
A Trust architecture for the SLA management in
5G networks

Sabra Ben Saad
Communication Systems, Eurecom

Sophia Antipolis, France
sabra.ben-saad@eurecom.fr

Adlen Ksentini
Communication Systems, Eurecom

Sophia Antipolis, France
adlen.ksentini@eurecom.fr

Bouziane Brik
DRIVE EA1859, Bourgogne university

Franche-Comté, France
bouziane.brik@u-bourgogne.fr

Abstract—It is well established that 5G will impact not only
the end-users by allowing several new services, but also the
vertical industry and network operators business. 5G will open
the business market to new stakeholders with the introduction
of Network Slicing, namely the vertical or tenant, the network
slice provider, and the infrastructure provider. The Network
Slice provider sells end-to-end network slices (virtual end-to-
end mobile network) to the vertical while leasing virtual and
physical resources from Infrastructure Providers to enforce
these end-to-end network slices. Accordingly, there is a need
to establish Service Level Agreement (SLA) among these actors
to ensure: (1) that the service is well-delivered to the vertical
and (2) the infrastructure providers are respecting their
involvement with the network slice provider. To fill this gap,
in this paper, we propose a trust architecture to automatically
manage the SLAs and apply penalties and compensations if
the SLAs are not respected by one of the involved actors.

Index Terms—Service level agreement, 5G slicing, Security,
Smart contract, Blockchain.

I. INTRODUCTION

5G network slicing enables the multiplexing of virtual-
ized and distinct logical networks on the same physical
network infrastructure. Network slices are isolated end-to-
end logical networks, which are classified into three major
categories: Extreme/Enhanced Mobile BroadBand (xMBB),
Ultra-Reliable Low Latency Communication (uRLLC), and
Massive Machine Type Communications (mMTC). Each
of these categories is characterized by its specific perfor-
mance requirements. An end-to-end network slice com-
prises three sub-slices: Radio Access Network (RAN), Core,
and Transport networks [1]. The resources of a sub-slice
are supplied by resource providers in order to build an
end to end network slice. In 5G, several stakeholders
collaborate to provide an end-to-end network slice across
different Technological Domain (TD) to a vertical or slice
owner. The slice provider creates an end-to-end slice for
the vertical by leasing resources for each TD, and from
different infrastructure providers. When a vertical or a
slice owner requests a network slice creation, it uses a
blueprint or a network slice template. The slice provider
will translate this template to specific slice resource re-
quirements for each sub-slice component or TD, such
as needed computing resources, network resources, radio
resources, etc. Once the end-to-end slice is created, SLA
are signed between the vertical and the slice provider, and
between the resource providers and the slice provider. An
SLA specifies what customers can expect from a service
provider. The SLA is used to check if a defined service is

delivered as contracted and helps manage Quality of Service
(QoS) degradation. An SLA defines QoS requirements,
e.g., bandwidth, throughput, and latency, without specifying
the technology to be used in order to deliver a particular
service. In 5G, SLA should reflect the QoS related to the
pre-defined slice types, i.e. mMTC, eMBB, and uRLLC.
In this paper, we propose an SLA trusted management
framework based on the Blockchain concept for Network
slicing 5G-ready networks. The proposed framework has as
objectives: (1) monitor the Key Performance Indicator (KPI)
as specified in the SLA established between the vertical
and the slice provider, and between the slice provider and
the resource providers; (2) verify if an SLA is violated; (3)
automatically compensate the vertical and the slice provider.
The proposed framework has been validated via computer
simulation, which shows its ability to detect SLA violation,
and accordingly compensates both the vertical and the slice
provider. To the best of our knowledge, only one work [2]
has addressed the trust management of SLA in the context
of a simple scenario of a cloud resource provider and a
tenant. Although we share the concept of using Blockchain,
our paper addresses a more complex scenario, where not
only one SLA has to be managed, but different SLAs
involving different stakeholders. The rest of the paper is
organized as follows. Section II introduces the concepts of
Blockchain and the Smart Contract, while Section III details
our proposed SLA trust management framework. Section
IV describes the performance evaluation of the proposed
framework. Finally, conclusions are presented in Section V.

II. BLOCKCHAIN AND SMART CONTRACT

The Blockchain [3] is a chain of block which is a
database that stores information about transactions like the
date, the persons participating in transactions, time, and
amount transferred. A copy of the Blockchain (BC) is
spread over many computers. These computers are called
nodes that constitute a network. It also stores unique codes
called “hash” which are cryptographic codes created by
special algorithms such as ”Proof of work” used in Bitcoin
transactions.
Actually, when a transaction occurs, it will be checked by
the node. For each transaction, a new block is created. This
block is sent to every node in the network. If a transaction
approved by the majority of the nodes using a special algo-
rithms, then the block is added to the existing blockchain.
Finally, an update is distributed across the network. So, it

maintains transaction records without a central authority
with autonomously and automatic processes using Smart
Contracts (SC). Blockchain can be used in several fields,
such as healthcare, Internet of Things (IoT) and online
shopping. Also, blockchain is envisioned for building a
brokering mechanism [4] by a network slice provider in
a 5G network.
On the other hand, smart contract is a feature associated
with blockchain. The definition of a smart contract based
on Nick Szabo taken from the original publication [5], is an
agreement between several parties in the form of computer
code. It allows automated transactions when one or more
contract conditions are met, without resorting to a third
party. They are distributed and therefore, stored in a public
database that cannot be modified such as a blockchain.
SC can control valuable things like the balance of user
account (number of ETH) or other parameters, as well as
the transfer of value among users. Ether (ETH) is a unit
of currency, serving to compensate the nodes for storage
and processing of smart contracts (1 Ether equals 213.20
EUR). More than that, the choice for such an SC language
and blockchain is due to the fact that the calculation of
a dynamic compensation requires complex calculations.
Moreover, The smart contract contains many functions for
the calculation and also the verification of the sender. In
addition, the BC will facilitate the efficient and the secure
operation of 5G Network Slice Broker.

III. PROPOSED APPLICATION ARCHITECTURE

A. SLA establishment

Before establishing the different SLA among the different
stakeholders, there is a phase where the resources are
requested by the vertical, and negotiated between the slice
provider and the different resource providers. Mainly, this
procedure is defined in [4] and is as follows. The vertical
or the slice owner requests the creation of a network slice
using a template or a blueprint. This template may contain
high-level information. The slice provider will translate
the template to specific slice resource requirements, such
as the number and types of sub-slices, Physical Network
Functions (PNF), Virtual Network Functions (VNF), CPU,
I/O, memory, storage, etc. The sub-slice components are
translated to resources of a Technological Domain (TD). A
TD can be a computing resource domain (such as CPU,
I/O), a storage domain, a radio domain (eNB, Central Unit
- CU, Distributed Unit - DU, Remote Radio Head - RRH
/ Remote Radio Unit - RRU), and transport domain (e.g.,
VLAN, VPN). For each TD, the slice provider describes the
needed resources according to the slice type. For instance,
in the case of the computing resource domain, they could
include the number of CPUs, VM instances, etc. For the
radio domain, resources could be related to the functional
split type [6], the MAC scheduler algorithm, the number
of Physical Resource Blocks (PRB), and others. Transport
domain resources, on the other hand, may include the type
of a link (bandwidth, latency), number of VLANs, front haul
link capacity, VPN links, QoS, etc. A brokering mechanism
at the slice provider selects the different resource providers,
per TD, that maximize a specific objective function. An ex-

ample of the latter could be the reduction of the deployment
cost. Besides, broker examples are given in [4]. Once the
resources are negotiated, SLAs have to be established, on
one hand, between the slice provider and the vertical; on the
other hand, between the slice provider and each resource
provider.

B. The trust architecture

1) SLA management: As explained in the previous sec-
tion, SLAs have to be established between the vertical
and the slice provider, and between the slice provider
and the resource providers. Generally speaking, SLAs are
contracts between consumers and a service provider. An
SLA specifies what customers can expect from a service
provider. In 5G, SLA should reflect the QoS as related to the
pre-defined type of slices, i.e. mMTC, eMBB, and uRLLC.
The established SLA needs to be managed and monitored
in order to ensure that the service is well functioning, and
hence build the reputation of the resource providers. In
this section, we will introduce the Trust management archi-
tecture to manage the SLAs between the above-mentioned
entities.
The proposed architecture is illustrated in Fig. 1. The mon-
itoring system is a third-tier trusted entity, which monitors
the KPI as specified in the SLA established between the ver-
tical and the slice provider, and between the slice provider
and the resource providers. The monitoring information will
be used to verify if an SLA is violated. The smart contract
will contain all the signed SLAs, and related information
such as validity period, target performance level, price,
compensation value, and relevant information. It stores the
addresses of slice provider, vertical, resource providers,
monitoring system and resource provider trust. It is used to
check the account balance, to transfer funds, to report SLA
violation to the resource provider trust, and to allow only
authorized addresses to interact with the smart contract.

2) Smart Contract: In the proposed architecture, the
smart contract is managed by the slice provider. According
to the monitoring system’s information, it (smart contract)
checks if one of the involved entities is violating the SLA.
Moreover, it automatically gives compensation to the verti-
cal if the service is not satisfactory and finds which resource

SLA Violation

Vertical / Slice Owner

Monitoring
System

Smart
Contract Resource Trust

Blockchain

Resource Provider 2

Resource Provider 1

Resource Provider 3
 Slice Provider

KPI monitoring

KPI monitoring

KPI monitoring

SLA Violation

SLA Violation

SLA Violation

SLA Violation

Fig. 1: SLA Management trust architecture

provider has failed to support the performance defined in
SLA. The concerned resource providers will be charged
automatically to pay penalties to the service provider in
this case. It is worth noting that the compensation and
penalties to pay are committed by all parties when the
SLA is signed. To this aim, the smart contract includes
functions that calculate the number of detected violations
in an interval. Also, it is used to verify if the compensation
interval has ended. At the end of the SLA life cycle, the
compensation is paid, based on the number of violations.
Finally, a compensation function is called to transfer the
compensation value for both the vertical address and the
slice provider address. In our case, smart contract uses
algorithm 1 to allow the dynamic compensation for the
Vertical, the slice provider and resource providers. Here, the
SC is used for an automatic subscription payment without
the need of a TTP (Third Party Trust). First, the SC contains
SLA information about the validity period, Threshold of
Terms such as latency and throughput, initial SLA price,
and compensation value per term. The SC also contains
addresses of the Slice Providers, Vertical, and Resource
providers, as well as monitoring solution, in order to send
the price and the compensation to the right parties. Second,
the SC uses two special functions: one to check the account
balance and to calculate the compensation, and one to
transfer funds to the address. The first function works as
follow: when the measured value sent by the monitoring
system is above the target performance level defined in the
SLA, and the SLA life-cycle is not over yet, the number
of violation will increase by one. These functions rely
on time and use the block timestamp as a reference for
the current time. As the SC is not able to automatically
execute the function by itself, the monitoring solution must
periodically call the SC to verify if the SLA is still valid
or not. If the current block timestamp is above the SLA
end time, the SC verifies if there is compensation to be
paid. If not, it transfers the remaining SC balance to the SP
(Slice Provider) and RPs (Resource Providers). Else, when
the terms exceed the threshold during the life-cycle of SLA,
a violation compensation value will be calculated and the
final price will be sent to both the vertical and slice provider
addresses stored by the SC, using the second function.
Inside the SC, the dynamic calculation of the compensa-
tion value assumes that the monitoring solution performs
measurements every second. During the SLA life-cycle,
when the measured performance in the end-to-end slice is
different than the agreed performance level (threshold of
latency or throughput in SLA signed between the vertical
and slice provider), it means that one or more resource
providers were not delivering the defined performance level.
Thus, it is crucial to check which RP is responsible of
this issue. Let’s suppose that the slice is deployed using
three TD, where each TD is provided by one RP. Also,
our smart contract contains SLA information such as:
”Initial SLA price V ” that is the initial price supposed
to be paid to the slice provider by the vertical as defined in
the SLA, and ”TLatency/Throughput V ” that is the threshold
of metrics (Latency/Throughput) defined in SLA signed
between V and SP. For the sake of clarity, the proposed

SumV iolation(metrick) =
∑

SLAviolated(metrick) (1)

Comp(metrick) = CompPerUnit(metrick) ∗ SumV iol(metrick)
(2)

Compensation =
NBmetrics∑

n=1

Comp(metrick) (3)

Algorithm 1 Algorithm of the Smart Contract
Input: V L/T RP1, V L/T RP2, V L/T RP3, V L/T V

{List of value send by MS}
Data: CompensationPerUintV, CompensationPerUintRP1,

CompensationPerUintRP2, CompensationPerUintRP3,
Initial SLA price V, Initial SLA price RP1,
Initial SLA price RP2, Initial SLA price RP3,
TLatency/Throughput V , TLatency/Throughput RP1,
TLatency/Throughput RP2, TLatency/Throughput RP3,
addressV ertical, addressSP, addressRP1, addressRP2,
addressRP3
{Initialization}

Output: SLA Price V, SLA Price RP1,
SLA Price RP2, SLA Price RP3
{Final SLA price will send from Slice Provider to Vertical and Final SLA
Price send from Resource Provider to Slice Provider}

Function CalculateCompensation(V L/T RP1, V L/T RP2,
V L/T RP3, V L/T V):

while EndofSLA = false do
if v(t,metricLatency/Throughput V) ≥ / ≤
TLatency/Throughput V then

Number SLA violation V =+ 1
if v(t,metricLatency/Throughput RP1) ≥ / ≤
TLatency/Throughput RP2 then

Number SLA violation RP1 += 1

else
end
if v(t,metricLatency/Throughput RP2) ≥ / ≤
TLatency/Throughput RP2 then

Number SLA violation RP2 =+ 1

else
end
if v(t,metricLatency/Throughput RP3) ≥ / ≤
TLatency/Throughput RP3 then

Number SLA violation RP3 =+ 1

else
end

else
end
SLA Price V = Initial SLA price V - (Number SLA violation V *

CompensationPerUintV);
SLA Price V RP1 = Initial SLA price RP1 - (Num-
ber SLA violation RP1 * CompensationPerUintRP1);
SLA Price RP2 = Initial SLA price RP2 - (Num-
ber SLA violation RP2 * CompensationPerUintRP2);
SLA Price RP3 = Initial SLA price RP3 - (Num-
ber SLA violation RP3 * CompensationPerUintRP3);

end
End Function
Function SendPrice(SLA Price V, SLA Price RP1,
SLA Price RP2, SLA Price RP3):

if EndofSLA = True then
send (SLA Price V) to (addressSP) ;

send (SLA Price RP1) to (addressRP1) ;
send (SLA Price RP2) to (addressRP2) ;
send (SLA Price RP3) to (addressRP3) ;

else
end

End Function

algorithm is not repeated for the two considered metrics.
Hence, we will consider the following notation for the met-
rics: “Latency/Throughput” For the eMBB slice, the metric
to control is the “Throughput” while for the uRLLC slice,
the latency is to control; therefore, ”Latency/Throughput”
corresponds to Throughout and to “Latency,” respectively.
If we aim to control more than one metric (Latency and
Throughput) per algorithm, then we have to add another

function similar to ”CalculateCompensation” with different
input. We use the function ”CalculateCompensation” to
verify the performance of the latency or throughput in
the RP1, RP2 and RP3. When the level of the latency or
throughput is different than the threshold defined in SLAs,
then the number of violations will increase by one, and we
update the total number as in equation 1. After that, we
have to calculate the compensation value (Compensation),
which is calculated using equations 2 and 3. The compen-
sation is then sent to the right address using the function
”SendPrice”. So, if the values of the metric (latency or
throughput) did not reach a threshold of SLA (e.g., 30 ms
for latency), then the vertical is not compensated and it
will pay the entire price defined in the SLA to the slice
provider. However, if the values of metrics are exceeding
the threshold, then the vertical will pay only the difference
between the initial price and the compensation. Similarly,
the slice provider will send only the difference between
the defined price and the compensation to the resource
providers. At the end, the vertical receives a portion of
the SLA price corresponding to the compensation from the
slice provider and the latter receives compensation from the
resource providers.

IV. PERFORMANCE EVALUATION

To evaluate the proposed SLA trust management frame-
work, we choose two different metrics: the latency and
throughput. In fact, these quantitative metrics are defined
in SLAs, and it is possible to be controlled by the smart
contract. We simulate a network slice deployed on three
different TD; a different RP provides each one. The vertical
application is represented by a client and a server. We
measured the latency and bandwidth as key performances,
periodically sent by the monitoring system to the SC.
The deployment of the SC was performed using Ethereum
[7], a blockchain-based distributed computing platform.
This program is executed by nodes on the blockchain in
the Ethereum Virtual Machine. Also, we use Ganache [8],
a local blockchain designed for development and testing. It
stimulates a real Ethereum network, including the availabil-
ity of accounts number funded with 100 Ether by default.
It presents an interface that can be accessed on a port of
the localhost in the same way one would connect to a real
Ethereum node. Also, we use truffle [9], which is a devel-
opment environment for the compilation and deployment of
smart contracts. Solidity [10] is the programming language
used to write the contract code, and truffle looks for ”.sol”
files to compile and migrate to the blockchain. Moreover,
we use Postman, which is an API testing tool. It can send
the value of the metrics (throughput or latency) to the smart
contract. The evaluation scenario stared from the monitoring
system performing periodic requests. It sends the current
values of the two metrics to the smart contract, every defined
period. During a 100 seconds interval, the evolution of the
latency performed in the vertical is depicted in Fig. 2. The
test works as follows, to evaluate the proposed solution.
Firstly, the SC is deployed, and a new SLA is created
following the parameters presented in Table I. Secondly,
the measurements of latency or throughput are considered

TABLE I: Parameters of the Smart Contract

Parameters Value
Price SLA (Vertical - Slice Provider) 100 ETH
Price1 SLA (Slice Provider - RP1) 20 ETH
Price2 SLA (Slice Provider - RP2) 20 ETH
Price3 SLA (Slice Provider - RP3) 20 ETH

Compensation 1 ETH
Compensation1 0.2 ETH
Compensation2 0.2 ETH
Compensation3 0.2 ETH

Threshold of latency defined in SLA SP V 30 ms
Threshold of latency defined in SLA RP1 10 ms
Threshold of latency defined in SLA RP2 10 ms
Threshold of latency defined in SLA RP3 10 ms

Validity 100 s

the output of the trusted monitoring agent that performs
periodic calls to the SC informing about SLA violations. If
the monitored latency or throughput is above the threshold
defined in the SLA; then the SC increases the number of
SLA violations for the period until the end of the lifecycle
of SLA. We considered two use cases: when the vertical
requests uRLLC Slice or requests eMBB Slice

A. uRLLC Slice

As specified by many uRLLC services in 5G, the needed
latency is required to be between 5ms and 30ms. Based on
these values, we fixed the violation threshold of latency for
the vertical to 30 ms, as depicted in Fig. 2d with a red
line. Also, we suppose that the violation threshold of the
latency in the resource providers 1, 2, and 3 should be 10
ms, as depicted in Fig. 2a, Fig. 2b, Fig. 2c with a red line.
We argue this by the fact that we measure the end-to-end
latency, which is composed of the latency experienced in
each TD. During the 100 seconds interval, the evolution of
the latency performed in the vertical and resource providers
is depicted in Fig. 2; represented by a blue line. After
that, the latency values in the end-to-end slice, RP1, RP2
and RP3, are iterated to verify each one against the target
performance level defined in the SLA (i.e., 30 ms for the
vertical (Fig. 2d) and 10 ms for resource providers 1, 2
and 3 (Fig. 2a,2b,2c). If the value is above the threshold,
then the number of detected SLA violations will increase
by one, which is depicted using an orange line in Fig. 2.
As a result, the initial price that is supposed to be sent to
the slice provider (Fig. 2) will be decreased.
After the end of SLA, the billing model allows the dynamic
compensation to the vertical and the slice provider and
automatic payment without the need of a TTP using the SC
to realize these transfers. First, it is expected that the vertical
sends the price of the network slice before the start of the
slice. The blue rectangle presents the initial price defined
in SLA signed between the vertical and slice provider. The
vertical deposits 100 ETH in the beginning. This fee is
locked in the SC until the end of the SLA lifecycle. Once
the SLA is finished, the funds are transferred to the slice
provider and the resources providers. The Green rectangle
presents the real price of SLA to be paid by the vertical after
the calculation process, and the red rectangle value presents
the compensation that will be paid to the vertical. At the end
of the SLA lifecycle, the compensation will be calculated

0 20 40 60 80 100
Time(s)

0

5

10

15

20

La
te

nc
y(

m
s)

RP1
Real Latency (ms)
Threshold of latency defined in SLA_RP1 (ms)
Number of detected SLA violations
Initial SLA Price: Price defined in the SLA_RP1(ETH)
Final SLA Price: Price transferred to RP1 (ETH)
Compensation (ETH)

(a) Evolution of latency and balance of RP1

0 20 40 60 80 100
Time(s)

0

5

10

15

20

25

30

La
te

nc
y(

m
s)

RP2
Real Latency (ms)
Threshold of latency defined in SLA_RP2 (ms)
Number of detected SLA violations
Final SLA Price: Price transferred to RP2 (ETH)
Compensation (ETH)
Initial SLA Price: Price defined in the SLA_RP2 (ETH)

(b) Evolution of latency and balance of RP2

0 20 40 60 80 100
Time(s)

0

5

10

15

20

25

30

La
te

nc
y(

m
s)

RP3
Real Latency (ms)
Threshold of latency defined in SLA_RP3 (ms)
Number of detected SLA violations
Initial SLA Price: Price defined in the SLA_RP3 (ETH)
Compensation (ETH)
Final SLA Price: Price transferred to the SLA_RP3 (ETH)

(c) Evolution of latency and balance of RP3

0 20 40 60 80 100
Time(s)

0

20

40

60

80

100

La
te

nc
y(

m
s)

End-to-End slice USER
Real Latency (ms)
Number of detected SLA violations
Threshold of latency defined in SLA_SP_V (ms)
Initial SLA Price: Price defined in the SLA_SP_V (ETH)
Compensation (ETH)
Final SLA Price: Price transferred to SP (ETH)

(d) Evolution of latency and balance of Vertical

Fig. 2: Evolution of latency and balance of resources providers and vertical

based on the counter during the slice usage. Actually, the
real price that will be paid at the end is the difference
between the initial price and the compensation. In our case,
the initial price is 100 ETH, and the compensation value
per unit is 1 ETH. So, the final price to pay is 100 - 1 x 10
(number of violations) = 90 ETH. Consequently, the final
price will be 90 ETH. Meanwhile, the monitoring system
also sends the measured values of latency at the resource
provider 1, 2 and 3, which are participating in the running
of uRLLC slice. As shown in Fig. 2a, Fig. 2b, Fig. 2c, when
the SLA is starting, the resource provider 1 should receive
20 ETH at the end of the SLA. But when the performance of
latency in RP1, RP2 or RP3 exceeds the threshold (10 ms),
their counters of the SLA violation will increase by one. In
the end, RP1 will not receive 20 ETH, but it will receive the
difference between the initial price and the compensation.
The latter is calculated in the smart contract. And the same
process will happen to RP2 and RP3.

B. eMBB Slice

Another example we considered is the eMBB slice, which
needs a high throughput between 100 Mbps and 1Gbps.
Based on these values, the violation threshold was fixed to
100 Mbps, which is depicted using a red line in Fig. 3d. It
worth noting that unlike latency, the end-to-end throughput
is not composed of the throughput observed in each domain;
each RP should support the same throughput. The SC will
be used to ensure that the throughput observed at the

vertical and provided by the resource providers is higher
than this threshold. It can be seen in Fig. 3a, Fig. 3b, Fig.
3c that when the throughput is lower than the threshold, the
counter of SLA violations will be increased by one, which
is depicted using an orange line.
Consequently, the initial price supposed to be sent to the
slice provider will be decreased, which is depicted using a
green dashed line in the figures. The blue rectangle presents
the initial price defined in the SLA signed between the
vertical and slice provider. At the end of the SLA lifecycle,
the compensation will be calculated based on the counter
during the slice use. Actually, the real price that will be
paid at the end is the difference between the initial price
and the compensation. In our case, the initial price is 100
ETH, and the compensation value per unit is 1 ETH. So,
the final price to pay is 100 - 1 x 8 (number of violations)
= 92 ETH. Therefore, the final price will be 92 ETH. On
the other hand, the monitoring system also sends the value
of throughput provided by the resource providers 1, 2 and 3
participating in deploying the eMBB slice. When the SLA is
starting, the resource providers 1, 2 and 3 should receive 20
ETH at the end of the SLA, as signed in SLAs. However,
when throughput in RP1, RP2 or RP3 are less than the
threshold (100 mbps), their counters of the SLA violations
will increase by one. In the end, RP1, RP2 and RP3 will
not receive 20 ETH, but they will receive the difference
between the initial price and the compensation, which is
calculated in the smart contract.

0 20 40 60 80 100
Time(s)

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
(M

bp
s)

RP1
Throughput(Mbps)
Threshold of Throughput defined in SLA_RP1 (Mbps)
Number of detected SLA violations
Initial SLA Price: Price defined in the SLA_RP1(ETH)
Final SLA Price: Price transferred to RP1 (ETH)
Compensation (ETH)

(a) Evolution of throughput and balance of RP1

0 20 40 60 80 100
Time(s)

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
(M

bp
s)

RP2
Throughput(Mbps)
Threshold of Throughput defined in SLA_RP2 (Mbps)
Number of detected SLA violations
Final SLA Price: Price transferred to RP2 (ETH)
Compensation (ETH)
Initial SLA Price: Price defined in the SLA_RP2 (ETH)

(b) Evolution of throughput and balance of RP2

0 20 40 60 80 100
Time(s)

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
(M

bp
s)

RP3
Troughput(Mbps)
Threshold of Throughput defined in SLA_RP3 (Mbps)
Number of detected SLA violations
Initial SLA Price: Price defined in the SLA_RP3 (ETH)
Compensation (ETH)
Final SLA Price: Price transferred to the SLA_RP3 (ETH)

(c) Evolution of throughput and balance of RP3

0 20 40 60 80 100
Time(s)

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
(M

bp
s)

End-to-End slice USER
Throughput(Mbps)
Number of detected SLA violations
Threshold of Throughput defined in SLA_SP_V (Mbps)
Initial SLA Price: Price defined in the SLA_SP_V (ETH)
Compensation (ETH)
Final SLA Price: Price transferred to SP (ETH)

(d) Evolution of throughput and balance of Vertical

Fig. 3: Evolution of throughput and balance of resources providers and vertical

V. CONCLUSION

This paper proposed an SLA Management trust architec-
ture in 5G that aims at enabling the dynamic and automatic
manages of the SLA during the network slice lifetime. The
proposed approach based on smart contracts automatically
manages the SLA, i.e., violation, billing process and pay-
ment by the vertical, and the compensation reimbursement
by the resources providers and slice provider. Further, an
implementation of the smart contract and blockchain was
conducted to manage two QoS-related SLA (latency and
throughput) examples. The obtained results showed that
the SLA management process was successfully automated
using a decentralized solution and removing a third tiers
player’s dependency to handle the billing process. One of
the future extensions of this work is to address the challenge
of trust monitoring, as it is highly needed to improve the
trust framework introduced in this paper. Also, we envision
to use the proposed architecture to build the reputation of
the resource providers, when a resource provider replies to
a sub-slice creation request, allowing a better selection of
the resource providers by the network slice provider.

ACKNOWLEDGMENT

This work has been partially supported by the European
Union’s H2020 MonB5G (grant no. 871780) project.

REFERENCES

[1] I. Afolabi, T. Taleb, P. A. Frangoudis, M. Bagaa and A. Ksentini,
”Network Slicing-Based Customization of 5G Mobile Services” in
IEEE Network, vol. 33, no. 5, pp. 134-141, Sept.-Oct. 2019.

[2] Eder J. Scheid, Bruno B. Rodrigues Lisandro Z. Granville, Burkhard
Stiller, , Enabling Dynamic SLA Compensation Using Blockchain-
based Smart Contracts, 2019 IFIP IEEE International Symposium
on Integrated Network Management (IM2019), 2019.

[3] Euromoney, How does a transaction get into the blockchain?, 2019,
https://www.euromoney.com/learning/blockchain-explained/how-
transactions-get-into-the-blockchain, 2020.

[4] Boubakr Nour Adlen Ksentini, Nicolas Herbaut ,Pantelis A. Fran-
goudis and Hassine Moungla, A Blockchain-Based Network Slice
Broker for 5G Services, IEEE Networking Letters, 6 May 2019.

[5] Nick Szabo, Smart Contracts, 1994,
https://www.fon.hum.uva.nl/rob/Courses/eInformationInSpe
ech/CDROM/Literature/LOTwinterschool2006/szabo.best
.vwh.net/smart.contracts.html, 2020.

[6] C. Chang, N. Nikaein, O. Arouk, K. Katsalis, A. Ksentini, T. Turletti,
and K. Samdanis, “Slice orchestration for multi-service disaggregated
ultra-dense rans,” IEEE Communications Magazine, vol. 56, no. 8,
pp. 70–77, 2018.

[7] Baran Köseoğlu, Data Science Studies: Ethereum, Blockchain-Based
Distributed Computing Platform https://medium.com/colendi/data-
science-studies-ethereum-blockchain-based-distributed-computing-
platform-eae96cde70f7,2019

[8] Stefan Beyer, What is Ethereum Ganache?,
https://www.mycryptopedia.com/what-is-ethereum-ganache, 2019.

[9] Mayank Sahu, What is Truffle Suite? Features,
https://www.upgrad.com/blog/what-is-truffle-suite/, 2020

[10] Solidity, https://solidity.readthedocs.io/en/v0.7.1/, 2020.

