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Abstract
All existing databases of spoofed speech contain attack data

that is spoofed in its entirety. In practice, it is entirely plau-
sible that successful attacks can be mounted with utterances
that are only partially spoofed. By definition, partially-spoofed
utterances contain a mix of both spoofed and bona fide seg-
ments, which will likely degrade the performance of counter-
measures trained with entirely spoofed utterances. This hy-
pothesis raises the obvious question: ‘Can we detect partially-
spoofed audio?’ This paper introduces a new database of
partially-spoofed data, named PartialSpoof, to help address this
question. This new database enables us to investigate and com-
pare the performance of countermeasures on both utterance-
and segmental- level labels. Experimental results using the
utterance-level labels reveal that the reliability of countermea-
sures trained to detect fully-spoofed data is found to degrade
substantially when tested with partially-spoofed data, whereas
training on partially-spoofed data performs reliably in the case
of both fully- and partially-spoofed utterances. Additional ex-
periments using segmental-level labels show that spotting in-
jected spoofed segments included in an utterance is a much
more challenging task even if the latest countermeasure mod-
els are used.
Index Terms: partially-spoofed attack, countermeasures,
variable-length input, segmental-level, deepfakes

1. Introduction
To address the problem of presentation attacks [1] on automatic
speaker verification (ASV) systems, the ASVspoof challenge,
which aims to promote the study and development of spoof-
ing countermeasures (CMs), has been held biennially since
2015. Previous challenges [2, 3, 4] focused on different types
of spoofing attacks at the utterance level, including the logi-
cal access (LA) scenario (i.e., speech synthesis and voice con-
version attacks) and the physical access (PA) scenario (i.e., re-
play attacks). Year by year, various types of high-performance
CMs have been proposed. In the latest competition, ASVspoof
2019 [4], several discriminative (Light CNN [5], ResNet [6],
Wave-U-Net [7], RawNet [8]) and generative (GMM-UBM)
models were proposed which achieved promising results.

When we use spoofing CMs for more general situations
beyond presentation attacks against ASV, such as audio deep-
fake detection, it is obvious that the assumption that attacks
will consist of entirely-spoofed utterances does not always hold
– speech synthesis and voice conversion technologies may be
used to generate only a part of an utterance, and such spoofed
segment(s) may be injected into a bona fide utterance. For ex-
ample, attackers may use speech synthesis to replace specific
phrases that they want to manipulate. This leads us to con-
sider the following new scientific questions: ‘Can the latest
CMs discriminate such partially-spoofed audio from bona fide

audio reliably? Can we construct a new CM model that can de-
tect such injected partially-spoofed segments?’ To investigate
this as-yet neglected attack scenario deeply, we first collected
a new partially-spoofed database, named “PartialSpoof”, and
used it to evaluate existing CMs in terms of both of utterance-
and segmental-level detection of partially spoofed audio.

As for the existing CMs, we use discriminatively trained
Light Convolutional Neural Networks (LCNN) [4, 5] using the
P2SGrad loss function [9] as it is reported as the best single
model. We train them using either utterance- or segmental-level
labels and investigate their detection performance. We also re-
vise the LCNN architecture slightly so that LCNN-based CMs
can handle temporal information better when only small frac-
tions of an utterance may be spoofed.

For experiments on utterance-level detection of partially
spoofed audio, we have compared CMs trained to detect fully-
spoofed data of the ASVspoof 2019 dataset with equivalent
CMs trained on partially-spoofed data from the new Partial-
Spoof database. For experiments on segmental-level detection
of partially spoofed audio, we demonstrate the performance of
CMs using the segmetal-level labels instead of utterance-level
labels.

This paper is structured as follows: Section 2 overviews the
construction process of the PartialSpoof Database. Section 3
briefly introduces the CMs used for our investigations. Section
4 shows experimental conditions and results, and our findings
are summarized in Section 5.

2. PartialSpoof Database
We built the PartialSpoof database1 based on the ASVspoof
2019 LA database [10] since the latter covers 17 types of
spoofed data produced by advanced speech synthesizers, voice
converters, and hybrids. We used the same set of bona fide data
from the ASVspoof 2019 LA database but created partially-
spoofed audio from the ASVspoof 2019 LA data by following
the steps below:
Step 1: We ran three types of publicly-available voice activ-
ity detection (VAD) algorithms: an energy-based VAD from
Kaldi [11], another energy-based VAD [12], and an LSTM-
based VAD from Pyannote [13, 14]. Then, we used their voting
results to decide the boundaries of speech segments in order to
reduce VAD errors. Specifically, we considered a segment to
be speech if it was detected by at least two out of three VAD
systems2.
Step 2: According to the boundaries determined by the above
VAD results, we replaced a randomly chosen segment from a
bona fide utterance with a spoofed segment. We also considered
the opposite direction for segment replacement, i.e., randomly

1Database: https://zenodo.org/record/4817532#.YLd8Yi2l1hF
2This voting of VAD systems can achieve an 11.98% detection error

rate [15] when evaluated on TIMIT [16].



substituting a spoofed segment into a bona fide segment. There
are a few restrictions: 1) The same inserted segment cannot ap-
pear more than once in a given carrier utterance; 2) The segment
to be inserted must be close in duration to the original segment
it replaces.
Step 3: To avoid potential artifacts when fusing the waveform
of the inserted segment into the carrier audio file, we computed
the time-domain cross correlation between the replacement seg-
ment and its adjacent segments to find the best fusion point.
The fusion was then conducted through waveform overlap-add
after waveform amplitude normalization using SV56 [17]. We
kept 50% of the non-speech part in the head and tail of the seg-
ments so that overlap-add only happened in such non-speech
parts without modifying the speech segment.
Step 4: We labeled each segment in the newly-created audio
as bona fide if the segment is originally from bona fide audio,
otherwise as spoofed. The utterance-level label of a partially-
spoofed utterance is of course spoofed.
Step 5: We repeated Step 2-4 until we obtained the same num-
ber of spoofed trials as the ASVspoof 2019 database.

Thus, numbers of spoofed trials 3 in the train, dev, and eval
sets are the same as those of the ASVspoof 2019 database.

3. Spoofing Countermeasures
To determine whether the latest CMs can discriminate partially-
spoofed utterances from bona fide ones, we built a series of CMs
based on the top single LCNN model in the ASVspoof 2019 LA
task [4, 5] but with a few enhancements [9]. Here we explain
how we train them for utterance- and segmental-level detection,
respectively.

3.1. CM training for utterance-level detection

The LCNN used by the top single CM in the ASVspoof 2019
LA scenario only accepts fixed-size inputs [18]. The CM hence
operates on trimmed or padded input speech [5] and is trained
to predict an utterance-level score. This is unsuitable for the
partially-spoofed scenario because the intervals of interest, e.g.,
the replaced, substituted, or spoofed intervals, might well be
among the trimmed segments.

We therefore need to slightly enhance the LCNN with tem-
poral pooling strategies to better process variable-length speech
inputs [9]. Let x1:N(j) ≡ (x1, · · · ,xN(j)) ∈ RN(j)×D be the
input feature sequence of the j-th trial with N (j) frames, where
xn is the feature for the n-th frame. Instead of trimming or
padding x1:N(j) to a fixed shape, we let the LCNN transform
x1:N(j) into h1:N(j)/L = (h

(j)
1 , · · · ,h(j)

N(j)/L
), where L is

decided by the convolution stride. Then, we pool an utterance-
level vector oj =

∑N(j)/L
m=1 w

(j)
m h

(j)
m and use it for scoring.

The pooling weight w(j)
m can be computed using a self-attentive

pooling (SAP) strategy [19] or be uniform, i.e., the average
pooling (AP) strategy. The enhanced LCNNs are illustrated in
Figure 1.

We may optionally use a bi-directional LSTM to process
h1:N(j)/L before pooling. The reason is that convolution in an
LCNN has a fixed receptive field, and each hm covers only a
fixed number of input frames. A pure LCNN hence neglects
the temporal change that may be useful in the partially-spoofed
scenario. In practice, we add a skip-connection over the Bi-
LSTM layer(s) to stabilize the training process. This optional

3Samples: https://nii-yamagishilab.github.io/zlin-demo/IS2021/index.html
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Figure 1: Enhanced LCNNs for conventional and partially-
spoofed scenarios. The LCNN part is identical to that in
[5] (from layer Conv 1 to MaxPool 28). FC denotes a fully-
connected layer. AP and SAP denote average and self-attentive
pooling, respectively. The Bi-LSTM block in the dashed frame
is optional.

Bi-LSTM block is illustrated in Figure 1.
The enhanced LCNNs are trained given pairs of input audio

and utterance-level labels {x1:N(j) , yj}|D|j=1, where |D| is the
size of the training data setD. In this paper, we used a new loss
function called MSE for P2SGrad since it was found to be more
efficient than cross-entropy with variants of softmax on this task
[9]. The loss is computed as

L(p2s) =
1

|D|

|D|∑
j=1

C∑
k=1

(cos θj,k − 1(yj = k))2, (1)

where 1(·) is an indicator function, C is the number of target
classes, and cos θj,k = ĉ>k ôj is the cosine distance between the
length-normed vector ôj = oj/||oj || and the class vector ĉk
for the k-th target class. In this paper, we set C = 2 and use
k = 1 and k = 2 to denote bona fide and spoofed, respectively.
During inference, the model uses sj = cos θj,1 = ĉ>1 ôj as the
utterance-level score for the j-th test trial.

3.2. Deriving segmental scores from an utterance-level
score

The enhanced LCNNs produce one score per trial. If they are
used for segmental-level detection rather than utterance-level
detection, then we need to decompose the utterance-level score
and derive a score for each segment of the input trial. Here we
describe our decomposition procedures.

Suppose the LCNN has conducted x1:N(j) 7→ h1:Mj 7→
oj =

∑Mj

m=1 w
(j)
m h

(j)
m , where Mj = N(j)

L
. With the utterance-

level score sj = cos θj,1 = ĉ>1
oj

||oj ||
, we get

sj = ĉ>1

∑Mj

m=1 w
(j)
m h

(j)
m

||oj ||
=

1

Mj

Mj∑
m=1

w̃(j)
m cos θj,1,m, (2)

where w̃(j)
m = w

(j)
m Mj

||h(j)
m ||
||oj ||

and cos θj,1,m = ĉ>1 ĥ
(j)
m . We

define sj,m ≡ w̃(j)
m cos θj,1,m as the score of the m-th segment



in the j-th trial, which measures the weighted cosine distance
between the bona fide class vector ĉ1 and the feature vector ĥm.
Note that sj,m can be larger than one, and the average of sj,m
is equal to sj . Also note that the decomposition is valid even
if oj = F(

∑Mj

m=1 w
(j)
m h

(j)
m ) where F(·) is a linear or affine

transformation (i.e., a FC layer).

3.3. CM training for segmental-level detection

In the previous section, we derive segmental scores from an
utterance-level detection score. Alternatively, we may train
CMs with segment-level labels included in the PartialSpoof
database and we may infer a sequence of segment-level scores
directly, as Figure 1 illustrates.

This segmental CM may use the same LCNN as those in
Sec. 3.1 but with the pooling layer excluded. After converting
x1:N(j) 7→ h1:Mj using the LCNN, the segmental CM com-
putes cos θj,k,m = ĉ>k ĥ

(j)
m ,∀m ∈ [1,Mj ] for each segment.

Thus, its training loss becomes

L(seg) =
1

|D|
1

Mj

|D|∑
j=1

Mj∑
m=1

C∑
k=1

(cos θj,k,m − 1(yj,m = k))2,

(3)
where yj,m is the label for the m-th segment in the j-th trial.
During inference, we can directly use sj,m = cos θj,1,m as the
segment score for the m-th segment.4

4. Experiments
We introduce experimental configurations for our CMs in
Sec. 4.1. Then, we discuss the performance of utterance- and
segmental-level detection in Sec. 4.2 and Sec. 4.3, respectively.

4.1. Experimental configurations

All the CMs used linear frequency cepstral coefficients
(LFCCs) as input acoustic features. LFCCs were extracted
using the same configuration as the ASVspoof 2019 baseline:
frame length of 20 ms, frame shift of 10 ms, 512-point FFT,
linear filter-bank with 20 channels, and a combination of static,
delta, and delta-delta coefficients, thus 60 dimensions for each
frame. We did not use any data augmentation, voice activity
detection, or feature normalization.

The LCNN component5 in all the CMs was based on the
original LCNN-based CM [5]. Accordingly, the input LFCCs
x1:N(j) are converted into h1:N(j)/16 before pooling. In this
way, embedding can be extracted every 0.16 seconds. Train-
ing was conducted with the Adam optimizer (β1 = 0.9, β2 =
0.999, ε = 10−8) [20] and a batch size of 64. The learning
rate started from 3× 10−4 and was halved for every 10 epochs.
The LCNN was trained mutiple times with random initializa-
tion. Results shown in the next sections are the mean of six
rounds 6. All results are reproducible using the same random
seed and GPU (Nvidia Tesla V100) environment.

Evaluation was conducted using the Equal Error Rate
(EER) and minimum tandem detection cost function (min-
tDCF) [21, 22], both of which are computed following the of-
ficial routines from ASVspoof 2019. For min-tDCF evalua-

4If it is necessary to produce a single utterance-level score, one pos-
sibility is to use sj = minm sj,m as the score for the j-th trial. This
is because a segment with a smaller score is more likely to be spoofed,
and a spoofed segment declares a spoofed trial (see step 3 of Sec. 2).

5Specifically, from layer Conv 1 to MaxPool 28.
6More results can be found in arXiv: https://arxiv.org/abs/2104.02518

Table 1: Ablation study of LCNN countermeasures against
partially-spoofed audio.

Pooling Smoothing EER(%) min-tDCF
types types Dev. Eval. Dev. Eval.

AP - 3.90 7.78 0.0981 0.1972
SAP - 3.90 7.45 0.1033 0.1887
AP Bi-LSTM 3.68 6.19 0.1003 0.1645

SAP Bi-LSTM 3.84 6.23 0.1064 0.1609

Table 2: Cross-database study for investigating how training
data mismatch affects CM performance. The best architecture
(Utterance + AP + Bi-LSTM) in Table 1 has been selected.

ASVspoof 2019 PartialSpoof
Train Dev. Eval. Dev. Eval.

EER(%) ASVspoof 2019 0.21 2.65 9.59 15.96
PartialSpoof 4.28 5.38 3.68 6.19

min-tDCF ASVspoof 2019 0.0060 0.0640 0.1854 0.3003
PartialSpoof 0.1156 0.1713 0.1003 0.1645

tion, we defined 63,882 spoofed trials for the evaluation set and
22,296 for the development set, based on the new PartialSpoof
database. Bona fide (target and non-target) trials are identical to
those of the standard ASVspoof 2019 protocols.

4.2. Experiments for utterance-level detection

4.2.1. Ablation study of LCNN CMs against PartialSpoof

We first show CM performance on utterance-level detection.
Table 1 shows an ablation study of the enhanced LCNN CMs
against partially-spoofed audio at the utterance level. All four
CMs were trained with utterance-level labels (Sec. 3.1), and de-
tections were also done at the utterance level. We can see that
the AP + Bi-LSTM system yields superior performance; thus
it was chosen for further cross-database experiments in Sec-
tion 4.2.2.

4.2.2. Cross-database investigation for training data mismatch

We investigated how training data mismatch affects CM per-
formance on utterance-level detection. More specifically,
we investigated two questions: Can the LCNNs trained us-
ing partially(entirely)-spoofed audio detect entirely(partially)-
spoofed utterances? Thus, we trained CMs on the PartialSpoof
database and evaluated it on the evaluation set of the ASVspoof
2019 database and vice versa. We also included the matched
(in-domain) cases as reference. Results are shown in Table 2.

By comparing results in each set of the ASVspoof 2019
dataset with counterparts of the PartialSpoof dataset, we can
first see that the EER for the ASVspoof 2019 dataset is always
lower than that for the PartialSpoof dataset on both the sets,
showing that partially-spoofed data is more difficult to detect
than fully-spoofed data.

Next we can see that when the ASVspoof 2019-trained
model is evaluated on the PartialSpoof database, performance
degrades significantly; the EER increases from 0.21% to 9.59%
and from 2.65% to 15.96% for development and evaluation
sets, respectively. On the other hand, the model trained on the
partially-spoofed database is relatively robust and shows a sta-
ble EER when evaluated on both databases. The models trained
on fully-spoofed utterances appear to lack generalization ability
and thus overfit to the fully-spoofed case.
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4.2.3. Analysis based on spoof segment ratios

Since the PartialSpoof database was constructed from the ran-
dom replacement of speech segments, the total duration occu-
pied by multiple injected spoofed segments within in an utter-
ance can vary. We refer to the ratio of the total duration of
spoofed segments within an entire length of audio as the “spoof
segment ratio” and further investigate how the detection per-
formance changes according to the spoof segment ratio of the
trials. For this analysis, we quantized the spoof segment ratio
into 10 bins and computed the EER for each bin separately.

Figure 2 shows the relationship between the quantized
spoof segment ratio and performance. The top histogram
presents the number of trials included in each bin. We evalu-
ate EER for each bin using its corresponding spoofed trials and
all bona fide trials and then obtain the bottom two curves in the
lower plot. From this figure, we can confirm that the spoof seg-
ment ratio has a significant impact upon the CM performance.
More specifically, we see that when the CM model is trained
using fully-spoofed audio, as expected, the EER degrades with
decreases in the spoof segment ratio. On the other hand, the CM
model trained using partially spoofed audio is robust to changes
in the spoof segment ratio. Even if the ratio changes, EER val-
ues do not change significantly.

Figure 3 shows the DET curves at the smallest and largest
spoof segment ratios of the PartialSpoof evaluation set. From

Table 3: Comparison of segmental detection performance of
CMs trained using segmental or utterance-level labels.

Train Pooling Smoothing EER(%)
labels types types Dev. Eval.

Utterance AP Bi-LSTM 37.02 40.20
Segment - Bi-LSTM 6.81 16.21

Figure 2 and Figure 3, we can reconfirm that the reliability of
countermeasures trained to detect fully-spoofed data degrade
substantially when tested with partially-spoofed data.

4.3. Experiments for segmental-level detection

Next we focus on segmental-level detection. This is challeng-
ing because an individual segment can be very short. The main
focus is a CM trained using the segmental labels instead of ut-
terance labels as described in Sec. 3.3. For reference, we com-
pare it with another CM trained using utterance labels and their
segmental scores derived from an utterance-level score in the
manner described in Sec. 3.2.

Table 3 shows the segmental detection results. Not surpris-
ingly, the CM trained using the segmental labels is better than
the one trained using utterance-level labels. This shows that the
segmental labels included in the PartialSpoof database are use-
ful for segmental detection, and that segment detection is fea-
sible. But we can also see that this is a more challenging task
than the utterance-level detection in the previous section, and
the CMs have obvious room for further improvement.

5. Conclusions
To answer the original question: ‘can we detect partially
spoofed audio?’, we built a new PartialSpoof database con-
sisting of bona fide and partially-spoofed utterances based on
ASVspoof 2019. Since PartialSpoof audio is composed of bona
fide and spoofed segments(s), it can be trained and evaluated
on both utterance- and segmental- level labels. For utterance-
level detection, cross-database analyses on partially- and fully-
spoofed data were conducted to investigate how data mismatch
affects CM performance. We also carried out a more challeng-
ing segmental detection task to see whether CMs can spot short
spoofed segments included in an utterance.

Generally, both utterance- and segmental-level detection on
PartialSpoof are more challenging than on the fully-spoofed
database. The reliability of countermeasures trained to detect
fully-spoofed data was also found to degrade substantially when
tested with partially-spoofed data, while training on partially-
spoofed data led to stable performance when evaluating on both
fully- and partially-spoofed utterances.

Future studies are needed to understand the data mismatch
problem deeply. Furthermore, random segment selection and
concatenation using cross-correlation may not be the best way
to build a partially-spoofed database. Linguistic information,
contextual information, and rhythm can be lost during this pro-
cess. Further exploration of more appropriate databases and
more robust CMs with higher precision are needed.
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