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Abstract

We investigate the connections between sparse approximation methods for making kernel
methods and Gaussian processes (GPs) scalable to massive data, focusing on the Nyström
method and the Sparse Variational Gaussian Processes (SVGP). While sparse approxima-
tion methods for GPs and kernel methods share some algebraic similarities, the literature
lacks a deep understanding of how and why they are related. This is a possible obstacle
for the communications between the GP and kernel communities, making it difficult to
transfer results from one side to the other. Our motivation is to remove this possible ob-
stacle, by clarifying the connections between the sparse approximations for GPs and kernel
methods. In this work, we study the two popular approaches, the Nyström and SVGP
approximations, in the context of a regression problem, and establish various connections
and equivalences between them. In particular, we provide an RKHS interpretation of the
SVGP approximation, and show that the Evidence Lower Bound of the SVGP contains
the objective function of the Nyström approximation, revealing the origin of the algebraic
equivalence between the two approaches. We also study recently established convergence
results for the SVGP and how they are related to the approximation quality of the Nyström
method.

Keywords: Gaussian Processes, Kernel Methods, Sparse Approximation, Nyström Method,
Sparse Variational Gaussian Processes

1. Introduction

Gaussian processes (GPs) and kernel methods are the two principled learning approaches
that make use of positive definite kernels, and have been studied extensively in statistics
and machine learning. On one hand, GP-based approaches (Rasmussen and Williams, 2006)
employ a kernel to induce the corresponding GP, in oder to define a prior distribution of the
ground-truth latent function of interest. Given data, Bayes’ rule is then applied to obtain the
posterior distribution of the latent function. On the other hand, kernel methods (Schölkopf
and Smola, 2002) make use of a kernel to induce the corresponding Reproducing Kernel
Hilbert Space (RKHS) as a “hypothesis space.” Given data, empirical risk minimization is
then performed in the RKHS to estimate the ground-truth function of interest. Although
the GP and kernel approaches have different modeling philosophies, there are indeed deep
connections and equivalences between them, which extend beyond a superficial similarity
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(Parzen, 1961; Kimeldorf and Wahba, 1970; Berlinet and Thomas-Agnan, 2004; Kanagawa
et al., 2018).

The elegance of the GP and kernel approaches are that the infinite dimensional learning
problems can be reduced to the corresponding finite dimensional problems. However, this
comes with a cost: the computational complexity of either approach is usually cubic or
at least quadratic with respect to the data size. This unfavorable scaling property has
motivated the developments of several approximation methods to make the GP and kernel
approaches scalable. Sparse approximation methods, which approximate the solution of
interest using a set of input points smaller than training data, are among the most popular
and successful approximation approaches. These approaches have been studied since the
earliest developments of the GP and kernel approaches (e.g., Williams and Seeger, 2001;
Csató and Opper, 2002; Smola and Schölkopf, 2000; Seeger et al., 2003).

As the GP and kernel communities grow, sparse approximation methods for either ap-
proach tend to be developed independently to those for the other approach. For instance,
consider the Sparse Variational Gaussian Process (SVGP) approach of Titsias (2009a,b),
which is one of the most successful and widely used sparse approximation methods for GPs.
The SVGP is derived in the framework of variational Bayesian inference, so that the sparse
approximation is to be chosen to minimize the KL divergence to the exact GP posterior.
As such, the developments in SVGP (e.g., Hensman et al., 2013, 2015a; Matthews et al.,
2016; Burt et al., 2019; Rossi et al., 2021) have proceeded almost independently of the
corresponding literature on sparse approximations for kernel methods. Similarly, the recent
advances in using and understanding the Nyström method (Williams and Seeger, 2001),
which is one of the most popular sparse approximations in kernel methods, have been made
independently to those of sparse GP approximations. The majority of these advances focus
on an efficient approximation of the kernel matrix (e.g., Drineas and Mahoney, 2005; Belab-
bas and Wolfe, 2009; Gittens and Mahoney, 2016; Derezinski et al., 2020) or empirical risk
minimization in the RKHS with a reduced basis (e.g, Bach, 2013; El Alaoui and Mahoney,
2015; Rudi et al., 2015, 2017; Meanti et al., 2020). This separation of two lines of research
are arguably due to the difference in the notations and modeling philosophies of GPs and
kernel methods. The separation makes it difficult to transfer useful and interesting results
from one side to the other, and the communities might have missed an important advance
that may be obtained otherwise. The motivation of the current work is to overcome this
potential difficulty by bridging the two lines of research.

In this work, we investigate the connections between the sparse approximation methods
for GPs and kernel methods. Specifically, we focus on the regression setting, and study the
relationships between the SVGP and Nyström approximations. We summarize below our
contributions and main findings:

• In Section 3, we establish an equivalence between the SVGP posterior mean function
and kernel ridge regression (KRR) using the Nyström method. To understand this
equivalence, we analyze the Evidence Lower Bound (ELBO) that is optimized by
the SVGP approximation. We show that the ELBO contains the objective function
that the Nyström KRR essentially minimizes. In this sense, the equivalence is not a
“coincidence.”
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• We make an RKHS interpretation for the ELBO of the SVGP approximation. We
reformulate the ELBO in terms of orthogonal projections onto the subspace spanned
by the inducing inputs (or landmark points). This formulation enables one to un-
derstand the ELBO geometrically. Specifically, it shows that the SVGP posterior
covariance function is given via the solution to a certain optimization problem in the
RKHS. Moreover, it enables a geometric understanding of the ELBO as an objective
function for choosing inducing inputs. These results may be useful for inspiring more
advanced SVGP approaches, in a similar manner as Shi et al. (2020) who used a
certain geometric argument for justifying their approach.

• We present a worst case error interpretation of the SVGP posterior variance function.
We show that it is the sum of two worst case errors in RKHSs: one is that of kernel-
based interpolation at inducing inputs, and the other is that of the Nyström KRR
based on noisy observations. This interpretation may be useful for understanding
the impacts of the choice of a kernel and inducing points on the SVGP uncertainty
estimates, as the RKHS formulation enables a discussion of the “capacity” of the
model. Moreover, these RKHS interpretations enable kernel researchers to understand
the SVGP approximation in their own terminology and provide a tool for uncertainty
quantification.

• In Section 4, we discuss convergence results for the SVGP recently established by
Burt et al. (2019, 2020), and investigate how they are related to the approximation
quality of the Nyström KRR. To this end, we first show that the “data fit term” in the
marginal likelihood of Gaussian process regression (GPR) is essentially identical to
the objective function value of the corresponding KRR estimator. This result enables
us to rewrite relevant terms in the KL divergence for the SVGP approximation as the
“excess risk” of the Nyström KRR over the exact KRR estimator. Since the theoretical
arguments of Burt et al. (2020) are essentially based on bounding this “excess risk,”
many of their results can be directly translated to the corresponding results on the
Nyström KRR. Moreover, the existence of the “excess risk” of the Nyström KRR
suggests that a more refined analysis may be done for the KL divergence for the
SVGP approximation by employing sharper theoretical results on the Nyström KRR
(e.g., Bach, 2013; El Alaoui and Mahoney, 2015; Rudi et al., 2015).

• We also establish a novel approximation error bound for the Nyström KRR in terms
of its RKHS distance to the exact KRR solution. This bound may be interesting in its
own right, since it shares a certain structural similarity to a fundamental bound in Burt
et al. (2020) on the KL divergence for the SVGP approximation. Moreover, because
of the equivalence between the SVGP posterior mean function and the Nyström KRR
estimator, and that between the exact GP posterior mean function and the exact KRR
estimator, the novel bound also holds as a bound on the RKHS distance between the
SVGP and exact posterior mean functions. This result is useful in that it leads to
an approximation bound for the derivatives of the SVGP posterior mean function,
when the kernel is continuously differentiable. This demonstrates the usefulness of
the RKHS interpretations.
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• Finally, we study the lower bound of the averaged KL divergence for the SVGP ap-
proximation, where the average is taken with respect to the distribution of training
outputs under the prior model (Burt et al., 2020, Lemma 4). By the identity of the
“data fit terms” and the “excess risk” of the Nyström KRR, this lower bound can be
directly transformed to a lower bound for the excess risk of the Nyström KRR. This
new lower bound is given in terms of the ratio of the “complexities” of the exact and
approximation kernel models, and provides a novel theoretical understanding of the
Nyström KRR. This is another manifestation of benefits of studying the connections
between the GP and kernel approaches.

This paper is organized as follows. Section 2 provides relevant background on Gaussian
processes and kernel methods. Section 3 investigates the connections and equivalences
between the SVGP and the Nyström approximations. Section 4 studies the approximation
properties of the SVGP and Nyström approximations and their connections. Section 5
concludes.

1.1 Notation

We use the following notation in this paper. Let N be the set of natural numbers, R be
the real line, and Rd for d ∈ N be the d-dimensional Euclidean space. For any v ∈ Rd, ‖v‖
denotes the Euclidean norm.

Let X be a nonempty set. For a function f : X → R and X := (x1, . . . , xn) ∈ X n
with n ∈ N, denote by fX the n-vector consisting of function values evaluated at points
in X: fX := (f(x1), . . . , f(xn))> ∈ Rn. Similarly, for a function with two arguments
k : X × X → R, and X := (x1, ..., xn) ∈ X n and Z := (z1, ..., zm) ∈ Xm with n,m ∈ N,
define kXZ ∈ Rn×m by (kXZ)i,j = k(xi, zj) for i = 1, . . . , n, j = 1, . . . ,m. For X :=
(x1, ..., xn) ∈ X n, let kX(x) := (k(x1, x), . . . , k(xn, x))> ∈ Rn for any x ∈ X and denote by
kX(·) the vector-valued function x ∈ X 7→ kX(x) ∈ Rn.

For a symmetric matrix Σ, denote by Σ � 0 and Σ � 0 that Σ is positive definite and
positive semi-definite, respectively. For µ ∈ Rn and Σ ∈ Rn×n with Σ � 0, denote by
N (µ,Σ) the Gaussian distribution on Rn with mean vector µ and covariance matrix Σ. Let
N (· | µ,Σ) be its probability density function. For a matrix A ∈ Rn×n, tr(A) and det(A)
denote its trace and determinant, respectively.

Let Y be a measurable space, Y ∈ Y be a random variable, and P be a probability
measure on Y. We write Y ∼ P to mean that Y follows P. For a measurable function
g : Y → R, denote by

∫
g(y)dP(y) its integral with respect to P and by E[g(Y )] the

expectation of g(Y ). When P has a density function p : Y → R with respect to a reference
measure λ on Y (e.g., the Lebesgue measure when Y = Rn), the integral is denoted by∫
g(y)p(y)dλ(y).

2. Background

This section briefly reviews reproducing kernel Hilbert spaces (RKHS) and Gaussian pro-
cesses (GP). In particular, we focus on the respective approaches to regression, namely
kernel ridge regression (KRR) and Gaussian process regression (GPR).
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We first describe the regression problem. Let X be a non-empty set. Suppose we are
given n ∈ N paired observations

(x1, y1), . . . , (xn, yn) ∈ X ×R.

We assume that there exists a function f0 : X → R such that

yi = f0(xi) + εi, i = 1, . . . , n. (1)

where ε1, . . . , εn ∈ R are independent, zero-mean, noise variables. f0 is called regression
function. The task of regression is to estimate (or learn) f0 from the training data (xi, yi)

n
i=1.

We will often write X := (x1, . . . , xn) ∈ X n and y := (y1, . . . , yn) ∈ Rn.

2.1 Kernel Ridge Regression (KRR)

2.1.1 Kernels and RKHSs

We review here basics of kernels and RKHSs. For details, we refer to Schölkopf and Smola
(2002); Hofmann et al. (2008); Steinwart and Christmann (2008).

Let X be an arbitrary non-empty set. A symmetric function k : X × X → R is called
a positive definite kernel, if for every n ∈ N and every X = (x1, ..., xn) ∈ X n, the induced
kernel matrix kXX = (k(xi, xj))

n
i,j=1 ∈ Rn×n is positive semi-definite. We may simply call

such k kernel. By the Moore-Aronszajn theorem (Aronszajn, 1950), for any such kernel k
there exists a uniquely associated Hilbert space

(
H, 〈·, ·〉H

)
of real-valued functions f : X →

R called reproducing kernel Hilbert space (RKHS) such that

1. k(·, x) ∈ H for every x ∈ X and

2. f(x) = 〈f, k(·, x)〉H for every f ∈ H and x ∈ X ,

where k(·, x) denotes the function of the first argument with x being fixed: x′ ∈ X →
k(x′, x). The kernel k is called reproducing kernel of H.

Examples of kernels on X ⊂ Rd include the following. For γ > 0 the Gaussian kernel

or square-exponential kernel is defined as kγ(x, x′) := exp(−‖x−x
′‖2

γ2
) for x, x′ ∈ X . For

constants α > 0 and h > 0 the Matérn kernel is defined for x, x′ ∈ X as kα,h(x, x′) :=
1

2α−1Γ(α)
(2α‖x−x′‖

h )αKα(2α‖x−x′‖
h ), where Γ is the gamma function and Kα is the modified

Bessel function of the second kind of order α.
The RKHS Hk may be “explicitly” constructed from k as follows (Hofmann et al., 2008,

Section 2.2.1). Define a function space

H0 :=
{
f =

n∑
i=1

αik(·, xi) | n ∈ N, α1, ..., αn ∈ R, x1, ..., xn ∈ X
}
.

For f =
∑n

i=1 αik(·, xi) ∈ H0 and g =
∑m

i=1 βik(·, yi) ∈ H0, define an inner product

〈f, g〉H0 :=

n∑
i=1

m∑
j=1

αiβjk(xi, yj).
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Then we have

Hk = H0,

i.e., the RKHS Hk is the closure of H0 with respect to the norm induced by the inner
product 〈·, ·〉H0 .

2.1.2 Regression Approach

Kernel ridge regression (KRR) is an approach to regression using a kernel k and its RKHS
Hk. The KRR estimator f̂ of the regression function f0 in (1) is defined as the solution of
the following regularized empirical risk minimization (ERM) problem

f̂ = argmin
f∈Hk

1

n

n∑
i=1

(yi − f(xi))
2 + λ||f ||2Hk , (2)

where λ > 0 is a regularization constant. To gain an intuitive understanding for the necessity
of the regularization, suppose that the function space Hk is potentially very large and
therefore the unregularised ERM tends to interpolate the data points. The regularization
term in (2) imposes a certain degree of smoothness onto the solution f̂ and hence prevents
it from adapting too strongly to the training data (x1, y1), . . . , (xn, yn).

Let X := (x1, ..., xn) ∈ X n and y := (y1, ..., yn)> ∈ Rn. By the representer theo-
rem (Schölkopf et al., 2001), the solution f̂ is given as a linear combination of k(·, x1),
. . . , k(·, xn). Hence, the optimization problem (2) reduces to that of the coefficients of the
linear combination. As a result, the estimator is given by

f̂ =

n∑
i=1

αik(·, xi), (3)

where α := (α1, ..., αn)> ∈ Rn is given by

α = (kXX + nλIn)−1y,

where In ∈ Rn×n is the identity matrix. The prediction of KRR at any x ∈ X is compactly
written as

f̂(x) = kX(x)>α = kX(x)>(kXX + nλIn)−1y, (4)

where kX(x) = (k(x1, x), . . . , k(xn, x))> ∈ Rn.

The elegance of KRR is that we arrive at a simple, closed form expression for an infinite-
dimensional optimisation problem. As we shall see soon, the same expression will arise in
the context of non-parametric Bayesian learning.

2.2 Gaussian Process Regression (GPR)

2.2.1 Gaussian Processes

Gaussian processes (GPs) are one of the main workhorses of Bayesian nonparametric statis-
tics and machine learning, as they can be used to place a prior distribution over functions.
See Rasmussen and Williams (2006) for more details.
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Let X be a non-empty set, m : X → R a function and k : X ×X → R a positive definite
kernel. A random function F : X → R is called Gaussian process (GP) with mean function
m and covariance kernel k, if for all n ∈ N and all X = (x1, ..., xn) ∈ X n, the random vector
FX := (F (x1), . . . , F (xn))> ∈ Rn satisfies

FX ∼ N (mX , kXX),

i.e., FX follows the Gaussian distribution with mean vector mX = (m(x1), . . . ,m(xn))> ∈
Rn and covariance matrix kXX = (k(xi, xj))

n
i,j=1 ∈ Rn×n. In this case, we write

F ∼ GP (m, k).

By definition, we have

m(x) = E [F (x)] , x ∈ X ,
k(x, x′) = E

[
(F (x)−m(x))(F (x′)−m(x′))

]
, x, x′ ∈ X

For any function m : X → R and kernel k : X × X → R, there exists1 a GP whose
mean function is m and covariance function is k. Therefore, by choosing m and k, one can
implicitly define the corresponding GP, F ∼ GP (m, k). This is how a GP is used to define
a prior distribution in Bayesian nonparametrics.

2.2.2 Regression Approach

Gaussian process regression (GPR) is a Bayesian nonparametric approach to the regression
problem. In GPR, the regression function f0 in Eq. (1) is the quantity of interest and
modeled as a random function F . The prior distribution is given by a GP

F ∼ GP (m, k). (5)

where the modeler choses the mean function m and covariance function k to encode his/her
prior knowledge/assumption about the regression function f0.

The likelihood model of F for the observations y = (y1, . . . , yn)> is given by

yi = F (xi) + εi, i = 1, . . . , n, (6)

where2 εi ∼ N (0, σ2) is an independent Gaussian noise with variance σ2 > 0.
By Bayes’ rule, the posterior distribution of F given y, under the prior (5), is given by

again a GP3

F | y ∼ GP (m̄, k̄),

where k̄ : X × X → R and m̄ : X → R are defined as

m̄(x) := m(x) + kX(x)>(kXX + σ2In)−1(y −mX), (7)

k̄(x, x′) := k(x, x′)− kX(x)>(kXX + σ2In)−1kX(x′), (8)

1. This is a consequence of the Kolmogorov consistency theorem (see e.g. Tao, 2011, Chapter 2.4).
2. In GPR, the noise assumption can be weaker, e.g., ε1, . . . , εn can be dependent and/or their variances

can be different. In this paper, we consider this simplest noise model to investigate connections to the
KRR.

3. See e.g. Rasmussen and Williams (2006) for derivation.
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where kX(x) = (k(x1, x), . . . , k(xn, x))> ∈ Rn. We call GP (m̄, k̄) the posterior GP, m̄
the posterior mean function and k̄ the posterior covariance function. We use the following
notation for the probability measure of the posterior GP:

PF |y := GP (m̄, k̄). (9)

The posterior mean function m̄ serves as an estimator of the regression function f0. On
the other hand, the posterior covariance function k̄ provides a way of uncertainty quantifi-
cation: k̄(x, x) is the posterior variance of F (x) given y. Its square root

√
k(x, x) is the

posterior standard deviation and may be used to construct a Bayesian credible interval for
f0(x).

2.3 Connections between KRR and GPR

There is a well-known equivalence between the KRR estimator and the posterior mean
function of GPR (Kimeldorf and Wahba, 1970; Kanagawa et al., 2018). This is summarized
in the following theorem.

Theorem 1 Let k be a kernel, and suppose that data (xi, yi)
n
i=1 ⊂ X × R are given.

• Let m̄ be the posterior mean function (7) of GPR with the prior being the zero-mean
Gaussian process F ∼ GP (0, k) (i.e., m(x) = 0, ∀x ∈ X , in (5)).

• Let f̂ be the KRR estimator (4) performed on the RKHS Hk.

Then if σ2 = nλ, we have f̂ = m̄.

This result provides a Bayesian interpretation for the KRR estimator, and a least-
squares interpretation for the GPR posterior mean function. In particular, the condition
σ2 = nλ shows that specifying the noise variance σ2 in GPR is equivalent to specifying
a regularization constant λ in the KRR. For GPR, this equivalence implies that assuming
observation noises works as regularization or smoothing. For KRR, it implies that the
regularization constant may be learned from the data via interpreting it as a (scaled) noise
variance. The equivalence between KRR and GPR enables an alternative interpretation of
either approach and opens up a possibility of devising novel learning algorithms.

RKHS Interpretation of Posterior Variances. There is also an RKHS interpretation
of the posterior variance k̄(x, x) of GPR (Kanagawa et al., 2018, Section 3.4). To describe
this, define wσ : X → Rn by

wσ(x) := (kXX + σ2In)−1kX(x), x ∈ X ,

Then, provided σ2 = nλ, the KRR estimator in (4) can be written as

f̂(x) =

n∑
i=1

wσi (x)yi = y>wσ(x), x ∈ X . (10)

which is linear in the training outputs y = (y1, . . . , yn)>. Define also an augmented kernel

kσ(x, x′) = k(x, x′) + σ2
1{x = x′}, x, x′ ∈ X ,
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where 1{x = x′} = 1 if x = x′ and 1{x = x′} = 0 otherwise. Intuitively, its RKHS Hkσ
may be understood as an “corrupted” version of Hk, in the sense that each function in Hkσ
is the sum of a function from Hk and an independent noise function; see Kanagawa et al.
(2018, Section 3.4) for a discussion.

The following theorem relates that the posterior variance k̄(x, x) of GPR to a worst case
error of predictions by KRR in Hkσ .

Theorem 2 (Kanagawa et al., 2018, Proposition 3.8) Let k̄ be the posterior covariance
function (8) of GPR based on a prior F ∼ GP (0, k) and observation noise variance σ2 ≥ 0
(Suppose the kernel matrix kXX is invertible if σ2 = 0). If σ2 = nλ and x 6= xi for all
i = 1, ..., n, then √

k̄(x, x) + σ2 = sup
g∈Hkσ : ‖g‖Hkσ≤1

(
g(x)−

n∑
i=1

wσi (x)g(xi)
)
.

In the right hand side,
∑n

i=1w
σ
i (x)g(xi) can be interpreted as the prediction of g(x) by

KRR trained with data (xi, yi)
n
i=1 where yi = g(xi) (see Eq. (10)). Thus, the right hand

side is the worst case error of KRR predictions at input x, for functions g from the unit ball
in Hkδ . This result suggests that uncertainty quantification can be also done in the RKHS
framework.

In this paper, we investigate whether these parallels between KRR and GPR extend to
their sparse approximations, which have been developed (largely independently within the
two research communities) to deal with the unfavourable computational properties of KRR
and GPR. The following sections are devoted to this question.

3. Sparse Approximations

The elegance of KRR and GPR is that closed form expressions are respectively available for
the solution of optimization or Bayesian inference in potentially infinite dimensional func-
tion spaces. Unfortunately, this comes with high computational costs, since both methods
involve the inversion of the regularized kernel matrix, which leads to the computational
complexity of O(n3), where n is the size of training data (xi, yi)

n
i=1. Both kernel and GP

communities have been developing a variety of approximation methods for making their
respective approaches scalable. One of the most successful approaches is sparse approx-
imation, which approximates the solution of interest using a smaller set of input points
z1, . . . , zm ∈ X , where m ∈ N may be much smaller than the original data size n.

We investigate here connections between the sparse approximation methods for KRR
and GPR. Specifically, we focus on the connections between the Nyström approximation
and the Sparse Variational Gaussian Process (SVGP) approximation, which are respec-
tively popular sparse approximation methods for the kernel and GP-based approaches.
Sections 3.1 and 3.2 review the Nyström and the SVGP methods, respectively. Section
3.3 describes an equivalence between the SVGP posterior mean function and the Nyström
KRR, and investigates the original of the equivalence by studying the ELBO for the SVGP.
Section 3.4 summarizes an equivalence between the Nyström and the Deterministic Training
Conditional (DTC) approximation, a classic sparse GP approximation approach. Section
3.5 provides a geometric interpretation of the SVGP posterior covariance function, based
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on which Section 3.6 investigates further the ELBO. Section 3.7 provides an RKHS in-
terpretation of the SVGP posterior variance function as consisting of worst case errors of
kernel-based interpolation and the Nyström KRR.

3.1 Nyström Approximation

The Nyström method was first proposed by Williams and Seeger (2001) for scaling up
kernel-based learning algorithms. It has been successfully used in a variety of applications
including manifold leaning (Talwalkar et al., 2008, 2013), computer vision (Fowlkes et al.,
2004; Belabbas and Wolfe, 2009), and approximate sampling (Affandi et al., 2013), to name
a few. Recent studies make use of the Nyström method to enable KRR to handle millions
to billions of data points (e.g. Rudi et al., 2017; Meanti et al., 2020).

We describe here the use of the Nyström approximation in KRR. In particular, we con-
sider a popular version classically known as the subset of regressors (Wahba, 1990, Chapter
7), which has been widely used both in practice and theory (e.g., Smola and Schölkopf,
2000; Rudi et al., 2015, 2017; Meanti et al., 2020). As before, let (xi, yi)

n
i=1 ⊂ X × R be

training data, and let X := (x1, ..., xn) ∈ X n and y := (y1, ..., yn)> ∈ Rn.
For m ∈ N, let z1, . . . , zm ∈ X be a set of input points based on which we approximate

the KRR solution. These points z1, . . . , zm are usually a subset of training input points
x1, . . . , xn in the kernel literature, but we allow for z1, . . . , zm to be generic points in X for
a later comparison with the GP counterpart. Write Z = (z1, . . . , zm) ∈ Xm. Suppose that
the kernel matrix kZZ = (k(zi, zj))

m
i,j=1 ∈ Rm×m is invertible.

Let M ⊂ Hk be the finite dimensional subspace spanned by k(·, z1), . . . , k(·, zm):

M : = span(k(·, z1), . . . , k(·, zm)) :=


m∑
j=1

αjk(·, zj) | α1, ..., αm ∈ R

 . (11)

We replace the hypothesis space Hk in the KRR objective function (2) by this subspace M ,
and define its solution f̄ as the Nyström approximation of the KRR solution f̂ :

f̄ := arg min
f∈M

1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ‖f‖2Hk , (12)

In other words, we approximately solve the minimization problem of KRR by searching for
the solution of the form

f =

m∑
i=1

βik(·, zi) = kZ(·)>β

for some coefficients β := (β1, . . . , βm)> ∈ Rm, where kZ(·) := (k(·, z1), . . . , k(·, zm))>.
Inserting this expression in (12), the optimization problem now becomes

min
β∈Rm

1

n
‖y − kXZβ‖2 + λβ>kZZβ,

where kXZ ∈ Rn×m with (kXZ)i,j = k(xi, zj) and kZZ ∈ Rm×m with (kZZ)i,j = k(zi, zj).
Taking the first order derivative with respect to β leads to the condition

− 2

n
kZXy +

2

n
kZXkXZβ + 2λkZZβ = 0,

10
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which is satisfied for
β =

(
kZXkXZ + nλkZZ

)−1
kZXy.

This leads to the following expression of the Nyström approximation:

f̄(x) = kZ(x)>(nλkZZ + kZXkXZ)−1kZXy. (13)

This approximation can be computed with the complexity of O(nm2+m3) instead of O(n3),
since the inversion of a n × n matrix is replaced by that of a m ×m matrix. This grants
significant computational gains, if m is much smaller than n and hence allows KRR to be
applied to large data sets. Of course, how to choose m and the input points z1, . . . , zm
depends not only on the computational budget but also on how accurately f̄ approximates
the KRR solution f̂ . We discuss this issue in Section 4.

3.1.1 Characterization with an Approximate Kernel

We study here another characterization of the Nyström approximation based on a certain
approximate kernel. This characterization provides a natural connection of the Nyström
method to one of sparse approximation methods for GPR, as we will see later.

For any f ∈ Hk, denote by PM
(
f
)
∈M the orthogonal projection of f onto the subspace

M :
PM
(
f
)

:= argmin
g∈M

‖f − g‖Hk ,

which is the best approximation of f by an element in M . The projection is given as
Pm(f) =

∑m
j=1 α

∗
jk(·, zj), where the α∗ = (α∗1, . . . , α

∗
m)> ∈ Rm is the solution of

min
α∈Rm

‖f −
m∑
j=1

αjk(·, zj)‖Hk .

Given that the kernel matrix kZZ is invertible, the solution can be shown to be α∗ = k−1
ZZfZ

with fZ =
(
f(z1), ..., f(zm)

)> ∈ Rm. Thus the projection of f is given by

PM
(
f
)

= kZ(·)>k−1
ZZfZ . (14)

We can use the orthogonal projection PM to define an approximate kernel. Note that
by definition,

k(x, x′) =
〈
k(·, x), k(·, x′)

〉
Hk
, x, x′ ∈ X .

We then define a new kernel q : X × X → R as the inner product between the projections
of k(·, x) and k(·, x′) onto the subspace M :

q(x, x′) :=
〈
PM
(
k(·, x)

)
, PM

(
k(·, x′)

)〉
Hk

=
〈
kZ(x)>k−1

ZZkZ(·), kZ(x′)>k−1
ZZkZ(·)

〉
Hk

= kZ(x)>k−1
ZZkZ(x′), x, x′ ∈ X . (15)

Since q is a positive definite kernel, it induces its own RKHS Hq. As the following lemma
shows, this RKHS Hq is nothing but the subspace M , with the inner product of Hq being
identical to that of the original RKHS Hk. The proof can be found in Appendix A.

11
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Lemma 3 Let Z = (z1, . . . , zm) ∈ Xm be such that the kernel matrix kZZ is invertible.
Then we have M = Hq as a set, and

〈f, g〉Hq = 〈f, g〉Hk , ∀f, g ∈M = Hq.

In particular, Lemma 3 implies that

‖f‖Hq = ‖f‖Hk , ∀f ∈ Hq = M

By using this identity and Hq = M in the Nyström KRR objective function (12), we
immediately have the following characterization of the Nyström approximation in (13).

Theorem 4 Let X := (x1, ..., xn) ∈ X n and y := (y1, ..., yn)> ∈ Rn be given. Let Z =
(z1, . . . , zm) ∈ Xm be such that the kernel matrix kZZ is invertible, and f̄ be the Nyström
approximation f̄ of KRR in (13). Then we have

f̄ = arg min
f∈Hq

1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ‖f‖2Hq

where q is the approximate kernel defined in (15).

Theorem 4 shows that the Nyström approximation (13) is the solution of the KRR with
the approximate kernel q in (15). Note that, by Lemma 3, any f ∈ Hq can be written as

f(x) = 〈f, q(·, x)〉Hq = 〈f, q(·, x)〉Hk
=
〈
f, kZ(·)>k−1

ZZkZ(x)
〉
Hk

= f>Z k
−1
ZZkZ(x).

The last expression coincides with the expression (14) of the orthogonal projection onto
M , and also with the kernel-based interporator4 obtained from noise-free observations
(zj , f(zj))

m
j=1. Therefore, each function Hq is the best approximation of functions in Hk

that pass (zj , f(zj))
m
j=1. In this sense, Hq consists of functions that approximate the func-

tions in Hk on the landmark points z1, . . . , zm. Hence, Theorem 4 shows that the Nyström
approximation is the solution of the KRR where the hypothesis space Hq consists of such
approximate functions.

3.2 Sparse Approximations for GPR

We review here the Sparse Variational Gaussian Process (SVGP) approach by Titsias
(2009a) based on a measure-theoretic formulation suggested by Matthews et al. (2016).
There have been many works on sparse approximations for scaling up GP-based methods.
In a nutshell, there are two common approaches: either the generative model is approxi-
mated and inference is performed exactly (Seeger et al., 2003; Snelson and Ghahramani,
2006, 2007) or the generative model is left unaltered and inference is done approximately

4. This corresponds to the KRR estimator (4) with λ := 0, X := Z and y := fZ . Setting λ = 0 leads to the
minimum-norm interpolation in the RKHS; see e.g. Kanagawa et al. (2018, Section 3.2) and references
therein.

12
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(Csató and Opper, 2002; Titsias, 2009a). In this work, we mainly focus on the SVGP
approximation by Titsias (2009a), which is the latter approach, but we also discuss the
Deterministic Training Conditional (DTC) approximation (Seeger et al., 2003), one of the
former approaches, as this will provide us a more insight about the SVGP approximation.
We refer to Bauer et al. (2016) for a systematic comparison of the two approaches.

Since we focus on the basic framework of Titsias (2009a) and its comparison to the kernel
counterpart in a regression setting, we do not discuss sparse variational GP approaches to
the classification problem (Hensman et al., 2015a) and other (more recent) developments
(e.g., Hensman et al., 2015b, 2018; Dutordoir et al., 2020; Adam et al., 2020; Shi et al.,
2020; Rossi et al., 2021; Tran et al., 2021). See e.g., Leibfried et al. (2020) for an overview
over variational GP approaches.

We first recall the setting of GPR using a measure-theoretic notation. As before, let
(xi, yi)

n
i=1 ⊂ X ×R be training data and let X = (x1, . . . , xn) ∈ X n and y = (y1, . . . , yn)> ∈

Rn. For simplicity, we assume the zero prior mean function, m(x) = 0. We denote by
P the probability measure of a Gaussian process F ∼ GP (0, k). For any finite set of
points D := (d1, . . . , d`) ∈ X ` with ` ∈ N, let PD be the corresponding distribution of
FD := (F (d1), . . . , F (d`))

> on R`, which is PD = N (0, kDD) by definition.

3.2.1 Variational Family

We first introduce a variational family of probability measures of functions on X , from
which we search for a computationally tractable approximation of the GP posterior PF |y =
GP (m̄, k̄) in (9). Let m ∈ N be fixed, and Γ be a set of variational parameters defined by

Γ := {ν := (Z, µ,Σ) | Z := (z1, . . . , zm) ∈ Xm, kZZ is invertible,

µ ∈ Rm,Σ ∈ Rm×m�0 }

where Rm×m�0 stands for symmetric and positive definite matrices in Rm×m. The points
Z = (z1, . . . , zm) are the so-called inducing inputs, based on which we approximate the
posterior GP. On the other hand, µ and Σ are parameters for the distribution of function
values at z1, . . . , zm.

We then define a variational family

QΓ := {Qν | ν ∈ Γ}

as a set of Gaussian processes parametrized by the tuple ν = (Z, µ,Σ) defined as follows:

Qν := GP (mν , kν), (16)

mν(x) := kZ(x)>k−1
ZZµ, (17)

kν(x, x′) := k(x, x′)− kZ(x)>k−1
ZZkZ(x′)

+ kZ(x)>k−1
ZZΣk−1

ZZkZ(x′). (18)

Each variational distribution (16) is defined so as to have the following properties, where
F ν ∼ GP (mν , kν) denotes the corresponding GP sample function:

13
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1. The function values5 F νZ := (F ν(z1), . . . , F ν(zm))> ∈ Rm at the inducing inputs
z1, . . . , zm follow the Gaussian distribution with mean vector µ ∈ Rm and covari-
ance matrix Σ ∈ Rm×m�0 , i.e., F νZ ∼ N (µ,Σ). We denote by Qν

Z by the distribution of
F νZ i.e., Qν

Z = N (µ,Σ).

2. The conditional distribution of the process F ν given (zi, F
ν(zi))

m
i=1 is identical to the

conditional distribution of F ∼ GP (m, k) given (zi, F (zi))
m
i=1:

F ν | (zi, F ν(zi))
m
i=1

d
= F | (zi, F (zi))

m
i=1. (19)

In fact, starting from the expressions (16) (17) (18), one can check that F ν ∼ GP (mν , kν)
satisfies the above two requirements as follows:

1. mν
Z = µ and kνZZ = Σ, and thus F νZ ∼ N (µ,Σ);

2. By using (7) and (8) with m := mν , k := kν , X := Z, Y := F νZ and σ2 := 0,6 the
conditional distribution of F ν given (zi, F

ν(zi))
m
i=1 is given by the Gaussian process

F ν | (zi, F ν(zi))
m
i=1 ∼ GP (m̃ν , k̃ν),

with mean function m̃ν : X → R and covariance function k̃ν : X × X → R given by

m̃ν(x) := mν(x) + kνZ(x)>(kνZZ)−1(FZ −mν
Z)

= kZ(x)>k−1
ZZFZ , (20)

k̃ν(x, x′) := kν(x, x′)− kνZ(x)>(kνZZ)−1kνZ(x′)

= k(x, x′)− kZ(x)>k−1
ZZkZ(x′) (21)

Since the expressions (20) and (21) are respectively the mean function and covariance
function of the conditional distribution of F given (zi, F (zi))

m
i=1 i.e., F | (zi, F (zi))

m
i=1 ∼

GP (m̃, k̃), we have the distributional identity (19).

3.2.2 Evidence Lower Bound and Optimal Vartional Parameters

The aim of variational inference is to obtain a distribution Qν∗ from the variational family
QΓ that best approximates the posterior measure PF |y in terms of the Kullback-Leibler
(KL) divergence, without explicitly computing the posterior. That is, we want to compute
ν∗ ∈ Γ such that

ν∗ ∈ arg min
ν∈Γ

KL(Qν ‖ PF |y). (22)

where KL(Qν ‖ PF |y) is the KL divergence between Qν and PF |y defined by

KL(Qν ||PF |y) :=

∫
log

(
dQν

dPF |y
(f)

)
dQν(f).

5. Note that F νZ is usually called inducing variables and is denoted with symbol u in the literature.
6. The case σ2 = 0 is well defined as long as the kernel matrix kZ is invertible. In this case, the regression

problem becomes that of interpolation, i.e., function approximation from noise-free observations. See
e.g. Kanagawa et al. (2018) and references therein.
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with dQν
dPF |y being the Radon-Nikodym derivative of Qν with respect to PF |y, which exists by

the construction of Qν (Matthews et al., 2016, Section 3.3).
Matthews et al. (2016, Eq. 15) show that this KL divergence can be written as

KL
(
Qν ‖ PF |y

)
= log p(y)− L(ν), (23)

where p(y) is the marginal likelihood, or the Evidence, of observing y = (y1, . . . , yn)> under
the prior F ∼ GP (m, k) and the likelihood model yi ∼ N (F (xi), σ

2), while L(ν) is the
Evidence Lower Bound (ELBO) defined as

L(ν) := −KL
(
Qν
Z ‖ PZ

)
+ EF ν∼Qν

[
log p(y|F νX)

]
, (24)

where

• KL
(
Qν
Z ‖ PZ

)
is the standard KL divergence between Qν

Z = N (µ,Σ), which is the
marginal distribution of F νZ ∈ Rm of the parameterized Gaussian process F ν ∼ Qν =
GP (mν , kν) in (16), and PZ = N (0, kZZ), which is the marginal distribution of FZ ∈
Rm of the prior Gaussian process F ∼ P = GP (0, k):

KL
(
Qν
Z ‖ PZ

)
=

∫
Rm

log

(
dQν

Z

dPZ
(fZ)

)
dQν

Z(fZ)

=
1

2

(
tr(k−1

ZZΣ) + µ>k−1
ZZµ−m+ log

(
detkZZ
detΣ

))
, (25)

where the last identity is the well-known expression of the KL divergence between
multivariate Gaussian densities (see, e.g., Appendix A.5 of Rasmussen and Williams
2006).

• EF ν∼Qν [log p(y|F νX)] is the marginal log likelihood of observing y = (y1, . . . , yn)> un-
der the likelihood model yi = F ν(xi) + εi with independent εi ∼ N (0, σ2) and the
parametrized process F ν ∼ Qν :

EF ν∼Qν [log p(y|F νX)] = −n log(
√

2πσ2)− EF ν∼Qν
n∑
i=1

(yi − F ν(xi))
2

2σ2
(26)

where p(y|F νX) := N (y;F νX , σ
2In) is the Gausian density of the likelihood function

(6).

Since the marginal likelihood p(y) under the original GP prior does not depend on the
variational parameters ν, the minimization of the KL divergence (23) is equivalent to the
maximization of the ELBO L(ν) in (24). Titsias (2009a, Eq.(10)) show that,7 for fixed
inducing points Z, the optimal parameters µ∗ and Σ∗ that maximize the ELBO are given
analytically as

µ∗ := kZZ(σ2kZZ + kZXkXZ)−1kZXy (27)

Σ∗ := kZZ(kZZ + σ−2kZXkXZ)−1kZZ (28)

7. See Appendix A of Titsias (2009b) or Hensman et al. (2013, Section 2) for the derivation
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and the resulting ELBO, denoted by L∗, is

L∗ =− 1

2
log det(qXX + σ2In)− 1

2
y>(qXX + σ2I)−1y

− n

2
log 2π − 1

2σ2
tr(kXX − qXX), (29)

where q is the approximate kernel in (15). Inserting these expressions in the definition of
the variational distribution (16), the optimal variational approximation (for fixed inducing
points Z) is given by GP (m∗, k∗) with:

m∗(x) := kZ(x)>(σ2kZZ + kZXkXZ)−1kZXy (30)

k∗(x, x′) := k(x, x′)− kZ(x)>k−1
ZZkZ(x′)

+ kZ(x)>(kZZ + σ−2kZXkXZ)−1kZ(x′) (31)

The computational complexity of obtaining the mean function m∗ and the covariance
function k∗ is O(nm2 + m3), which can be much smaller than the complexity O(n3) of
the exact posterior as long as the number of inducing points m is much smaller than the
training data size n.

The ELBO (29) with optimal µ∗ and Σ∗ is a key quantity, as it can be used i) as a
criterion for optimizing the inducing inputs z1, . . . , zm and ii) for theoretically analyzing
the quality of variational approximation.

3.3 Equivalence between the Nyström and SVGP Approximations

We now focus on the relations between the Nyström method for KRR and the variational
approximation for GPR. Like Theorem 1, our result below summarizes the equivalence
between the predictors in the two approaches. It directly follows from the corresponding
expressions (13) and (30).

Theorem 5 Let k be a kernel, and suppose that data (xi, yi)
n
i=1 ⊂ X × R are given.

Let Z = (z1, . . . , zm) ∈ Xm be fixed inducing inputs such that the kernel matrix kZZ =
(k(zi, zj))

m
i,j=1 ∈ Rm×m is invertible.

• Let m∗ be the mean function (30) of the variational posterior for GPR with the prior
being the zero-mean Gaussian process F ∼ GP (0, k).

• Let f̄ be the Nyström approximation (13) of KRR performed on the RKHS Hk.

Then if σ2 = nλ, we have m∗ = f̄ .

Theorem 5 shows that the two approximate regressors are identical, although their
derivations are (seemingly) quite different. The condition nλ = σ2 is the same as that
required for the equivalence between KRR and GPR in Theorem 1.

The question now is why there is this equivalence in the two ways of approximation. To
investigation this, we first inspect closely the ELBO (24) of the variational approximation,
to reveal the source of the equivalence. In the expression (24), the first term −KL(Qν

Z‖PZ)
can be understood as a regularizer, constraining the variational approximation Qν not to
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deviate too much from the GP prior P = GP (0, k) on the inducing points Z = (z1, . . . , zn).
The second term EF ν∼Qν [log p(y|F νX)] represents the quality of predictions evaluated at the
training data (xi, yi)

n
i=1. Therefore, the ELBO may be understood as a regularized empirical

risk for the (distributional) regression problem.

The following result reveals the source of the equivalence between the two approaches.
The proof can be found in Appendix A.2.

Theorem 6 Let ν = (Z, µ,Σ) ∈ Xm × Rm × Rm×m>0 be such that the kernel matrix kZZ ∈
Rm×m is invertible, and let L(ν) be the ELBO in (24). Then we have

−2σ2L(ν) =
n∑
i=1

(
yi − kZ(xi)

>k−1
ZZµ

)2
+ σ2µk−1

ZZµ (32)

+
n∑
i=1

kZ(xi)
>k−1

ZZΣk−1
ZZkZ(xi) (33)

+ σ2
(
tr(k−1

ZZΣ) + log(detkZZ/detΣ)−m
)

(34)

+
n∑
i=1

(
k(xi, xi)− kZ(xi)

>k−1
ZZkZ(xi)

)
. (35)

An important consequence of Theorem 6 is that, given Z being fixed, the optimization of
µ and Σ can be decoupled, since there is no term that depends on both of µ and Σ. Consider
the term (32), which does not depend on Σ but on µ and Z. Since kZZ is invertible, kZZ
as an operator defines a one-to-one mapping from Rm to Rm. Thus we can consider the
reparametrization α := k−1

ZZµ. With this, the µ-dependent term (32) can be written as

n∑
i=1

(yi − kZ(xi)
>α)2 + σ2α>kZZα

=
n∑
i=1

(yi − fm(xi))
2 + σ2‖fm‖2Hk , (36)

where we defined

fm :=

m∑
j=1

αjk(·, zj) ∈M ⊂ Hk,

with M = span(k(·, z1), . . . , k(·, zm)) being the subspace in (11). Notice that (36) is the
objective function of KRR if σ2 = nλ, evaluated for the function fm from the subspace
M . In other words, the maximization of the ELBO with respect to µ is equivalent to the
Nyström KRR (12) with σ2 = nλ. This is summarized in the following corollarly.

Corollary 7 Let ν = (Z, µ,Σ) ∈ Xm × Rm × Rm×m�0 be such that the kernel matrix kZZ ∈
Rm×m is invertible, and let L(ν) be the ELBO in (24). For any fixed Z and Σ, let

µ∗ = arg max
µ∈Rm

L(ν)
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and define α∗ = k−1
ZZµ

∗. Then f∗ =
∑m

j=1 α
∗
jk(·, zj) is the solution of the Nyström KRR

f∗ = arg min
f∈M

n∑
i=1

(yi − f(xi))
2 + σ2‖f‖2Hk ,

where M = span(k(·, z1), . . . , k(·, zm)) ⊂ Hk.

Thus, Theorem 6 shows the origin of the equivalence between the SVGP approach of Titsias
(2009a) for GPR the Nyström approximation for KRR.

Note that µ = (µ1, . . . , µm)> can be interpreted as noise-free observations at the inducing
points z1, . . . , zm. In fact, fm =

∑m
j=1 αjk(·, zj) with α = (α1, . . . , αm)> = k−1

ZZµ, which is

the mean function (17) of the variational distribution, is the kernel interpolator8 obtained
from training data (zj , µj)

m
j=1. Thus, the specification of µ1, . . . , µm can be understood as

the specification of pseudo observations at z1, . . . , zm. This interpretation is consistent with
the fact that µ is the mean vector of “inducing variables” F νZ = (F ν(z1), . . . , F ν(zm))>.

3.4 Relation to the Deterministic Training Conditional

Before proceeding further, we mention here the equivalence between the Nyström approxi-
mation and the Deterministic Training Conditional (DTC), a classic sparse approximation
approach to GPR by Seeger et al. (2003); see also Quiñonero-Candela and Rasmussen (2005,
Section 5). This discussion will be useful in our investigation of the connections between
the Nyström and SVGP.

With DTC, one performs GPR using the approximate kernel q in (15) for the prior,
F ∼ GP (0, q), instead of the original kernel k. Given observations y, the resulting GP
posterior is F |y ∼ GP (m̄, k̄) with the posterior mean function m̄ and posterior covariance
function k̄ given by

m̄(x) = qX(x)>(qXX + σ2In)−1y

= kZ(x)>(σ2kZZ + kZXkXZ)−1kZXy,

q̄(x, x′) = q(x, x′)− qX(x)(qXX + σ2In)−1qX(x′)

= kZ(x)>(kZZ + σ−2kZXkXZ)−1kZ(x′). (37)

Notice that the posterior mean function m̄ here and the Nyström approximation (13) are
the same if σ2 = nλ. In fact, this identity immediately follows from Theorem 1 on the
equivalence between the KRR and GPR and Theorem 4 on the formulation of the Nyström
as the KRR with the approximate kernel q.

3.5 Geometric Interpretation of the Variational Covariance Function

To further investigate the connections between the sparse approximation methods, we make
a geometric interpretation for the covariance function (18) of a variational distribution

8. This corresponds to the KRR estimator (4) with λ = 0, X = Z, and y = µ, which is well-defined as
long as the kernel matrix kZZ is invertible. In this case, the solution (4) is that of minimum-norm
interpolation: minf∈Hk ‖f‖Hk subject to f(zj) = µj , j = 1, . . . ,m. See e.g. Kanagawa et al. (2018) and
references therein.
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Qν = GP (mν , kν):

kν(x, x′) = k(x, x′)− kZ(x)>k−1
ZZkZ(x′) (38)

+ kZ(x)>k−1
ZZΣk−1

ZZkZ(x′). (39)

Part (38) is the posterior covariance function of F ∼ GP (0, k) given noise-free observations
(zj , F (zj))

m
j=1 and can be written as

k(x, x′)− kZ(x)>k−1
ZZkZ(x′) (40)

= k(x, x′)− q(x, x′)
= k(x, x′)−

〈
PM (k(·, x)), PM (k(·, x′))

〉
Hk

=
〈
k(·, x)− PM (k(·, x)), k(·, x′)− PM (k(·, x′))

〉
Hk
,

where q is the approximate kernel (15) and PM : Hk →M is the orthogonal projection (14)
onto the subspace M = span(k(·, z1), . . . , k(·, zm)).

Note that k(·, x)− PM (k(·, x)) is the residual of the orthogonal projection PM (k(·, x)).
Therefore geometrically, part (38) is the inner product between the two residuals. Intu-
itively, (38) represents the part of the kernel k that is not captured by the approximate
kernel q or, equivalently, by the subspace M .

We next consider part (39). To this end, letHkν be the RKHS of kν , Mν be the subspace
spanned by kν(·, z1), . . . , kν(·, zm):

Mν := span(kν(·, z1), . . . , kν(·, zm)) ⊂ Hkν , (41)

and PMν : Hkν →Mν be the orthogonal projection onto Mν :

PMν (f) := arg min
g∈Mν

‖f − g‖Hkν = kZ(·)>(kνZZ)−1fZ ,

for any f ∈ Hkν . (See (14)) It can be easily verified that

kνZZ = Σ, kνZ(x) = Σk−1
ZZkZ(x), ∀x ∈ X .

We can now rewrite part (39) as

kZ(x)>k−1
ZZΣk−1

ZZkZ(x′) = kνZ(x)>(kνZZ)−1kνZ(x′)

=
〈
PMν (kν(·, x)), PMν (kν(·, x′))

〉
Hkν

=: qν(x, x′) (42)

Thus, part (39) is the inner product in Hkν between the projections PMν (kν(·, x)) and
PMν (kν(·, x′)) on Mν . Notice that this structure is the same as the definition of the ap-
proximate kernel q in (15), but is given with the kernel kν parametrized by Σ and Z.
Therefore, part (39) can be understood as the approximation, denoted by qν , of kν using
the inducing inputs z1, . . . , zm.
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3.6 Further Investigation of the ELBO

We now investigate further the expression of ELBO in Theorem 6, focusing on the terms
(33) (34) that depend on the covariance matrix Σ, and the term (35) that depends only on
Z.

Using (42), the term (33) can be written as

n∑
i=1

kZ(xi)
>k−1

ZZΣk−1
ZZkZ(xi) =

n∑
i=1

‖PMν (kν(·, xi))‖2Hkν =
n∑
i=1

qν(xi, xi).

Thus, this term represents the variances (or uncertainties) of a GP with the approximate
kernel qν at training inputs x1, . . . , xn. On the other hand, the term (34) can be written as

σ2
(
tr(k−1

ZZΣ) + log(detkZZ/detΣ)−m
)

= σ2KL(N (0,Σ) ‖ N (0, kZZ)).

This is the KL divergence between the two zero-mean multivariate Gaussians with covari-
ance matrix Σ and kZZ . Thus, the sum of (33) and (34) in ELBO is

n∑
i=1

qν(xi, xi) + σ2KL(N (0,Σ) ‖ N (0, kZZ)) (43)

The first term represent uncertainties at training input x1, . . . , xn, and the second term
can be interpreted as a regularizer that encourages Σ not to deviate from prior covariance
matrix kZZ too much. Thus intuitively, the optimal Σ∗, which minimizes the sum, is
such that the uncertainties at x1, . . . , xn are small while Σ is not very different from kZZ .
This interpretation is consistent with the fact that Σ∗ is the one that produces a best
approximation to the GP posterior given observations (xi, yi)

n
i=1.

The last term (35) depends only on Z, and therefore it only works when optimizing Z.
This term represents the posterior variances of F ∼ GP (0, k) at x1, . . . , xn given noise-free
observations (zj , F (zj))

m
j=1. By (40) it can be written as

n∑
i=1

(
k(xi, xi)− kZ(xi)

>k−1
ZZkZ(xi)

)
=

n∑
i=1

(k(xi, xi)− q(xi, xi)) =

n∑
i=1

‖k(·, xi)− PM (k(·, xi))‖2Hk

Geometrically, this is the sum of the squared length of residuals k(·, xi)−PM (k(·, xi)), and
becomes small when the subspace M = span(k(·, z1), . . . , k(·, zm)) approximates well the
feature representations k(·, x1), . . . , k(·, xn) of training inputs x1, . . . , xn.

3.7 RKHS Interpretation of the Variational Posterior Covariance Function

We present here an RKHS interpretation of the posterior covariance function (31) of the
variational distribution with optimal Σ∗ in (28):

k∗(x, x′) = k(x, x′)− kZ(x)>k−1
ZZkZ(x′) (44)

+ kZ(x)>(kZZ + σ−2kZXkXZ)−1kZ(x′). (45)
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As mentioned, the first term (44) is the posterior covariance function of F ∼ GP (0, k) given
noise-free observations (zj , F (zj))

m
j=1. It is the same as the corresponding term (38) of the

covariance function of a variational GP with generic Σ, as this term does not depend on
Σ. The second term (45) is given by the approximate kernel in (42) with the optimal Σ∗ in
(28), which minimizes the KL-regularized objective function (43).

Interestingly, the term (45) coincides with the posterior covariance function (37) of the
DTC approximation. We summarize these observations in the following proposition:

Proposition 8 Let Σ∗ be the minimizer of the KL-regularized objective function (43), and
let qν be the resulting approximate kernel in (42). Then we have qν = q̄, where q̄ is the
posterior covariance function (37) of the DTC approximation.

Thus, the covariance function (31) of the variational posterior is the sum of two pos-
terior covariance functions:9: (i) one is that of F ∼ GP (0, k) given noise-free observations
(zj , F (zj))

m
j=1, and (ii) the other is that of F ∼ GP (0, q) given noisy training data (xi, yi)

n
i=1,

where q is the approximate kernel (15) based on inducing inputs z1, . . . , zm.

k∗(x, x′) = k(x, x′)− kZ(x)>k−1
ZZkZ(x′)︸ ︷︷ ︸

(i)

+ q̄(x, x′)︸ ︷︷ ︸
(ii)

.

By using Theorem 2, we can now provide the following RKHS interpretation of the
variational posterior variance function (i.e., (31) with x = x′). For part (i) with x = x′, we
have by Theorem 2, for x 6∈ {z1, . . . , zm},

k(x, x)− kZ(x)>k−1
ZZkZ(x) = ( sup

‖f‖Hk≤1
{f(x)− kZ(x)>k−1

ZZfZ})
2.

The is the worst case error of kernel interpolation from noise-free observations (zj , f(zj))
m
j=1,

where f is from the unit ball in Hk.
For part (ii) with x = x′, define an augmented kernel

qσ(x, x′) = q(x, x′) + σ2
1{x = x′} (46)

and let Hqσ be its RKHS. Then, again by Theorem 2, for x 6∈ {x1, . . . , xn} we have

q̄(x, x) + σ2 = ( sup
‖h‖Hqσ≤1

{h(x) + qX(x)>(qXX + σ2In)−1hX})2.

Note that the expression qX(x)>(qXX +σ2In)−1hX is the solution to the KRR for σ2 = nλ
with kernel q and training data (xi, h(xi))

n
i=1. By Theorem 4, this is equal to the Nyström

approximation (13) and thus

qX(x)>(qXX + σ2In)−1hX = kZ(x)>(σ2kZZ + kZXkXZ)−1kZXhX

9. Therefore, k∗(x, x′)− q̄(x, x′) = k(x, x′)−kZ(x)>k−1
ZZkZ(x′). From this expression, it follows that k∗− q̄

is a positive definite kernel. In particular, this implies that k∗(x, x) ≥ q̄(x, x) for all x ∈ X . In this sense,
the uncertainty estimate of the SVGP approach is more conservative than the DTC, as the posterior
variance k∗(x, x) is always larger or equal to that of the DTC q̄(x, x).
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Hence, part (ii) with x = x′ is the worst case error of the Nyström KRR predicting h(x)
using data (xi, h(xi))

n
i=1, where h is from the unit ball in the RKHS Hqσ and may be

interpreted as a noisy version of a certain function from the RKHS Hq of the approximate
kernel q.

To summarize, we have the following RKHS interpretation the variational posterior
variance:

Theorem 9 Let k be a kernel with RKHS Hk, and qσ be the augmented approximate ker-
nel defined in (46) with RKHS Hqσ . Suppose that data (xi, yi)

n
i=1 ⊂ X × R are given,

and that Z = (z1, . . . , zm) ∈ Xm are fixed inducing inputs such that the kernel matrix
kZZ = (k(zi, zj))

m
i,j=1 ∈ Rm×m is invertible. Let k∗ be the covariance function (31) of the

variational posterior. Then, for x 6∈ {x1, . . . , xn, z1, . . . , zm}, we have

k∗(x, x) + σ2 = ( sup
‖f‖Hk≤1

{f(x)− kZ(x)>k−1
ZZfZ︸ ︷︷ ︸

Kernel Interpolation

})2

+( sup
‖h‖Hqσ≤1

{h(x)− kZ(x)>(σ2kZZ + kZXkXZ)−1kZXhX︸ ︷︷ ︸
Nyström KRR

})2

The posterior variance function of the SVGP provides a means for uncertainty quantifi-
cation, and thus it is important to understand its behaviors. Theorem 9 shows that this
posterior variance (plus the noise variance) is equal to the sum of two worst case errors:
(a) the worst case error of kernel interpolation in the original RKHS Hk given noise-free
observations at inducing inputs z1, . . . , zm, and (b) the worst case error of the Nyström
KRR in the RKHS Hqσ of the augmented approximate kernel qσ given noisy observations
at training inputs x1, . . . , xn. The first part (a) becomes large when the test input point
x is far from inducing inputs z1, . . . , zm, and the second part (b) becomes large when the
test input x is far from training inputs x1, . . . , xn. Note that the part (b) depends on the
capacity of the RKHS Hqσ , which depends on the inducing inputs z1, . . . zm since qσ is
defined from the approximate kernel q. Therefore, in general, as the number m of inducing
inputs increases, the capacity of Hqσ increases and approaches that of the RKHS Hkσ in
Theorem 2, and thus the part (b) would also increase.

We have discussed the equivalences and connections between the Nyström and SVGP
approximations. In the next section, we focus on their theoretical properties, focusing on
the quality of approximation.

4. Connections in Theoretical Properties of Sparse Approximations

We investigate here connections between the theoretical properties of the Nyström and
SVGP approximations. The Nyström method provides an approximation to the exact KRR
solution, and the SVGP approximates the exact GP posterior. The quality of approximation
of either approach depends on the choice of inducing inputs Z = (z1, . . . , zm). We focus
here on theoretical error bounds for the approximation quality of either approach, and
investigate how they are related.

For the Nyström approximation, researchers have studied various approaches for sub-
sampling inducing inputs z1, . . . , zm from training inputs x1, . . . , xn and their theoretical
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properties. These range from uniform subsampling to subsampling methods based on lever-
age scores (Rudi et al., 2015; Musco and Musco, 2017; Chen and Yang, 2021), determinantal
point processes (DPPs) (Li et al., 2016), and to ensemble methods (Kumar et al., 2009,
2012). Theoretical works either quantify a (relative) deviation of the approximate kernel
matrix from the exact one and its impact on downstream tasks (e.g., Cortes et al., 2010;
Musco and Musco, 2017), or more directly bound the expected loss of the resulting approx-
imate KRR estimator (e.g. Bach, 2013; El Alaoui and Mahoney, 2015; Rudi et al., 2015).
On the other hand, for the SVGP approach, Burt et al. (2019, 2020) recently provided a
theoretical analysis of its quality of approximation for the first time.

In Section 4.1, we first discuss a fundamental result of Burt et al. (2020, Lemma 3) on
bounding the KL divergence between the approximate and true GP posteriors. In Section
4.2, we then study how their theoretical results are related to the approximation properties
of the Nyström KRR. To this end, we first show that the “data fit” term in the marginal
likelihood of GPR is identical to the regularized empirical risk of the corresponding KRR
estimator. Using this, we show that the analysis of Burt et al. (2020) is essentially based
on bounding the difference between the regularized empirical risks of the approximate and
exact KRR solutions. Thus, many of the theoretical arguments of Burt et al. (2020), such
as the analysis of impacts of using certain inducing inputs (e.g., DPPs and leverage scores),
can be directly translated to the analysis of the Nyström KRR. On the other hand, our
finding suggests that more sophisticated theoretical arguments for the Nyström KRR (e.g.
Bach, 2013; El Alaoui and Mahoney, 2015; Rudi et al., 2015; Chen and Yang, 2021) may
be used for obtaining sharper bounds for the SVGP approach. This investigation is left for
future research.

Moreover, in Section 4.3, we establish a novel error bound for the Nyström KRR in
terms of the RKHS distance to the exact KRR. Note that the RKHS distance is stronger
than standard error metrics such as the L2 or L1 errors. This new error bound is parallel to
a fundamental bound of Burt et al. (2020) for the SVGP, and thus the theoretical arguments
of Burt et al. (2020) can also be applied to bounding the RKHS error for the Nyström KRR.

Lastly, in Section 4.4, we study a lower bound of the KL divergence for the SVGP
approximation by Burt et al. (2020, Lemma 4) by considering an average case performance.
We show that, under the same setting, this lower bound leads to a lower bound of the
approximation error for the Nyström KRR, by the established equivalence result. This new
lower bound may be useful in a further analysis of the performance limit of the Nyström
approximation.

4.1 A Fundamental Result of Burt et al. (2020)

We first consider the approximation quality of the SVGP approach. In particular, we study
a fundamental result of Burt (Lemma 3), from which many other results in Burt et al.
(2020) are derived. As before, let µ∗ and Σ∗ be the optimal variational parameters in (27)
and (28), respectively, and let Z = (z1, . . . , zm) ∈ Xm be m inducing inputs such that
the kernel matrix kZZ is invertible. Let ν∗ := (Z, µ∗,Σ∗) and Qν∗ = GP (m∗, k∗) be the
resulting variational GP posterior with mean function m∗ and covariance function k∗ in
(17) and (18), respectively.
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A natural metric of quantifying the approximation quality of Qν∗ is the KL divergence
to the exact GP posterior PF |y, which is given by (23) with ν∗ = (Z, µ∗,Σ∗)

KL
(
Qν∗ ‖ PF |y

)
= log p(y)− L∗,

where p(y) is the marginal likelihood and L∗ is the ELBO in (29). We know that (e.g.,
Rasmussen and Williams, 2006, Eq. (5.8))

log p(y) = −1

2
log det(kXX + σ2In)− 1

2
y>(kXX + σ2In)−1y − n

2
log 2π

Therefore,

2KL
(
Qν∗ ‖ PF |y

)
= 2 log p(y)− 2L∗

= − log det(kXX + σ2In) + log det(qXX + σ2In) (47)

− y>(kXX + σ2In)−1y + y>(qXX + σ2In)−1y +
1

σ2
tr(kXX − qXX)

≤ −y>(kXX + σ2In)−1y + y>(qXX + σ2In)−1y +
1

σ2
tr(kXX − qXX), (48)

where the inequality follows from kXX − qXX being positive semi-definite.

Burt et al. (2020, Proof of Lemma 3) proceed to bound the first two terms in (48) as

− y>(kXX + σ2In)−1y + y>(qXX + σ2In)−1y

≤ ‖y‖2‖kXX − qXX‖op

σ2(‖kXX − qXX‖op + σ2)
≤ ‖y‖2tr(kXX − qXX)

σ2(tr(kXX − qXX) + σ2)
, (49)

where ‖ · ‖op is the operator norm. Thus, we arrive at the following bound (Burt et al.,
2020, Lemma 3):

2KL
(
Qν∗ ‖ PF |y

)
≤ tr(kXX − qXX)

σ2

(
‖y‖2

tr(kXX − qXX) + σ2
+ 1

)
.

≤ tr(kXX − qXX)

σ2

(
‖y‖2

σ2
+ 1

)
. (50)

This result shows that the KL divergence becomes small if tr(kXX − qXX) is small.
The latter quantity becomes small if, intuitively, the approximate kernel matrix qXX =
kXZk

−1
ZZkZX is close to the exact one kXX . See also Section 3.6 for probabilistic and

geometric interpretations of tr(kXX − qXX) =
∑n

i=1 k(xi, xi)− kZ(xi)
>k−1

ZZkZ(xi).

Burt et al. (2020) then establish various results on the KL divergence for the SVGP
approximation by i) relating tr(kXX − qXX) to the eigenvalues of kXX by considering a
specific sampling scheme for Z, such as DPPs and leverage score sampling, ii) relating the
eigenvalues of kXX to those of the corresponding kernel integral operator, and iii) bounding
the eigenvalue decays of the integral operator by considering specific choices of the kernel
k and the probability distribution of training input points x1, . . . , xn.
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4.2 Connection to the Nyström KRR

We now investigate how the bounds on the KL divergence for the SVGP approach are
related to the Nyström KRR. The key is the following lemma, which provides an RKHS
interpretation of y>(kXX + σ2I)−1y (and y>(qXX + σ2I)−1y) appearing in the bound (48).
The proof can be found in Appendix B.1.

Lemma 10 Let k be a kernel with RKHS Hk. Let X = (x1, . . . , xn) ∈ X n and y =
(y1, . . . , yn)> ∈ Rn be given. Then for any σ2 > 0, we have

y>(kXX + σ2In)−1y = min
f∈Hk

1

σ2

n∑
i=1

(yi − f(xi))
2 + ‖f‖2Hk .

Lemma 10 shows that y>(kXX + σ2In)−1y is a scaled version of the KRR objective
function in (2) with σ2 = nλ. Since the solution to the KRR is given by f̂ = kX(·)>(kXX +
σ2In)−1y, Lemma 10 implies that

y>(kXX + σ2In)−1y =
1

σ2

n∑
i=1

(yi − f̂(xi))
2 + ‖f̂‖2Hk ,

Similarly, Lemma 10 implies that y>(qXX + σ2In)y can be written as

y>(qXX + σ2In)−1y = min
f∈Hq

1

σ2

n∑
i=1

(yi − f̄(xi))
2 + ‖f‖2Hq

=
1

σ2

n∑
i=1

(yi − f̄(xi))
2 + ‖f̄‖2Hk ,

where f̄ = kZ(·)>(σ2kZZ + kZXkXZ)−1kZXy is the Nyström approximation by Theorem
4, and we used ‖f̄‖Hk = ‖f̄‖Hq from Lemma 3. Therefore, y>(qXX + σ2I)−1y is a scaled
version of the regularized empirical risk of the Nyström KRR.

Therefore, the first two terms in the upper bound (48) of the KL divergence can be
written as

y>(qXX + σ2In)−1y − y>(kXX + σ2In)−1y

=

(
1

σ2

n∑
i=1

(yi − f̄(xi))
2 + ‖f̄‖2Hk

)
−

(
1

σ2

n∑
i=1

(yi − f̂(xi))
2 + ‖f̂‖2Hk

)
(51)

which is essentially the difference between the KRR objectives for the Nyström and exact
estimators. Note that the difference (51) is non-negative since the Nyström approximation
is obtained from the subspace M of the RKHS Hk;

(51) = min
f∈M

A(f)− min
f∈Hk

A(f) ≥ 0

where A(f) :=
(

1
σ2

∑n
i=1(yi − f(xi))

2 + ‖f‖2Hk
)

. We can interpret the difference (51) as

quantifying the accuracy of the Nyström approximation to the exact KRR solution. That is,
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if (51) is small, the Nyström approximation is accurate in the sense that the approximation
makes the objective function as small as the exact solution.

As we saw, Burt et al. (2020, Proof of Lemma 3) provides upper-bounds on this difference
(51) as in (49). Thus we immediately obtain the following corollary by multiplying (49) by
σ2/n and setting σ2 = nλ.

Corollary 11 Let k be a kernel with RKHS Hk. Let X = (x1, . . . , xn) ∈ X n and y =
(y1, . . . , yn)> ∈ Rn be given, and let Z = (z1, . . . , zm) ∈ Xm be such that the kernel matrix
kZZ ∈ Rm×m is invertible. Let f̄ and f̂ be the Nyström and exact KRR estimators in (13)
and (4), respectively, with a regularization constant λ > 0. Then we have

Rn(f̄ ; y)−Rn(f̂ ; y) ≤ ‖y‖2‖kXX − qXX‖op

n(‖kXX − qXX‖op + nλ)
≤ ‖y‖2tr(kXX − qXX)

n(tr(kXX − qXX) + nλ)
,

where Rn(f ; y) := 1
n

∑n
i=1(yi − f(xi))

2 + λ‖f‖2Hk .

Therefore, all the results in Burt et al. (2020) on the KL divergence for the SVGP based
on Burt et al. (2020, Lemma 3) can be directly translated to the corresponding results
for the Nyström KRR using Corollary 11. This is one useful consequence of the RKHS
interpretation.

On the other hand, since we now know that there exist KRR objective functions in the
expression (47) of the KL divergence, it may be possible to use more sophisticated theoretical
arguments for the Nyström KRR (e.g. Bach, 2013; El Alaoui and Mahoney, 2015; Rudi et al.,
2015; Chen and Yang, 2021) to obtain sharper bounds on the KL divergence for the SVGP
approximation. This investigation is reserved for future research.

4.3 An RKHS Error Bound and its Implications

We present here an upper-bound on the RKHS distance between the Nyström and exact
KRR estimators, which is novel to the best of our knowledge. This bound shares a structural
similarity to the bound of Burt et al. (2020, Lemma 3) on the KL divergence between the
SVGP and exact GP posteriors (50). The proof can be found in Appendix B.2.

Theorem 12 Let k be a kernel with RKHS Hk. Let X = (x1, . . . , xn) ∈ X n and y =
(y1, . . . , yn)> ∈ Rn be given, and let Z = (z1, . . . , zm) ∈ Xm be such that the kernel matrix
kZZ ∈ Rm×m is invertible. Let f̄ and f̂ be the Nyström and exact KRR estimators in (13)
and (4), respectively, with a regularization constant λ > 0. Then we have

‖f̂ − f̄‖2Hk ≤
2 tr(kXX − qXX)‖y‖2

(nλ)2
.

The upper-bound takes a similar form as the bound (50) on KL divergence for the SVGP
approximation in terms of the dependence on tr(kXX − qXX), ‖y‖2 and σ2 = nλ. Similar
to our discussion on Corollary 11, one can thus translate the results from Burt et al. (2020)
to the correspond bounds on the RKHS distance between the Nyström and exact KRR
estimators.

By the equivalence results in Theorems 1 and 5, we immediately obtain the following
corollary for the SVGP and exact GP posterior mean functions:
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Corollary 13 Let k be a kernel with RKHS Hk. Let X = (x1, . . . , xn) ∈ X n and y =
(y1, . . . , yn)> ∈ Rn be given, and let Z = (z1, . . . , zm) ∈ Xm be such that the kernel matrix
kZZ ∈ Rm×m is invertible. Let m∗ and m̄ be the SVGP and exact GP posterior mean
functions in (30) and (7), respectively, with prior F ∼ GP (0, k) and likelihood model (6)
with noise variance σ2 > 0. Then we have

‖m̄−m∗‖2Hk ≤
2 tr(kXX − qXX)‖y‖2

σ4
.

Note that the RKHS distance is stronger than the supremum norm between two func-
tions. In fact, by the reproducing property, it can be shown that

(f̄(x)− f̂(x))2 ≤ ‖f̄ − f̂‖2Hkk(x, x), ∀x ∈ X .

Moreover, if the kernel k is smooth, then the RKHS distance upper-bounds the derivatives
of the RKHS functions. To describe this, let X ⊂ Rd be an open set. Suppose that the
kernel k is continuously differntiable10 on X in the sense that, for any j = 1, . . . , d, the
partial derivative ∂j∂

′
jk(x, x′) exists and is continuous on X , where ∂j and ∂′j denote the

partial derivatives with respect to the j-th coordinate of the first and second arguments of
k(x, x′), respectively. Then Steinwart and Christmann (2008, Corollary 4.36) implies that,
for all j = 1, . . . , d and all x ∈ X ,

(∂j f̄(x)− ∂j f̂(x))2 ≤ ‖f̄ − f̂‖2Hk∂j∂
′
jk(x, x),

Thus, the bound in Theorem 12 implies that, if tr(kXX − qXX) is small, then the partial
derivatives (and thus the gradients) of the Nyström KRR approximate well those of the
exact KRR. By the same argument and Corollary 13, we immediately obtain the following
corollary on the equivalent result for the SVGP approximation.

Corollary 14 Suppose the same notation and assumptions in Corollary 13. Let X ⊂ Rd
be an open set and assume that k is continuously differentiable on X . Then we have for all
j = 1, . . . , d and all x ∈ X ,

(∂jm
∗(x)− ∂jm̄(x))2 ≤

2 tr(kXX − qXX)‖y‖2∂j∂′jk(x, x)

σ4
.

This shows that the SVGP can approximate not only the exact posterior mean function
but also its derivatives, if tr(kXX − qXX) is small. In applications where the derivative
estimates are used (e.g., see Wu et al. 2017), this result provides a support for using the
SVGP approximation in place of the exact GP posterior means of derivatives.

4.4 Lower Bounds for Approximation Errors

We discuss here lower bounds for the average case errors of sparse approximations, by
assuming a probabilistic model for training outputs y = (y1, . . . , yn)>. As before, we fix
training inputs X = (x1, . . . , xn) and inducing inputs Z = (z1, . . . , zm). Following Burt
et al. (2020), we consider the following model for y:

y|X ∼ N (0, kXX + σ2In) (52)

10. Many commonly used kernels, such as the Gaussian kernel, satisfy this requirement.
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which is given by the likelihood model (6) and by marginalizing the latent prior GP, F ∼
GP (0, k). Burt et al. (2020, Lemma 4) shows the following lower and upper bounds for the
averaged KL divergence between the SGVP and exact GP posteriors:

tr(kXX − qXX)

2σ2
≤ Ey

[
KL

(
Qν∗ ‖ PF |y

)]
≤ tr(kXX − qXX)

σ2
, (53)

where Ey denotes the expectation with respect to y generated according to (52).
These lower and upper bounds are a priori bounds in the sense that they hold for the

average with respect to the model and thus are informative before observing the actual
training outputs y1, . . . , yn. While this performance measure (the averaged KL divergence)
is less informative for the approximation accuracy after one has observed actual training
outputs y1, . . . , yn (the a posteori setting), the lower bound still provides a useful insight.
Specifically, the lower bound (53) is proportional to tr(kXX − qXX). Thus if tr(kXX − qXX)
is large, then the SGVP posterior Qν∗ cannot accurately approximate the exact posterior
PF |y on average. This is intuitively the case where the inducing inputs Z = (z1, . . . , zm) do
not effectively “cover” the training inputs X = (x1, . . . , xn). Since tr(kXX − qXX) appears
both in the upper and lower bounds, the above result shows that tr(kXX − qXX) can serve
as an average performance metric for the SVGP approximation.

By combining (47), (51) and (53), we can obtain the corresponding lower bound on the
difference of the KRR objectives for the Nyström and exact KRR estimators:

Corollary 15 Let k be a kernel with RKHS Hk. Let X = (x1, . . . , xn) ∈ X n and let
Z = (z1, . . . , zm) ∈ Xm be such that the kernel matrix kZZ ∈ Rm×m is invertible. Suppose
y = (y1, . . . , yn)> ∈ Rn are generated as (52). Let f̄ and f̂ be the Nyström and exact KRR
estimators in (13) and (4), respectively, with a regularization constant λ = σ2/n. Then we
have

λ log
det(kXX + σ2In)

det(qXX + σ2In)
≤ Ey

[
Rn(f̄ ; y)−Rn(f̂ ; y)

]
where Rn(f ; y) := 1

n

∑n
i=1(yi − f(xi))

2 + λ‖f‖2Hk .

In the left hand side of Corollary 15, log det(kXX + σ2I) and log det(qXX + σ2I) can
intuitively be interpreted as the complexities of the models associated with the kernels k
and q, respectively. Thus, Corollary shows that, if the complexity for q is much smaller
than that for k, then the difference of the KRR objectives cannot be small on average. This
suggests that the left hand side of Corollary 15 may be useful as a quality metric for the
Nyström approximation in the a priori setting.

5. Conclusions

We have established various connections and equivalences between sparse approximation
methods for GPR and KRR, namely the SVGP and Nyström approximations. We believe
that these connections and equivalences will be useful for researchers working on either
approach to understand the other. As we demonstrated, framing the approach of interest
in the language of the other deepens understanding of that approach and provides new
insights. For instance, the RKHS formulation is useful in providing geometric interpretation
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for various concepts in the GP approach and its sparse approximations. We hope that our
investigation will inspire further advances in sparse approximation methods as well as new
theoretical studies on the topic.

Appendix A. Proofs for Section 3

A.1 Proof of Lemma 3

Proof We first show Hq = M as a set of functions. First note that

q(·, x) = kZ(·)>k−1
ZZkZ(x) = PM

(
k(·, x)

)
, ∀x ∈ X .

Define H0,q as the vector space

H0,q :=
{
f =

n∑
i=1

αiq(·, di) | n ∈ N, α = (α1, ..., αn)> ∈ Rn, D = (d1, ..., dn) ∈ X n
}
.

Let f :=
∑n

i=1 αiq(·, di) ∈ H0,q be arbitrary. Since q(·, di) = PM
(
k(·, di)

)
∈ M , we have

f =
∑n

i=1 αiq(·, di) ∈ M by the linearity of M . Therefore H0,q ⊂ M . On the other hand,
for any f =

∑m
j=1 βjk(·, zj) ∈M with some β1, . . . , βm ∈ R, we have f =

∑m
j=1 βjk(·, zj) =∑m

j=1 βjPM (k(·, zj)) =
∑m

j=1 βjq(·, zj) ∈ Hq,0. Therefore M ⊂ Hq,0. Thus we have shown
H0,q = M as a set.

Note that the RKHS Hq is the closure of H0,q with respect to the norm∥∥∥∥∥
n∑
i=1

αiq(·, di)

∥∥∥∥∥
2

Hq

= α>qDDα = α>kDZk
−1
ZZkZDα = α>kDZk

−1
ZZkZZk

−1
ZZkZDα

=
∥∥∥kZ(·)>k−1

ZZkZDα
∥∥∥2

Hk
=
∥∥∥qD(·)>α

∥∥∥2

Hk
=

∥∥∥∥∥
n∑
i=1

αiq(·, di)

∥∥∥∥∥
2

Hk

,

which coincides with the norm of Hk. As Hq = M is a finite-dimensional subspace of Hk,
it is closed and therefore

Hq = H0,q = M = M.

where the closure is with respect to the norm ‖ · ‖Hk = ‖ · ‖Hq .
Next we show that the scalar products on M and Hq also coincide. Take arbitrary f

and g from Hq. As Hq = H0,q, we find a representation of the form

f = qD(·)>α = kZ(·)>k−1
ZZkZDα = kZ(·)>α̃

g = qE(·)>β = kZ(·)>k−1
ZZkZEβ = kZ(·)>β̃,

where D = (d1, ..., dn) ∈ X n, E = (e1, ..., e`) ∈ X `, α ∈ Rn, β ∈ R`, α̃ := k−1
ZZkZDα and

β̃ := k−1
ZZkZEβ. This leads to

〈f, g〉Hq = α>qDEβ = α>kDZk
−1
ZZkZEβ

and
〈f, g〉Hk = α̃>kZZ β̃ = α>kDZk

−1
ZZkZEβ,
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which shows that the scalar products are the same.

A.2 Proof of Theorem 6

Proof We first analyze the term (26) in the ELBO. Let fZ ∈ Rm be an arbitrary vector
in the support of Qν

Z . Define a notation for the conditional expectation

Fm(x) := E[F (x) | FZ = fZ ] = E[F ν(x) | F νZ = fZ ].

where the identity follows from the definition of F ν ∼ Qν . Then, from the standard bias-
variance decomposition argument, we have

n∑
i=1

E
[
(yi − F ν(xi))

2 | F νZ = fZ
]

=

n∑
i=1

E
[
(yi − F (xi))

2 | FZ = fZ
]

=
n∑
i=1

E
[
(yi − Fm(xi))

2 | FZ = fZ
]

+
n∑
i=1

E
[
(Fm(xi)− F (xi))

2 | FZ = fZ
]

=
n∑
i=1

(yi − Fm(xi))
2 +

n∑
i=1

E
[
(Fm(xi)− F (xi))

2 | FZ = fZ
]
. (54)

Note that, because Fm(x) is the conditional expectation of F (x) given FZ = fZ , it is
equivalent to the kernel interpolator with training data (zi, F (zi))

n
i=1 and can be written as

Fm(x) = kZ(x)>k−1
ZZfZ .

Therefore∫
(yi − Fm(xi))

2dQνZ(fZ) =

∫
(yi − kZ(xi)

>k−1
ZZfZ)2dQνZ(fZ)

=

∫
(yi − kZ(xi)

>k−1
ZZµ)2dQνZ(fZ) +

∫
(kZ(xi)

>k−1
ZZµ− kZ(xi)

>k−1
ZZfZ)2dQνZ(fZ)

= (yi − kZ(xi)
>k−1

ZZµ)2 + kZ(xi)
>k−1

ZZΣk−1
ZZkZ(xi),

where the last identity follows from QνZ = N (µ,Σ) by definition.

On the other hand, the second term in (54) is the conditional variance of F (xi) given
FZ = fZ , and thus given by

E
[
(Fm(xi)− F (xi))

2 | FZ = fZ
]

= k(xi, xi)− kZ(xi)
>k−1

ZZkZ(xi),

which is independent to the “observations” fZ . Therefore∫
E
[
(Fm(xi)− F (xi))

2 | FZ = fZ
]
dQνZ(fZ) = k(xi, xi)− kZ(xi)

>k−1
ZZkZ(xi).
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Using these identities, we have∫ ( n∑
i=1

E
[
(yi − F ν(xi))

2 | F νZ = fZ
])

dQνZ(fZ)

=
n∑
i=1

(yi − kZ(xi)
>k−1

ZZµ)2 +
n∑
i=1

kZ(xi)
>k−1

ZZΣk−1
ZZkZ(xi)

+
n∑
i=1

(
k(xi, xi)− kZ(xi)

>k−1
ZZkZ(xi)

)
The proof completes by inserting this last expression of (26) and the expression of the KL
divergence (25) in the ELBO (24) and rearranging.

Appendix B. Proofs for Section 4

B.1 Proof of Lemma 10

Proof Recall that f̂ := kX(·)>(kXX + σ2In)−1y is the solution of KRR. We have

f̂X = kXX(kXX + σ2In)−1y = (In − σ2(kXX + σ2In)−1)y,

where we used the formula A(A+σ2I)−1 = In−σ2(A+σ2In)−1 that holds for any positive
semidefinte matrix A. Now we have

min
f∈Hk

n∑
i=1

(yi − f(xi))
2 + σ2‖f‖2Hk = ‖y − f̂X‖2 + σ2‖f̂‖2Hk

The first term can be expanded as

‖y − f̂X‖2 = ‖y‖2 − 2y>f̂X + ‖f̂X‖2

= ‖y‖2 − 2y>(In − σ2(kXX + σ2In)−1)y + y>(In − σ2(kXX + σ2In)−1)2y

= ‖y‖2 − 2y>(In − σ2(kXX + σ2In)−1)y

+ y>(In − 2σ2(kXX + σ2In)−1 + σ4(kXX + σ2In)−2)y

= σ4y>(kXX + σ2In)−2y.

The second term is

σ2‖f̂‖2Hk = σ2y>(kXX + σ2In)−1kXX(kXX + σ2In)−1y

= σ2y>(kXX + σ2In)−1(In − σ2(kXX + σ2In)−1)y

= σ2y>(kXX + σ2In)−1y − σ4y>(kXX + σ2In)−2y.

Therefore,

‖y − f̂X‖2 + σ2‖f̂‖2Hk = σ2y>(kXX + σ2In)−1y.
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B.2 Proof of Theorem 12

Proof We first make preliminaries for proving the theorem. For a symmetric matrix B ∈
Rn×n with n ∈ N, denote by λ1(B) ≥ · · · ≥ λn(B) its eigenvalues with multiplicities in the
decreasing order. For any symmetric and positive semi-definite (SPSD) matrix A ∈ Rn×n
and any B ∈ Rn×n, we have (see Saniuk and Rhodes, 1987)

tr(AB) ≤ tr(A)‖B‖op, (55)

where ‖B‖op := supv∈R: ‖v‖≤1 ‖Bv‖ denotes the operator norm (or spectral norm). If B is
symmetric, we have ‖B‖op = max(|λ1(B)|, |λn(B)|).

For any SPSD matrix A ∈ Rn×n and any symmetric and negative semi-definite (SNSD)
matrix B ∈ Rn×n, we have

tr(AB) = tr(BA) = tr
(
A1/2BA1/2

)
=

n∑
i=1

λi(A
1/2BA1/2) ≤ 0, (56)

where the inequality follows from the fact that A1/2BA1/2 is SNSD and hence all its eigen-
values are non-positive.

We also use the following short hand notation

K := kXX , Q := qXX , K̃ := K + nλIn, Q̃ := Q+ nλIn,

α = K̃−1y, β = Q̃−1y, β̃ =
(
nλkZZ + kZXkXZ

)−1
kZXy.

Note that the matrices K,Q, K̃, Q̃ are SPSD. It holds that

‖K̃−1‖op ≤
1

nλ
, ‖Q̃−1‖op ≤

1

nλ
, ‖KK̃−1‖op ≤ 1, ‖QQ̃−1‖op ≤ 1.

Using the above notation, the KRR estimator f̂ and the Nyström approximation f̄ can be
written for any x ∈ X as

f̂(x) = kX(x)>K̃−1y,

f̄(x) = qX(x)>Q̃−1y = qX(x)>β

= kZ(x)>
(
nλkZZ + kZXkXZ

)−1
kZXy = kZ(x)>β̃.

We will use the following identity:

kXZ β̃ = f̄X = qXXQ̃
−1y = QQ̃−1y.

With these preparations, we now prove the assertion. First we have

‖f̂ − f̄‖2Hk = ‖f̂‖2Hk − 2〈f̂ , f̄〉Hk + ‖f̄‖2Hk
= ‖f̂‖2Hk − 2〈f̂ , f̄〉Hk + ‖f̄‖2Hq ,
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where we used ‖f̄‖2Hq = ‖f̄‖2Hk , which holds from f̄ ∈M and Lemma 3. The expression is
equal to

= α>Kα− 2α>kXZ β̃ + β>Qβ

= tr(Kαα>)− 2tr(kXZ β̃α
>) + tr(Qββ>)

= tr(KK̃−1yy>K̃−1)− tr(QQ̃−1yy>K̃−1) + tr(QQ̃−1yy>Q̃−1)− tr(QQ̃−1yy>K̃−1)

= tr
(
(KK̃−1 −QQ̃−1)yy>K̃−1

)
+ tr

(
QQ̃−1yy>(Q̃−1 − K̃−1)

)
≤ tr(KK̃−1 −QQ̃−1)‖yy>‖op‖K̃−1‖op + tr(Q̃−1 − K̃−1)‖QQ̃−1‖op‖yy>‖op

≤ 1

nλ
tr(KK̃−1 −QQ̃−1)‖y‖2 + tr(Q̃−1 − K̃−1)‖y‖2

=
1

nλ

(
tr
(
(K −Q)K̃−1

)
+ tr

(
Q(K̃−1 − Q̃−1)

))
‖y‖2 + tr(Q̃−1(K −Q)K̃−1)‖y‖2

Since Q is SPSD and K̃−1 − Q̃−1 is SNSD, we have

tr
(
Q(K̃−1 − Q̃−1)

)
≤ 0

due to (56). Using this and (55), we obtain

≤ 1

nλ
tr(K −Q)‖K̃−1‖op‖y‖2 + tr(K −Q)‖K̃−1‖op‖Q̃−1‖op‖y‖2

≤ 2

(nλ)2
tr(K −Q)‖y‖2,

which concludes the proof.
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