forecasting
exactly the needed resources by each MEapp instance; hence
improving the overall resource of the MEC host. Contrariwise,

the static scheme uses the same computing resources, whatever
the density of vehicles to serve for all the MEapp instances,
which leads to degrade both the MEC computing resource
usage and the service performance.

V. CONCLUSION

In this work, we introduced an AI-empowered framework
that aimed to improve the management of MEC resources
(mainly computing) when deploying vehicle collision detec-
tion and avoidance service in IoV. The framework aimed at
finding a trade-off between improving the overall usage of
MEC resources and guaranteeing that each instance of the
deployed vehicle collision detection and avoidance applica-
tion is assigned enough resources to optimally run, i.e., low
response time. To find this trade-off, our framework uses RNN
with LSTM to predict vehicles’ density at each cell and then
computes the exactly needed computing resources by each
instance of the application.

We built our RNN with LSTM-based model and evaluated
our framework using a real dataset of vehicle mobility in a
big city. The obtained results showed the accuracy of our
prediction model to estimate the exact number of vehicles at
each group of cells and the efficiency of the resource allocation
resource to optimize both the overall MEC resources and the
application performance.

One of our future work directions is to perform positions
prediction in a distributed way, using distributed learning,
which will allow the vehicle to make the prediction locally.

ACKNOWLEDGEMENT

This work has been partially supported by the European
Union’s H2020 MonB5G (grant no. 871780) project and the
ANR Chist-era Leading Edge project.

REFERENCES

[1] H. Cao, S. Gangakhedkar, A. R. Ali, M. Gharba, and J. Eichinger, “A 5g
v2x testbed for cooperative automated driving,” in 2016 IEEE Vehicular
Networking Conference (VNC), 2016, pp. 1–4.

[2] H. Ma, S. Li, E. Zhang, Z. Lv, J. Hu, and X. Wei, “Cooperative au-
tonomous driving oriented mec-aided 5g-v2x: Prototype system design,
field tests and ai-based optimization tools,” IEEE Access, vol. 8, pp.
54 288–54 302, 2020.

(A) (B)

Fig. 4. Performance Evaluation of our Resources Assignment Algorithm (8am-9am). (A) Vehicle Density per MEC Host. (B) Overloaded MEapp instances.

(A) (B)

Fig. 5. Performance Evaluation of our Resources Assignment Algorithm (3pm-4pm). (A) Vehicle Density per MEC Host. (B) Over-provisioned MEapp
instances

[3] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini, and C. Bonnet, “Low
latency MEC framework for sdn-based LTE/LTE-A networks,” in IEEE
International Conference on Communications, ICC 2017, Paris, France,
May 21-25, 2017. IEEE, 2017, pp. 1–6.

[4] G. Avino, P. Bande, P. A. Frangoudis, C. Vitale, C. Casetti, C. F.
Chiasserini, K. Gebru, A. Ksentini, and G. Zennaro, “A mec-based
extended virtual sensing for automotive services,” IEEE Transactions
on Network and Service Management, vol. 16, no. 4, pp. 1450–1463,
2019.

[5] S. Arora, P. A. Frangoudis, and A. Ksentini, “Exposing radio network
information in a mec-in-nfv environment: the rnisaas concept,” in
5th IEEE Conference on Network Softwarization, NetSoft 2019, Paris,
France, June 24-28, 2019, C. Jacquenet, F. D. Turck, P. Chemouil,
F. Esposito, O. Festor, W. Cerroni, and S. Secci, Eds. IEEE, 2019,
pp. 306–310.

[6] M. Malinverno, J. Mangues-Bafalluy, C. E. Casetti, C. F. Chiasserini,
M. Requena-Esteso, and J. Baranda, “An edge-based framework for
enhanced road safety of connected cars,” IEEE Access, vol. 8, pp.
58 018–58 031, 2020.

[7] M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Malandrino,
and S. Scarpina, “Mec-based collision avoidance for vehicles and
vulnerable users,” 2019.

[8] A. Ksentini and P. Frangoudis, “Toward slicing-enabled multi-access
edge computing in 5g,” IEEE Network, vol. 34, no. 1, pp. 99–105,
January 2020.

[9] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD dataset epfl/mobility (v. 2009-02-24),” Downloaded from
https://crawdad.org/epfl/mobility/20090224, Feb. 2009.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[11] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Understanding and
optimizing asynchronous low-precision stochastic gradient descent,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 561–574.

[12] P. Goldsborough, “A tour of tensorflow,” 2016.
[13] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[14] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural

networks for time series classification,” Journal of Systems Engineering
and Electronics, vol. 28, no. 1, pp. 162–169, 2017.

BIOGRAPHIES

BOUZIANE BRIK received his Ph.D degree from
Laghouat and La Rochelle (France) universities in 2017.
He is currently working as associate professor at Burgundy
(Bourgogne) university and DRIVE laboratory. He has been
working on network slicing in the context of H2020 European
project on 5G. His research interests include also Internet
of Things (IoT), IoT in industrial systems, Smart grid, and
vehicular networks.

ADLEN KSENTINI is an IEEE COMSOC distinguished
lecturer. He obtained his Ph.D. degree in computer science
from the University of Cergy-Pontoise in 2005. Since March
2016, he is a professor in the Communication Systems De-
partment of EURECOM. He has been working on several EU
projects on 5G, Network Slicing, and MEC.

