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Abstract—In this paper we consider cell-free (CF) massive
MIMO (MaMIMO) systems, which comprise a very large number
of geographically distributed access points (APs) serving a much
smaller number of users. We exploit channel sparsity to tackle
pilot contamination, which originates from the reuse of pilot
sequences. Specifically, we consider semi-blind methods for joint
channel estimation and data detection. Under the challenging
assumption of deterministic parameters, we determine sufficient
conditions and necessary conditions for semi-blind identifiability,
which guarantee the non-singularity of the Fisher Information
Matrix (FIM) and the existence of the Cramer-Rao bound
(CRB). We propose a message passing (MP) algorithm which
determines the exact channel coefficients in the case of semi-
blind identifiability. We show that the system is identifiable if
the Karp-Sipser algorithm yields an empty core. Additionally,
we propose a Bayesian semi-blind approach which results in an
effective algorithm for joint channel estimation and multi-user
detection. This algorithm alternates between channel estimation
and linear multi-user detection. Numerical simulations verify the
analytical derivations.

I. I NTRODUCTION

Recently, cell-free (CF) massive MIMO (MaMIMO) sys-
tems are attracting extensive research interests as an effective
and promising approach for next generation wireless systems
thanks to their potential to reap the benefit of both MaMIMO
and distributed antenna systems (DAS). CF MaMIMO systems
consist of a massive number of access points (APs) which
serve a much smaller number of single-antenna users and are
geographically distributed over a large coverage area. Allthe
APs are connected through a back-haul network to a central
processing unit (CPU). The massive number of antennas
improves spectral efficiency [1] whereas energy efficiency
[2], [3] and macro-diversity gain result from the distributed
topology and ultra-densification. Additionally, since each user
is surrounded by a large number of serving APs, with high
probability all the users enjoy good channel conditions [4].
Therefore, CF MaMIMO systems are expected to provide
significant improvements in terms of spectral/energy efficiency
and coverage probability. In [1], [5], the performance of CF
MaMIMO and small-cell systems were compared under the
assumption of employing maximum ratio (MR) processing.
In [6]–[10], the authors advocated the use of more effective

processing than MR processing in CF MaMIMO to guarantee
superior performance of CF MaMIMO systems compared to
small-cell systems. The performance of CF MaMIMO systems
is critically affected by the so-calledpilot contamination. This
impairment originates from the reuse of training sequences
or pilots utilized in channel estimation, which prevents the
possibility of obtaining an adequate estimate of the channel
state information (CSI). The detrimental effects of pilot con-
tamination were highlighted in [11] for centralized MaMIMO
systems. Specific features of centralized MaMIMO channels
such as channel hardening and favorable propagation or lim-
ited angular spread could be exploited to “separate” user
channels in power domain [12], angular domain [13], [14], or
jointly in power and angular domain [15] and thus, mitigate
or annihilate pilot contamination. However, these appealing
properties of channels in centralized MaMIMO systems are
destroyed in a distributed setting and pilot contamination
is still an open and challenging problem in CF MaMIMO
systems. Several pilot assignment (PA) methods for mitigating
pilot contamination in CF MaMIMO systems were proposed
recently in [1], [16]–[18]. In [1], a greedy pilot assignment
(GPA) based on knowledge of large-scale fading channel coef-
ficients was proposed. In [16], a location-based greedy (LBG)
pilot assignment scheme utilized the location informationin
a GPA algorithm. The structured PA approach proposed in
[17] maximized the minimum geographical distance between
users sharing the same pilot sequences. An additional PA
method based on graph coloring was proposed in [18]. All
these techniques address the pilot contamination problem via
a careful assignment of pilots and do not exploit the inherent
structure of channels and data in CF MaMIMO systems in
contrast to blind or semi-blind estimation and detection tech-
niques. A blind pilot decontamination approach was proposed
first in [12] for centralized MaMIMO systems and utilized
asymptotic orthogonality of user channels to remove undesired
interference including pilot contamination from the received
signal. The same property was also exploited for semi-blind
channel estimation, e.g., [15], in centralized MaMIMO but it
does not hold in CF MaMIMO systems [8], [9]. Blind and
semi-blind channel estimation have been thoroughly investi-



gated in general settings, see, e.g., [19]–[22] and references
therein. In this context, the concept of identifiability was
very relevant since it guarantees the non-singularity of the
Fisher information matrix (FIM) and thus, the existence of
the Cramer-Rao bound (CRB). The corresponding conditions
provide fundamental insights into the feasibility of reliable
communications in the analyzed system. Conditions under
which channel and data signals are blindly and semi-blindly
identifiable have been thoroughly studied in various settings
for centralized systems, see, e.g., [23], [24].

CF MaMIMO channels are inherently sparse due to the
distribution of APs over a large area and the natural path
loss of wireless channels. In this paper, we study semi-blind
joint channel estimation and data detection for exploitingthe
sparsity of the channel support in CF MaMIMO systems to
combat pilot contamination. The potential of this approach
is analyzed via system identifiability and sets of sufficient
conditions and necessary conditions under which channels
and data are identifiable are provided. We define a graph
that has APs and users as factor and variable nodes and
propose a message passing (MP) algorithm over this graph
which computes the channel coefficients if the identifiability
conditions are satisfied. As by product, we also show that
the conditions for semi-blind identifiability are satisfiedif
the Karp-Sipser algorithm [25]–[27] yields an empty core.
Additionally, we derive the FIM and CRB for joint channel
estimation and data detection and propose a Bayesian semi-
blind method that alternates between channel estimation and
linear multi-user detection.

The remainder of this paper is organized as follows. We
describe the system and channel model in Section II. The
CRB and the identifiability conditions under the assumptionof
deterministic parameters are presented in Section III and IV,
respectively. In Section V, we propose a Bayesian semi-blind
iterative algorithm that alternates between channel estimation
and linear multi-user detection. Numerical results are illus-
trated in Section VI. Finally, concluding remarks are drawnin
Section VII.

Notation: In the following, superscriptsT , ∗, andH stand
for transpose, conjugate, and conjugate transpose, respectively.
Uppercase and lowercase bold symbols denote matrices and
vectors, respectively. The expectation operator is indicated by
E{.} andIP is theP×P identity matrix. Here,‖·‖ anddiag(.)
denote the Euclidean norm operator and the squared diagonal
matrix consisting of the diagonal elements of matrix argument,
respectively.vec(.) denotesvec(A) =

[
AT

:,1 AT
:,2 · · ·AT

:,n

]T
,

where A:,j is the j-th column of matrixA and tr{.} is
the trace operator. The Kronecker operator is denoted by
⊗. Finally, N (µ, σ2) and CN (µ, σ2) denote a real and a
complex Gaussian distribution with meanµ and varianceσ2,
respectively.

II. SYSTEM MODEL

We consider the uplink of a CF MaMIMO system consisting
of K users andM APs equipped with a single antenna and
randomly distributed over aD×D square area. We assume that

M ≥ K. The M APs are connected to a central processing
unit (CPU) via a back-haul network. The channel matrix
between the APs and users is given byH ∈ C

M×K , whose
(m, k)-elementhmk is the channel coefficient between APm
and userk and is modeled as follows

hmk =
√

βmk gmk, (1)
whereβmk represents the large-scale fading coefficient which
accounts for path loss and shadowing effects andgmk rep-
resents the small-scale fading. We assume thatgmk, m =
1, · · ·M, k = 1, · · ·K, are independent and identically
distributed (i.i.d.) complex normal random variables, i.e.,
gmk ∼ CN (0, 1). Additionally, we assume perfect knowledge
of the large-scale fading coefficientsβmk, m = 1, · · ·M, k =
1, · · ·K at the CPU. Due to the path loss, the channel coeffi-
cients are assumed to be negligible at distances higher thana
given thresholdγ. Then, for each APm, the CPU is required
to estimate only the channels of the users in a disc centered
around APm with radiusγ while the signals transmitted from
users external to the disc are treated as additive noise. We
denote byKI(m) and K0(m) the sets of users inside the
disc centered around APm and remaining users, respectively.
At a global level, this determines a partition of the channel
coefficients into two groups, the channel coefficients that have
to be detectedKI ≡ {hmk|m = 1, . . .M, k ∈ KI(m)} and
the complement setK0 ≡ {hmk|m = 1, . . .M, k ∈ K0(m)}.
Consistently with this partition, we decompose the channel
matrix H into two matricesHI and H0 such thatH =
HI + H0. Then, HI and H0 of size M × K denote the
matrices of the relevant and negligible channel coefficients,
respectively. Throughout this paper, we assume thatγ ≪ D

and the APs are distributed over the whole region such that
matrix HI has a large number of zero elements.

In the uplink transmission, each user sends one ofP pilot
sequences known by the CPU followed byL−P unknown data
symbols. The pilot sequences are assumed to be ortho-normal,
i.e., orthogonal with unit norm. TheL received symbols at the
M APs are given by

Y =
√
ρ HI X+

√
ρ H0 X+W, (2)

where ρ denotes the transmit power at each user terminal
normalized by the noise variance.Y ∈ C

M×L is a matrix
of the L received symbols at theM APs andX ∈ C

K×L is
a matrix of the transmitted symbols. Note that thek-th row
corresponds to the signals transmitted by userk. The matrix
W ∈ C

M×L is the additive white Gaussian noise (AWGN)
with i.i.d. components having zero mean and unit variance.

Let Xp ∈ C
K×P and Xd ∈ C

K×(L−P ) denote the
pilot sequences and data symbols, respectively. Then,X =
[Xp Xd]. Similarly, Y = [Yp Yd] whereYp ∈ C

M×P and
Yd ∈ C

M×(L−P ) represent the matrices of received training
and data signals, respectively.

III. CRB FOR SEMI-BLIND JOINT CHANNEL ESTIMATION

AND DATA DETECTION

To analyze the performance of the semi-blind channel esti-
mation, we derive the CRB in a deterministic framework. In



the deterministic framework, both data signalXd and relevant
channel coefficientsHI are modeled as unknown deterministic
quantities. Thus, we have

y ∼ CN
(
my(θ),Cyy

)
(3)

wherey = vec(Y) andθ = [hH
I vecH(Xd)]

H is the complex
unknown parameter vector to be estimated. Here,hI is a vector
deduced from the non-zero elements of the matrixHI , whose
support is known. Mean and covariance of received signaly

are given bymy(θ) =
√
ρ vec(HIX) andCyy = IL⊗CYY,

respectively, withCYY = IM + ρC0 and covariance matrix
C0 specified in the following:

C0 = E

{
H0H

H
0

}
= diag

( ∑

k∈K0

β1k, · · · ,
∑

k∈K0

βMk

)
.

The probability density function1 (pdf) of the observationsY
in the parameterθ is given by

f(Y|θ) = 1

πML(det(CYY))L
exp

(
− ‖C−1/2

yy (y −my)‖2
)
.

Computing the Jacobian ofmy(θ) with respect toθ, the de-
terministic complex Fisher information matrix (FIM) denoted
asJ d

θ,θ on the basis of the dataY is given by

J d
θ,θ =

(∂mH
y

∂θ∗

)
C−1

yy

(∂mH
y

∂θ∗

)H

= ρ
[
Q

′

R
′
]H [

Q
′

R
′
]

(4)

whereQ
′

= C
−1/2
yy Q, Q =

1√
ρ

∂my

∂hT
I

andR
′

= C
−1/2
yy R,

R =
1√
ρ

∂my

∂vecT (Xd)
. Note that

1√
ρ
my = vec(HI X) =

QhI = vec(HI [Xp 0]) + R vec(Xd). The FIM J d
θ,θ is a

2 × 2 block matrix. The deterministicCRBd is obtained as
the inverse of the Fisher information matrixJ d

θ,θ

CRBd =
(
J d
θ,θ

)−1
. (5)

The blocks(1, 1) and(2, 2) of theCRBd in (5) relative to the
estimation of the channel coefficientshI and data symbols
vec(Xd), respectively are given as follows

CRBd
hI

=
1

ρ

(
Q

′H P⊥
R

′ Q
′)−1

(6)

CRBd
vec(Xd)

=
1

ρ

(
R

′H P⊥
Q

′ R
′)−1

(7)

where PA = A
(
AHA

)−1
AH and P⊥

A = I − PA denote
the projection matrices on the column space of matrixA and
its orthogonal complement, respectively. In the deterministic
identifiability analysis that follows, we shall ignoreC0 (C0 =
0) and henceCYY = IM , Cyy = IML.

IV. I DENTIFIABILITY

In this section, we derive sets of both sufficient and nec-
essary conditions for the identifiability of vector parameter
θ under the assumption thatθ is a deterministic unknown
parameter. Then, we propose an MP algorithm over a graph
that determines the exact channel coefficients if the sufficient

1For the sake of compactness, we adopt an identical notationf(Y|θ)
to indicate the pdf of random variable (r.v.)Y in vector parameterθ or
conditioned to r.v.θ whenθ is assumed to be a deterministic unknown vector
parameter or a r.v., respectively.

identifiability conditions are satisfied. Finally, we show that the
system is identifiable via semi-blind algorithms if the Karp-
Sipser algorithm applied to the same graph yields an empty
core paving the way to an analysis of asymptotically large
networks based on core percolation properties.

In the framework of deterministic identifiability, we assume
that vector parameterθ is deterministic and consider channel
H0 negligible. Then, the observationy is Gaussian distributed,
i.e., y ∼ CN (my(θ), IML) with covariance matrix indepen-
dent of θ. The identifiability of θ relies only on the known
meanmy(θ) and, for semi-blind methods,Xd andhI are said
to be identifiable[23] if

HIX = H
′

IX
′ ⇒ hI = h

′

I and Xd = X
′

d (8)

Let mY∼0 be the expectation ofY in (2) obtained assuming
H0 negligible. The identifiability problem reduces to analyze
the following bi-linear system of equations in the unknowns
hI andXd

mY∼0 =
√
ρHIX

and determine under which conditions this system admits a
unique solution, which is assumed to exist. These identifiabil-
ity conditions are summarized in the following proposition.

PROPOSITION1 Sufficient Identifiability Conditions – Let
Sk denote the support of the channel of userk, i.e., the set
of all the indicesm such thatHI,m,k 6= 0, and let |Sk|
be its cardinality. In a semi-blind joint data detection and
channel estimation method, the unknown parametershI and
Xd are identifiable if (i) theK × L matrix X, with L ≥ K

has full row rankK, (ii) the channel of each user is sparse
and |Sk| ≤ M − K + 1, and (iii) for each group of users
Gp utilizing the same ortho-normal pilot sequencex(p)

p , it is
possible to identify a sequence{Gp,1,Gp,2, . . .Gp,s} satisfying
the following properties:

1)
⋃s

j=1 Gp,j ≡ Gp, i.e., the sequence of subsets is a
partition of Gp

2) In the support of the channel of each userk ∈ Gp,i there
exists at least an indexj ∈ Sk that is not contained in
any of the channel supports of other users in the same
group Gp,i or in the following groups of the sequence
Gp,i+1, . . .Gp,s.

REMARK 1 Condition iii-2 implies that the signal transmitted
by each userk in Gp,i impinges an AP in the discMk

centered around userk with radius γ and no other signal
transmitted by other users inGp,i or subsequent subsets
Gp,i+1,Gp,i+2, . . .Gp,s impinges the same AP.

REMARK 2 The assumption thatX has full row rank K

implies thatXd has at least rankK − P.

Proof: Observe that since in CF MaMIMO systemsM ≫
K, and the channel matrixHI consists of independent chan-
nels, we can assume that it has full row rank equal toK with
probability 1. Thanks to the assumptions of Proposition 1,
also matrixX has full row rank equal toK as well as matrix
mY∼0 . Then, the singular value decomposition (SVD) of the
noise-free system is given by



1√
ρ
mY∼0 = HIX = UΣVH (9)

whereU ∈ C
M×K andV ∈ C

L×K are the matrices of the
left and right singular-vectors andΣ is theK ×K diagonal
matrix of singular values. Additionally, the left and right
singular value matricesU andV span the channel subspace
HI and the signal spaceX, respectively. Then, the problem
of identifiability reduces to determine aK ×K non-singular
matrix T such thatHI = UT and then, also matrixX is
unequivocally given byX = T−1ΣVH . In order to determine
matrixT, we utilize the following properties and information:

• The support of each user channel is known and sparse
and at leastK − 1 channel coefficients are zero.

• The contaminated channel.More specifically, let us con-
sider the linear system of equations corresponding to the
transmission of the pilot sequences, i.e.,

m
Y∼0

p√
ρ = HIXp,

wheremY∼0
p

denotes the expectation ofYp =
√
ρHIXp.

By post-multiplying both sides of the system by the
pilot sequencex(p)

p and exploiting the ortho-normality
of the training sequences,Xp x

(p)
p = 1Gp

where 1Gp

is theK-dimensional vector with elements with indices
in Gp, i.e., indices corresponding to users transmitting
pilot x

(p)
p , equal to one and and zero elsewhere. Then,

it is apparent that this system of equations enables to
determine exactly at each AP the sum of all the non-
zero channel coefficients of the users in each groupGp,

p = 1, . . . P , i.e., 1√
ρ mY∼0

p
x
(p)
p = HI 1Gp

.

Then, let us focus on a userk in Gp,1. Thanks to the
assumptions on the partition ofGp, there exists at least an AP
m such thatHI,m,: 1Gp

= hm,k = 1√
ρ mY∼0

p
x
(p)
p 6= 0, where

HI,m,: denotes them-th row of the matrixHI . Furthermore,
thanks to the assumption on the sparsity of the channels, we
can obtain from the system of equationsHI,:,k = UT:,k

K − 1 equations where the channel of userk is zero. Then,
we can construct a non-homogeneous system of equations in
the unknownT:,k and the vector of constant terms consisting
of zeros and at least the non-zero elementhmk. This system
can be unequivocally solved to determineT:,k. Thanks to the
properties of the sequenceGp,1,Gp,2, . . .Gp,s, it is possible to
determine sequentially, the columns of matrixT correspond-
ing to a certain group, compute exactly the corresponding
channels of the users in the group and cancel them from
the contaminated channel for groupGp until the complete
computation of all the columns of matrixT corresponding
to all the users inGp and the corresponding channels. This
approach can be repeated for all the groups up to the complete
computation of matrixT and channelHI . Then, we observe
thatT has full rankK sinceHI has full row rank. The inverse
of T exists and enables the computation ofXd. This concludes
the proof. �

In the following, let(H)Gp
denote a reduced version of the

matrix H containing only the columns corresponding to the
users inGp.

PROPOSITION2 Necessary Identifiability Conditions –Iden-

tification of hI and Xd from the productHI X leads to the
global necessary identifiability condition

1

K

K∑

k=1

|Sk| ≤ M −K + P (10)

or the per pilot necessary identifiability condition

1

|Gp|
∑

k∈Gp

|Sk| ≤ M −K +
K

|Gp|
p = 1, . . . P . (11)

Proof: Consider again the SVD in (9),HIX = UΣVH ,
with VH partitioned intoP plusL−P columns similar toX
, VH = [VH

p VH
d ]. Introducing again the unknownK × K

mixtureT, this leads to the equations

HI = UT , TXp = ΣVH
p (12)

which together representK(M + P ) equations in the∑K
k=1 |Sk| unknownshI and theK2 unknownsT. The proper

conditions for solvability of the equations (12), that the number
of equations needs to be at least equal to the number of
unknowns, then leads to (10). If now we consider the equations
for group of usersGp, multiplyingTXp = ΣVH

p by x
(p)
p and

exploitingXp x
(p)
p = 1Gp

then we get

(HI)Gp
= U (T)Gp

, T1Gp
= (T)Gp

1 = ΣVH
p x(p)

p (13)

which representsM |Gp|+K equations in the
∑

k∈Gp
|Sk|+

K |Gp| unknowns in(HI)Gp
and(T)Gp

, hence leading to (11).
�

It is worth noting that the proof of Proposition 1 along with
the sufficient conditions for identifiability of the deterministic
parameters, provides also a constructive method to determine
the unknown parametersHI andXd if for eachp = 1, . . . P,
the sequence{Gp,1,Gp,2, . . .Gp,s} partitioning setGp were
known. In the following, we address this problem and provide
an MP algorithm that enables to identify at iterationi the set
Gp,i and determine the channel coefficients of all users in the
set. Let us focus on the setGp and associate to each userk

and APm variable nodek and factor nodem, respectively.
We construct a bipartite graph by connecting a variable node
with a factor node if the distance between the corresponding
user and AP is lower thanγ. We further assume that the
factor nodes are initialized with the values of the vector
hc
I,p = HI1Gp

, i.e., the sum of all the channel coefficients
of users in the correspondingγ-neighborhood. Each variable
node knows the matrixU that spans the channel subspace.
The initial step of the MP algorithm starts at the factor nodes.
Each factor nodem that is a leaf transmits its initialization
value hc

I,p,m to its neighbor. It transmits an erasure∆ if it
is not a leaf. At iterationi, each variable nodek that has
received at least a message that is not an erasure solves the
system of equationsUT:,k = HI,:,k utilizing that value. The
construction of a system ofK equations to determineT:,k is
detailed in the proof of Proposition 1 and exploits the channel
sparsity. OnceT:,k is known, it is possible to determine all
the non-zero channel coefficientsHI,:,k. Then, variable node



k transmits to all its neighbors the corresponding channel
coefficients. Variable nodek transmits the same messages
in all the following iterations. If variable nodek receives
all erasures it transmits erasures to all its neighbors. The
second step of iterationi determines the messages at the factor
nodes. A factor nodem computes a message for the output
edge< m, k > as the difference between its initialization
value hc

I,p,m and all the incoming messages. The resulting
message is not an erasure if all the incoming messages are not
erasures otherwise the factor node transmits an erasure. The
MP algorithm ends when all the channel coefficients have been
determined and in this case the identifiability conditions are
satisfied or when no additional erasure can be determined and
thus the system is not identifiable. SetGp,i includes all the
users/variable nodes that compute their channel coefficients
at iteration i. Interestingly, this algorithm is closely related
to the MP algorithm for decoding of low density parity
check (LDPC) codes in transmissions through binary erasure
channels in [28]. It is worth noting that also for random
generated CF MaMIMO systems with nodes independently
generated, the corresponding graphs have edges intrinsically
correlated due to the underlying geometric constraints and
the corresponding sparse graphs do not have tree-like neigh-
borhoods in asymptotic conditions. Then, the performance
analysis of LDPC codes based on density evolution, see [28],
is not directly applicable although the graph is sparse and the
message passing yields exact results thanks to the noiseless
nature of the considered system and thus the absence of error
propagation.

Additionally, let us consider the Karp-Sipser or greedy leaf
removal procedure [25]–[27] which consists in removing from
a graph sequentially all the leaves and observe that sequential
or simultaneous removal of leaves is equivalent in asymptotic
conditions. Then, the sufficient identifiability conditions in
Proposition 1 are satisfied if the greedy leaf removal procedure
yields an empty core.

V. BAYESIAN SEMI-BLIND

Whereas deterministic parameter identifiability allows for
consistency in SNR in the approximated model which ignores
C0, in practice performance can be improved by furthermore
exploiting prior information. Hence, exploiting the Rayleigh
fading channel prior and capturing the uncorrelatedness and
constant variance of the data symbols with an i.i.d. Gaussian
prior, we get the overall log-likelihood

ln f(Y|θ) + ln f(hI) + ln f(Xd)
= −tr{(Y −√

ρHIX)HC−1
YY(Y −√

ρHIX)}
−hH

I C−1
hIhI

hI − tr{XH
d Xd}+ ct .

(14)

where ct denotes a scalar constant. Alternating optimization
with respect tohI andXd leads to

ĥI =
√
ρ
(
ρ Q̂HC−1

yyQ̂+C−1
hIhI

)−1
Q̂HC

−1/2
yy y

X̂d =
√
ρ
(
ρ ĤH

I C−1
YYĤI + IK

)−1
ĤH

I C−1
YYYd

(15)

whereQ̂ = Q(X̂d) andĤI denotes the estimate of the matrix
HI . The relation between̂hI and ĤI is the same as the
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Fig. 1. NMSE [dB] versus disc radius (γ) for Bayesian estimation and
deterministic CRB.

relation described forhI andHI . This alternating procedure
can be initialized withX̂d = 0.

VI. N UMERICAL RESULTS

First, we describe the path loss and shadow fading models
used in numerical simulations for performance evaluation.The
large-scale fading coefficientβmk in (1) models path loss and
shadow fading as follows

βmk = 10
PLmk

10 10
σshzmk

10 (16)

where PLmk represents the path loss (expressed in dB),
and 10

σshzmk
10 represents the shadow fading with standard

deviation σsh and zmk ∼ N (0, 1). The three-slope model
in [29] is adopted for the path loss. The uplink transmit
power is p = 100mW, for all users. The performance of
the Bayesian estimation is assessed by the normalized mean
squared error (NMSE),avg‖hI−ĥI‖2

avg‖hI‖2 where avg stands for
average. Fig. 1 shows the NMSE versus disc radiusγ and
compares the NMSE of Bayesian estimation and deterministic

CRB,
avg tr{CRBd

hI
}

avg‖hI‖2 , with M = 100 and K = 20. The
Bayesian estimation outperforms the deterministic CRB.

VII. C ONCLUSION

In this paper, we tackled the problem pilot contamina-
tion in CF MaMIMO systems leveraging only the channel
sparsity. We considered semi-blind methods for joint channel
estimation and data detection and derived the FIM and the
CRB. Additionally, we determined sufficient conditions and
necessary conditions for semi-blind identifiability underthe
assumption of deterministic parameters. An MP algorithm
to verify identifiability and compute the channel coefficients
was proposed and the relation with the Karp-Sipser procedure
was highlighted. Finally, we proposed a Bayesian semi-blind
approach resulting in an algorithm which alternates between
channel estimation and linear multi-user detection. We verified
the analytical derivations via numerical simulations.
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