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Abstract

Due to the rapid growth of traffic in the Internet, backbone links of several Gigabit/sec are commonly

deployed. To handle Gigabit/sec traffic rates, the backbone routers must be able to forward millions of packets

per second on each of their ports. Fast IP address lookup in the routers, which uses the packets destination

address to determine for each packet the next hop, is therefore crucial to achieve the packet forwarding rates

required.

IP address lookup is difficult because it requires a longest matching prefix search. In the last couple of

years, various algorithms for high performance IP address lookup have been proposed. We present a survey

of state-of-the art IP address lookup algorithms and compare their performance in terms of lookup speed,

scalability, and update overhead.

1 Introduction

The primary role of routers is to forward packets towards their final destination. To this purpose, a router

must decide for each incoming packet where to send it next. More exactly, the forwarding decision consists in

finding the address of the next-hop router as well as the egress port through which the packet should be sent.

This forwarding information is stored in a forwarding table that the router computes based on the information

gathered by routing protocols. To consult the forwarding table, the router uses the packet’s destination address

as a key; this operation is calledaddress lookup. Once the forwarding information is retrieved, the router can

transfer the packet from the incoming link to the appropriate outgoing link, in a process called switching.

The exponential growth of the Internet has stressed its routing system. While the data rates of links have kept

pace with the increasing traffic, it has been difficult for the packet processing capacity of routers to keep up with

these increased data rates. Specifically, the address lookup operation is a major bottleneck in the forwarding

performance of today’s routers. This paper presents a survey of the latest algorithms for efficient IP address

lookup. We start by tracing the evolution of the IP addressing architecture. The addressing architecture is
�This research was supported in part by CS Telecom.
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of fundamental importance to the routing architecture and reviewing it will help us to understand the address

lookup problem.

1.1 The Classful Addressing Scheme

In IP version 4, IP addresses are 32 bit long and, when broken up into 4 groups of 8 bits, are normally represented

as four decimal numbers separated by dots. For example, the address 10000010_01010110_00010000_01000010

corresponds in the dotted-decimal notation to 130.86.16.66.

One of the fundamental objectives of the Internet Protocol is to interconnect networks; so routing on a

network basis was a natural choice (rather than routing on a host basis). Thus, the IP address scheme initially

used a simple two-level hierarchy, with networks at the top level and hosts at the bottom level. This hierarchy

is reflected in the fact that an IP address consists of two parts, a network part and a host part. The network part

identifies the network to which a host is attached and thus all hosts attached to the same network agree in the

network part of their IP addresses.

Since the network part corresponds to the first bits of the IP address it is called theaddress prefix. We will

write prefixes as bit strings of up to 32 bits in IPv4 followed by a “*”. For example, the prefix 1000001001010110*

represents all the 216 addresses that begin with the bit pattern 1000001001010110. Alternatively, prefixes can be

indicated using the dotted-decimal notation, so the same prefix can be written as 130.86/16, where the number

after the slash indicates the length of the prefix.

With a two-level hierarchy, IP routers forwarded packets based only on the network part, until packets

reached the destination network. As a result, a forwarding table only needed to store a single entry to forward

packets to all the hosts attached to the same network. This technique is calledaddress aggregation and allows

using prefixes to represent a group of addresses. Each entry in a forwarding table contains a prefix, as can be

seen in Table 1. So, finding the forwarding information requires to search for the prefix in the forwarding table

that matches the corresponding bits of the destination address.

Destination Address Next-hop Output
Prefix interface

24.40.32/20 192.41.177.148 2
130.86/16 192.41.177.181 6

208.12.16/20 192.41.177.241 4
208.12.21/24 192.41.177.196 1
167.24.103/24 192.41.177.3 4

Table 1: A forwarding table

The addressing architecture specifies how the allocation of addresses is performed, that is it defines how to

partition the total IP address space of 232 addresses. Specifically, how many network addresses will be allowed

and of what size each of them should be. When the Internet addressing was initially designed, a rather simple

address allocation scheme was defined, which is known today as theclassful addressing scheme. Basically,

three different sizes of networks were defined in this scheme, identified by a class name: class A, B, and C (see

figure 1). Size of networks was determined by the number of bits used to represent the network part and the

host part. Thus networks of class A, B or C consisted in an 8, 16 or 24-bit network part and a corresponding 24,

16 or 8-bit host part.
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Figure 1: Classful Addresses

With this scheme there were very few class A networks and their addressing space represented 50% of the

total IPv4 address space (231 addresses out of a total of 232). There were 16,384 (214) class B networks with

a maximum of 65,534 hosts per network and 2,097,152 (221) class C networks with up to 256 hosts. This

allocation scheme worked well in the early days of the Internet. However, the continuous growth of the number

of hosts and networks have made apparent two problems with the classful addressing architecture. First, with

only three different network sizes to choose, the address space was not used efficiently and the IP address space

was getting exhausted very rapidly, even though only a small fraction of the addresses allocated were actually

in use. Second, although the state information stored in the forwarding tables did not grow in proportion to the

number of hosts, it still grew in proportion to the number of networks. This was especially important in the

backbone routers, which must maintain an entry in the forwarding table for every allocated network address. As

a result, the forwarding tables in the backbone routers were growing very rapidly. The growth of the forwarding

tables resulted in higher lookup times and higher memory requirements in the routers and threatened to impact

their forwarding capacity.

1.2 The CIDR Addressing Scheme

To allow for a more efficient use of the IP address space and to slow down the growth of the backbone forwarding

tables, a new scheme called Classless Inter-domain Routing or CIDR was introduced.

Remember, that in the classful address scheme, only 3 different prefix lengths are allowed: 8,16 and 24

corresponding to the classes A, B and C, respectively (see figure 1). CIDR makes more efficient use of the

IP address space by allowing a finer granularity in the prefix lengths. With CIDR, prefixes can be of arbitrary

length rather than constraining them to be 8, 16 or 24 bits long.

To address the problem of forwarding table explosion, CIDR allows address aggregation at several levels.

The idea is that the allocation of addresses has a topological significance. Then, we can recursively aggregate

addresses at various points within the hierarchy of the Internet’s topology. As a result, backbone routers maintain

forwarding information not at the network level but at the level of arbitrary aggregates of networks. Thus,

recursive address aggregation reduces the number of entries in the forwarding table of backbone routers.

To understand how this works, consider the networks represented by the network numbers from 208.12.16/24

through 208.12.31/24 (see figures 2 and 3). Suppose that in a router all these network addresses are reachable

through the same service provider. From the binary representation we can see that the leftmost 20 bits of all the

addresses in this range are the same (11010000 00001100 0001). Thus, we can aggregate these 16 networks into

one “supernetwork” represented by the 20-bit prefix, which in decimal notation gives 208.12.16/20. Note that

indicating the prefix length is necessary in decimal notation, because the same value may be associated to pre-
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fixes of different lengths, for instance208.12.16/20 (11010000 00001100 0001*) is different from208.12.16/22

(11010000 00001100 000100*).

110100000000110000010000*

110100000000110000010101*

110100000000110000011111*

11010000000011000001*208.12.16/20

208.12.31/24

208.12.21/24

208.12.16/24

Figure 2: Prefix aggregation

208.12.16/24

208.12.21/24

208.12.31/24

2³²-10
Total IPv4 Adress Space

Figure 3: Prefix Ranges

While a great deal of aggregation can be achieved if addresses are carefully assigned, in some situations,

a few networks can interfere with the process of aggregation. For example, suppose now that customer owing

the network 208.12.21/24 changes its service provider and does not want to renumber its network. Now, all the

networks from 208.12.16/24 through 208.12.31/24 can be reached through the same service provider, except

for the network 208.12.21/24 (see figure 3). We cannot perform aggregation as before, and instead of only one

entry, 16 entries need to be stored in the forwarding table. One solution that can be used in this situation is

aggregating in spite of the exception networks and additionally storing entries for the exception networks. In

our example, this will result in only two entries in the forwarding table: 208.12.16/20 and 208.12.21/24, see

figure 4 and table 1. Note however, that now some addresses will match both entries because prefixes overlap.

In order to always make the correct forwarding decision, routers need to do more than to search for a prefix

that matches. Since exceptions in the aggregations may exist, a router must find the most specific match, and

the most specific match is the longest matching prefix. In summary, the address lookup problem in routers

requires to search the forwarding table for the longest prefix that matches the destination address of a packet.

208.12.21/24

208.12.16/20

0 2³²-1
Total IPv4 Adress Space

These adresses match both prefixes

Figure 4: Exception prefix
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1.3 Difficulty of the Longest Matching Prefix Search

In the classful addressing architecture, the length of the prefixes was coded in the most significant bits of an

IP address (see figure 1), and the address lookup was a relatively simple operation: Prefixes in the forwarding

table were organized in three separate tables, one for each of the three allowed lengths. The lookup opera-

tion amounted to find an exact prefix match in the appropriate table. The search for an exact match could be

performed using standard algorithms based on hashing or binary search.

While CIDR allows to reduce the size of the forwarding tables, the address lookup problem now becomes

more complex. With CIDR, the destination prefixes in the forwarding tables have arbitrary lengths and do not

correspond any more to the network part since they are the result of an arbitrary number of network aggrega-

tions. Therefore, when using CIDR, the search in a forwarding table cannot be performed any longer by exact

matching because the length of the prefix cannot be derived from the address itself. As a result, determining

the longest matching prefix involves not only to compare the bit pattern itself but also to find the appropriate

length. Therefore, we talk about searching in two dimensions, the value dimension and the length dimension.

The search methods we will review try to reduce the search space at each step in both of these dimensions.

In what follows we will use N to denote the number of prefixes in a forwarding table and W to indicate the

maximum length of prefixes, which is typically also the length of the IP addresses.

1.4 Requirements on Address Lookup Algorithms

It is important to briefly resume the characteristics of the today’s routing environment to derive the adequate

requirements and metrics for the address lookup algorithms that we will survey.

As we have seen, using address prefixes is a simple method to represent groups of contiguous addresses.

Address prefixes allow aggregation of forwarding information and hence support the growth of the Internet.

Figure 5 shows the growth of a typical backbone router table. We can observe three phases of table growth:

Before the introduction of CIDR growth was exponential (partly visible in early 1994). From the mid of 1994

to the mid of 1998, growth slowed down and is nearly linear. From the mid of 1998 up to now growth is again

exponential. Since the number of entries in router tables still grows, it is important that search methods reduce

drastically the search space at each step. Algorithms must be scalable with respect to the number of prefixes.

Another characteristic of the routing environment is that a forwarding table needs to be updated dynamically

to reflect route changes. In fact, instabilities in the backbone routing protocols can change fairly frequently the

entries in a forwarding table. Labovitz [8] found that backbone routers may receive bursts of route changes at

rates exceeding several hundred prefix updates per second. He also found that, in average, route changes occur

one hundred times per second. Thus, update operations must be performed in 10 msec or less.

The prefix length distribution in the forwarding tables can be used as a metric of the quality of the Internet

hierarchy and address aggregation. Shorter prefixes represent a greater degree of aggregation. Thus, a decrease

in the average prefix length would indicate improved aggregation and hierarchy in the Internet. In figure 6

we can see that the historical class C with its 24-bit prefix length still dominates the number of entries in the

forwarding table (note that scale is logarithmic). A recent study shows that the number of exceptions in the

address aggregation is growing. More precisely, Huston [7] found that currently 40 % of the entries of a typical

backbone forwarding table are prefix exceptions.
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Figure 6: Prefix length distribution of a typical backbone router
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2 Classical Solution

2.1 Binary Trie

A natural way to represent prefixes is using a trie. A trie is a tree-based data structure allowing the organization

of prefixes on a digital basis by using the bits of prefixes to direct the branching. Figure 7 shows a binary trie

(each node has at most two children) representing a set of prefixes of a forwarding table.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

0

0

0

0

0

0

0

0

0

1

1

1

11

1

1

hg if

ec

b

a d

Figure 7: Binary trie for a set of prefixes.

In a trie, a node on level l represents the set of all addresses that begin with the sequence of l bits consisting

of the string of bits labeling the path from the root to that node. For example, node c in figure 7 is at level

3 and represents all addresses beginning with the sequence 011. The nodes that correspond to prefixes are

shown in dark color and these nodes will contain the forwarding information or a pointer to the forwarding

information. Note also that prefixes are not only located at leaves but also at some internal nodes. This situation

arises because of exceptions in the aggregation process. For example, in figure 7 the prefixes b and c represent

exceptions to prefix a. Figure 8 illustrates this situation better. The trie shows the total address space, assuming

5-bit long addresses. Each leaf represents one possible address. We can see that address spaces covered by

prefixes b and c overlap with the address space covered by prefix a. Thus, prefixes b and c represent exceptions

to prefix a and refer to specific subintervals of the address interval covered by prefix a. In the trie in figure 7,

this is reflected by the fact that prefixes b and c are descendants of prefix a, or in other words, prefix a is itself

a prefix of b and c. As a result, some addresses will match several prefixes. For example, addresses beginning

with 011 will match both, prefix c and prefix a. Nevertheless, prefix c must be preferred because it is more

specific (longest match rule).

Tries allow in a straightforward way to find the longest prefix that matches a given destination address. The

search in a trie is guided by the bits of the destination address. At each node, the search proceeds to the left or

to the right according to the sequential inspection of the address bits. While traversing the trie, every time we

visit a node marked as prefix (i.e., a dark node) we remember this prefix as the longest match found so far. The

search ends, when there is no more branch to take and the longest or best matching prefix will be the last prefix

remembered. For instance, if we search the best matching prefix (BMP) for an address beginning with the bit

pattern 10110 we start at the root in figure 7. Since the first bit of the address is 1 we move to the right, to the

node marked with prefix d and we remember d as the BMP found so far. Then we move to the left since the

second address bit is 0, this time the node is not marked as prefix, so d is still the BMP found so far. Next the

third address bit is 1 but at this point there is no branch labeled 1, so search ends and the last remembered BMP
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b  01000*
c  011*
d  1*
e  100*

g  1101*
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Figure 8: Address space

(prefix d) is the longest matching prefix.

In fact, what we are doing is a sequential prefix search by length, trying at each step to find a better match.

We begin by looking in the set of length-1 prefixes, which are located at the first level in the trie, then in the set

of length-2, located at the second level, and so on. Moreover, using a trie has the advantage that while stepping

through the trie, the search space is reduced hierarchically. At each step, the set of potential prefixes is reduced

and search ends when this set is reduced to one.

Update operations are also straightforward to implement in binary tries. Inserting a prefix begins by doing

a search. When arriving at a node with no branch to take, we can insert the necessary nodes. Deleting a prefix

starts again by a search, unmarking the node as prefix and, if necessary deleting unused nodes, i.e. leave nodes

not marked as prefixes. Note finally that since the bit strings of prefixes are represented by the structure of the

trie, the nodes marked as prefixes do not need to store the bit strings themselves.

2.2 Path-compressed Tries

While binary tries allow the representation of arbitrary length prefixes they have the characteristic that long

sequences of one-child nodes may exist (see prefix b in figure 7). Since these bits need to be inspected, even

though no actual branching decision is made, search time can be longer than necessary for some cases. Also,

one-child nodes consume additional memory. In an attempt to improve time and space performance, a technique

called path-compression can be used. Path-compression consists in collapsing one-way branch nodes. When

one-way branch nodes are removed from a trie, additional information must be kept in remaining nodes, so that

search operation can be performed correctly.

There are many ways to exploit the path-compression technique; perhaps the simplest to explain is illustrated

in figure 9, corresponding to the binary trie in figure 7. Note that the two nodes preceding b now have been

removed. Note also that since prefix a was located at a one-child node, it has been moved to the nearest

descendant not being a one-child node. Since in a path to be compressed several one-child nodes may contain

prefixes, in general, a list of prefixes must be maintained in some of the nodes. Because one-way branch nodes

are now removed, we can jump directly to the bit where a significant decision is to be made, bypassing the bit

inspection of some bits. As a result, a bit number field must be kept now to indicate which bit is the next bit to

inspect. In figure 9 these bit numbers are shown next to the nodes. Moreover, the bit strings of prefixes must be

explicitly stored. A search in this kind of path-compressed tries is as follows: The algorithm performs, as usual,

a descent in the trie under the guidance of the address bits; but this time, only inspecting bit positions indicated
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by the bit-number field in the nodes traversed. When a node marked as prefix is encountered, a comparison with

the actual prefix value is performed. This is necessary since during the descent in the trie we may skip some

bits. If a match is found, we proceed traversing the trie and keep the prefix as the BMP so far. Search ends when

a leaf is encountered or a mismatch is found. As usual the BMP will be the last matching prefix encountered.

For instance, if we look for the BMP of an address beginning with the bit pattern 010110 in the path compressed

trie shown in figure 9, we proceed as follows: We start at the root node and since its bit number is 1 we inspect

the first bit of the address. The first bit is 0 so we go to the left. Since the node is marked as prefix we compare

the prefix a with the corresponding part of the address (0). Since they match we proceed and keep a as the BMP

so far. Since the node’s bit number is 3 we skip the second bit of the address and inspect the third one. This bit

is 0 so we go to the left. Again we check whether the prefix b matches the corresponding part of the address

(01011). Since they do not match, search stops and the last remembered BMP (prefix a) is the correct BMP.

Path-compression was first proposed in a scheme called PATRICIA [10], but this scheme does not support

longest prefix matching. Sklower proposed a scheme with modifications for longest prefix matching in [13]. In

fact, this variant was originally designed not only to support prefixes but more general non-contiguous masks.

Since this feature was really never used, current implementations differ somehow from the Sklower’s original

scheme. For example, the BSD version of the path-compressed trie (referred to as BSD trie) is essentially the

same as we have just described. The basic difference is that in the BSD scheme, the trie is first traversed without

checking the prefixes at internal nodes. Once at a leaf, the traversed path is backtracked in search of the longest

matching prefix. At each node with a prefix, or a list of prefixes, a comparison is performed to check for a

match. Search ends when a match is found. Comparison operations are not made on the downward path in the

hope that not many exception prefixes exist. Note that with this scheme, in the worst case, the path is completely

traversed two times. In the case of the original Sklower’s scheme the backtrack phase also needs to do recursive

descents of the trie because non-contiguous masks are allowed.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes 1

0

10

44

3

3 2
1

0 1

1010

10

eb c

da

hgf i

Figure 9: A path-compressed trie

Until recently, the longest matching prefix problem has been addressed by using data structures based on

path-compressed tries, like the BSD trie. Path-compression makes much sense when the binary trie is sparsely

populated. But when the number of prefixes increases and the trie gets denser, using path compression has little

benefit. Moreover, the principal disadvantage of path-compressed tries, as well as binary tries in general, is that

a search needs to do many memory accesses, in the worst case 32 for IPv4 addresses. For example, for a typical

backbone router [18] with 47113 prefixes, the BSD version for a path-compressed trie creates 93304 nodes. The

maximal height is 26, while the average height is almost 20. For the same prefixes, a simple binary trie (with

one-child nodes) has a maximal height of 30 and an average height of almost 22. As we can see, the heights of

both tries are very similar and the BSD trie may perform additional comparison operations when backtracking

is needed.
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3 New IP Lookup Algorithms

We have seen that the difficulty with the longest prefix matching operation is its dual dimension: length and

value. The new schemes for fast IP lookups differ in the dimension to search and whether this search is a linear

or a binary search. In the following, we present a classification of the different IP lookup schemes.

3.1 Taxonomy of IP Lookup Algorithms

Search on values approaches: Sequential search on values is the simplest method to find the BMP. The data

structure needed is just an array with unordered prefixes. The search algorithm is very simple. It goes through

all the entries comparing the prefix with the corresponding bits of a given address. When a match is found, we

keep the longest match so far and continue. At the end, the last prefix remembered is the BMP. The problem with

this approach is that the search space is reduced only by one prefix at each step. Clearly the search complexity

in time for this scheme is a function of the number of prefixesO(N ), and hence the scheme is not scalable. With

the search on value approach, we get rid of the length dimension because of the exhaustive search. It is clear

that a binary search on values would be better, and we will see in section 6 how this can be done.

Search on lengths approaches: Another possibility is to base the search on the length dimension and to use

linear search or binary search. Two possible ways of organizing the prefixes for search on lengths exist. In

fact we have already seen linear search on lengths, which is performed on a trie. Tries allow at step i to check

the prefixes of length i. Moreover, prefixes in a trie are organized in such a way that stepping through the trie

reduces the set of possible prefixes. As we will see in section 4, one optimization to this scheme consists in

using multibit tries. Multibit tries still do linear search on lengths, but inspect several bits simultaneously at

each step.

The other possible way of organizing the prefixes that allows a search on lengths is to use a different table for

each possible length. Then, linear search on lengths can be made by doing at each step a search on a particular

table using hashing, for instance. We will see in section 5 how Waldvogel et al. [17] use hash tables to do binary

search on lengths.

In addition to the algorithm-data structure aspect, various approaches use different techniques such as trans-

formation of the prefix set, compression of redundant information to reduce the memory requirements, applica-

tion of optimization techniques, and exploitation of the memory hierarchy in computers. We introduce each of

these aspects briefly in the following subsection and then discuss the new lookup schemes in detail according

to the algorithm-data structure aspect in the next sections.

3.2 Auxiliary Techniques

Prefix transformation: Forwarding information is specified with prefixes that represent ranges of addresses.

Although the set of prefixes to use is usually determined by the information gathered by the routing protocols,

the same forwarding information can be expressed with different sets of prefixes. Various transformations are

possible according to special needs, but one of the most common prefix transformation techniques is prefix

expansion. Expanding a prefix means transforming one prefix into several longer and more specific prefixes

that cover the same range of addresses. As an example, the range of addresses covered by prefix 1* can also

be specified with the two prefixes 10*, 11*; or also, with the four prefixes: 100*, 101*, 110*, 111*. If we do

prefix expansion appropriately, we can get a set of prefixes that has fewer different lengths, which can be used

to make a faster search, as we will show later.
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We have seen that prefixes can overlap (see figure 4). In a trie, when two prefixes overlap, one of them is

itself a prefix of the other, see figures 7 and 8. Since prefixes represent intervals of contiguous addresses, when

two prefixes overlap this means that one interval of addresses contains another interval of addresses, see figure

4 and 8. In fact, that is why an address can be matched to several prefixes. If several prefixes match, the longest

prefix match rule is used in order to find the most specific forwarding information. One way to avoid the use of

the longest prefix match rule and to still find the most specific forwarding information is to transform a given

set of prefixes into a set of disjoint prefixes. Disjoint prefixes do not overlap and thus no address prefix is itself

prefix of another one. A trie representing a set of disjoint prefixes will have prefixes at the leaves but not at

internal nodes. To obtain a disjoint-prefix binary trie, we simply add leaves to nodes that have only one child.

These new leaves are new prefixes that inherit the forwarding information of the closest ancestor marked as a

prefix. Finally, internal nodes marked as prefixes are unmarked. For example, figure 10 shows the disjoint-prefix

binary trie that corresponds to the trie in figure 7. Prefixes a 1, a2, a3 have inherited the forwarding information

of the original prefix a, which now has been suppressed. Prefix d 1 has been obtained in a similar way. Since

prefixes at internal nodes are expanded or pushed down to the leaves of the trie, this technique has been called

leaf pushing by Srinivasan et al. [14]. Figure 11 shows the disjoint intervals of addresses that correspond to the

disjoint-prefix binary trie of figure 10.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

0

0

0

0

0

0

0

0

0 0

1

1

1

11

1

1

1

1
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Figure 10: Disjoint-prefix binary trie

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

Disjoint intervals of addresses

¹a a¹ d¹d¹d¹d¹

d¹

¹a¹a ¹a¹a¹aa b c c c c e e e e f f g g h h i i

c e
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a¹

a²

a³

a³ a³¹

Figure 11: Expanded disjoint-prefix binary trie

Compression techniques: Data compression tries to remove redundancy from the encoding. The idea to use

compression comes from the fact that expanding the prefixes increases information redundancy. Compression
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should be done in such a way that memory consumption is decreased and that retrieving the information from

the compressed structure can be done easily and with a minimum number of memory accesses. Run-length

encoding is a very simple compression technique that replaces consecutive occurrences of a given symbol with

only one occurrence plus a count of how many times that symbol occurs. This technique is well adapted to our

problem because prefixes represent intervals of contiguous addresses that have the same forwarding information.

Application of optimization techniques: There is more than one way to transform the set of prefixes. Op-

timization allows to define some constraints and to find the right set of prefixes satisfying those constraints.

Normally we want to minimize the amount of memory consumed.

Memory hierarchy in computers: One of the characteristics of today’s computers is the difference in speed

between processor and memory and also between memories of different hierarchies (cache, RAM, disk). Re-

trieving information from memory is expensive, so small data structures are desirable because they make it more

likely that the forwarding table fits into the faster cache memory. Furthermore, the number of memory accesses

must be minimized to make search faster.

New algorithms to the longest prefix matching problem use one or several of the aspects just outlined. We

will survey the different algorithms by classifying them according to the algorithm-data structure aspect and we

will discuss other aspects as well. It is worth to mention that organizing the prefixes in different ways allows

for different tradeoffs between the search cost and the update cost, as well as memory consumption. We discuss

these tradeoffs when we explain the different schemes. We now present in detail some of the most efficient

algorithms for IP address lookup.

4 Search on Prefix Lengths using Multibit Tries

4.1 Basic Scheme

Binary tries provide an easy way to handle arbitrary length prefixes. Lookup and update operations are straight-

forward. Nevertheless, the search in a binary trie can be rather slow because we inspect one bit at a time and in

the worst case 32 memory accesses are needed for an IPv4 address.

One way to speedup the search operation is to inspect not just one bit a time but several bits simultaneously.

For instance, if we inspect 4 bits at a time we would need only 8 memory accesses in the worst case for an IPv4

address. The number of bits to be inspected per step is called stride and can be constant or variable. A trie

structure that allows the inspection of bits in strides of several bits is called multibit trie. Thus, a multibit trie

is a trie where each node has 2k children, where k is the stride.

Since multibit tries allow to traverse the data structure in strides of several bits at a time, they cannot support

arbitrary prefix lengths. To use a given multibit trie, the prefix set must be transformed into an equivalent set

with the prefix lengths allowed by the new structure. For instance, a multibit trie corresponding to our example

from figure 7 is shown in figure 12. We see that a first stride of two bits is used, so prefixes of length one

are not allowed, and we need to expand prefixes a and d to produce four equivalent prefixes of length two. In

the same figure it is shown how prefix c has been expanded to length 4. Note that the height of the trie has

decreased and so the number of memory accesses when doing a search. Figure 13 shows a different multibit trie

for our example. We can see again that prefixes a and d have been expanded but now to length three. However,

two of the prefixes produced by expansion already exist (prefixes c and e). We must preserve the forwarding

information of prefixes c and e since their forwarding information is more specific than the one of the expanded

prefix. Thus, expansion of prefixes a and d finally results in six prefixes and not eight. In general, when an
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expanded prefix collides with an existing longer prefix, forwarding information of the existing prefix must be

preserved to respect the longest matching rule.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes
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Figure 12: A variable stride multibit trie
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Figure 13: A fixed stride multibit trie

Searching in a multibit trie is essentially the same as in a binary trie. To find the BMP of a given address

consists in successively looking for longer prefixes that match. The multibit trie is traversed and each time a

prefix is found at a node, it is remembered as the new BMP seen so far. At the end, the last BMP found is the

correct BMP for the given address. Multibit tries still do linear search on lengths as do binary tries, but the

search is faster because the trie is traversed using larger strides.

In a multibit trie, if all nodes at the same level have the same stride size we say that it is a fixed stride,

otherwise it is a variable stride. We can choose multibit tries with fixed strides or variable strides. Fixed strides

are simpler to implement than variable strides but in general waste more memory. Figure 13 is an example of a

fixed stride multibit trie, while figure 12 shows a variable stride multibit trie.

4.2 Choice of Strides

Choosing the strides requires to make a tradeoff between search speed and memory consumption. In the extreme

case, we could make a trie with a single level, that is a one-level trie with a 32 bit stride for IPv4. Search would

take in this case just one access but we would need a huge amount of memory to store 2 32 entries.
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One natural way to choose strides and control the memory consumption is to let the structure of the binary

trie determine this choice. For example, if we look at figure 7, we can observe that the subtrie having as root

the right child of node d is a full subtrie of two levels (a full binary subtrie is a subtrie where each level has the

maximum number of nodes). We can replace this full binary subtrie with a one-level multibit subtrie. The stride

of the multibit subtrie is simply the number of levels of the substituted full binary subtrie, two in our example.

In fact, this transformation has been already made in figure 12. This transformation is straightforward, but as it

is the only transformation we can do in figure 7, it has a limited benefit. We will see later how to replace, in a

controlled way, binary subtries that are not necessary full subtries . Height of the multibit trie will be reduced

while controlling memory consumption. We will see also, how optimization techniques can be used to choose

the strides.

4.3 Updating Multibit Tries

Size of strides also determines update time bounds. A multibit trie can be viewed as a tree of one-level subtries.

For instance, in figure 13 we have one subtrie at the first level and three subtries at the second level. When we

do prefix expansion in a subtrie, what we actually do is compute for each node of the subtrie its local BMP. The

BMP is local because it is computed from a subset of the total of prefixes. For instance, in the subtrie at the first

level we are only concerned to find for each node the BMP among the prefixes a,c,d,e. In the leftmost subtrie

at the second level the BMP for each node will be selected from the only prefix b. In the second subtrie at the

second level, the BMP is selected for each node among the prefixes f,g, and the rightmost subtrie is concerned

only with prefixes h,i. Some nodes may be empty indicating that there are no BMP for these nodes, among the

prefixes corresponding to this subtrie. As a result, multibit tries divide the problem of finding the BMP into

small problems in which local BMPs are selected among a subset of prefixes. Hence, when looking for the

BMP of a given address we traverse the tree and remember the last local BMP as we go through it.

It is worth to note that the BMPs computed at each subtrie are independent of the BMPs computed at other

subtries. The advantage of this scheme is that inserting or deleting a prefix needs only to update one of the

subtries. Prefix update is completely local. In particular if the prefix is or will be stored in a subtrie with a stride

of k bits, the update needs to modify at most 2k�1nodes (a prefix populates at most the half of the nodes in a

subtrie). Thus, choosing appropriate stride values allows to bound the update time.

Local BMPs allow incremental updates but require that internal nodes, besides leaves, store prefixes and

thus memory consumption is incremented. As we know, we can avoid prefixes at internal nodes if we use a set

of disjoint prefixes. We can obtain a multibit trie with disjoint prefixes if we expand prefixes at internal nodes of

the multibit trie down to its leaves (leaf pushing). Figure 14 shows the result of this process when applied to the

multibit trie in figure 13. Nevertheless note that now, in the general case, a prefix can be theoretically expanded

to several subtries at all levels. Clearly with this approach, the BMPs computed at each subtrie are not any more

local and thus updates will suffer of longer worst case times.

As we can see, a multibit trie with several levels allows, by varying the stride k, an interesting tradeoff

between search time, memory consumption, and update time. The length of the path can be controlled to reduce

the search time. Choosing larger strides will make faster searches but more memory will be needed and updates

will require to modify more entries because of expansion.

As we have seen incremental updates are possible with multibit tries, if we do not use leaf pushing. However,

inserting and deleting operations are slightly more complicated than with binary tries because of the prefix

transformation. Inserting one prefix means finding the appropriate subtrie, doing an expansion and inserting

each of the resulting prefixes. Deleting is still more complicated because it means deleting the expanded prefixes
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Figure 14: A disjoint-prefix multibit trie

and more importantly updating the entries with the next best matching prefix. The problem is that original

prefixes are not actually stored in the trie. To see this better, suppose we insert prefixes 101*, 110* and 111* in

the multibit trie in figure 13. Clearly prefix d will disappear and if later we delete prefix 101*, for instance, there

will be no way to find the new BMP (d) for node 101. Thus, update operations need an additional structure for

managing original prefixes.

4.4 Multibit Tries in Hardware

The basic scheme of Gupta et al. [6] uses a 2 level multibit trie with fixed strides similar to the one shown in

figure 14. However, the first level corresponds to a stride of 24 bits and the second level to a stride of 8 bits.

One key observation in this scheme is that in a typical backbone router, most of the entries have prefixes with

length 24-bits or less (see figure 6 with logarithmic scale on the y axis). As a result, using a first stride of 24

bits allows to find the BMP in one memory access for the majority of the cases. Also since few prefixes have a

length longer than 24, there will be only a small number of subtries at the second level. In order to save memory,

internal nodes are not allowed to store prefixes. Hence, should a prefix correspond to an internal node it will

be expanded to the second level (leaf pushing). This process results in a multibit trie with disjoint expanded

prefixes similar to the one illustrated in figure 14, for the example in figure 13. The first level of the multibit trie

has 224 nodes and is implemented as a table with the same number of entries. An entry in the first level contains

either the forwarding information or a pointer to the corresponding subtrie at the second level. Entries in the first

table need two bytes to store a pointer hence a memory bank of 32 Mbytes is used to store 2 24 entries. Actually

the pointers use 15 bits because the first bit of an entry indicates if the information stored is the forwarding

information or a pointer to a second level subtrie. The number of subtries at the second level depends on the

number of prefixes longer than 24 bits. In the worst case each of these prefixes will need a different subtrie at

the second level. Since the stride for the second level is 8 bits, a subtrie at the second level has 2 8=256 leaves.

The second level subtries are stored in a second memory bank. The size for this second memory bank depends

on the expected worst case prefix length distribution. In the MaeEast table [18]we examined in August 16 1999,

only 96 prefixes were longer than 24 bits. For example for a memory bank of 2 20 entries of 1 byte each, that is

a memory bank of 1 Mbyte, the design supports a maximum of 2 12=4096 subtries at the second level.

In figure 15 we can see how the decoding of a destination address is done to find the corresponding forward-

ing information. The first 24 bits of the destination address are used to index into the first memory bank (first

level of the multibit trie). If the first bit of the entry is 0, the entry contains the forwarding information, other-

wise the forwarding information must be looked up in the second memory bank (second level of the multibit
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trie). In that case, we concatenate the last 8 bits of the destination address with the pointer just found in the first

table. The result is used as an index to lookup in the second memory bank the forwarding information.

224 entries

0

23

8

/

31

24

/

Destination address
Forwarding information

First Memory bank

Second Memory bank

0

1

2 entries20

Figure 15: Gupta et al. hardware scheme

The advantage of this simple scheme is that the lookup requires a maximum of two memory accesses.

Moreover, since it is a hardware approach, the memory accesses can be pipelined or parallelized. As a result

the lookup operation takes practically one memory access time. Nevertheless, since the first stride is of 24 bits

and leaf pushing is used, updates may take long time for some cases.

4.5 Multibit tries with Path-compression Technique

Nilsson et al. [11] recursively transform a binary trie with prefixes into a multibit trie: Starting at the root, we

replace the largest full binary subtrie with a corresponding one-level multibit subtrie. This process is repeated

recursively with the children of the multibit subtrie obtained. Additionally, one-child paths are compressed.

Since we replace at each step a binary subtrie of several levels with a multibit trie of one level, the process can

be viewed as a compression of the levels of the original binary trie. LC (level-compressed) trie is the name

given by Nilsson to these multibit tries. Nevertheless, letting the structure of the binary trie strictly determine

the choice of strides does not allow to control the height of the resulting multibit trie. One way to further reduce

the height of the multibit trie, is to let the structure of the trie only guide and not determine the choice of strides.

In other words, we will replace nearly full binary subtries with a multibit subtrie, that is binary subtries where

only few nodes are missing.

Nilsson proposes to replace a nearly full binary subtrie with a multibit subtrie of stride k if the nearly full

binary subtrie has a sufficient fraction of the 2k nodes at level k, where sufficient fraction of nodes is defined by

using a single parameter called fill factor x, with 0 < x� 1. For instance, in figure 7, if the fill factor is 0.5, the

fraction of nodes at the fourth level is not enough to choose a stride of 4. Since only 5 of the 16 possible nodes,

are present. Instead, there are enough nodes at the third level (5 of the 8 possible nodes) for a multibit subtrie

of stride 3.

In order to save memory space, all the nodes of the LC trie are stored in a single array. First the root, then

all the nodes at the second level, then nodes at third level, etc. Moreover, internal nodes are not allowed to store

prefixes. Instead, each leaf has a linear list with prefixes, in case the path to the leaf should have one or several

prefixes (less specific prefixes). As a result, a search in an LC trie proceeds as follows: The LC trie is traversed

like in the basic multibit trie. Nevertheless, since path compression is used, a explicit comparison must be

performed when arriving at a leaf. In case of mismatch, a search in the list of prefixes must be performed (less

specific prefixes, i.e. prefixes in internal nodes in the original binary trie).
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Since the LC trie is implemented using a single array of consecutive memory locations and a list of prefixes

must be maintained at leaves, incremental updates are very difficult.

4.6 Multibit Tries and Optimization Techniques

One easy way to bound worst-case search times is by defining fixed strides that yield a well defined height for

the multibit trie. Nevertheless the problem is that in general, memory consumption will be large, see section

4.4.

On the other hand, we can minimize the memory consumption by letting the prefix distribution strictly

determine the choice of strides. Unfortunately, the height of the resulting multibit trie cannot be controlled and

depends exclusively on the specific prefix distribution. We saw in the last section that Nilsson uses the fill factor

as parameter to control the influence of the prefix distribution in the stride choice and so influences somehow

the height of the resulting multibit trie. Since the prefix distribution still guides the stride choice, memory

consumption is still controlled. Nevertheless, the use of the fill factor is simply a reasonable heuristic and more

importantly it does not allow to guarantee a worst-case height.

Srinivasan et al. [14] use dynamic programming to determine, for a given prefix distribution, the optimal

strides that minimize the memory consumption and guarantee a worst-case number of memory accesses. The

authors give a method to find the optimal strides for the two types of multibit tries: fixed stride and variable

stride.

Another way of minimize the lookup time is by taking into account, on one hand the hierarchical structure

of the memory in a system, and on the other the probability distribution of the usage of prefixes (which is traffic

dependent). Cheung et al. [1] give methods to minimize the average lookup time per prefix for this case. They

suppose a system having three types of hierarchical memories with different access times and sizes.

Using optimization techniques makes sense if the entries of the forwarding table do not change at all or

change very little, but this is rarely the case for backbone routers. Inserting and deleting prefixes degrades the

improvement due to optimization and rebuilding the structure may be necessary.

4.7 Multibit Tries and Compression

Doing expansion creates several prefixes that all inherit the forwarding information of the original prefix. Thus,

if we use multibit tries with large strides, we will have a great number of contiguous nodes with the same BMP.

We can use this fact and compress the redundant information, which will allow to save memory and to make the

search operation faster because of the small height of the trie.

One example of this approach is the Full expansion/Compression scheme proposed by Crescenzi et al. [2].

We will illustrate their method with a small example where we do a maximal expansion supposing 5-bit ad-

dresses and using a two level multibit trie. The first level uses a stride of 2 bits and the second level a stride of

3 bits, as it is shown in figure 16. The idea is to compress each of the subtries at the second level. In figure 17

we can see how the leaves of each second level subtries have been placed in a vertical fashion. Each column

corresponds to one of the second level subtries. The goal is to compress the repeated occurrences of the BMPs.

Nevertheless, the compression is done in such a way that at each step the number of compressed symbols is

the same for each column. With this strategy the compression is not optimal for all columns but since the com-

pression is made in a synchronized way for all the columns, accessing any of the compressed subtries can be

made with one common additional table of pointers, as it is shown in figure 17. To find the BMP of a given

address we traverse the first level of the multibit trie as usual, that is the first two bits of the address are used to
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choose the correct subtrie at the second level. Then, the last three bits of the address are used to find the pointer

in the additional table. With this pointer we can readily find the BMP in the compressed subtrie. For example,

searching for the address 10110 will guide us to the third subtrie (column) in the compressed structure and using

the pointer contained in the entry 110 of the additional table, we will find d as the best matching prefix.

In the actual scheme proposed by Crescenzi prefixes are expanded to 32 bits. A multibit trie of two levels

is also used but the stride of the first level and second level is 16 bits. It is worth to note that even though

compression is done, the resulting structure is not small enough to fit in the cache memory. Nevertheless,

because of the way to access the information, search takes always only three memory accesses. The reported

memory size for a typical backbone router table is 1.2 Mbytes.
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Figure 16: A two level full expanded multibit trie
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Figure 17: Full expansion parallel compression scheme

Another scheme that combines multibit tries with the compression idea has been dubbed the Lulea algo-

rithm [3]. In this scheme, a multibit trie with fixed stride lengths is used. The strides are 16,8,8, for the first,

second and third level respectively, which gives a trie of height 3. In order to do an efficient compression, the

Lulea scheme must use a set of disjoint prefixes. Hence the Lulea scheme first transforms the set of prefixes

into a disjoint-prefix set. Then, the prefixes are expanded in order to meet the stride constraints of the multibit

trie. Additionally, in order to save memory, prefixes are not allowed at internal nodes of the multibit trie and

thus leaf pushing is used.

Again, the idea is to compress the prefix information in the subtries by suppressing the repeated occurrences

of consecutive BMPs. Nevertheless, contrary to the last scheme, each subtrie is compressed independently of

the others. Once a subtrie is compressed, a clever decoding mechanism allows the access to the best matching

prefixes. Due to lack of space we do not give here the details of the decoding mechanism.
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While the trie height in the Lulea scheme is 3, actually more than 3 memory references are needed because

of the decoding required to access the compressed data structure. Searching at each level of the multibit trie

needs, in general, 4 memory references. This means that in the worst case 12 memory references are needed

for IPv4. The advantage of the Lulea scheme, however, is that these references are almost always to the cache

memory because the whole data structure is very small. For instance, for a forwarding table containing 32732

prefixes the reported size of the data structure is 160 Kbytes.

Schemes using multibit tries and compression give very fast search times. However compression and the leaf

pushing technique used do not allow incremental updates. Rebuilding the whole structure is the only solution.

A different scheme using compression is the Full Tree Bit Map by Eatherton [4]. Leaf pushing is avoided

and so incremental updates are allowed.

5 Binary Search on Prefix Lengths

The problem with arbitrary prefix lengths is that we do not know how many bits of the destination address

should be taken into account when compared with the prefix values. Tries allow a sequential search on the

length dimension: first we look in the set of prefixes of length 1, then in the set of length 2 prefixes and so on.

Moreover at each step the search space is reduced because of the prefix organization in the trie.

Another approach to sequential search on lengths without using a trie is by organizing the prefixes in dif-

ferent tables according to their lengths. In this case, a hashing technique can be used to search in each of these

tables. Since we look for the longest match, we begin the search in the table holding the longest prefixes and

search ends as soon as a match is found in one of these tables. Nevertheless, the number of tables is equal to

the number of different prefix lengths. IfW is the addresses length, which is 32 for IPv4, the time complexity

of the search operation is O(W ) assuming a perfect hash function, which is the same as for a trie.

In order to reduce the search time, a binary search on lengths was proposed by Waldvogel et al. [17]. In a

binary search, we reduce the search space in each step by half. Which half to continue the search depends on

the result of a comparison. However, an ordering relation needs to be established before being able to make

comparisons and proceed the search in a direction according to the result. Comparisons are usually done using

key values. But our problem is different since we do binary search on lengths. We are restricted to check

whether at a given length, a match exists. Using a match to decide what to do next is possible: if a match is

found, we can reduce the search space to only longer lengths. Unfortunately, if no match is found, we cannot be

sure that the search should proceed in the direction of shorter lengths, because the best matching prefix could

be of longer length as well. Waldvogel et al. insert extra prefixes of adequate length, called markers, to be sure

that, when no match is found, the search must proceed necessarily in the direction of shorter prefixes.

To illustrate this approach consider the prefixes shown in the figure 18. In the trie we can observe the

levels at which the prefixes are located. At the right, a binary search tree shows the levels or lengths that are

searched at each step of the binary search on lengths algorithm. Note that the trie is only shown to understand

the relationship between markers and prefixes but the algorithm does not use a trie data structure. Instead, for

each level in the trie, a hash table is used to store the prefixes. For example, if we search the BMP for the

address 11000010, we begin by searching the table corresponding to length 4, a match will be found because

of the prefix f, and the search proceeds in the half of longer prefixes. Then we search at length 6, where the

marker 110000* has been placed. Since a match is found, the search proceeds to the length 7 and finds prefix

k as the BMP. Note that without the marker at level 6, the search procedure would fail to find prefix k as the

BMP. In general, for each prefix entry a series of markers are needed to guide the search. Since a binary
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Figure 18: Binary search on prefix lengths

search only checks a maximum of log2W levels, each entry will generate a maximum of log2W markers. In

fact, the number of markers required will be much smaller for two reasons: No marker will be inserted if the

corresponding prefix entry already exists (prefix f in figure 18), and a single marker can be used to guide the

search for several prefixes, see for example prefixes e and p which use the same marker at level 2. However,

for the very same reasons, the search may be directed towards longer prefixes although no longer prefix will

match. For example, suppose we search the BMP for address 11000001. We begin at level 4 and find a match

with the prefix f, so we proceed to length 6, where we find again a match with the marker, so we proceed to

level 7. However, at level 7 no match will be found because the marker has guided us in the bad direction.

While markers provide valid hints in some cases, they can mislead in other cases. To avoid backtracking when

being mislead, Waldvogel uses precomputation of the BMP for each marker. In our example, the marker at

level 6 will have f as the precomputed BMP. Thus, as we search, we keep track of the precomputed BMP so

far, and then in case of failure we always have the last best matching prefix. The markers and the precomputed

BMP values increase the memory required. Additionally, the update operations become difficult because of the

several different values that must be updated.

6 Prefix Range Search

Search on values only, to find the longest matching prefix, is possible if we can get rid of the length dimension.

One way of doing this is by transforming the prefixes to a unique length. As prefixes are of arbitrary lengths,

we need to do a full expansion, transforming all prefixes to 32 bit length prefixes, in the case of IPv4. While a

binary search on values could be done now, this approach needs a huge amount of memory. Fortunately, it is

not necessary to store all of the 232 entries. As a full expansion has been done, information redundancy exists.

A prefix represents an aggregation of contiguous addresses, in other words a prefix determines a well defined

range of addresses. For example, supposing 5-bit length addresses, prefix a = 0* defines the range of addresses

[0,15]. So, why not simple store the range endpoints instead of every single address. The BMP of the endpoints

is, in theory, the same for all the addresses in the interval. And search of the BMP for a given address, would

be reduced to find any of the endpoints of the corresponding interval. For instance, the predecessor, which is

the greatest endpoint smaller than or equal to a given address. The BMP problem would be readily solved,

because finding the predecessor of a given address can be performed with a classical binary search method.
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Unfortunately this approach may not work because prefix ranges may overlap, that is prefix ranges may be

included in other prefix ranges, see figure 4. For example, figure 19 shows the full expansion of prefixes

assuming 5-bit length addresses. The same figure shows the endpoints of the different prefix ranges, in binary

as well as decimal form. There, we can see that the predecessor of the address value 9, for instance, is the

endpoint value 8; nevertheless the BMP of the address 9 is not the one associated to endpoint 8 (b), but the one

associated to endpoint 0 (a) instead. Clearly, the fact that a range may be contained in another range does not

allow this approach to work. One solution is to avoid interval overlap. In fact, by observing the endpoints we

can see that these values divide the total address space into disjoint basic intervals.

In a basic interval, every address has actually the same BMP. Figure 19 shows the BMP for each basic

interval of our example. Note that for each basic interval, its BMP is the BMP of the shortest prefix range

enclosing the basic interval. The BMP of a given address can now be found by using the endpoints of the basic

intervals. Nevertheless, we can observe in figure 19 that some basic intervals do not have explicit endpoints (for

example I3 and I6). In these cases, we can associate the basic interval with the closer endpoint to its left. As a

result, some endpoints need to be associated to two basic intervals and thus endpoints must maintain in general

two BMPs, one for the interval they belong to and one for the potential next basic interval. For instance, the

endpoint value 8 will be associated to basic intervals I2 and I3, and must maintain BMP b and a.
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Figure 19: Binary range search

Figure 20 shows the search tree indicating the steps of the binary search algorithm. The leaves correspond

to the endpoints, which store the two BMPs (“=” and “>” ). For example, if we search the BMP for the address

10110 (22) we begin comparing the address with the key 26, as 22 is smaller than 26 we take the left branch in

the search tree. Then, we compare 22 with key 16 and go to the right, then at node 24 we go to the left arriving

at node 19 and finally we go to the right and arrive at the leaf with key 19. Because the address (22) is greater

than 19 the BMP is the value associated with “>” , that is d.

As with traditional binary search, the implementation of this scheme can be made by explicitly building
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the binary search tree. Moreover, instead of a binary search tree, a multiway search tree can be used to reduce

the height of the tree and thus make the search faster. The idea is similar to the use of multibit tries instead of

binary tries. In a multiway search tree, internal nodes have k branches and k-1 keys, this is specially attractive

if an entire node fits into a single cache line because search in the node will be negligible compared to normal

memory accesses.

As we have previously mentioned, the BMP for each basic interval needs to be precomputed by finding

the shortest range (longest prefix) enclosing the basic interval. The problem with this approach, which was

proposed by Lampson et al. [9], is that inserting or deleting a single prefix may require to recompute the BMP

for many basic intervals. In general, every prefix range spans several basic intervals. The more basic intervals a
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Figure 20: Basic Range search tree

prefix range cover, the higher the number of BMPs to potentially recompute. In fact, in the worst case we would

need to update the BMP for N basic intervals, N as usual being the number of prefixes. This is the case when

all the 2N endpoints are all different and one prefix contains all the other prefixes.

One idea to reduce the number of intervals covered by a prefix range is to use larger, yet still disjoint

intervals. The leaves of the tree in figure 20 correspond to basic intervals. A crucial observation is that internal

nodes correspond to intervals that are the union of basic intervals, see figure 21. Also, all the nodes at a given

level form a set of disjoint intervals. For example, at the second level the nodes marked 12, 24 and 28 correspond

to the intervals [0,15], [16,25] and [26,29] respectively. So why store BMPs only at leaves. For instance, if we

store a at the node marked 12, in the second level, we will not need to store a at leaves and update performance

would be better. In other words, instead of decomposing prefix ranges into basic intervals, we decompose

prefix ranges into disjoint intervals as larger as possible. Figure 21 shows how prefixes can be stored using this

idea. Search operation is almost the same except that now needs to keep track of the BMP encountered when

traversing the path to the leaves. We can compare the basic scheme to using leaf pushing while the new method

does not. Again, we can see that pushing information to leaves makes update difficult, because the number

of entries to modify grows. The multiway range tree approach [16] presents and develops this idea to allow

incremental updates.

7 Comparison and Measurements of Schemes

Each of the schemes presented has its strengths and weaknesses. In this section, we compare the different

schemes and discuss the important metrics to evaluate these schemes. The ideal scheme would be one with
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fast searching, fast dynamic updates, and a small memory requirement. The schemes presented make different

tradeoffs between these aspects. The most important metric is obviously the lookup time, but update time must

also be taken into account, as well as the memory requirements. Scalability is also another important issue,

both, with respect to the number of prefixes and the length of prefixes.

7.1 Complexity Analysis

A complexity comparison for the different schemes is shown in table 2. The next sections carry out a detailed

comparison.

7.1.1 Tries

In binary tries we potentially traverse a number of nodes equal to the length of addresses. Therefore the search

complexity is O(W ). Update operations are readily made and need basically a search, so its complexity is

also O(W ). Since inserting a prefix potentially creates W successive nodes (along the path that represents the

prefix), the memory consumption for a set ofN prefixes has complexityO(NW ). Note that this upper bound is

not a tight one, since some nodes are, in fact, shared along the prefix paths. Path compression reduces the height

of a sparse binary trie, but when the prefix distribution in a trie gets denser, height reduction is less effective.

Hence, complexity for search and update operations in path compressed tries, is the same as that of classical

binary tries. Path compressed tries are full binary tries. Full binary tries withN leaves haveN -1 internal nodes.

Hence, space complexity for path compressed tries is O(N ).

Multibit tries still do linear search on lengths, but since the trie is traversed in larger strides the search is

faster. If search is done in strides of k bits, the complexity of the lookup operation is O( W
k

). As we have seen,

updates require a search and will modify a maximum of 2 k�1 entries (if leaf pushing is not used). Update com-

plexity is thus O(W
k

+2k) where k is the maximum stride size in bits in the multibit trie. Memory consumption

increases exponentially with k: each prefix entry may need potentially an entire path of length W

k
and paths

consist in one-level subtries of size 2k. Hence memory used has complexityO(2kNW

k
).

Since the Lulea and the Full expansion/Compression schemes use compressed multibit tries together with

the leaf pushing technique, incremental updates are difficult if not impossible and we have not indicated update

complexity for these schemes. The LC trie scheme uses an array layout and must maintain lists of less specific

prefixes. Hence, incremental updates are also very difficult.
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7.1.2 Binary Search on Lengths

For a binary search on lengths, the complexity of the lookup operation is logarithmic in the prefix length. Notice

that the lookup operation is independent of the number of entries. Nevertheless, updates are complicated due

to the use of markers. As we have seen, in the worst case log2W markers are necessary per prefix. Hence the

memory consumption has complexity O(N log2W ). For the scheme to work, we need to precompute the BMP

of every marker. This precomputed BMP is function of the entries being prefixes of the marker, specifically the

BMP is the longest of them. When one of these prefix entries is deleted or a new one is added, the precomputed

BMP may change for many of the markers that are longer than the new (or deleted) prefix entry. Thus, the

marker update complexity is O(N log2W ) since theoretically an entry may potentially be prefix of N -1 longer

entries, each of one having potentially log2W markers to update.

7.1.3 Range Search

The range search approach gets rid of the length dimension of prefixes and performs a search based on the

endpoints delimiting disjoint basic intervals of addresses. The number of basic intervals depends on the covering

relationship between the prefix ranges, but in the worst case it is equal to 2N . Since a binary or a multiway

search is performed the complexity of the lookup operation is O(log 2N ) or O(logkN ) respectively, where k is

the number of branches at each node of the search tree. Remember that the BMP must be precomputed for each

basic interval, and in the worst case an update needs to recompute the BMP of N basic intervals. The update

complexity is thus O(N ). Since the range search scheme needs to store the endpoints, the memory requirement

has complexityO(N ).

We have previously mentioned that by using intervals made of unions of the basic intervals, the approach of

[16] allows a better update performance. In fact, the update complexity is O(klog kN ), where k is the number of

branches at each node of the multiway search tree.

7.1.4 Scalability and IPv6

An important issue in the Internet is scalability. Two aspects are important, the number of entries and the prefix

length. The last aspect is specially important because of the next generation of IP (IPv6) that uses 128 bit

addresses. Multibit tries improve the lookup speed with respect to binary tries but only by a constant factor

on the length dimension. Hence, multibit tries scale badly to longer addresses. Binary search on lengths has

a logarithmic complexity with respect to the prefix length and its scalability property is very good. The range

search approaches have logarithmic lookup complexity with respect to the number of entries but independent,

in principle, of the prefix length. Thus, if the number of entries does not grow excessively, the range search

approach is scalable for IPv6.

7.2 Measured Lookup Time

While the complexity metrics of the different schemes described in the last section are an important aspect for

comparison, it is equally important to measure the performance of these schemes under “ real conditions” . We

now show the results of a performance comparison made using a common platform and a prefix data-base of a

typical backbone router [18].

Our platform consists in a Pentium Pro based computer with a clock speed of 200 MHz. The size of the

memory cache L2 is 512 Kbytes. All programs are coded in C and were executed under the Linux operating
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Scheme Worst case lookup Update Memory

Binary trie O(W ) O(W ) O(NW )
Path-compressed tries O(W ) O(W ) O(N )
k stride Multibit trie O(W

k
) O(W

k
+2k) O(2kN W

k
)

LC trie O(W
k

) - O(2kN W

k
)

Lulea trie O(W
k

) - O(2kN W

k
)

Full expansion/compression 3 - O(2k+N2)
Binary search on prefix lengths O(log2W ) O(N log2W ) O(N log2W )

Binary range search O(log2N ) O(N ) O(N )
Multiway range search O(logkN ) O(N ) O(N )
Multiway range trees O(logkN ) O(klogkN ) O(NklogkN )

Table 2: Complexity comparison

system. The code for the path-compressed trie (BSD trie) was extracted from the FreeBSD implementation [15],

the code for the Multibit trie was implemented by us [12], and the code for the other schemes were obtained

from the corresponding authors.

While prefix data bases in backbone routers are publically available, this is not the case for traffic traces.

Indeed, traffic statistics depend on the location of the router. Thus, what we have done to measure the per-

formance of the lookup operation is to consider that every prefix has the same probability of being accessed.

In other words, the traffic per prefix is supposed to be the same for all prefixes. Although a knowledge of

the access probabilities of the forwarding table entries would allow a better evaluation of the average lookup

time, assuming constant traffic per prefix still allows us to measure important characteristics, like the worst-case

lookup time. In order to reduce the effects of cache locality we used a random permutation of all entries in

the forwarding table (extended to 32 bits by adding zeroes). Figure 22 shows the distributions of the lookup

operation for 5 different schemes. The lookup time variability for the 5 different schemes is summarized in

table 3.

Lookup time measured for the BSD trie scheme reflects the dependence on the prefix length distribution.

We can observe a large variance between time for short prefixes and time for long prefixes because of the high

height of the BSD trie. On the contrary, the full-expansion/compression scheme always needs exactly 3 memory

accesses. This scheme has the best performance for the lookup operation in our experiment. Small variations

should be due to cache misses as well as background operating system tasks.

Scheme 10-percentile 50-percentile (Median) 99-percentile

BSD trie 4.63 5.95 8.92
Multibit trie 0.82 1.33 2.99

LC trie 0.95 1.28 1.98
Full expansion/compression 0.26 0.48 0.84

Binary search on prefix lengths 1.09 1.58 7.08

Table 3: Percentiles of the lookup times (�seconds)

As we know, lookup times for the multibit tries can be tuned by choosing different strides. We have measured

the lookup time for the LC trie scheme, which uses an array layout and the path compression technique. We

have also measured the lookup time for a Multibit trie implemented with a linked tree structure and without

the path compression technique [12]. Both of them are variable stride multibit tries that use the distribution of

prefixes to guide the choice of strides. Additionally, the fill factor was chosen such as a stride of k bits is used if
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at least 50% of the total possible nodes at level k exist (see section 4.5). Even with this simple strategy to build

the multibit tries, lookup times are much better than for the BSD trie. Table 4 shows the statistics of the BSD

trie and multibit tries, which explains the performance observed. The statistics for the corresponding binary trie

are also shown. Notice that the height values of the BSD trie are very close to values for the binary trie. Hence

a path compression technique used alone, as is the case of the BSD trie, has almost no benefit for a typical

backbone router. Path compression in the multibit trie LC makes the maximum height much smaller than in the

“pure” Multibit trie. Nevertheless, the average height is only one level smaller than for the pure Multibit trie.

Moreover, as the LC trie needs to do extra comparisons in some cases, the gain in lookup performance is not

very significant.

Scheme Average height Maximum height

Binary trie 21.84 30
BSD trie 19.95 26
LC trie 1.81 5

Multibit trie 2.76 12

Table 4: Trie statistics for the MaeEast router (16 August, 1999)

The binary search on lengths scheme also shows a better performance than the BSD trie scheme. However,

the lookup time has a large variance. As we can see in figure 23, different prefix lengths need a different number

of hashing operations. We can distinguish 5 different groups, which need from one to 5 hashing operations. As

hashing operations are not basic operations the difference, between a search that needs 5 hashes and one that

needs only one hash can be significant. For example, lookup times of about 3.5 �s correspond to prefix lengths

that need 5 hash operations. In the MaeEast prefix table, a total of 10248 prefixes require 5 hashing operations.
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8 Summary

To avoid running out of available IP addresses and to reduce the amount of information exchanged by the routing

protocols, a new address allocation scheme, CIDR, was introduced. CIDR promotes hierarchical aggregation

of addresses and leads to relatively small forwarding tables, but requires a longest prefix matching operation.

Longest prefix matching is more complex than an exact matching operation. The lookup schemes we have

surveyed manipulate prefixes by doing controlled disaggregation in order to provide faster search. As original

prefixes are usually transformed into several prefixes, to add, delete or change one single prefix requires to

update several entries and in the worst case the entire data structure needs to be rebuilt. Thus, in general a

tradeoff between lookup time and incremental update time needs to be made. We have provided a framework

and classified the schemes according to the algorithm-data structure aspect. We have seen that the difficulty

with the longest prefix matching operation is its dual dimension: length and value. Furthermore, we described

how classical search techniques have been adapted to solve the longest prefix matching problem. Finally, we

have compared the different algorithms in terms of their complexity and measured execution time on a common

platform. The longest prefix matching problem is important by itself, moreover solutions to this problem can

be used as a building block for the more general problem of packet classification [5].
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