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Abstract

In the airline industry, price prediction plays a significant role both for customers and
travel companies. On the customer side, due to the dynamic pricing strategies adopted
by airlines, prices fluctuate over time and the resulting uncertainty causes worries among
travellers. On the other side, travel companies are interested in performing accurate short-
and long-term price forecasts to build attractive offers and maximize their revenue margin.
However, price time-series comprise time-evolving complex patterns and non-stationarities,
which make forecasting model deteriorate over time. Thus an efficient model performance
monitoring is key to ensure accurate forecasts. Beside this, the steady growth of airline
traffic leads to the development of massive datasets, which call for automatic procedures.
In this thesis we introduce two machine learning applications which are crucial for the airline
industry. The first one is meant to answer the question about the best moment to buy a
ticket, through the use of specific metrics which help travellers taking the best decision about
whether to buy or wait, while the second one focuses on the problem of model performance
monitoring in industrial applications and it consists in a data-driven framework, built on
top of the existing forecasting models, which estimates model performance and performs
dynamic model selection.
Stochastic Gradient Descent (SGD) represents the workhorse optimization method in the
field of machine learning. When dealing with complex models and massive datasets, we
resort to distributed systems, whereby multiple nodes compute stochastic gradients using
partitions of the dataset and model parameters are updated aggregating information from
all nodes. In asynchronous systems, convergence of SGD is challenging because distributed
workers might produce gradient updates for a loss computed on stale versions of the current
model iterates. In this context, one technique that has achieved remarkable results, albeit in
synchronous setups, is sparsification, in that it reduces communication overheads. In this
thesis we fill the gap in the literature and study sparsification methods in asynchronous
settings. For the first time, we provide a concise and simple convergence rate analysis when
the joint effects of sparsification and asynchrony are taken into account, and show that
sparsified SGD converges at the same rate of standard SGD.
Recently, SGD has played an important role also as a way to perform approximate Bayesian
Inference, which is a principled way of developing probabilistic models. Stochastic gradient
MCMC algorithms use indeed SGD with constant learning rate to obtain samples from
the posterior distribution. Despite mathematical elegance and some promising results re-
stricted to simple models, most of the existing works fall short in easily dealing with the
complexity of the loss landscape of deep models, for which stochastic optimization poses
serious challenges. Existing methods hence result often unpractical, because they require
ad-hoc, sophisticated vanishing learning rate schedules, and hyper-parameter tuning. In
this thesis we introduce a novel, practical approach to posterior sampling, which makes the
SG noise isotropic using a fixed learning rate and that requires weaker assumptions than
existing algorithms.
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Introduction

Over the past two decades Machine Learning (ML) has played a central role in numerous
fields of information technology and its presence in our life continues to expand ever more
widely. With the ever increasing amounts of data becoming available, smart data analysis
will become even more pervasive as a necessary ingredient for technological progress. Classi-
cal examples of machine learning applications include image recognition, speech recognition,
web page ranking, automatic translation, named entity recognition, recommender systems,
forecasting, medical diagnoses.
All machine learning models share the same principle: use a set of training data to learn
a task and predict the output for new input data. We can classify three main types of
ML algorithms. In supervised learning the model is provided with example inputs that are
labeled with their desired outputs and the goal is to predict label values on additional un-
labeled data, based on the learned patterns. In unsupervised learning data is unlabeled, so
the learning algorithm is left to find commonalities among its input data, either to discover
hidden patterns within a dataset or to do feature learning. A third class of algorithms is
represented by reinforcement learning, where the model interacts with an environment and
there is a feedback loop between the learning system and its experiences.
Based on the type of problem, different ML models can be adopted. We distinguish two
main type of algorithms: deterministic and probabilistic. Deterministic models yield a
single solution describing the outcome of some experiment given appropriate inputs. A
probabilistic model is, instead, meant to give a distribution of possible outcomes. Belong to
the first class some very well known algorithms such as Linear Regression, Random Forest,
Support Vector Machines, K-Nearest Neighbors, Decision Trees, (Deep) Neural Networks.
Some examples for probabilistic models are Logistic Regression, Bayesian Classifiers, Hidden
Markov Models, Gaussian Processes, Bayesian Neural Networks. For a complete description
of ML techniques we refer the reader to [1, 2].
The widespread success of ML in several fields of our life is accompanied by the ever large
availability of data, which represent the input of such models. The three primary data
sources are: social data, machine data and transactional data. Social data comes from
the public web, but also from the Likes, Tweets, Comments, Video Uploads, and general
media that are uploaded and shared via the world’s social media platforms. Machine data is
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defined as information which is generated by industrial equipment, sensors that are installed
in machinery, and even web logs which track user behavior. This type of data is expected to
grow exponentially as the internet of things grows ever more pervasive and expands around
the world. Transactional data is generated from all the daily transactions that take place
both online and offline. Invoices, payment orders, storage records, delivery receipts. All
these sources bundled in one term give the well known Big Data concept.

Among the numerous fields which benefit from ML techniques we find the airline industry,
where the amount of available data has seen a great increase in the last few decades.
According to the International Air Transport Association (IATA), in 2009 the number of
scheduled passengers boarded by the global airline industry has been of 2.48 billion and it
reached 4.54 in 2019. Beside this, airlines continue to increase the number of city-pair routes
and in 2019 almost 22 thousand city pairs were regularly serviced by airlines. This opens
the way to the possibility of applying ML techniques both to increase airlines’ revenue and
improve traveller’s experience. Examples of ML applications for the airline industry are
reinforcement learning for revenue management, dynamic pricing, recommender systems
for hotels and ancillary services, price prediction, baggage weight prediction, flight delay
prediction.

Among these, price prediction plays a significant role both for customers and travel com-
panies. The former are indeed interested in knowing the price evolution to take the best
decision on when to buy and travel, the latter want instead to offer attractive tour packages
and maximize their revenue margin. Regarding the application on the customer side, this is
the result of the large uncertainty derived from airline pricing strategies, which make prices
fluctuate a lot over time. Airlines, indeed, put in place proprietary software to compute
ticket prices on any given day, based on several factors, including seasonality, availability
of seats, competitive moves by other airlines [3]. Thus an ever increasing number of people
becomes interested in understanding how corporations vary prices, to choose the best mo-
ment to book a flight. As a result, several Online Travel Agencies nowadays try to satisfy
users, by incorporating such information on their website, either in the form of suggestion
or price forecasting, which opens the way to the development of suited machine learning
applications.

On the other side then, travel companies are interested in performing accurate short- and
long-term price forecasts to build attractive offers and maximize their revenue margin.
Here again the power of machine learning comes in handy, but with some challenges to be
faced. As already mentioned, price time-series comprise time-evolving complex patterns,
non-stationarities or, more generally, distribution changes over time, which make forecast-
ing model deteriorate over time. Thus an efficient model performance monitoring is key to
ensure accurate forecasts over time. Beside this, the steady growth of airline traffic leads to
the development of massive datasets, which call for automatic procedures. This implies the
building of machine learning systems, where the model, representing the core for the appli-
cation to run, is surrounded by an infrastructure which performs monitoring, maintenance
and improvement over time [4].

In light of the above, in the first part of this thesis we will introduce two machine learning
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applications which are crucial for airline industry. The first one is meant to answer the
question about the best moment to buy a ticket, through the use of specific metrics which
help travellers taking the best decision about whether to buy or wait, while the second one
focuses on the problem of model performance monitoring in industrial applications and it
consists in a data-driven framework, built on top of the existing forecasting models, which
estimates model performance and performs dynamic model selection.

So far we have seen how machine learning can be used to improve airline industry ap-
plications. Hereafter, we will focus on one of the core components of machine learning,
that is optimization. The essence of most machine learning algorithms is indeed to build
an optimization model and learn the parameters in the objective function from the given
data. Since the beginning of machine learning phenomenon, a series of effective optimiza-
tion methods were put forward, which have improved the performance and efficiency of
machine learning methods. From the perspective of the gradient information in optimiza-
tion, popular optimization methods can be divided into three categories [5]: first-order
optimization methods, which are represented by the widely used stochastic gradient meth-
ods; high-order optimization methods, in which Newton’s method is a typical example; and
heuristic derivative-free optimization methods, in which the coordinate descent method is
a representative.

Despite the research advances seen by high-order optimization methods, Stochastic Gradient
Descent (SGD) still represents the workhorse optimization method in the field of machine
learning. The idea of the gradient descent methods is that variables update iteratively in
the (opposite) direction of the gradients of the objective function. The update is performed
to gradually converge to the optimal value of the objective function. The learning rate
determines the step size in each iteration, and thus influences the number of iterations to
reach the optimal value. The mini-batch version [6], in particular, evaluates the gradient
on a small subset of samples and hence it allows to achieve the best trade-off between
number of iterations and cost per iteration. The success of SGD comes also from its two
important statistical properties: it is an unbiased estimator of the full gradient and it
provides convergence guarantees [7].

SGD represents also the core of large-scale machine learning, whereby multiple nodes com-
pute stochastic gradients using partitions of the dataset and model parameters are updated
aggregating information from all nodes. Large-scale machine learning has received a lot of
attention in recent years, due to the development of complex models trained on massive
datasets. Modern deep learning models can have indeed up to billions of parameters and
common datasets include millions of samples. This has led to the use of distributed systems,
where multiple nodes perform model training in parallel and achieve a good speedup. Using
the common Parameter Server paradigm, stochastic gradients computed by the workers are
aggregated by a central nodes, which update the model’s parameters and send them back to
the nodes. The aggregation step can be done either each time a worker sends its gradient,
as in asynchronous systems, or only when all nodes have completed the training step, as in
synchronous architectures. The analysis of the convergence behavior of SGD, both in syn-
chronous and asynchronous settings has been widely studied in the literature [8, 9, 10, 11].
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In asynchronous systems, convergence is challenging because distributed workers might pro-
duce gradient updates for a loss computed on stale versions of the current model iterates.
In this context, communication overheads have been considered as a key issue to address,
and a large number of works have been proposed to mitigate such overheads [12, 13]. One
technique that has achieved remarkable results, albeit in synchronous setups, is sparsifica-
tion. The key idea of this method is to apply smaller and more efficient gradient updates,
by applying a sparsification operator to the stochastic gradient. In Chapter 6 we fill the
gap in the literature and study sparsification methods in asynchronous settings. For the
first time, we provide a concise and simple convergence rate analysis when the joint ef-
fects of sparsification and asynchrony are taken into account, and show that sparsified SGD
converges at the same rate of standard SGD.

Last important role of SGD we want to highlight in this work relates to Bayesian Inference.
Latest advances in machine learning research have led to the use of such models in an
ever increasing number of applications, including ones previously requiring human exper-
tise. However, the adoption of machine learning models to sensitive applications, such as
self-driving cars, automated medical diagnosis, is still under study and heavily-publicised
incidents have cast a heavy shadow over their robustness and reliability [14, 15]. This
phenomenon has hence sparked a resurgence of interest in probabilistic modelling, which
is inherently intended to capture the uncertainty or lack of knowledge a model might have
about a learned task. To this end, probabilistic models provide uncertainty estimates ac-
companying predictions, which give information on how likely the latter are to be correct.
Bayesian inference represents a principled way of developing probabilistic models. Using
Bayes’ theorem to find the posterior distribution of a model’s parameters, one can combine
prior beliefs on the values they can take with the likelihood of observing available data using
the designated model configuration. This allows one to compute the predictive distribution
on new data and use the resulting variance to estimate the uncertainty associated to the
predictions. Although conceptually simple, applying Bayesian inference poses a number
of computational challenges, due to high-dimension operations and non-analytical equa-
tions. To this end, several approximation methods have been proposed in the literature,
including Markov Chain Monte Carlo (MCMC) and Variational Inference (VI). Although
widely used, however, these methods require either long time or large number of parame-
ters to converge. Recently, another family of approaches that has taken hold in the field
of approximate Bayesian inference are the so-called stochastic gradient MCMC algorithms,
which use SGD with constant learning rate to obtain samples from the posterior distribu-
tion [16, 17, 18]. Despite mathematical elegance and some promising results restricted to
simple models, most of these works fall short in easily dealing with the complexity of the loss
landscape of deep models, for which stochastic optimization poses serious challenges. Exist-
ing methods are often unpractical, as they require ad-hoc, sophisticated vanishing learning
rate schedules, and hyper-parameter tuning. In this regard, we introduce in chapter 7 a
novel, practical approach to posterior sampling, which makes the Stochastic Gradient noise
isotropic using a fixed learning rate and that requires weaker assumptions than existing
algorithms.
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The content of this thesis is organised in two main parts. The first one, whose title is Robust
Machine Learning Methods for the Airline Industry, describes how machine learning can be
of paramount importance in the airline industry and it includes the following chapters:

• Chapter 2 introduces Part I by providing examples of ML applications in the airline
industry. In particular, the tasks of price prediction and model performance monitor-
ing are discussed.

• Chapter 3 shows how ticket prices represent a source of worries for travellers, due to
their arbitrary and unpredictable evolution. We therefore investigate how some ma-
chine learning models handle uncertainty estimation and we propose four approaches
to help travellers to deal with the uncertainty in ticket price evolution using such mod-
els. In particular, the first one uses a probabilistic model to estimate the conditional
density estimation of the price in the future. The second and the third approaches
instead provide the user with more explicit information to decide when to buy a ticket,
by estimating the amount of money that is lost when choosing the wrong date. Fi-
nally, the last approach gives to the user financial protection against adverse future
price fluctuations.

• In Chapter 4 we consider the issues related to monitoring, maintenance and improve-
ment of complex production-deployed ML systems for time-series forecasting. We thus
propose a data-driven framework which builds a monitoring system on top of deployed
models. The framework estimates the forecasting error of time-series forecasting mod-
els over time and uses it as surrogate measure of the model’s future performance. In
this way, continuous monitoring is achieved by using the predicted forecasting error
as a measure to detect degrading performance. Simultaneously, the predicted fore-
casting error enables model maintenance by allowing to rank multiple models based
on their predicted performance, i.e. model comparison, and then select the one with
the lowest predicted error measure, i.e. model selection. In the chapter we show an
example of usage with price forecasts.

The second part is called Scalable Probabilistic Machine Learning and it studies the use of
SGD for optimization in large-scale machine learning and Bayesian Inference. In particular:

• Chapter 5 provides the context of Part II, by discussing SGD convergence properties.
We then introduce the concept of large-scale machine learning and we give background
information about Bayesian inference.

• In Chapter 6 we focus on asynchronous systems, where multiple nodes compute
stochastic gradients using partitions of the datasets and convergence of SGD is chal-
lenging because workers might produce gradient updates for a loss computed on stale
versions of the current model iterates. We thus study the role of sparsification, a
technique used to reduce communication overheads in synchronous setups. For the
first time, we provide a concise and simple convergence rate analysis when the joint ef-
fects of sparsification and asynchrony are taken into account, and show that sparsified
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SGD converges at the same rate of standard SGD. Our empirical analysis of sparsified
SGD complements our theory. We consider several delay distributions and show that,
in practice, applying sparsification does not harm SGD performance. These results
carry over when the system scales out.

• In Chapter 7 we consider SGD as a means of performing approximate Bayesian infer-
ence, by using a constant learning rate to obtain samples from the posterior distri-
bution. Most of the stochastic gradient MCMC algorithms recently proposed indeed
fall short in easily dealing with the complexity of the loss landscape of deep models,
for which stochastic optimization poses serious challenges. Here we introduce a novel
and practical approach to posterior sampling, which makes the Stochastic Gradient
noise isotropic using a fixed learning rate and that requires weaker assumptions than
existing algorithms. We run an extensive experimental campaign, where we compare
our approach to a number of alternatives which have been successfully applied to the
Bayesian deep learning setting. The results indicate that the proposed approach is
competitive to the state-of-the-art, in terms of accuracy and uncertainty.

Finally, in Chapter 8 we summarise the principal themes and contributions presented in
this work and we expand upon the directions for future work.



Part I

Robust Machine Learning
Methods for the Airline Industry





2

Context

In this first part of the thesis we will describe how machine learning can be of paramount
importance in the airline industry, by providing some practical examples of applications.

2.1 ML applications in the airline industry

Among the numerous industrial fields that have taken advantage of machine learning to
improve their products it is worth to mention the airline industry. If we look at the air
traffic trend, we see an impressive growth in the last 30 years, which results in a total of 4.54
billion of passengers registered by the global airline industry in 2019. This gives us an idea
of the amount of data airline industry applications have at their disposal to improve both
airline and travelers life, but also the need for automatic procedures capable of handling
such massive datasets. Here comes the role of machine learning and, more generally, of
artificial intelligence.
The objectives of ML applications in travel industry are manifold. In this work we set
on the customer side and we distinguish three main travel-centric pillars. The first one is
understanding the behaviors of travelers, to better propose offers that might enrich their
experience or alternatives that could improve their journey and satisfaction. Secondly, by
analyzing behaviors and clustering travelers, we can predict their actions through choice
modelling. Finally, we can improve the travel experience, by increasing the efficiency of
various travel related processes. To this end, examples of ML applications are: recom-
mender systems for hotels and ancillary services, price prediction, airlines fare family de-
sign, baggage weight prediction, flight delay prediction, disruption management, airport
takeoff sequencing optimization, seat allocation optimization. Other applications related to
airlines are reinforcement learning for revenue management, dynamic pricing. In this work
we focus on price prediction, as explained in the following.

2.2 Price prediction

Modern airlines develop their pricing strategies mostly based on yield management theories
[19]. Sophisticated mathematical models are used to determine the real-time airfare based
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on information such as unsold seats or recent market demand, which are usually guarded
commercial secrets. Consequently, it is often difficult for an ordinary customer to estimate
how the price will change in the future, which results in a source of worry. This paved the
way to two main applications of price prediction. The first one is related to price forecasting,
whereby the objective is to predict the future price. Although conceptually simple, airfare
forecasting is a challenging problem, in that prices can be subjected to drastic fluctuations
and non-stationary patterns, which compels forecasting model to be updated. The second
application on price prediction is more customer-oriented and it is related to finding the
optimal purchase time. This is done by providing suggestions whether it is better to buy
now or wait during a flight search. In this respect, we will discuss in Chapter 3 how ML
methods can help travelers to deal with uncertainty in ticket price evolution, proposing also
some real use-cases that demonstrate the utility of having such decision-making tools.

2.3 Model performance monitoring

As already said, travel industry is one of the field that lends itself to the use of machine
learning to improve its product and we have seen several examples of ML applications.
However, development and deployment of ML models only represent the first steps of sys-
tem’s life cycle. In [4] authors describe ML systems as made of many building blocks,
where ML code represents only a small fraction, but it is surrounded by a vast and complex
infrastructure, which includes data collection, data verification, machine resource manage-
ment, analysis tool, process management tool, feature extraction, configuration, serving
infrastructure and monitoring.
When dealing with industrial applications, monitoring, maintenance and improvement of
complex production-deployed ML systems carry most of the costs and difficulties in time.
Model monitoring refers to the task of constantly tracking a model’s performance to deter-
mine when it degrades, becoming obsolete. Once a degradation in performance is detected,
model maintenance and improvement take place to update the deployed model by rebuilding
it, re-calibrating it.
Coming back to the price forecasting application, we need to consider some additional
challenges for model monitoring. Firstly, such applications involve the analysis of multiple
time-series which are modeled independently. For example, according to the 2019 world air
transport statistics report, there were almost 22 thousands city pairs directly connected by
airlines. So for scalability purposes, we need something able to automatically monitor the
deployed models. Secondly, as mentioned above, price time-series comprise time-evolving
complex patterns, non-stationarities, which make forecasting models more prone to deteri-
orate over time. Regarding the monitoring of in-production models, another challenge need
to be considered. Usually industrial applications already use ML models, which have been
developed recently or not, so introducing a monitoring system can be very expensive.
In this respect, we will introduce in Chapter 4 a data-driven framework, which builds a
monitoring system on top of deployed models, with an example of price forecasting appli-
cation.
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Dealing with Uncertainty in
Ticket Price Evolution

Airline industry is known to use convoluted dynamic pricing strategies with the goal of
maximizing its revenue. Airlines have many fare classes for seats on the same flight, use
different sales channels and frequently vary the price per seat over time based on some
factors such as seasonality, availability of seats, competitive moves by other airlines [3].
They usually put in place proprietary software to compute ticket prices on any given day,
whose algorithms are jealously guarded trade secrets. All this makes prices fluctuate a lot
over time and gives cause for concerns among travellers, which would like to pay the cheapest
price. In last few years, indeed, an ever increasing number of people seems interested in
understanding how corporations vary prices over time, which has opened the way to the
development of decision-making tools to help customers in finding the best moment to buy
tickets [3, 20].
We can have an idea of travellers’ behavior when buying a ticket by looking at the distribu-
tion of the Days Before Departure (DTD) people purchase tickets. In Figure 3.1 we show
the results from the midt (Marketing Information Data Transfer) dataset, which contains
information about indirect booking activities of several travel agencies and airline carriers.
In 2019 the number of bookings between 3 months and one year before departure repre-
sents more than 16% of the total bookings. This tells us that in general there is a trend
to buy tickets well in advance, on the belief that the price will increase getting close to the
departure date. However, for the reasons we mentioned before about airlines’ strategy, the
rule to buy the ticket is not simply the earlier the better. We plot an example of price
evolution with DTD in Figure 3.2, where we compare the observed curve with a theoretical
one. The latter is meant to simulate the general people belief, according to which price will
only increase getting close to the departure date, and it has been generated using a naive
heuristic which at each time step adds a certain amount to the previous price. We observe
that the real curve is far away from the theoretical one, in that it has a very irregular
behavior, with several price increases and decreases.
So how can we help travellers to deal with this uncertainty in ticket price evolution? One
simple approach is to provide information on the price evolution, just predicting the future
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Figure 3.1 – Time before departure dis-
tribution in midt dataset.

Figure 3.2 – Comparison between real
and simulated price evolution with DTD.

price. Machine learning practitioners are used to do this, using simple or advanced regres-
sion algorithms. However, given the importance and difficulty underlying the problem, it
is worth to have information about the prediction’s reliability. To this end, we can do a
step ahead and enrich price predictions with uncertainty estimation, which makes the user
more confident of his decision based on the model output.

In light of this, we start this chapter with a description of how uncertainty estimation is
handled by different ML methods. Later, we introduce four approaches which illustrate
how we can help travellers to deal with uncertainty in ticket price evolution, using such
models.

3.1 Uncertainty in ML methods

Estimate uncertainty in predictions is a crucial concept in multiple scenarios. First, un-
certainty plays a central role on deciding when to abstain from prediction. This is the
case when we want to identify rare examples which significantly differ from the majority of
the data, as in anomaly, outliers and out-of-distribution examples detection [21, 22, 23], or
when it comes to detect adversaries [24], delegate high-risk predictions to humans [25, 26].
Uncertainty is also the backbone of active learning [27], the problem of deciding what ex-
amples should humans annotate to maximally improve the performance of a model. Finally,
uncertainty estimation is important when analyzing noise structure, for example to discover
causal relations from large quantities of data [28], and in the estimation of predictive inter-
vals. The latter are indeed defined as intervals containing the true value about some target
variable, given the values for some input variable, with a given probability.

In general we can distinguish two main types of uncertainty [29]: aleatoric and epistemic.
Aleatoric uncertainty (from the Greek word alea, meaning “rolling a dice”) describes the
variance of the conditional distribution of the target variable given the features. This
type of uncertainty accounts hence for the stochasticity of the data and it arises due to
hidden variables or measurement errors. This means that it cannot be reduced by collecting
more data under the same experimental conditions. Epistemic uncertainty (from the Greek
word episteme, meaning “knowledge”) quantifies instead the errors associated to the lack
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of experience of the model at certain regions of the feature space. Therefore, this type
of uncertainty is inversely proportional to the density of training examples, and could be
reduced by collecting data in those low density regions.

3.1.1 How ML methods deal with uncertainties

We will now describe how different ML methods handle quantification of uncertainty. Given
that our primary application is price prediction, we will focus our discussion on the regres-
sion problem.
The standard setup is the following. Given a dataset D = {xi, yi}Ni=1, composed by feature
vectors xi ∈ RD and targets yi ∈ R, the goal is to estimate a function f : RD → R,
which best describes the relationship between the vector of explanatory variables x and the
dependent variable y. Considering a linear regression model with Gaussian noise we have:

f(x) = w>x, y = f(x) + ε,

where w is a vector of weights (parameters) of the linear model. We assume here that the
observed values y differ from the function values f(x) by additive noise, and we also assume
that this noise follows an independent, identically distributed Gaussian distribution with
zero mean and variance σ2

N , ε ∼ N
(
0, σ2

N

)
. The solution of the regression problem is given

by the minimization of the loss L =
∑N
i=1[yi −w>xi] = ‖y −Xw‖:

∇wL = 0⇒ ŵ = (X>X)−1X>y, (3.1)

where X = (x1, ...,xn)T and y = (y1, ..., yn)T .
Minimizing the quadratic loss [yi −w>xi]

2 is equivalent to maximizing the Gaussian like-
lihood function:

exp(−γL) = exp(−γ ‖y −Xw‖2) ∝ N
(

y|Xw,
1

2γ

)
For this reason, the solution ŵ in Equation (3.1) is commonly known as maximum likelihood
estimator, in that it provides the model under which the observed data is most probable.
In machine learning we distinguish two classes of models: deterministic and probabilistic.
The first ones, used by most of machine learning practitioners, through the maximum
likelihood solution produce a single estimate of the function f , which then provides a point
prediction ŷ about the target, the second ones instead, combining the likelihood with a
prior, give a probability distribution over the weights w, which allows one to obtain a
probability distribution over the prediction ŷ. Probabilistic models are indeed used when
quantification of uncertainty is needed.

3.1.2 Bayesian regression

Bayesian linear regression [30] is an example of probabilistic model, which predicts a whole
distribution over the target variable, offering a natural measure of prediction uncertainty.
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In Bayesian linear regression, the posterior distribution over the weights p(w | X,y) is
computed using Bayes’ theorem:

p(w | X,y) =
p(y | X,w)p(w)∫
p(y | X,w)p(w)dw

=
p(y | X,w)p(w)

p(y | X)
, (3.2)

where the likelihood p(y | X,w) represents a measure of fitness, the prior p(w) comprises
anything we know about parameters w before we see any data and the marginal likelihood
p(y | X) is a normalization constant, to ensure that the posterior satisfies the probability’s
property

∫
p(w | X,y) = 1.

Once obtained the posterior distribution over the weights, we can compute the predictive
distribution on new data (x∗, y∗) as follows:

p (y∗ | X,y,x∗) =

∫
p (y∗ | x∗,w) p (w | X,y) dw (3.3)

Intuitively, using Equation (3.3) we take the average of predictions of infinitely many mod-
els.

In order to estimate the uncertainty coming from this distribution, we consider its variance
σ2 (y∗ | x∗). According to the law of total variance, if X and Y are random variables on
the same probability space, and the variance of Y is finite, this amounts to:

Var(Y ) = Var(E[Y | X]) + E[Var(Y | X)] (3.4)

Using this expression, we can then decompose the total variance σ2 (y∗ | x∗) as follows:

σ2 (y∗ | x∗) = σ2
p(w) (E [y? | w,x?]) + Ep(w)

[
σ2 (y∗ | w,x∗)

]
, (3.5)

where E [y? | w,x?] and σ2 (y? | w,x?) are, respectively, the mean and variance of y∗ ac-
cording to p (y? | w,x?).

In Equation (3.5), σ2
p(w) (E [y? | w,x?]) is the variance of E [y? | w,x?] when w ∼ p(w).

This term ignores any contribution to the variance of y∗ from ε and only considers the
effect of w. Therefore, it corresponds to the epistemic uncertainty in Equation (3.3). By
contrast, the term Ep(w)

[
σ2 (y∗ | w,x∗)

]
represents the average value of σ2 (y∗ | w,x∗)

when w ∼ p(w). This term ignores any contribution to the variance of y∗ from w and,
therefore, it represents the aleatoric uncertainty in Equation (3.3).

Therefore, adopting a Bayesian inference approach allows one to obtain a probability dis-
tribution over the target, which predicting variance can be used for uncertainty estimation.
Moreover, we can use the prior in Equation (3.2) to include our beliefs about the model
parameters before looking at the observations. Here we have seen the example of Bayesian
linear regression, where we assume that the relation between y and x is linear. However,
often we need to model more complex systems. In this case, if the prior is not conjugate
with the likelihood, that is they do not belong to the same probability distribution family,
we resort to approximations [2, 31].
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3.1.3 Conditional Density Estimation

Another approach which allows one to capture uncertainty in predictions is Conditional
Density Estimation (CDE). Conditional density estimation is a general framing of super-
vised learning problems, subsuming both classification and regression. While the objective
of most regression algorithms is to accurately predict the expected value of a label y condi-
tional on observing associated features x, E[y | x], these methods generally have implicit or
explicit probabilistic interpretations. CDE generalizes regression by modeling a full density
p(y | x).

Once obtained the distribution of y given x, we can compute its cumulative distribution
function (CDF) and use it to construct prediction intervals. By denoting the model CDF
with F , the predictive interval is defined as:

Uq(y | x) =
[
F−1

(
1− q

2
| x
)
, F−1

(
1 +

q

2
| x
)]

(3.6)

For a model to reliably estimate its predictive uncertainty, the model CDF F should be
estimated to be consistent with the data-generating CDF F ∗(y|x), such that, for example,
the 95% predictive interval U0.95(y|x) indeed contains the observations y ∼ F ∗(y|x) 95%
of the time. This consistency property is known in the probabilistic forecast literature as
calibration [32], and defines a mathematically rigorous condition for a model to achieve
reliable estimation of its predictive uncertainty.

A number of methods exist for performing CDE which, in the limit of very large models
and datasets, are able to capture arbitrary conditional distributions. These date back to
adaptive mixtures of local experts [33] and mixture density networks (MDNs) [34]. MDNs
are conceived to perform conditional density estimation, by finding the mixture of Gaussian
distributions that model the target variable y, given input x:

p(y | x) =

K∑
j=1

πj(x)N (y;µj(x),Σj(x)) ,

where πj(x), µj(x), and Σj(x) are j-th mixture weight function, mean function, and vari-
ance function, respectively and K is the number of components. Indeed, in standard regres-
sion problems we assume that the conditional distribution p(y | x) is Gaussian. However,
in practical machine learning this is often not true, for example because the target distri-
bution is multimodal. Thus such assumption may lead to poor performance. To account
for these limitations, [34] proposed to parametrize the mixture of distributions by a deep
neural network (DNN), creating the mixture density network, whose output is:

p(y | θ) =

K∑
j=1

πjN (y | µj ,Σj) ,

where θ = {πj , µj ,Σj}Kj=1 is a set of parameters of the Gaussian mixture model (GMM). In
other words, an MDN can be seen as a mapping f from an input x ∈ X to the parameters
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θ ∈ Θ of a GMM of an output, i.e., f : X 7→ Θ. Thus, the resulting (multimodal)
conditional probability distribution allows one to model complex patterns found in real-
world data. By estimating the probability distribution p(y | x), it is possible to quantify
uncertainty using the variance of the obtained GMM. In [35] authors use the law of total
variance in Equation (3.4) to obtain:

V(y | x) =

K∑
j=1

πj(x)

∥∥∥∥∥µj(x)−
K∑
k=1

πk(x)µk(x)

∥∥∥∥∥
2

+

K∑
j=1

πj(x)Σj(x) (3.7)

In Equation (3.7) the first term estimates our ignorance about the model prediction, so
it corresponds to the epistemic uncertainty, while in the second one we find the predicted
variance of the mixture models, which captures the noise inherent in data and so it refers
to the aleatoric uncertainty.
More recent work, arising primarily from approaches in unsupervised learning, includes con-
ditional variants of variational Autoencoders (VAEs) and generative adversarial networks
(GANs) [36]. The general idea of autoencoders consists in setting an encoder and a decoder
as neural networks and to learn the best encoding-decoding scheme using an iterative opti-
misation process. So, at each iteration the autoencoder architecture (the encoder followed
by the decoder) is fed with some data, then the encoded-decoded output is compared with
the initial data and the error is back-propagated through the architecture to update the
weights of the networks. Thus, intuitively, the overall autoencoder architecture (encoder
plus decoder) creates a bottleneck for data that ensures only the main structured part of the
information can go through and be reconstructed. Generative Adversarial Networks differ
from VAEs because they do not work with any explicit density estimation. In GANs the
idea is to sample from a simple distribution like Gaussian and then learn to transform this
noise to data distribution using universal function approximators such as neural networks.
This is achieved by adversarial training of two networks, Generator and Discriminator. A
generator model learns to capture the data distribution and a discriminator model esti-
mates the probability that a sample came from the data distribution rather than model
distribution.
Another research line of CDE is represented by nonparametric conditional density estima-
tion, where only minimal assumptions are made about the smoothness of p(y | x) and any
parametric form is assumed. Freedom from parametric assumptions is very often desirable
when dealing with complex data, as we rarely have knowledge of true distributional forms.
In kernel conditional density estimation (KCDE), the probability distribution f̂(y | x) is
estimated as follows:

f̂(y | x) =

∑
iKh1

(y − yi)Kh2
(‖x− xi‖)∑

iKh2
(‖x− xi‖)

,

where Kh(t) is a kernel function, i.e. a compact, symmetric probability distribution such
as the Gaussian or Epanechnikov, d is the dimension of x, n is the number of data points,
and h is the bandwidth controlling the kernel widths. Due to the difficulty of selecting
good bandwidths in the presence of large datasets and higher dimensionality, most KCDE
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models have been applied only to bivariate data. In [37] authors propose a new method
to speedup classical nonparametric kernel conditional density estimation, which focuses on
efficiently selecting bandwidths to maximize cross-validated likelihood.
More recently, [38] introduces normalising flows in conditional density estimation. Nor-
malizing flows, unlike VAEs, allow indeed tractable marginal likelihood estimation. These
methods construct complex distributions by transforming a probability density through a
series of invertible mappings. By repeatedly applying the rule for change of variables, the
initial density flows through the sequence of invertible mappings. At the end of this se-
quence we obtain a valid probability distribution and hence this type of flow is referred to
as a normalizing flow.

3.1.4 Quantile regression

Another solution to model the conditional density p(y | x) is to estimate its quantiles
as function of x, which is known as quantile regression [39]. Quantiles represent indeed
useful summary statistics to characterize the conditional distribution of the response. As
an example, we may be interested in observing the effects of covariates on the upper or
lower tails of the response distribution.
For 0 < τ < 1 the τ -th conditional quantile function fτ : X → R is estimated by the
following minimization problem:

f̂τ = arg min
f∈F

n∑
i=1

`τ (yi − f (xi)) , `τ (ξ) =

{
τξ, if ξ ≥ 0

(τ − 1)ξ, if ξ < 0
(3.8)

where F is a certain class of functions. A family of conditional quantile functions fτ at all
the continuum of τ ∈ (0, 1) provide a full description of the conditional density p(y | x).
In Equation (3.8) `τ is the so-called pinball loss. This uses the conditional quantile τ ∈ (0, 1)

to asymmetrically weight the residual ξ. Accordingly, the relationship between the pinball
loss `τ (ξ) for quantile τ and the residual ξ is illustrated in Figure 3.3.

Figure 3.3 – Pinball loss

In [40], authors define the quantile estimator with the following lemma.

Lemma 3.1.1 Let ŷ = f(xi) and let τ ∈ (0, 1), the minimizer ŷτ of
∑n
i=1 `τ (yi − ŷ) with

respect to ŷ satisfies:

• The number of samples, n_, with yi < ŷτ is bounded from above by τn
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• The number of samples, n+, with yi > ŷτ is bounded from above by (1− τ)n

• For n → ∞, the fraction n_
n+

, converges to τ if Pr(y) does not contain discrete com-
ponents.

A good quantile estimator ŷτ needs to satisfy the quantile property as well as possible:

Pr{|Pr{y < ŷτ} − τ | ≥ ε} ≤ δ, (3.9)

In other words, the probability that the true values y = {y1, ..., yn} are smaller than the
quantiles estimates shall not deviate from τ by more than ε with high probability. In order
to assess the performance of a quantile estimator, we thus look also at the so-called ramp
loss, i.e. the empirical fraction of observed values which are below the quantile estimates:

rτ =
1

n

n∑
i=1

I(yi, ŷτ ), I(yi, ŷτ ) =

{
1, if yi < ŷτ

0, otherwise

Ideally, the value of ramp loss should be close to τ .
After some initial works on linear quantile regression, motivated to improve the prediction
accuracy as well as the interpretation of the final model, many researchers have considered
nonparametric methods. However, the use of conditional estimators increases the model
space. To this end, [40] proposes to add a regularization in the optimization function of
Equation (3.8), obtaining:

f̂τ = arg min
f∈F

n∑
i=1

`τ (yi − f(xi)) +
λ

2
‖g‖2H (3.10)

where f = g + b, g ∈ H, b ∈ R and H is the Reproducing Kernel Hilbert Space (RKHS) on
X . This minimizer is proved to satisfy the quantile property.
In many situations it is useful to estimate multiple quantile regression functions. However,
when we want to estimate several conditional quantiles, two or more estimated conditional
quantile functions can cross or overlap. This embarrassing phenomenon called quantile
crossings occurs because each conditional quantile function is independently estimated.
Such a kind of quantile crossing violates the basic principle of distribution functions so
that their associated inverse functions should be monotone increasing. Although this phe-
nomenon typically only occurs in outlying regions of the input space when the observations
are scarce, it is nevertheless an undesirable phenomenon for utilization and interpretation of
these quantile regression functions. For kernel quantile regression, [40] proposes to impose
non-crossing constraints on the data points. In particular, using the connection between
RKHS and feature spaces, f(x) can be written as f(x) = 〈φ(x), w〉 + b. Then, the non-
crossing constraints enforced at l points {xj}lj=1 in the input domain X become linear
constraints in H:

〈φ (xj) , ωh〉+ bh ≤ 〈φ (xj) , ωh+1〉+ bh+1, for all 1 ≤ h ≤ n− 1, 1 ≤ j ≤ l

Although the approach can help to reduce the chance of crossing, the dimension of the



3.2. Uncertainty in Ticket Price Evolution 19

optimization problem for simultaneous multiple quantile estimation can be large for certain
applications. In [41] authors introduce a stepwise estimation scheme to ensure noncrossing
of the regression functions. In particular, given a quantile regression function at a particular
quantile τ , constraints are added in the estimation procedure to ensure the next quantile
regression function at τ + 1 does not cross the current one. The procedure continues till
quantile regression functions at all desired levels are obtained. The work in [42] instead pro-
poses a kernel-based multiple QR estimation technique, namely simultaneous non-crossing
quantile regression (SNQR), which uses kernel representations for QR functions and applies
constraints on the kernel coefficients to avoid crossing. Recently, in [29] authors introduce
a novel approach to estimate multiple quantiles at once. The idea is to estimate the entire
conditional distribution of the target variable y, by solving

f̂ = arg min
f∈F

n∑
i=1

E
τ∼U [0,1]

[`τ (yi, f(xi, τ))],

where `τ is the pinball loss defined in Equation (3.8). This expression can be minimized
using stochastic gradient descent, sampling fresh random quantile levels τ ∼ U [0, 1] for each
training point and mini-batch during training. By estimating all quantiles jointly, SQR
models the entire conditional distribution of the target variable, establishing a connection
with the CDE approach seen in Section 3.1.3. Finally, SQR is empirically shown to alleviate
the undesired phenomena of quantile crossings.

Similarly to CDE, quantile regression allows one to estimate aleatoric uncertainty trough
the construction of prediction intervals defined in Equation (3.6).

3.2 Uncertainty in Ticket Price Evolution

Once we have seen different methods to estimate the uncertainty around predictions, by
modelling the distribution of the target, we will now describe how this can be applied to price
prediction, in order to help travellers in dealing with uncertainty in ticket price evolution.
To this end, we propose four different approaches. The first one uses a probabilistic model
to estimate uncertainty information on the future price. We do this by estimating the CDE
of the price. Among the models seen in Section 3.1.3, we choose MDNs for their simplicity
and good performance. The second and the third approaches instead aim at providing
the user with more explicit information to decide when to buy a ticket, by estimating the
amount of money that is lost when choosing the wrong date. Finally, the last approach
aims at giving to the user financial protection against adverse future price fluctuations. In
the last three approaches we compare a standard regression model with quantile regression.
However, before going to the details of these approaches, we introduce now the dataset
used in the experiments and we provide details of the main machine learning models we
compared in the evaluation protocol.
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Figure 3.4 – Number of searches per
month.

Figure 3.5 – Data distribution over de-
parture year.

3.2.1 Data

The main dataset used in our experiment contains flight searches that are automatically
performed by a shooter, over 5-6 hours per day. This leads to more than 3 billion of samples
available in the dataset.

Available search data go from December 2019 to August 2020. In Figure 3.4 we show how
samples are distributed over the months. These searches, however, relate to flights with
departure date ranging from January 2020 to August 2021. We plot the distribution of
the data over departure year in Figure 3.5. The difference between the departure date
and the search date gives us the time before departure people look at the flight and its
corresponding price. We call it DTD, days to departure, and we show its distribution in
Figure 3.6. This has a different shape from the one seen in Figure 3.1 (where there is a
log scale) coming from midt dataset. Here the distribution is much more uniform, in that
there is a small difference between the number of searches with DTD around 300 days and
the ones with DTD smaller than 60 days. midt, instead, contains tickets actually bought,
thus Figure 3.1 reflects the real people behavior. Indeed, people do not buy tickets with
too much anticipation and they try to avoid high prices. Therefore, if we study ticket price
evolution using midt we have data biased by this behavior. Therefore we perform our
experiments using the dataset containing flight searches.

The dataset includes a total of 529 different origins and destinations (OnDs). However,
there is a predominance of German airports and this can be seen in Figure 3.7, where we
plot the data distribution over the top 10 OnDs in terms of number of samples. Each flight
search is accompanied by a number of attributes. The set of features used in this work are
listed in Table 3.1, where the prefix dep refers to the outbound flight and the prefix ret

refers to the return flights. Some of these features come from the raw data, others have
been created during the data preprocessing phase.

Train-test split. For our experiments, we adopt two methods of train and test split,
keeping a 75:25 split ratio. The first one is based on the search date, so that we use flight
searches up to June 2020 as training set and the remaining as test set. This is a realistic
approach, in that it avoids to use future data to predict the past. However, by doing this
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Figure 3.6 – Distribution of days before
departure (DTD). Figure 3.7 – Number of flight searches per

OnD, for the top 10 in terms of samples.
origin destination num_stops

dep_day_of_week ret_day_of_week dep_week_of_year
ret_week_of_year dep_month ret_month

dep_hour ret_hour dep_year
ret_year search_month search_year

dtd stay price

Table 3.1 – List of features - gebeco dataset

we obtain two splits with different generating distributions and this violates the common
assumption made in machine learning, according to which data points are realizations of
independent and identically distributed (IID) random variables. To handle this, it is indeed
common practice to shuffle at random the training and testing examples, which brings the
training and testing distributions closer together. We do this also in our experiments.
Target variable. Among the new features that have been added for this work, one which
is worth describing is the difference between a flight’s price at search time t and t+α, where
1 ≤ α ≤dep_date, which we call delta. This is indeed an important variable to study the
price evolution in the period before departure, from which we derive the target variable in
our experiments.
In order to add this feature, we proceed in the following way. Given a flight and all the prices
observed in the search data, we randomly sample couples of observations and we build a new
dataset, where each row contains the flight information, but also a lag variable indicating
α and a delta variable containing the price difference between the sample at time t and the
one at time t + α. However, to avoid having correlated samples in the dataset, we choose
to create rows only with t multiple of α. So for example, if α = 7, our dataset contains
couples such as {p7−p0, p14−p7, p21−p14, . . .} instead of {p7−p0, p8−p1, p9−p2, . . .}. By
doing this, we are sure to use each price in only two pairs and thus we reduce correlations
in the data.

3.2.2 Models

In this section we introduce the models we compared in the proposed approaches to help
the traveller in deciding the best moment to buy the ticket, giving also the implementation
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details.

Random Forest. We use this model for the regression task, consisting in directly predict-
ing the metric that helps travellers in deciding whether to buy or wait. We implement it
using Python sklearn library [43] and we select number of trees and maximum depth using
grid search with cross-validation.

Mixture Density Networks. As seen in Section 3.1.3, this model performs conditional
density estimation, by finding the mixture of Gaussian distributions that model the target
variable. In particular, a DNN is used to find the parameters of the GMM, together with
their mixture weights. For the experiments, we use a TensorFlow implementation, where
we set the number of GMMs to 10. The number of hidden layers and hidden nodes of the
neural network are selected with a cross-validation procedure.

Simultaneous Quantile Regression. As seen in Section 3.1.4, this model performs
quantile regression by estimating all quantiles at once. The formulation of the problem
enables the use of stochastic gradient descent and the possibility to implement it as an
additional output layer of any neural network. In our experiments, we use the official
implementation provided by [29]. As before, the number of hidden layers and hidden nodes
of the neural network, as well as the dropout rate, are selected with a cross validation
procedure.

Linear quantile regression. This model estimates the conditional τ -quantile of the
response variable, assuming a linear relationship between target and explanatory variables.
Unlike the previous model, here quantiles are estimated separately. For our experiments
we use the R package quantreg [44] and we select the independent variables which give the
best performance, in terms of pinball loss and ramp loss, by applying a grid search.

Unconditional. This is a very simple model, in that the quantile estimation is a constant
function corresponding to the quantile computed on the training set. We call it uncondi-
tional, because quantiles are computed using only the target variable and any explanatory
variable is taken into account. This kind of model usually performs best in terms of quantile
property (Equation (3.9)), but it does not guarantee a good conditional quantile estimation.

3.2.3 Simple approach: Future price prediction

When thinking about price evolution, the first simple approach one may conceive is to
directly predict the future price. However, having a simple point prediction is not enough
to take an important decision. Thus we can take a step further and estimate the full
distribution of the future price. This allows us to estimate the uncertainty in the predictions,
which helps the user in deciding whether to trust the model or not. To do this, we look
at the variance of the predictions and using the law of total variance in Equation (3.4),
we separate aleatoric and epistemic uncertainty. If for example, we obtain high variance,
but low epistemic uncertainty, we can trust the model, because we know that aleatoric
uncertainty only depends on the noise inherent in data.

For our experiments, we run a MDN to estimate the conditional distribution of the price
in α days, given the flight’s information, including today’s price. We evaluate the model
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using the mean negative log-likelihood (MNLL), which takes values −1.865, −1.985 and
−1.676 for α = 1, 7, 30 respectively. This says us that the model is able to estimate the
price distribution, but results are better for α = 1 and α = 7, which makes sense, since in
those cases the future price is closer to the actual one.
Once assessed the performance of the model, we can use the MDN output to estimate the
uncertainty using Equation (3.7). In particular, in Figure 3.8 we show how different each
type of uncertainty measure, aleatoric and epistemic, behaves with respect to a given input
feature, the departure month in this case. As expected, the aleatoric uncertainty is much
larger than the epistemic one, in that predicting the price 30 days later is a complex task,
which creates noise in the data, and although the large dataset, this cannot be avoided.
Then we observe that the epistemic uncertainty is higher for the months of March, April
and May, which correspond to the period where we have less training data, while it is
smaller for July and September where, on the contrary, there are more training samples.

(a) Epistemic uncertainty (b) Aleatoric uncertainty (c) Number of training samples

Figure 3.8 – Uncertainty results with respect to departure month, for α = 30.

Predicting the price in α days represents a simple approach to deal with uncertainty in
ticket price evolution and we have seen that it is possible to estimate uncertainty in the
predictions. However, from a traveller point of view, having information about aleatoric or
epistemic uncertainty it is not very useful, because he needs some knowledge to understand
the results and, even if he has that, this does not help in taking a decision. For this
reason, hereafter we propose three other approaches where we help travellers to deal with
uncertainty in a more practical way, by providing information on the amount of money they
will gain or loose if they wait α days to buy the ticket.

3.2.4 Value at Risk approach

The second approach we propose is based on the Value at Risk (VaR) concept, which is
one of the most common measurements of financial risk due to uncertainty, thus playing
a central role in investment decisions and banking management. In this context we talk
about long position, when the investor is hoping for the price to rise. The typical stock
purchase is a long stock asset purchase. A short position is instead the exact opposite of a
long position, in that here the investor hopes for, and benefits from, a drop in the price.
Suppose that at the time index t we are interested in the risk of a financial position for the
next α periods. Let ∆V (α) be the change in value of the assets in the financial position
from time t to t+ α. This quantity is a random variable at the time index t. If we denote
with Fα(x) the Cumulative Distribution Function (CDF) of ∆V (α), the VaR of a long
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position over the time horizon α with probability τ is defined as

τ = Pr[∆V (α) ≤ VaR] = Fα(VaR) (3.11)

Since the holder of a long financial position suffers a loss when ∆V (α) < 0, the VaR defined
in Equation (3.11) typically assumes a negative value when τ is small. The negative sign
signifies a loss. From the definition, the probability that the holder would encounter a loss
greater than or equal to VaR over the time horizon α is τ . An alternative interpretation of
VaR is as follows. With probability (1− τ), the potential loss encountered by the holder of
the financial position over the time horizon α is less than or equal to VaR. The holder of
a short position suffers a loss when the value of the asset increases, i.e. ∆V (α) > 0. The
VaR is then defined as

τ = Pr[∆V (α) ≥ VaR] = 1− Pr[∆V (α) ≤ VaR] = 1− Fα(VaR)

For a small τ , the VaR of a short position typically assumes a positive value. The positive
sign signifies a loss. The previous definitions show that VaR is concerned with tail behavior
of the CDF Fα(x). For a long position, the left tail of Fα(x) is important. Yet a short posi-
tion focuses on the right tail of Fα(x). Notice that the definition of VaR in Equation (3.11)
continues to apply to a short position if one uses the distribution of −∆V (α). Therefore,
it suffices to discuss methods of VaR calculation using a long position. For any univariate
CDF Fα(x) and probability τ , such that 0 < τ < 1, the quantity

xτ = inf {x | Fα(x) ≥ τ}

is called the τth quantile of Fα(x), where inf denotes the smallest real number satisfying
Fα(x) ≥ τ . If the CDF Fα(x) of Equation (3.11) is known, then VaR is simply its τth
quantile (i.e., VaR = xτ ).

The most common approach to VaR is called the variance–covariance methodology, which
assumes log-normal returns. However, log returns are frequently found not normally dis-
tributed [45], which motivates the employment of a distribution-free approach. The work
in [46] hence formulates VaRs based on a conditional autoregressive Value at Risk model
(CAViaR) and it estimates them through nonlinear quantile regression, while [47] calculates
VaRs estimating a conditional quantile model.

On the traveler side, since he will loose money if the price rises, the VaR is the smallest
amount the price will increase with probability 1 − τ in a given time period α. Let us
consider an example. Assume that a customer searches at time t for a flight with departure
at time t+ 60 from a given origin to a give destination. A common search engine will show
him a price, but the user does not know if the price will increase or decrease in the 60

days left before departure. Using the VaR measure, we can enrich the search output and
give information on the smallest amount of money ∆ the user will pay in addition with
probability 1− τ at time t+ α. In this case, people will decide to buy the ticket or wait α
days, based on the provided probability and their risk appetite.
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Given the definition of VaR as quantile, we estimate it using quantile regression, where the
target is represented by the price difference between time t and time t+ α. We assess the
model performance looking at the standard metrics seen in Section 3.1.4, i.e. ramp loss
and pinball loss and we compare the three quantile regression models seen in Section 3.2.2,
Unconditional, Linear QR, SQR, changing the value of α. Figure 3.9 shows that in
general we obtain calibrated predictions, which means the estimated quantiles correspond
to the empirical ones. Comparing the three models, their performance vary according to
the dataset and so the α value. Beside the ramp loss, we can look at the pinball loss in
Figure 3.10. The results show better performance for small quantiles. This is an interesting
point, because it means that high probabilities VaRs are more accurate.

(a) α = 1 (b) α = 7 (c) α = 30

Figure 3.9 – Ramp loss results with different values of lag α.

(a) α = 1 (b) α = 7 (c) α = 30

Figure 3.10 – Pinball loss results with different values of lag α.

3.2.5 Regret approach

The third approach we propose to help customers dealing with ticket price uncertainty
consists in providing an advice to the traveller on whether he should buy now or in α days.
Let us take again an example. At time t a traveller searches for a flight with departure at
t + 60 and he receives a price from the search engine. In order to help the traveller, we
enrich the output with an information suggesting whether it is better to buy at time t or at
time t+α, where 1 ≤ α < 60. The proposed application is different from the previous one,
in that it directly suggests the best moment to buy the ticket, among the two considered
time instants, while before the choice was left to the user, based on the probability, the
amount of increase and his risk appetite.
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Some work related to this already exists in the literature. In [3] authors propose Hamlet,
a multi-strategy algorithm which combines reinforcement learning, rule based learning and
time series analysis. The predictive rule produces a binary output, corresponding to the
advice ’buy’ or ’wait’, based on a list of attributes of the flight. Despite the promising results
reported in the work, the implementation of the method poses computational challenges
due to the growing number of routes, not enough historical data being available for each
of them. In [20] instead, authors introduce a prediction application which makes use of
heterogeneously sampled price series to cluster flights with similar behavior. A supervised
learning algorithm is then used to help the customer in deciding when to purchase his ticket,
based on the predicted price evolution.

Our work differs from these in that we propose a simple strategy based on the prediction
of the financial loss incurring when the ticket purchase is delayed by α days. Besides this,
another difference with respect to previous work is that we deal only with fixed lags, i.e.
the decision on whether to buy or wait is relative to α and we do not consider the whole
period before departure at once.

Our idea is based on the regret, which we define as the amount of money that is lost, in
relative terms, when relying on the output provided by a given strategy to decide the day
when to buy, instead of the hindsight decision. In order to define our notion of regret, we
define the following quantities:

∆ =
pt+α − pt

pt
(3.12)

Rt = max
(
pt − pt+α
pt+α

, 0

)
= max

(
−∆

1 + ∆
, 0

)
(3.13)

Rt+α = max
(
pt+α − pt

pt
, 0

)
= max (∆, 0) , (3.14)

where ∆ is the price difference between time t and t + a, normalized by the actual price,
Rt is called regret now and it measures the amount of money that is lost, in relative terms,
if the ticket is bought at time t instead of the true best moment, while we call Rt+α regret
later to measure the financial loss if the purchase is done at time t+ α, instead of the true
best moment.

We then use these quantities to define a specific decision strategy. In particular, we propose
an approach based on the expected utility theory applied in the long run. Expected utility
theory [48] is a tool used for analyzing situations where individuals must make a decision
without knowing which outcomes may result from that decision, i.e., decision making under
uncertainty. These individuals will choose the action that will result in the highest expected
utility, which is defined as the sum of the products of probability and utility over all possible
outcomes. One reason for maximizing expected utility is that it makes for good policy in
the long run. This is what the author affirms in [49]. He relies on two mathematical facts
about probabilities: the strong and weak laws of large numbers. Both the weak and strong
laws of large numbers say, roughly, that over the long run, the average amount of utility
gained per trial is overwhelmingly likely to be close to the expected value of an individual
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trial.
Applying this concept to our problem, we end up with the decision strategy in Table 3.2.
The idea here is to choose the action that minimizes the expected regret that, as already
said, represents the amount of money that is lost, in relative terms, if we follow the decision
given by the model, instead of buying at the true best moment. Therefore, we estimate the
regrets at time t and t + α, using Equation (3.13) and Equation (3.14), and we use their
expected values to decide whether to buy or wait α days. According to what we just said
above, this allows us to minimize the average regret in the long term. In order to implement
this strategy, we set a regression problem, where the target variable is ∆R = E[Rt]−E[Rt+α].
If ∆R is positive, it means that we have a lower regret buying in α days, if instead it is
negative it is more convenient buying at time t. In our experiments, we estimate ∆R with
Random Forest model. We evaluate the model by computing the average regret over the
data samples, which represent several searches.
This approach we just explained to suggest the best moment to buy the ticket between the
two proposed ones is very natural and rather simple to implement, because it is sufficient
to compute the quantities in Equation (3.13) and Equation (3.14) and run a regression a
model. Another approach, which is less direct, consists in looking at the distribution of ∆

in Equation (3.12). Given an input probability τ , which depends on the user, he can decide
to wait α days if P (∆ ≤ 0) > τ . Denoting with F the CDF of ∆, this can be also written
as follows:

P (∆ ≤ 0) > τ ⇔ F (0) ≥ τ ⇔ 0 ≥ F−1(τ) = q(τ),

where q(τ) is the quantile function of ∆. Using this notation, the resulting decision strategy
is in Table 3.3.

Regret

if E[Rt] > E[Rt+α] then
wait α days

else
buy now

end if

Table 3.2 – Decision strategy with Rt and Rt+α

Quantile regression

if q(τ) < 0 then
wait α days

else
buy now

end if

Table 3.3 – Decision strategy with q(τ)

This approach has some limitations with respect to the previous one. Firstly, it significantly
depends on the parameter τ , which represents the user’s risk appetite, thus providing less
generalization than before. Secondly, even if we fix τ , the distribution of ∆ plays an
important role. If, for example, we have a high probability to have negative values of ∆,
let us say P (∆ ≤ 0) = 0.81, and consequently a non negligible probability, 0.19, of having
positive ∆s, if we fix τ = 0.8, the model will suggest us to wait, because P (∆ ≤ 0) > τ .
However, if the distribution of ∆ is such that the negative values are very small, close to 0,
and the positive ones are much larger, by following the model’s suggestion, we take the risk
(19 % of probability) of loosing a large amount of money, to save a small amount (small
negative ∆s). To overcome this issue, we should introduce some thresholds on the gain
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α = 1 α = 7 α = 30
RF 0.0087 0.0076 0.0301
Now 0.0088 0.0133 0.0447
Later 0.0177 0.0118 0.0341
Random 0.0132 0.0125 0.0395

Table 3.4 – Expected regret results for different values of lag α, time-based split.
α = 1 α = 7 α = 30

RF 0.0092 0.0094 0.0185
Now 0.0111 0.0152 0.0437
Later 0.0205 0.0153 0.0361
Random 0.0158 0.0152 0.0398

Table 3.5 – Expected regret results for different values of lag α, random split.

(negative ∆s) and loss (positive ∆s). In this case the definition of the decision strategy
becomes more complicate and it deserves a deeper study. For this reason, here we limit to
present the approach and we leave the implementation of the method for future work.
We thus focus on the regression approach, where we run Random Forest (RF) to predict
the quantity ∆R. Beside this, we also compare three naive strategies: one which decides
always to buy at time t (Now), another which suggests always to buy at t+α (Later) and,
finally, a random strategy which alternates between the two choices randomly (Random).
Note that the Now strategy corresponds to the behavior of a standard user which searches
for a flight and books it immediately, thinking that the price will only increase afterwards.
We evaluate all strategies using the average regret over the test set and we test three values
of α. In Table A.1 we show the results using a time-based train-test split, while results
in Table A.2 are obtained by adopting a random split. In general, the machine learning
approach gives better results than all the naive strategies and this proves the benefit of using
the proposed strategy based on the minimization of the expected regret. The difference in
performance is very large for α = 7 and α = 30, while for α = 1 the Random Forest regret
is very close to the one given by the Now strategy. Indeed, by running the T-test with
a significance level of 0.05, we find that in the latter case, the regret values do not differ
significantly between RF and Now. Finally, the different behavior of the naive strategies
with respect to α shows the price instability issue and motivates the introduction of such
decision-making tools, able to estimate the best moment to buy a ticket. Regarding, instead,
the use of a random train-test split to preserve the IID assumption, we obtain that for α = 1

and α = 7 this has no effect, while with α = 30 RF gives much better results.
Finally, in order to deeply understand the performance of the proposed strategy with respect
to the price evolution, we measure the regret on different ranges of days before departure
(DTD). We show the results in Figure 3.11, where we represent a range with the corre-
sponding average. Performance are different according to α. When the decision relates
whether to buy today or tomorrow (α = 1), the output depends strongly on DTD and, as
expected, if we are very close to the departure we can save money buying the ticket today,
while if there is still one month left it makes no difference having one day of lag. More-
over, in this case the proposed strategy based on the minimization of the expected regret
achieves results comparable to the best naive strategy. For α = 7 the dependency of the
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regret from DTD is relevant only up to around three months before the departure, where
adopting only one naive strategy is not enough, but following the decision provided by the
machine learning model is convenient as using the Now strategy. The most interesting
case is instead α = 30, where it results really crucial to estimate the best moment to buy a
ticket, in that prices vary a lot in a 30 days range. In this case again any of naive strategies
guarantees stable results, but RF achieves always better or comparable results with respect
to the best strategy, specially when we are close the departure date.

(a) α = 1 (b) α = 7 (c) α = 30

Figure 3.11 – Behavior of expected regret with different DTD ranges, represented by their
average.

As discussed at the beginning of this section, an alternative approach to the minimization
of the expected regret is to use quantile regression to estimate the distribution of ∆ and
then adopt the resulting strategy in Table 3.3. However, as explained above, this approach
has some limitations. While we leave the improvement of such strategy for future work, we
put results of the previous experiments using the actual implementation in Appendix A.

3.2.6 Options approach

The last approach we propose to help travellers to deal with uncertainty in ticket price
evolution is based on options. A European call option [50] is a contract with the following
conditions: the holder of the option has at a prescribed time in the future, the exercise
date, the right to buy a prescribed asset for a prescribed amount, the exercise price, the
holder of the option is in no way obliged to buy the underlying asset, the exercise price
and date are determined at the time when the option is written. For European options the
holder has the right to exercise the option only at the exercise date, while an American call
option gives the holder the right to exercise the option at any time before the exercise date.
An option contract is overpriced if the seller has an edge over the buyer, while it is under-
priced if buyer has an expected profit. The Fair Value for an option contract is hence a price
at which both buyer and seller have zero expected profit. The expected profit of an option
is equal to its all possible values on the expiration date weighted by their probabilities:

E[Pr] =

∫
Vs × Ps × ds

where Vs = max(0, S − X), with S = stock price and X = exercise price, is called payoff
and Ps is the probability of X to reach S at expiration. In other words, the payoff of an
option is zero if one cannot derive any economic benefit out of it and this is the case when
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the final stock price is less than the exercise price, otherwise it is equal to the difference
between the stock price and the exercise price.

Going back to the ticket price application, we can sell an option at a given time t to buy
a ticket at price pt, but in α days. In this case the payoff of the option corresponds to
∆+ = max(0,∆) and the expected profit amounts to:

E[∆+] =

∫ ∞
∆=−∞

max(0,∆)dF∆(∆) (3.15)

In order to estimate Equation (3.15), we test two different ways. The first one is to use
a supervised learning approach, where given the input features of the search, a regression
model directly estimate E[∆+]. We do this using again Random Forest (RF). Nevertheless,
it is also possible to estimate the integral in Equation (3.15) using quantile regression in
the following way:

τ = F∆(∆)

∆ = F−1
∆ (τ) ≡ q(τ)

E[∆+] =

∫ 1

τ=0

max(q(τ), 0)dτ (3.16)

In this case we approximate Equation (3.16) with 1000 Monte Carlo samples and we compare
two quantile regression models, SQR and Unconditional.

In order to assess the performance of the proposed method we evaluate the mismatch
between the estimated expected profit in Equation (3.15) or Equation (3.16) and the actual
profit calculated using the true values: m = E[∆+] − ∆+. In Table 3.6 and Table 3.7
we show the average mismatch over the test set, using a time-based train-test split and a
random one. Results indicate that in general the mismatch between expected and actual
profit has small values close to zero, thus the proposed pricing model is fair. Moreover,
there is not a real difference between the two approaches, except that since at the end
we deal with expected values, the use of a quantile regression model does not bring any
additional value with respect to a simple regression model. Finally, Table 3.7 shows that
having IID samples leads to optimal results for RF.

α = 1 α = 7 α = 30
RF 0.007 0.001 0.009
SQR 0.001 0.002 0.020
Unconditional 0.003 0.008 0.009

Table 3.6 – Average mismatch (absolute value) for different values of lag α, time-based split.

α = 1 α = 7 α = 30
RF 0.000 0.000 0.000
SQR 0.003 0.007 0.006
Unconditional 0.002 0.003 0.008

Table 3.7 – Average mismatch (absolute value) for different values of lag α, random split.
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3.3 Conclusion

In this chapter we saw how uncertainty plays a crucial role in ticket price evolution. Airline
companies use indeed convoluted dynamic pricing strategies to maximize their revenues.
At the same time, this strong price instability causes concerns among travellers, which in
last years have shown an increasing interest in understanding how prices vary over time,
in order to get the best deal. In light of this, we started the chapter describing how
different machine learning methods handle uncertainty estimation and then we proposed
four different approaches to deal with uncertainty in ticket price evolution.
The first approach we introduced consists in estimating the price in the future. However,
instead of providing a point prediction, we estimated the full distribution of the price, using
a CDE model. This allowed us to use the predicted variance to quantify the uncertainty
related to the noise of the data, i.e. the aleatoric uncertainty, and the one representing the
ignorance of the model, i.e. epistemic uncertainty. If this represents the simplest approach
one may conceive when talking about price evolution, however it requires some knowledge
from the user in order to interpret the results and it makes difficult the traveller’s decision
about whether he should buy the ticket at that given moment or wait some more days.
For this reason, we proposed three other approaches which help travellers to deal with
uncertainty in a more practical way, by considering the choice of buying the ticket today or
in α days. The second approach, based on the Value at Risk concept, provides information
on the smallest amount of money the user would pay in addition, with a certain probability,
if he waits α days. To do this, we used quantile regression and we compared several
models. This approach has the advantage of directly providing money information, which
may attract those people who really pay attention to money, but at the same time it leaves
to them the choice of buying or waiting.
The third approach we proposed, instead, provides directly a suggestion about whether to
buy at that given moment or wait still α days. We implemented it using the regret, which
we defined as the amount of money that is lost, in relative terms, when relying on the
output provided by the model to decide when to buy, instead of the optimal decision in
hindsight. Results indicated when the decision refers to today or tomorrow a naive strategy
which suggests always not waiting is enough, otherwise when the lag is equal to 7 or 30
days, using a machine learning approach which minimizes the expected regret allows the
user to save money.
Finally, the last approach assumes that today we sell an option to buy a ticket in α days,
but with today’s price. This indeed would allow the user to buy an option to protect
himself against adverse fluctuations of the price. We evaluated the model by estimating the
expected profit of the option and comparing it with the true profit. Results indicated that
the mismatch between estimated expected profit and actual profit is very small, thus the
proposed pricing model is fair. This approach, as the second one, can be more appreciated
by those people who are interested in the purely economic aspects.
To sum up, in this chapter we introduced four approaches to deal with uncertainty in ticket
price evolution. The choice of using one rather than the other depends on the specific
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use-case. However, from a normal traveller point of view, the third approach turns out to
be the most practical, in that it provides a clear suggestion about whether to buy the ticket
at that given moment or wait some more days.



4

Model Monitoring and Dynamic
Model Selection in Travel
Time-Series Forecasting

Travel industry actors, such as airlines and hotels, nowadays use sophisticated pricing mod-
els to maximize their revenue, which results in highly volatile fares [19]. For customers,
price fluctuation are a source of worry due to the uncertainty of future price evolution. This
situation has opened the possibility to new businesses, such as travel meta-search engines
or online travel agencies, providing decision-making tools to customers [20]. In this context,
accurate price forecasting over time is a highly desired feature, as it allows customers to
take informed decisions about purchases, and companies to build and offer attractive tour
packages, while maximizing their revenue margin.
The exponential growth of computer power along with the availability of large datasets
has led to a rapid progress in the machine learning (ML) field over the last decades. This
has allowed the travel industry to benefit from the powerful ML machinery to develop and
deploy accurate models for price time-series forecasting. Development and deployment,
however, only represent the first steps of a ML system’s life cycle. Currently, it is the
monitoring, maintenance and improvement of complex production-deployed ML systems
which carry most of the costs and difficulties in time [4, 51]. Model monitoring refers
to the task of constantly tracking a model’s performance to determine when it degrades,
becoming obsolete. Once a degradation in performance is detected, model maintenance and
improvement take place to update the deployed model by rebuilding it, recalibrating it or,
more generally, by doing model selection.
While it is relatively easy and fast to develop ML-based methods for accurate price forecast-
ing of different travel products, maintaining a good performance over time faces multiple
challenges. Firstly, price forecasting of travel products involves the analysis of multiple
time-series which are modeled independently, i.e. a model per series rather than a single
model for all. According to the 2019 World Air Transport Statistics report, almost 22K
city pairs are directly connected by airlines through regular services [52]. As each city
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pair is linked to a time-series, it is impossible to manually monitor the performance of
every associated forecasting model. For scalability purposes, it is necessary to develop
methods that can continuously and automatically monitor and maintain every deployed
model. Secondly, time-series comprise time-evolving complex patterns, non-stationarities
or, more generally, distribution changes over time, making forecasting models more prone
to deteriorate over time [53]. Poor estimations of a model’s degrading performance can lead
to business losses, if detected too late, or to unnecessary model updates incurring system
maintenance costs [4], if detected too early. Efficient and timely ways to model monitoring
are therefore key to continuously accurate in-production forecasts. Finally, a model’s de-
grading performance also implies that the model becomes obsolete. As a result, a specific
model might not always be the right choice for a given series. Since time-series forecasting
can be addressed through a large set of different approaches, the task of choosing the most
suitable forecasting method requires finding systematic ways to carry out model selection
efficiently. One of the most common ways to achieve all of this is cross-validation [54].
However, this approach is only valid at development and cannot be used to monitor and
maintain models in-production due to the absence of ground truth data.
In this work we introduce a data-driven framework to continuously monitor and main-
tain time-series forecasting models’ performance in-production, i.e in the absence of ground
truth, to guarantee continuous accurate performance of travel products price forecasting
models. Under a supervised learning approach, we predict the forecasting error of time-
series forecasting models over time. We hypothesize that the estimated forecasting error
represents a surrogate measure of the model’s future performance. As such, we achieve con-
tinuous monitoring by using the predicted forecasting error as a measure to detect degrading
performance. Simultaneously, the predicted forecasting error enables model maintenance by
allowing to rank multiple models based on their predicted performance, i.e. model compar-
ison, and then select the one with the lowest predicted error measure, i.e. model selection.
We refer to it as a model monitoring and model selection framework.
The remaining of this chapter is organized as follows. Section 4.1 discusses related work.
Section 4.2 reviews the fundamentals of time-series forecasting and performance assess-
ment. Section 4.3 describes the proposed model monitoring and maintenance framework.
Section 4.4 describes our datasets and presents the experimental setup. Experiments and
results are discussed in section 4.5. Finally, in section 4.6 we summarize our work and
discuss key findings.

4.1 Related Work

Maintainable industrial ML systems. Recent works from tech companies [55, 56, 51]
have discussed their strategies to deal with some of the so-called technical debts [4] in which
ML systems can incur when in production. These works mainly focus on the hard- and
soft-ware infrastructure used to mitigate these debts. Less emphasis is given to the specific
methods put in place.
Concept drift. The phenomenon of time-evolving data patterns is known as concept drift.
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As time-series are not strictly stationary, it is a common problem of time-series forecasting
usually addressed through regular model updates. Most works have focused on its detec-
tion, what we denote model monitoring, without performing model selection as they are
typically limited to a single model [57, 58]. The exception to this is the work of [59, 60],
where a weighted sliding-window is used to combine the forecasts of multiple candidate
models into a single value.
Performance assessment without ground truth. An alternative to cross-validation is
represented by information criteria. The rationale consists in quantifying the best trade-off
between models’ goodness of fit and simplicity. Information criteria are mostly used to
compare nested models, whereas the comparison of different models requires to compute
likelihoods on the same data. Being fully data-driven, our framework avoids any constraint
regarding the candidate models, leading to a more general way to perform model selec-
tion. Specifically to time-series forecasting, Wagenmakers et al. [61] achieve performance
assessment in the absence of ground truth using a concept similar to ours. They estimate
the forecasting error of a new single data point by adding previously estimated forecast
errors, obtained from already observed data points. The use of the previous errors makes
it sensible to unexpected outlier behaviors of the time-series.
Meta-learning. Meta-learning has been proposed as a way to automatically perform
model selection. Its performance has been recently demonstrated in the context of time-
series forecasting. Both [62, 63] formulate the problem as a supervised learning one, where
the meta-learner receives a time-series and outputs the “best” forecasting model. Authors
in [64] share our idea that forecasting performance decays in time, thus they train a meta-
learner to model the error incurred by the base models at each prediction step as a function
of the time-series features. Differently from [63], our approach does not seek to select a dif-
ferent model family for each time-series, and avoids model selection at each time step [64],
since these two represent expensive overheads for in-production maintenance. Instead, we
maintain a fast forecasting procedure and select the best model for a given time period in
the future, which length can be relatively high (6-9 months, for instance).

4.2 Time-series forecasting and performance measures

A univariate time-series is a series of data points T = {y1, . . . , yT }, each one being an
observation of a process measured at a specific time t. Univariate time-series contain a
single variable at each time instant, while multivariate time-series record more than one
variable at a time. Our application is concerned with univariate time-series, which are
recorded at discrete points in time, e.g., monthly, daily, hourly. However, extension to the
multivariate setting is straightforward.
Time-series forecasting is the task consisting in the use of these past observations (or a
subset thereof) to predict future values Th = {ŷT+1, . . . , ŷT+h}, with h indicating the fore-
casting horizon. The number of well-established methods to perform time-series forecasting
is quite large. Methods go from classical statistical methods, such as Autoregressive Mov-
ing Average (ARMA) and Exponential smoothing, to more recent machine learning models
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Figure 4.1 – Illustration of the proposed method. X and X ∗ contain multiple time-series,
each of these composed of Ti observations (green) and h forecasts (red) estimated by a
monitored model, g. eg represents the forecasting performance of the monitored model. It
is computed using the true values (yellow). A monitoring model is trained to learn the
function f mapping X to eg. With the learned f , the monitoring model is able to predict
e∗g, the predicted forecasting performance of the monitored model given X ∗.

which have shown outstanding performance in different tasks, including time-series fore-
casting.
The performance assessment of forecasting methods is commonly done using error mea-
sures. Despite decades of research on the topic, there is still not an unanimous consensus
on the best error measure to use among the multiple available options [65]. Among the most
used ones, we find Symmetric Mean Absolute Percentage Error (sMAPE) and Mean Abso-
lute Scaled Error (MASE). These two have been adopted in recent time-series forecasting
competitions [66].

4.3 Monitoring and model selection framework

Let us denote X = {T (i), T (i)
h }Ni=1 the input training set. A given input i is formed by the

observed time-series T (i) and h forecasted values, T (i)
h . The values in T (i)

h are obtained by
a given forecasting model which we hereby denote a monitored model, g. Let eg = {e(i)

g }Ni=1

be a collection of N performance measures assessing the accuracy of the forecasts T (i)
h

estimated by g. A given performance measure e(i)
g is obtained by comparing the forecasts

T (i)
h from g to the true values.

Lets define a monitoring model as a model that is trained to learn a function f mapping the
input time-series X to the target eg. Given a new set of time-series X ∗ = {T ∗(i), T ∗(i)h }N

∗

i=1,
formed by a time-series of observations T ∗(i), |T ∗(i)| = T ∗i , and h forecasts T ∗(i)h obtained
by g, the learned monitoring model predicts e∗g, i.e. the predicted performance measure of
g given X ∗ (Figure 4.1).
The predicted performance measures e∗g represent a surrogate measure of the performance
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of a given g within the forecasting horizon h. As such it is used for the two tasks: model
monitoring and selection. Model monitoring is achieved by using e∗g as an alert signal. If the
estimated performance measure of the monitored model is poor, this means the model has
become stale. To achieve model selection, e∗ are used to rank multiple monitored models
and choose the one with the best performance If the two tasks are executed in a continuous
fashion over time, it is possible to guarantee accurate forecasts in an automated way.
In the following, we describe the performance measure e that we use in our framework, as
well as the monitoring and monitored models that we chose to validate our hypotheses.

4.3.1 Performance measure

As previously discussed, performance accuracy of time-series forecasts is measured using
error metrics. In this framework, we use the sMAPE. It is defined as:

sMAPE =
1

h

h∑
t=1

2
|yt − ŷt|
|yt|+ |ŷt|

, (4.1)

where h is the number of forecasts (i.e. forecasting horizon), y is the true value and ŷ is
the forecast.
In the literature, there are multiple definitions of the sMAPE. We choose the one introduced
in [67] because it is bounded between 0 and 2; specifically, it has a maximum value of 2
when either y or ŷ is zero, and it is zero when the two values are identical. The sMAPE has
two important drawbacks: it is undefined when both y, ŷ are zero and it can be numerically
unstable when the denominator in Eq. 4.1 is close to zero. In the context of our application,
this is not a problem since it is unlikely to have prices with value zero or very close to it.

4.3.2 Monitoring models

The formulation of our framework is generic in the sense that any supervised technique
that can solve regression problems can be used as a monitoring model. In this work, we
decided to focus on latest advances in deep learning. We consider four alternative monitor-
ing models: Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks
(CNNs), Bayesian CNNs and Gaussian Processes (GPs). The latter two models differ from
the former ones in that they also provide uncertainties around the predictions. This can
enrich the output provided by the monitoring framework, in that whenever an alert is issued
because of poor performance, this is equipped with information about its reliability This
section illustrates the basic ideas of each of the selected monitoring models.

Long Short-Term Memory networks. LSTM [68] networks are a type of Recurrent
Neural Networks (RNNs) that solve the issue of the vanishing gradient problem [69] present
in the original RNN formulation. They achieve this by introducing a cell state into each
hidden unit, which memorizes information. As RNNs they are a well-established architec-
ture to model sequential data. By construction, LSTMs can handle sequences of varying
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length, with no need for extra processing like padding. This is useful in our application,
whereby time-series in the datasets have different lengths.

Convolutional Neural Networks. CNNs [70] are particular class of deep neural networks
where the weights (filters) are designed to promote local information to propagate from
the input to the output at increasing levels of granularity. We use the original LeNet
[71] architecture, as it obtains generally good results in image recognition problems, while
being considerably faster to train with respect to more modern architectures. CNNs are not
originally conceived to work with time-series data. We adapt the architecture to work with
time-series by using 1D convolutional filters. Unlike RNNs, this model does not support
inputs of variable size, so we to resort to padding: where necessary we append zeros to a
time-series to make them uniform in length. We denote this model LeNet.

Bayesian Convolutional Neural Networks. Bayesian CNNs [72] represent the prob-
abilistic version of CNNs, used in applications where quantification of the uncertainty in
predictions is needed. Network parameters are assigned a prior distribution and then in-
ferred using Bayesian inference techniques. Due to the intractability of the problem, the
use of approximations is required. Here we choose Monte Carlo Dropout [72] as a practical
way to carry out approximate Bayesian CNNs. By applying dropout at test time we are
able to sample from an approximate posterior distribution over the network weights. We
use this technique on the LeNet CNN with 1D filters to produce probabilistic outputs. We
denote this model Bayes-LeNet.

Gaussian processes. GPs [30] form the basis of probabilistic nonparametric models.
Given a supervised learning problem, GPs consider an infinite set of functions mapping
input to output. These functions are defined as random variables with a joint Gaussian
distribution, specified by a mean function and a covariance function, the latter encoding
properties of the functions with respect to the input. One of the strengths of GP models is
the ability to characterize uncertainty regardless of the size of the data. Similarly to CNNs,
in this model input sequences must have the same length, so we resort to padding.

4.3.3 Monitored models

Similar to monitoring models, given the generic nature of the proposed framework, there
is no constraint on the type of monitored models that can be used. Any time-series fore-
casting method can be monitored. For this proof of concept, we consider six different
monitored models. We select five of them from the ten benchmarks provided in the M4
competition [66], a recent time-series forecasting challenge. These are: Simple Exponential
Smoothing (ses), Holt’s Exponential Smoothing (holt), Dampen Exponential Smoothing
(damp), Theta (theta) and a combination of ses - holt - damp (comb). Besides these five
methods, we included a simple Random Forest (rf) , in order to enrich the benchmark with
a machine learning-based model. We refer the reader to [73, 66] for further details on each
of these approaches.
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4.4 Experimental setup

This section presents the data, provides details about the implementation of our methods
to ease reproducibility and concludes by describing the evaluation protocol carried during
the experiments.

4.4.1 Data

Flights and hotels datasets. We focus on two travel products: direct flights between city
pairs and hotels. Our data is an extract of prices for these two travel products obtained
from the Amadeus for Developers API 1, an online web-service which enables access to
travel-related data through several APIs. It was collected over a two-years and one-month
period. Table 4.1 presents some descriptive features of the datasets.
Using the service’s Flight Low-fare Search API, we collected daily data for one-way flight
prices of the top 15K most popular city pairs worldwide. The collection was done in two
stages. A first batch, corresponding to the top 1.4K pairs (flights), was gathered for the
whole collection period. The second batch, corresponding to the remaining pairs (flights-

ext), was collected only over the second year. For hotels, we used the Hotel API to collect
daily hotel prices for a two-night stay at every destination city contained in the top city
pairs used for flight search. These represent 3.2K different time-series.
Both APIs provide information about the available offers for flights/hotels, that meet the
search criteria (origin-destination and date, for flights; city, date and number of nights,
fixed to 2, for hotels) at the time of search. As such, it is possible to have multiple offers
(flights or hotel rooms) for a given search criteria. When multiple offers were proposed, we
averaged the different prices to have a daily average flight price for a given city pair, in the
case of flights, or daily average hotel price for a given city, in the case of hotels. In the same
way, it is possible to have no offers for a given search criteria. Days with no available offers
were reported as missing data. Lack of offers can be caused by sold outs, specific flight
schedules (e.g. no daily flights for a city pair) or seasonal patterns (e.g. flights for a part
of the year or seasonal hotel closures). More rarely, they could even be due to a failure in
the query sent to the API. As a result, the number of available observations is smaller than
the length of the collection period (see Table 4.1).

Public benchmarks. In addition to travel products data, we decided to include data
coming from publicly available benchmarks. Benchmark data are typically curated and
avoid problems present in real data, such as those previously discussed regarding missing
data, allowing for an objective assessment and more controlled setup for experimentation.
We included two sets from the M4 time-series forecasting challenge competition [66] dataset,
yearly and weekly. Table 4.1 presents statistics on the number of time-series and the
available number observations per time-series for these two datasets. Here, the number
of available observations is equivalent to the time-series length as no time-series contains

1https://developers.amadeus.com/

https://developers.amadeus.com/
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Table 4.1 – Information about number of time-series, and minimum (min-obs), maximum
(max-obs), mean (mean-obs) and standard deviation (std-obs) of the available number of
time-series observations per dataset.

Name # time-series min-obs max-obs mean-obs std-obs
flights 1,415 431 745 734 23

flights-ext 13,810 50 347 346 13
hotels 3,207 1 658 368 128
yearly 23,000 13 835 31 25
weekly 359 80 2,597 1022 706

missing values.

4.4.2 Implementation

The LSTM network was implemented in Tensorflow. It is composed of one hidden layer
with 32 hidden nodes. It is a dynamic LSTM, in that it allows the input sequences to
have variable lengths, by dynamically creating the graph during execution. The two CNN-
based monitoring models use the LeNet architecture. We modified both convolutional and
pooling layers with 1D filters, given that the input of the model consists in sequences of
one dimension. We added dropout layers to limit overfitting. In the Bayesian CNN, we
applied a dropout rate of 0.5, also at testing time, to obtain 100 Monte Carlo samples as
approximation of the true posterior distribution. The GP model used the implementation of
Sparse GP Regression from the GPy library2. The inducing points [74] were initialized with
K-means and were then fixed during optimization. We used a variable number of inducing
points depending on the size of the input and a RBF kernel with Automatic Relevance
Determination (ARD). In all experiments we used 75% data for training and 25% for test
and the Adam optimizer with default learning rate [75]. Only in the dataset flights-ext

we used mini-batches of size 128 to speed up the training. For the monitored models, we
used the implementation available from the M4 competition benchmark Github repository3

and we used the Python sklearn package [43] implementation of R andom Forest. All code
has been made publicly available4.

4.4.3 Evaluation protocol

For flight and hotel data we set h = {90, 180}, which means we are predicting the price
for h days ahead. These are two commonly used values in travel, representing 3 and 6
months ahead of the planned trip, so it is important to have accurate predictions over
those horizons. For the M4 competition datasets, we use the horizon given by the challenge
organizers: h = 6 for yearly and h = 13 for weekly. For each dataset, we reserve the
first Ti data points of the i-th time-series, where Ti depends on the time-series’s length, as
input of the monitored models to obtain h forecasts. Where missing values were found, in
flights or hotels, these were replaced with the nearest non-missing value in the past. We

2http://github.com/SheffieldML/GPy
3https://github.com/M4Competition/M4-methods
4https://github.com/robustml-eurecom/model_monitoring_selection

http://github.com/SheffieldML/GPy
https://github.com/M4Competition/M4-methods
https://github.com/robustml-eurecom/model_monitoring_selection
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build X and X ∗, by taking 75% and 25% from the total number of time-series, respectively.
We thus compute the forecasting errors e using the sMAPE in Eq. 4.1 for the training set
X . Finally, we predict the performance measure e∗ for the time-series in X ∗, using the four
monitoring models.
We compare our model monitoring and selection framework with the standard cross-validation
method, which we here denote baseline, where a model’s estimated performance is ob-
tained “offline” at training time with the available data. Specifically, given T observations,
we use the last h observations as validation set to evaluate the model. This implies to
reduce the number of observations available to train the forecasting models, which can be
problematic when either T is small or h is large.

4.5 Experiments and Results

We first study the proposed framework’s ability to achieve model monitoring (Sec 4.5.1).
Then, we demonstrate how the predicted forecasting errors can be used to carry out model
selection and how it positions w.r.t state-of-the-art methods doing the same task (Sec 4.5.2).
In Sec 4.5.3, we illustrate the performance of the joint model monitoring and selection
framework in our target application.

4.5.1 Model monitoring performance

We evaluate if the monitoring models’ predicted sMAPEs can be used for model monitoring
by estimating if the predicted measure represents a good estimate of a monitored model ’s
future forecasting performance. We assess the quality of the predicted forecasting errors by
estimating the Root Mean Squared Error (RMSE) between the predicted sMAPEs and the
true sMAPEs, for every monitored model. The true sMAPE is obtained using the monitored
model ’s predictions and the time-series’ observations in through Eq. 4.1. As a reference,
we report the baseline RMSE, which is obtained by comparing the estimated sMAPE at
training with the observed values at testing.Figure 4.2 left summarizes the obtained results
on all datasets.
The overall average error incurred by the monitoring models is low. This suggests that the
forecasting error predictions are accurate, meaning that it is reliable to carry out model
monitoring. When compared to it, the monitoring models consistently perform better
than standard cross-validation when estimating the future performance of the forecasting
monitored models. There is an exception to this when the monitored model is the Random
Forests (rf). In this case, the baseline is not the worst performing approach. However, it
is still surpassed in performance by both LSTM and GPs.
Figure 4.3 details the results obtained for flights and hotels time-series. Table 4.2 stratifies
the results for travel product time-series in terms of the forecasting horizon. results show
that Bayes-LeNet obtains the lowest RMSEs, whereas GPs follows closely and reports lower
standard deviation. Overall, our approach outperforms the baseline for large forecasting
horizons, e.g. h = 180, while the methods get closer as the forecasting horizon decreases.
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!h
Figure 4.2 – RMSE between predicted and measured forecasting error (sMAPE) on all
datasets (log scale). The reported baseline RMSE is obtained by comparing the estimated
sMAPE at training with the observed values at testing.

Figure 4.3 – RMSE between predicted and measured forecasting error (sMAPE). From left
to right flights and flights-ext (top) with 1) h = 90, 2) h = 180, hotels 3) h = 90, 4)
h = 180.

This is consistent with our hypothesis that data properties change over time. Using a
validation set composed of time points close to the unseen data gives consistent information
about the model’s performance, because the two sets of data (validation and unseen data)
have similar properties. However, increasing h has the effect of pushing away the validation
time points from the unseen data. In this case, it is better to rely on the forecast error
prediction rather than on an error measure obtained during training.

4.5.2 Model selection performance

In this experiment, we assess the capacity of the proposed method to assist model selection
in the absence of ground truth. Monitored models are ranked by estimating the average
predicted sMAPE over a given time-series and ordering the resulting values in ascending
order. In this way, we obtain a list of monitored models from the best to the worst one. The
best performing monitored model is selected. We compare the ground truth ranking with
the one obtained by each of the monitoring models and the baseline. We apply a Wilcoxon
test [76] to the ranking results to verify if there are significant differences between each of
the ranked monitored models. Table 4.3 presents obtained results in hotels and flights.
Overall, the obtained rankings are consistent with the ground truth, proving the ability of
the method to carry out model selection, by identifying the model with the lowest error
measure. Moreover, comparing our approach with the baseline, we find that our frame-
work largely outperforms the latter, in that the ranking resulting from the baseline is very
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Table 4.2 – RMSE between predicted and true sMAPEs for flights and hotel time-series.

Monitoring Flights Hotels
model h = 90 h = 180 h = 90 h = 180

LSTM 0.116 ± 0.017 0.151 ± 0.031 0.193 ± 0.021 0.182 ± 0.039
LeNet 0.117 ± 0.017 0.155 ± 0.031 0.209 ± 0.039 0.224 ± 0.062
Bayes-LeNet 0.084 ± 0.017 0.100 ± 0.035 0.135 ± 0.022 0.148 ± 0.044
GP 0.136 ± 0.007 0.126 ± 0.028 0.164 ± 0.014 0.165 ± 0.036
baseline 0.119 ± 0.006 0.604 ± 0.328 0.190 ± 0.020 0.609 ± 0.302

Table 4.3 – Comparison between true and predicted model rankings, in ascending order of
sMAPE. Underlined values indicate pairs of forecasting models not significantly different,
according to Wilcoxon test.

Ground Truth Monitoring models BaselineLSTM LeNet Bayes-LeNet GPs
hotels - h = 180

model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE
1 damp 0.244 (0.153) ses 208 (0.015) ses 0.208 (0.032) ses 0.212 (0.087) damp 0.230 (0.119) ses 0.326 (0.202)
2 ses 0.246 (0.164) damp 0.220 (0.033) damp 0.211 (0.056) damp 0.224 (0.130) ses 0.231 (0.121) rf 0.413 (0.333)
3 theta 0.269 (0.217) theta 0.233 (0.059) theta 0.231 (0.024) comb 0.249 (0.166) comb 0.251 (0.149) damp 0.462 (0.391)
4 comb 0.270 (0.207) comb 0.234 (0.057) rf 0.236 (0.047) theta 0.268 (0.234) theta 0.252 (0.160) comb 0.746 (0.569)
5 rf 0.316 (0.300) holt 0.280 (0.124) comb 0.278 (0.145) rf 0.324 (0.329) rf 0.291 (0.207) theta 0.938 (0.620)
6 holt 0.325 (0.277) rf 0.292 (0.210) holt 0.298 (0.189) holt 0.325 (0.162) holt 0.299 (0.190) holt 1.047 (0.660)

hotels - h = 90
model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE

1 damp 0.242 (0.175) ses 0.203 (0.022) ses 0.217 (0.065) ses 0.238 (0.088) damp 0.221 (0.137) comb 0.237 (0.166)
2 ses 0.243 (0.174) damp 0.218 (0.026) damp 0.223 (0.073) damp 0.239 (0.122) comb 0.238 (0.155) ses 0.239 (0.177)
3 comb 0.253 (0.189) theta 0.223 (0.022) theta 0.227 (0.063) comb 0.259 (0.108) theta 0.240 (0.151) damp 0.250 (0.194)
4 theta 0.254 (0.190) comb 0.224 (0.030) comb 0.229 (0.047) theta 0.263 (0.132) ses 0.244 (0.180) theta 0.251 (0.201)
5 holt 0.275 (0.217) holt 0.244 (0.052) holt 0.252 (0.096) holt 0.282 (0.190) holt 0.265 (0.185) holt 0.277 (0.235)
6 rf 0.293 (0.285) rf 0.254 (0.103) rf 0.263 (0.059) rf 0.298 (0.176) rf 0.266 (0.191) rf 0.311 (0.296)

flights - h = 180
model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE

1 rf 0.238 (0.163) rf 0.203 (0.007) rf 0.199 (0.039) rf 0.219 (0.075) rf 0.213 (0.108) rf 0.259 (0.200)
2 ses 0.247 (0.144) theta 0.217 (0.026) ses 0.215 (0.012) theta 0.220 (0.097) theta 0.226 (0.098) damp 0.277 (0.150)
3 theta 0.248 (0.175) ses 0.218 (0.024) damp 0.216 (0.074) ses 0.233 (0.098) ses 0.227 (0.100) ses 0.278 (0.151)
4 damp 0.249 (0.144) damp 0.219 (0.022) theta 0.217 (0.042) damp 0.240 (0.090) damp 0.229 (0.098) theta 0.281 (0.155)
5 comb 0.250 (0.148) comb 0.221 (0.027) comb 0.219 (0.016) comb 0.241 (0.094) comb 0.231 (0.054) comb 0.283 (0.160)
6 holt 0.260 (0.162) holt 0.223 (0.034) holt 0.222 (0.036) holt 0.250 (0.088) holt 0.238 (0.119) holt 0.299 (0.199)

flights - h = 90
model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE

1 comb 0.174 (0.102) comb 0.154 (0.081) theta 0.160 (0.067) comb 0.151 (0.086) damp 0.159 (0.073) ses 0.187 (0.110)
2 damp 0.175 (0.106) damp 0.155 (0.076) comb 0.164 (0.085) damp 0.161 (0.086) comb 0.160 (0.082) theta 0.188 (0.109)
3 theta 0.176 (0.105) theta 0.157 (0.042) holt 0.166 (0.076) theta 0.163 (0.087) theta 0.162 (0.086) damp 0.189 (0.110)
4 ses 0.177 (0.106) ses 0.158 (0.028) rf 0.174 (0.066) holt 0.188 (0.074) ses 0.163 (0.094) comb 0.190 (0.112)
5 holt 0.179 (0.113) holt 0.159 (0.036) ses 0.183 (0.087) ses 0.212 (0.070) holt 0.171 (0.119) holt 0.195 (0.118)
6 rf 0.232 (0.150) rf 0.200 (0.025) damp 0.212 (0.044) rf 0.287 (0.083) rf 0.210 (0.094) rf 0.207 (0.137)

different from the true one. Even in predictions with a small forecasting horizon (h = 90),
the baseline’s ranking performance remains sub-optimal . Looking at the four monitoring
models, we find that they have a different behavior depending on the dataset. Specifically,
GPs result to be slightly more reliable than Bayesian-LeNet, as the latter in some cases
swapped the first and second model of the ranking. LSTM’s performance is close to the two
probabilistic models, although the latter two globally have a better performance in terms
of RMSE (see Table 4.2).

Having showed the reliability of the rankings, we evaluate if these can be effectively used
to maintain accurate forecasts over time by doing model selection at fixed periods of time.
Specifically, given a forecasting horizon, we divide it in smaller periods. At each time point,
we use the predicted forecasting error to rank the monitored models and thus perform model
selection by picking the best ranked model. We use the public benchmark data to guarantee
curated data and we limit the experiments to the best two monitoring models, Bayesian-
LeNet and GPs (Table 4.2). We compare our model selection with the results obtained using
the same monitored model along the forecasting horizon. Figure 4.4 left shows the average
forecasting performance, measured through the real sMAPE, on the weekly dataset. The
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proposed model selection scheme allows to have the lower forecasting errors, i.e. a better
performance, along the whole forecasting horizon. Among the two monitoring models, GPs
result in smoother curves.

Figure 4.4 – Measured average forecasting performance (sMAPE) using the proposed
method for model selection in the weekly dataset with fixed forecasting models over the
whole horizon. Average performance with Bayes-LeNet and GPs as monitoring models
(left). Error bars denote standard deviation. Using GPs as monitoring model with six
(GP-6) and ten monitored models (GP-10), worst (center) and best (right) model selection
performances in comparison with ADE and FFORMS.

Finally, we compare with two state-of-the-art meta-learning methods, arbitrated dynamic
ensembler [64], ADE, and Feature-based FORecast-Model Selection [63], FFORMS, with the
best performing monitoring model in our approach. The characteristics of these two meth-
ods allows them to be used to achieve good forecasting model’s performance. FFORMS uses
12 different base models, whereas ADE uses up to 40 different models. To remain competitive
with these two methods that use a larger number of base models, we add three standard
forecasting models, Arima (arima), Random Walk (rwf) and TBATS (tbats) [77], and
a feed-forward neural network (nn), to our set of monitored models. We present sMAPE
results over two time-series from the weekly dataset: one where our method performs
worst (Fig. 4.4 center) and the one where it performs best (Fig. 4.4 right). We show the
results of our approach using the original six monitored models and the enlarged set. Using
the original six monitored models, our performance is worse than the two meta-learning
models. However, by enlarging the set of monitored models, our method performs better
than FFORMS and achieves a performance comparable to ADE with much less monitored/base
models.

4.5.3 Model monitoring and selection performance

Finally, we illustrate the performance of the proposed model monitoring and selection frame-
work by using it to guarantee continuous price forecasting accuracy of our two travel prod-
ucts: flights and hotels. In this context, the predicted sMAPE is used as a surrogate
measure of the quality of the forecasts estimated by the monitored models. When the
predicted sMAPE surpasses a given threshold, model selection is performed. Otherwise,
the monitored model is kept. We use the best performing monitoring model, GPs. Since
this is a probabilistic method, in addition to having a high predicted sMAPE, we add the
condition of having a low uncertainty in the prediction. In our experiments, we set the
sMAPE threshold at 0.02 for flights and 0.01 for hotels. The uncertainty was set at 0.01
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for both. For this experiment, we removed rf from the monitored models pool as it is the
method giving the poorest performance. It is important to remark that differently from
other approaches removing a method from the monitored models pool simply requires to
stop generating forecasts with the removed model. No re-training of the monitoring models
is required.

Figure 4.5 illustrates the results obtained in terms of the average performance (sMAPE)
for hotels with forecasting horizon h = 90. Our experiment here is quite restrictive, in
the sense that no monitored model is re-trained along the forecasting period. In this way,
we show that even under this restrictive setting the proposed framework is able to improve
the performance of simple models. This suggests that through the use of this framework it
is possible to extend the moment where monitored models need to be re-trained by simply
using the ranking information to pick a new model. Delaying model re-training represents
important cost savings.

Figure 4.5 – Average forecasting performance in terms of sMAPE using the proposed model
monitoring and selection framework (GPs as monitoring model) and using forecasting fixed
models over the whole horizon. Error bars denote the standard deviation.

4.6 Conclusion

In this chapter we introduce a data-driven framework to constantly monitor and compare
the performance of deployed time-series forecasting models to guarantee accurate forecasts
of travel products’ prices over time. The proposed approach predicts the forecasting error of
a forecasting model and considers it as a surrogate of the model’s future performance. The
estimated forecasting error is hence used to detect accuracy deterioration over time, but
also to compare the performance of different models and carry out dynamic model selection
by simply ranking the different forecasting models based on the predicted error measure
and selecting the best. In this work, we have chosen to use the sMAPE as forecasting
performance measure, since it is appropriate for our application but, it cannot be used
in settings where the time-series could present zero-valued observations. However, the
framework is general enough that any other measure could be used instead.
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The proposed framework has been designed to guarantee accurate price forecasts of differ-
ent travel products price and it is conceived for travel applications that might be already
deployed. As such, it was undesirable to propose a method that performs forecasting and
monitoring altogether, as in meta-learning, since this would require deprecating already de-
ployed models to implement a new system. Instead, thanks to the proposed fully data-driven
approach, monitoring models are completely independent of those doing the forecasts, i.e.
the monitored models, thus allowing a transparent implementation of the monitoring and
selection framework.
Although our main objective is to guarantee stable accurate price forecasts, the problem we
address is relevant beyond our concrete application. Sculley et al. [4] introduced the term
hidden technical debt to formalize and help reason about the long term costs of maintainable
ML systems. According to their terminology, the proposed model monitoring and selection
framework addresses two problems: 1) the monitoring and testing of dynamic systems,
which is the task of continuously assessing that a system is working as intended; and 2) the
production management debt, which refers to the costs associated to the maintenance of a
large number of models that run simultaneously. Our solution represents a simple, flexible
and accurate alternative to these problems.
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Context

So far we have seen how machine learning can be used to improve two main airline industry
applications. In this second part of the thesis, we will focus on one of the most important
components of machine learning, that is optimization.

5.1 Optimization algorithms for ML

Optimization algorithms [7] represent the core of every machine learning model. Consid-
ering a prediction function parameterized by a real vector x ∈ Rd, these parameters are
iteratively updated according to a loss function:

xt+1 = xt − ηt∇f (xt) , (5.1)

where ηt is the step size and ∇f (xt) is the gradient of the loss function f(xt), which
measures the performance of the model. This is the batch version of the very well-known
gradient descent algorithm, where the loss function is evaluated considering all data points.
When the input dataset or the model become large, we resort to the stochastic version of
gradient descent, where the model updates take the form:

xt+1 = xt − ηt∇f (xt, i) (5.2)

Each iteration of this method is very cheap, in that it involves only the computation of the
gradient ∇f (xt, i) corresponding to one sample. Thus Stochastic Gradient Descent (SGD)
trades a larger number of iterations to converge for a cheaper cost per iteration. Finally,
another version of SGD allows one to control the number and the cost per iteration, by
evaluating the gradient on a small subset of samples ξt ⊆ {1, . . . , n}, called mini-batch,
chosen randomly in each iteration:

xt+1 = xt −
ηt
|ξt|

∑
i∈ξt

∇f (xt, i) (5.3)
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5.1.1 Stochastic Gradient Descent

Mini-batch SGD [6] comes with good statistical properties and it is the preferred choice
for optimization in most of machine learning models. The first important property is that
SGD is an unbiased estimator of the full gradient:

E

 1

|ξt|
∑
i∈ξt

∇f (xt, i)

 =
1

n

n∑
i=1

∇f (xt, i) = ∇f (xt) (5.4)

Secondly, under the following assumptions, it is possible to establish SGD convergence
guarantees [7]. We define here g (xt, ξt) = 1

|ξt|
∑
i∈ξt ∇f (xt, i).

Assumption 1 The objective function F : Rd → R is continuously differentiable and the
gradient function of F , namely, ∇F : Rd → Rd is Lipschitz continuous with Lipschitz
constant L > 0, i.e.,

‖∇F (w)−∇F (w̄)‖2 ≤ L‖w − w̄‖2 for all {w, w̄} ⊂ Rd (5.5)

Assumption 2 The objective function and Stochastic Gradient (SG) satisfy the following:

(a) The sequence of iterates {xt} is contained in an open set over which F is bounded
below by a scalar Finf .

(b) There exist scalars µG ≥ µ > 0 such that, for all t ∈ N,

∇F (xt)
T Eξt [g (xt, ξt)] ≥ µ ‖∇F (xt)‖22 and

‖Eξt [g (xt, ξt)]‖2 ≤ µG ‖∇F (xt)‖2 .
(5.6)

(c) There exist scalars M ≥ 0 and MV ≥= such that, for all t ∈ N,

Vξt [g (xt, ξt)] ≤M +MV ‖∇F (xt)‖22 . (5.7)

Intuitively, Assumption 1 ensures that the gradient of F does not change arbitrarily quickly
with respect to the parameter vector. Assumption 2(a) requires the objective function to
be bounded below over the region explored by the algorithm. Assumption 2(b) states that,
in expectation, the vector −g (xt, ξt) is a direction of sufficient descent for F from xk with
a norm comparable to the norm of the gradient. Assumption 2(c) states that the variance
of g (xt, ξt) is restricted, but in a relatively minor manner.

Theorem Under Assumption 1 and Assumption 2, if we further assume that the objective
function F is twice differentiable, that the mapping x 7→ ‖∇F (x)‖22 has Lipschitz-continuous
derivatives and the step size satisfies requirements

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
k < ∞ [6], it

is possible to show [7] that:
lim
t→∞

E
[
‖∇F (xt)‖22

]
= 0 (5.8)

This result is valid in case of non-convex objective functions, which we find in many im-
portant machine learning problems.
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5.1.2 Large-scale machine learning

The latest advances in machine learning, together with the increasing availability of massive
datasets, have given rise to a new research field called large-scale machine learning, where
deep learning models with billions of parameters are trained on very big datasets. This
has led to the use of distributed systems, where multiple nodes perform model training in
parallel. There are three main alternatives of distributed systems: we can run a model on
multiple cores of the same CPU, on multiple CPUs/GPUs of the same machine or we can
use multiple machines of a cluster.
Regarding the distributed architecture, two main paradigms are possible: Parameter Server
and AllReduce. In the former multiple nodes compute stochastic gradients using partitions
of the dataset and a parameter server maintains a globally shared model, while in the
latter nodes exchange gradients and perform the aggregation step. In our work we focus
on the parameter server paradigm, since it represents the most commonly used distributed
architecture.
Distributed systems can be synchronous or asynchronous. In synchronous systems, the ag-
gregation step is performed only when the parameters server has received all gradients from
workers. This guarantees higher statistical efficiency, but the presence of stragglers slows
down the learning algorithm. In asynchronous systems [10, 78, 79, 80], model parameters
are updated as soon as the parameter server receives a new gradient from the workers.
This provides fast model updates, but the different speed of training can lead to the use
of stale parameters, which might affect convergence speed. In this context, communication
overheads have been considered as a key issue to address, and a large number of works have
been proposed to mitigate such overheads. Quantization techniques reduce the number of
bits to represent the gradients before communication [81, 82, 83], sparsification methods
select a subset of the gradient components to communicate [84, 85, 86, 87, 88, 89], and
loss-less methods use large mini-batches to increase the computation-communication ratio
[90, 91]. Given the remarkable results achieved by sparsification methods in synchronous
setups, we introduce in Chapter 6 a convergence analysis of sparsified SGD in asynchronous
setting.

5.2 Optimization algorithms for Bayesian Inference

Latest advances in machine learning research have led to the use of such models in an
ever increasing number of applications, including ones previously requiring human exper-
tise. However, the adoption of machine learning models to sensitive applications, such as
self-driving cars, automated medical diagnosis, is still under study and heavily-publicised
incidents have cast a heavy shadow over their robustness and reliability [14, 15]. Although
the cause of such deficiencies can be attributed to several factors, a persistent concern is
that machine learning lacks the generalisation capabilities innate to human reasoning that
enable greater adaptability and flexibility when affronted with a new task or unexpected
setting. This highlights the importance of applying greater caution when relying on the raw
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outcomes of such models for critical decision making. This shift in perspective has sparked
a resurgence of interest in probabilistic modelling, which is inherently intended to capture
the uncertainty or lack of knowledge a model might have about a learned task [92]. To this
end, probabilistic models provide uncertainty estimates accompanying predictions, which
give information on how likely the latter are to be correct.

5.2.1 Bayesian Modelling

In statistical inference we find two main schools of thought. The frequentist approach
constructs a hypothesis relying exclusively on the data available at training time, regardless
of any prior assumptions on the expected outcomes of the hypothesis. On the other hand,
Bayesian inference [93, 94] represents a more principled way of developing probabilistic
models. One of the primary motivations for using Bayesian inference is best described by
way of its connection to the principle of Occam’s razor [95, 96]. In few words, Occam’s
razor denotes a preference for simpler explanations that sufficiently describe observations
over more complex alternatives; thinking about machine learning, this can be interpreted as
favouring models which generalise well as opposed to others that overfit the data available
at training time. Bayes’ theorem is formally given as

p (θ | D,Mi) =
p (D | θ,Mi) p (θ | Mi)

p (D | Mi)
(5.9)

where θ denotes the parameters characterising a modelMi in a finite set of candidates M
and D is the available data. The distribution p (D | θ,Mi) represents our prior beliefs on
the values which the model’s parameters are expected to take, while p (θ | Mi) measures
the likelihood of observing the available data using the designated model configuration.
Dividing by the model evidence p (D | Mi), which also serves as a normalising constant,
yields the posterior probability of the parameters θ by updating our prior assumptions on
what values they should take with the likelihood of generating the observed data. In this
case, fitting the model amounts to identifying the setting of θ which maximises the evidence
for modelMi (using say maximum a posteriori inference).

5.2.2 Approximate Bayesian inference

Although conceptually simple, applying Bayesian inference poses a number of computa-
tional challenges. Firstly, in high-dimensional space the evidence term at the denominator
of Equation (5.9) involves sums and integrals that are computationally hard. Besides this,
in some problems prior and likelihood of Equation (5.9) are not conjugate, which means we
do not know the form of the posterior to compute it analytically.
We therefore need to resort to approximation methods in order to perform Bayesian in-
ference in practice. The two most popular approximation methods for this purpose are
Markov Chain Monte Carlo (MCMC) and Variational Inference (VI). MCMC consists in
sampling directly from the posterior distribution, thus avoiding to deal with intractable
computations. The advantage of MCMC is that the samples can approximate the exact
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posterior arbitrarily well if we do a sufficient number of iterations. The downside of MCMC
is that in practice we do not know how many times is sufficient, and getting a good approx-
imation using MCMC can take a very long time. On the other hand, Variational inference
[97] identifies an approximate posterior in a predefined family of probability densities that
most closely matches the true, but computationally intractable, posterior. To do this we
minimize the KL-divergence between approximate and true posterior, by optimizing a lower
bound L on the marginal likelihood:

L ≥ E −DKL[q(θ | D)||p(θ | D)], (5.10)

where L = log [p(D | θ)] and E = Eq(θ|D)(log [p(D | θ)]). The first term of the evidence
lower bound favours models that properly fit the data, while the subtracted term penalises
models that deviate too far from the prior. When the variational posterior matches the
true formulation, the DKL term collapses to zero.
Although widely used, these methods require either long time or large number of param-
eters to converge. Recently, another family of approaches has taken hold in the field of
approximate Bayesian inference. These are the so-called stochastic gradient MCMC algo-
rithms, which use SGD with constant learning rate to obtain samples from the posterior
distribution. Different versions have been proposed, SG Langevin dynamics [16], SG Hamil-
tonian Monte Carlo [17], SG thermostats [18], SG Fisher scoring [98], but they all employ
stochastic gradients of log p(θ,D) to improve convergence and computation of existing sam-
pling algorithms. A complete classification of these algorithms can be found in [99]. Despite
mathematical elegance and some promising results restricted to simple models, most of these
works fall short in easily dealing with the complexity of the loss landscape of deep models
[100, 101], for which stochastic optimization poses serious challenges. Existing methods are
often unpractical, as they require ad-hoc, sophisticated vanishing learning rate schedules,
and hyper-parameter tuning.
In this regard, we introduce in Chapter 7 a novel, practical approach to posterior sampling,
which makes the SG noise isotropic using a fixed learning rate and that requires weaker
assumptions than existing algorithms.
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Convergence Analysis of
Sparsified Asynchronous SGD

The analysis of Stochastic Gradient Descent [6] and its variants has received a lot of atten-
tion recently, due to its popularity as an optimization algorithm in machine learning; see [7]
for an overview. SGD addresses the computational bottleneck of gradient descent by relying
on stochastic gradients, which are cheaper to compute than full gradients. SGD trades a
larger number of iterations to converge for a cheaper cost per iteration. The mini-batch
variant of SGD allows one to control the number and the cost per iteration, making it the
preferred choice for optimization in deep learning [102, 7].
We consider the problem of optimizing the d-dimensional parameter vector x ∈ Rd of a
model and its associated finite-sum non-convex loss function f (x) = 1

n

∑n
i=1 f (x, i), where

f (x, i) , i = 1, . . . , n is the loss function for a single training sample i. SGD iterations have
the following form:

xt+1 = xt − ηtg (xt, i) ,

where xt,xt+1 ∈ Rd are the model iterates, ηt > 0 is the learning rate/step size and
g (xt, i) = ∇f (xt, i) is a stochastic gradient.
In this work, we are interested in the increasingly popular distributed setting, whereby SGD
runs across several machines, which contribute to the model updates xt+1 by computing
stochastic gradients of the loss using locally available training data [78, 103, 80, 79, 104]. The
analysis of the convergence behavior of SGD, both in synchronous [8, 9, 7] and asynchronous
[10, 11, 105, 106, 7] settings has been widely studied in the literature. In this work, we focus
on the asynchronous setting, which is particularly challenging because distributed workers
might produce gradient updates for a loss computed on stale versions of the current model
iterates [103, 107, 108, 109, 110].
In this context, communication overheads have been considered as a key issue to address,
and a large number of works have been proposed to mitigate such overheads [12, 13, 111,
82, 83, 84, 85]. In particular, sparsification methods [87, 88, 111] have achieved remarkable
results, albeit for synchronous setups. The key idea is to apply smaller and more efficient
gradient updates, by applying a sparsification operator to the stochastic gradient, which
results in updates of size k � d.
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In this work, we fill the gap in the literature and study sparsification methods in asyn-
chronous settings. For the first time, we provide a concise and simple convergence rate
analysis when the joint effects of sparsification and asynchrony are taken into account, and
show that sparsified SGD converges at the same rate of standard SGD. Our empirical anal-
ysis of sparsified SGD complements our theory. We consider several delay distributions
and show that, in practice, applying sparsification does not harm SGD performance. These
results carry over when the system scales out, which is a truly desirable property.

6.1 Related work

The analysis of SGD [6] and its convergence properties has recently attracted a lot of
attention, especially in the field of machine learning [7, 112], where SGD is considered the
workhorse optimization method. Large scale models and massive datasets have motivated
researchers to focus on distributed machine learning, whereby multiple machines compute
stochastic gradients using partitions of the dataset and a parameter server maintains a
globally shared model.

Asynchronous systems [10, 78, 79, 80] provide fast model updates, but the use of stale
parameters might affect convergence speed. One way to reduce the staleness effect is to
give a smaller weight to stale updates. In [104, 107] gradient contributions are dampened
through a dynamic learning rate. Stale-synchronous parallel (SSP) models [103, 107] limit
instead the maximum staleness, discarding updates that are too “old”. Interestingly, the
work in [113], suggests to view staleness as a form of implicit momentum, and study, under
a simple model, how to adjust explicit, algorithmic momentum to counterbalance the effects
of staleness.

Synchronous systems [8] guarantee higher statistical efficiency, but the presence of strag-
glers slows down the learning algorithm. One solution is provided by the so called local
SGD models [108, 12, 13], which reduce the synchronization frequency by allowing nodes to
compute local model parameters, which are averaged in a global model update. A second
family of approaches seeks to improve synchronous systems by reducing the cost of commu-
nicating gradients upon every iteration. Quantization techniques reduce the number of bits
to represent the gradients before communication [81, 82, 83], sparsification methods select
a subset of the gradient components to communicate [84, 85, 86, 87, 88, 89], and loss-less
methods use large mini-batches to increase the computation-communication ratio [90, 91].

Our work, along the lines of [105, 88], argues instead that staleness vanishes, asymptotically.
Similarly, recent work [114] uses an elegant analysis technique to study the role of stale
gradient updates and sparsification, albeit their effects are considered in isolation. In this
work, instead, we provide a concise and simple convergence rate analysis for the joint effects
of sparsification and staleness.
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6.2 Contributions

We study finite-sum non-convex optimization of loss functions of the form f (x) : Rd →
R, and assume that f is continuously differentiable and bounded below, that ∇f (x) is
L-Lipschitz smooth, that the variance of stochastic gradients is bounded, and that the
staleness induced by asynchrony is also bounded. We analyze a mini-batch asynchronous
SGD algorithm and apply a sparsification operator Φk [g (xτt , ξt)] with k � d, which can
be coupled with an error correction technique, often called memory [87].

We prove ergodic convergence of the gradient of f (x), for an appropriately chosen learning
rate. In particular, we focus on memory-less variants, which are simpler to analyze, and
show that asynchronous sparsified SGD converges at the same rate as standard SGD.

In this chapter, the main theoretical contribution is as follows. Let the sparsification coef-
ficient be ρ = k/d. Then, it holds that:

min
0≤t≤T

E
[
‖∇f (xt)‖2

]
≤

(∑T−1
t=0

(
η2tL

2 σ2
))

+ Λ + C∑T−1
t=0

(
ηtρµ− η2tL

2

) ,

where Λ = f (x0)−inf
x
f (x) and C, µ are finite positive constants (whose role will be clarified

later). In particular for a suitable constant learning rate ηt = η = ρµ

L
√
T

we can derive as a
corollary that:

min
0≤t≤T

E
[
‖∇f (xt)‖2

]
≤
(
σ2

2
+

(Λ + C)L

(ρµ)2

)
1√
T
,

up to a negligible approximation for large T (details in the supplement).

We define sparsified SGD formally in Section 6.3, both in its memory and memory-less
variants, and outline our proof for the memory-less case in Section 6.5. In Section 6.6
we provide an empirical study of the convergence behavior of the two variants of spar-
sified SGD, using simple and deep convolutional networks for image classification tasks.
Our experiments show that sparsification does not harm SGD performance, even in the
challenging scenario of an asynchronous, distributed system. Although we do not provide
convergence guarantees for sparsified SGD with memory, our empirical results indicate that
error correction dramatically improves the convergence properties of the algorithm.

6.3 Sparsified Asynchronous SGD

In this Section we define two variants of sparsified SGD algorithms, with and without error
correction, and emphasize the role of model staleness induced by the asynchronous setup
we consider.

The standard way to scale SGD to multiple computing nodes is via data-parallelism: a set
of worker machines have access to the n training samples through a distributed filesystem.
Workers process samples concurrently: each node receives a copy of the parameter vector
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xt, and computes stochastic gradients locally. Then, they send their gradients to a param-
eter server (PS). Upon receiving a gradient from a worker, the PS updates the model by
producing a new iterate xt+1.
Due to asynchrony, a computing node may use a stale version of the parameter vector: a
worker may compute the gradient of f (xτt) , τt ≤ t. We call τt the staleness of a gradient
update. As stated more formally in Section 6.4, in this work we assume bounded stale-
ness, which is realistic in the setup we consider. Other works, e.g. that consider Byzantine
attackers [107], drop this assumption.

Gradient sparsification. A variety of compression [115, 116], quantization [85, 82] and
sparsification [88, 87] operators have been considered in the literature. Here we use sparsi-
fication, defined as follows:

Definition 1 Given a vector u ∈ Rd, a parameter 1 ≤ k ≤ d, the operator Φk(u) : Rd → Rd

is defined as:

(Φk(u))i =

(u)π(i), if i ≤ k,

0, otherwise

where π is a permutation of the indices {1, . . . , d} such that (|u|)π(i) ≥ (|u|)π(i+1),∀i ∈
1, · · · , d.

Essentially, Φk(·) sorts vector elements by their magnitude, and keeps only the top-k. A
key property of the operator we consider is called the k-contraction property [87], which we
use in our convergence proofs.

Definition 2 For a parameter 1 ≤ k ≤ d, a k-contraction operator Φk(u) : Rd → Rd

satisfies the following contraction property:

E ‖u− Φk(u)‖2 ≤
(

1− k

d

)
‖u‖2.

Both the top-k operator we consider, and randomized variants, satisfy the k-contraction
property [88, 87]. Next, we state a Lemma that we will use for our convergence rate results.

Lemma 6.3.1 Given a vector u ∈ Rd, a parameter 1 ≤ k ≤ d, and the top-k operator
Φk(u) : Rd → Rd introduced in Definition 1, we have that:

‖Φk(u)‖2 ≥ k

d
‖u‖2.

The proof of Lemma 6.3.1 uses the k-contraction property in Definition 2, as shown in
Section 6.5.1.

Memory and memory-less sparsified asynchronous SGD. We define two variants of
sparsified SGD: the first uses sparsified stochastic gradient updates directly, whereas the
second uses an error correction technique which accumulates information suppressed by
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sparsification. Since we consider an asynchronous, mini-batch version of SGD, additional
specifications are in order.

Definition 3 Given n training samples, let ξt be a set of indices sampled uniformly at
random from {1, · · · , n}, with cardinality |ξt|. Let τt be the bounded staleness induced by
the asynchronous setup, with respect to the current iterate t. That is, t − S ≤ τt ≤ t. A
stale, mini-batch stochastic gradient is defined as:

g (xτt , ξt) =
1

|ξt|
∑
i∈ξt

∇f (xτt , i) .

6.3.1 Memory-less sparsified SGD

Given the operator Φk(·), the memory-less, asynchronous sparsified SGD algorithm amounts
to the following:

xt+1 = xt − ηtΦk (g (xτt , ξt)) ,

where {ηt}t≥0 denotes a sequence of learning rates.

6.3.2 Sparsified SGD with memory

Given the operator Φk(·) , the asynchronous sparsified SGD with memory algorithm is
defined as:

xt+1 = xt − ηtΦk (mt + g (xτt , ξt)) ,

mt+1 = mt + g (xτt , ξt)− Φk (mt + g (xτt , ξt)) ,

where {ηt}t≥0 denotes a sequence of learning rates, and mt represents the memory vector
that accumulates the elements of the stochastic gradient that have been suppressed by the
operator Φk(·).

6.4 Ergodic convergence

In this work, we focus on the memory-less variant of SGD, and we study its convergence
properties. The convergence of sparsified SGD with memory has been studied for both
strongly convex [87, 88] and non-convex objectives [88], but only in the synchronous case.
Nevertheless, in our empirical study, we compare both variants, and verify that the one with
memory considerably benefits from error correction, as expected [87]. Before proceeding
with the statement of the main theorem, we formalize our assumptions.

Assumption 1 f (x) is continuously differentiable and bounded below:

inf
x
f (x) > −∞.
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Assumption 2 ∇f (x) is L-Lipschitz smooth:

∀x,y ∈ Rd, ‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ .

Assumption 3 The variance of the (mini-batch) stochastic gradients is bounded:

E
[
‖g (xt, ξt)−∇f (xt)‖2

]
≤ σ2,

where σ2 > 0 is a constant.

Assumption 4 Distributed workers might use stale models to compute gradients g (xτt , ξt).
We assume bounded staleness, that is: t− S ≤ τt ≤ t. In other words, the model staleness
τt satisfies the inequality t− τt ≤ S. We call S ≥ 0 the maximum delay.

Assumption 5 Let the expected cosine distance be:

E [〈Φk (g (xτt , ξt)) ,∇f (xt)〉]
E [‖Φk (g (xτt , ξt)) ‖ ‖∇f (xt) ‖]

= µt ≥ µ.

We assume, similarly to previous work [110], that the constant µ > 0 measures the discrep-
ancy between the sparsified stochastic gradient and the full gradient.

Theorem 6.4.1 Let Assumptions 6–5 hold. Consider the memory-less sparsified SGD de-
fined in Section 6.3.1, which uses the Φk(·) top-k operator for a given 1 ≤ k ≤ d. Then,
for an appropriately defined learning rate ηt = ρµ

L
√
t+1

and for Λ =
(
f (x0)− inf

x
f (x)

)
, it

holds that:

min
0≤t≤T

E
[
‖∇f (xt)‖2

]
≤

(∑T−1
t=0

(
η2tL

2 σ2
))

+ Λ + C∑T−1
t=0

(
ηtρµ− η2tL

2

) .

Corollary 6.4.1 Let the conditions of Theorem 6.4.1 hold. Then for an appropriately
defined constant learning rate ηt = η = ρµ

L
√
T
, we have that:

min
0≤t≤T

E
[
‖∇f (xt)‖2

]
≤
(
σ2

2
+

(Λ + C)L

(ρµ)2

)
1√
T − 1

2

.

Asymptotically, the convergence rate of memory-less sparsified SGD behaves as O( 1√
T

),
which matches the best known results for non-convex SGD [117], and for non-convex asyn-
chronous SGD [105]. Note that considering a constant learning rate intuitively makes sense.
When gradients are not heavily sparsified, i.e., ρ is large, we can afford a large learning rate.
Similarly, when stale, sparse stochastic, and full gradients are similar, i.e., when µ is large,
we can again set a large learning rate.
It is more difficult to quantify the role of the constant terms in Corollary 6.4.1, especially
those involving sparsification. While it is evident that aggressive sparsification (extremely
small ρ) could harm convergence, the exact role of the second constant term heavily de-
pends on the initialization and the geometry of the loss function, which we do not address
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Figure 6.1 – Empirical results in support to Assumption 5. Experiments for φSGD with
LeNet on Mnist, using a range of possible sparsification coefficients ρ.

in this work. We thus resort to a numerical study to clarify these questions, but introduce
a proxy for measuring convergence rate. Instead of imposing a target test accuracy, and
use the number of training iterations to measure convergence rate (which we found to be
extremely noisy), we fix an iteration budget, and measure the test accuracy once training
concludes.

Remarks. A careful assessment of Assumption 5 is in order. We assume that a sparse
version of a stochastic gradient computed with respect to a stale model, does not diverge too
much from the true, full gradient1. We measure this coherency trough a positive constant
µ > 0. However, it is plausible to question the validity of such assumption, especially in
a situation where either the sparsification is too aggressive, or the maximum delay is too
high.

We study the limits of our assumption empirically, and report our findings in Figure 6.1.
The evolution of the expected cosine similarity µt defined in Assumption 5, reported here
as a function of algorithmic progress, is in line with our assumption. Clearly, aggressive
sparsification negatively impacts gradient coherency, as shown in Figure 6.1a. Moreover,
as expected from Theorem 6.4.1, convergence rate measured through the proxy of test
accuracy, also increases with (ρµ)2. When sparsification is too aggressive, (ρµ)2 is too
small, which harms convergence.

6.5 Proof of Theorem 6.4.1

In this section we build all the useful tools to formalize the proof of Theorem 6.4.1. In
Section 6.5.1 we prove the k-contraction lemma, in Section 6.5.2 we restate assumptions
for simplicity, we derive useful facts in Section 6.5.3, derive a tighter bounding term for the
sum of magnitudes of stale gradients in Section 6.5.4, and finally derive the full proof of
the convergence theorem in Section 6.5.5.

1A similar remark, albeit without sparsification, has been made in [110].
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6.5.1 Proof of Lemma 6.3.1

Given a vector u ∈ Rd, a parameter 1 ≤ k ≤ d, and the top-k operator Φk(u) : Rd → Rd

defined in Definition 1, we have that:

‖Φk(u)‖2 ≥ k

d
‖u‖2

In fact we can write ‖u‖2 as follows:

‖Φk(u)‖2 = ‖u‖2 − ‖u− Φku‖2

≥ ‖u‖2 −
(

1− k

d

)
‖u‖2

≥ k

d
‖u‖2

(6.1)

Where the inequality is obtained by simply applying the k-contraction property.

6.5.2 Recap of Assumptions

We start by rewriting for simplicity Assumption 6 to Assumption 5:

1. f (x) is continuously differentiable and bounded below: inf
x
f (x) > −∞

2. ∇f (x) is L-Lipschitz smooth:

∀x,y ∈ Rd, ‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖

3. The variance of the (mini-batch) stochastic gradients is bounded:

E
[
‖g (xt, ξt)−∇f (xt)‖2

]
≤ σ2,

where σ2 > 0 is a constant.

4. The staleness is bounded, that is: t − S ≤ τt ≤ t, S ≥ 0. In other words, the model
staleness τt satisfies the inequality t− τt ≤ S. We call S ≥ 0 the maximum delay.

5. The cosine distance between sparse, stale and stochastic gradient and the full one is
lower bounded

E [〈Φk (g (xτt , ξt)) ,∇f (xt)〉]
E [‖Φk (g (xτt , ξt)) ‖ ‖∇f (xt) ‖]

= µt ≥ µ

Notice moreover that ξt is statistically independent from {x0, · · · ,xt}.

6.5.3 Useful facts

Starting from Assumption 7 we can write that:

f(x) ≤ f(y) + 〈x− y,∇f (y)〉+
L

2
‖x− y‖2 ∀x,y
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Trivially we can rewrite this inequality by using as arguments the two vectors xt,xt+1:

f (xt+1) ≤ f (xt) + 〈xt+1 − xt,∇f (xt)〉+

+
L

2
‖xt+1 − xt‖2

= f (xt)− ηt 〈Φk [g (xτt , ξt)] ,∇f (xt)〉

+
η2
tL

2
‖Φk [g (xτt , ξt)]‖

2 (6.2)

where the last equality is due to xt+1 = xt − ηtΦk (g (xτt , ξt)). Notice that even if xt as
well as ξt, τt and consequently f(xt) and g(xt) are random processes, due to the geometric
constraints imposed on the cost function, the above inequality holds with probability 1.

The second useful quantity we derive is a bound for squared magnitude of g (xt, ξt). We
start with Assumption 8.

Before proceeding, we introduce the following notation: Ω is the set of ALL random variables
(i.e. Ω = {ξ0, · · · , ξt,x0, · · · ,xt, τ0, · · · , τt}), furthermore, we indicate with ∼ ξt the set
difference between Ω and ξt.

We write:

EΩ

[
‖g (xt, ξt)−∇f (xt)‖2

]
= EΩ

[
‖g (xt, ξt)− Eξt (g (xt, ξt))‖2

]
= E∼ξt

[
Eξt
[
‖g (xt, ξt)− Eξt (g (xt, ξt))‖2

]]
= E∼ξt

[
Eξt [‖g (xt, ξt) ‖]− ‖Eξt (g (xt, ξt))‖2

]
= EΩ [‖g (xt, ξt) ‖]− EΩ [‖∇f (xt) ‖] ≤ σ2

from which:

EΩ [‖g (xt, ξt) ‖] ≤ EΩ [‖∇f (xt) ‖] + σ2 (6.3)

6.5.4 Bounding magnitudes of delayed gradients

Differently from [110], we derive a tighter bound for the following term:

T−1∑
t=0

η2
tE
[
‖∇f (xτt)‖

2
]

(6.4)
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Indeed, thanks to the fact that ηt is a decreasing sequence, and using the law of total
expectation:

T−1∑
t=0

η2
tE
[
‖∇f (xτt)‖

2
]

=

T−1∑
t=0

η2
t

t∑
l=t−S

Pr(τt = l)E
[
‖∇f (xl)‖2

]

≤
T−1∑
t=0

t∑
l=t−S

η2
l Pr(τt = l)E

[
‖∇f (xl)‖2

]

Before proceeding, it is useful to introduce a new random quantity, the delay D, distributed
according to some probability density function Pr(D = i) = πi. Notice that the true
relationship between Pr(τt) and Pr(D) is:

Pr(τt = l) =
πt−l

min(t,S)∑
i=0

πi

.

Since t − S ≤ τt ≤ t, obviously the delay variable D has support boundend in [0, S].
Moreover, to reduce clutter, we define: ψl = η2

l E
[
‖∇f (xl)‖2

]
.
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Now, we can continue our derivation as:

T−1∑
t=0

t∑
l=t−S

πt−l
min(t,S)∑
i=0

πi

ψl =

πSψ−S+0 + πS−1ψ−S+1 + · · ·+ π1ψ−1 + π0ψ0

π0
+

πSψ−S+1 + πS−1ψ−S+2 + · · ·+ π1ψ0 + π0ψ1

π0 + π1
+

πSψ−S+2 + πS−1ψ−S+3 + · · ·+ π1ψ1 + π0ψ2

π0 + π1 + π2
+

πSψ−S+3 + πS−1ψ−S+4 + · · ·+ π1ψ2 + π0ψ3

π0 + π1 + π2 + π3
+

· · ·
πSψT−S + · · · · · · · · · + π1ψT−1 + π0ψT

1
≤

πSψ−S+0 + πS−1ψ−S+1 + · · ·+ π1ψ−1 + π0ψ0 + C0+

πSψ−S+1 + πS−1ψ−S+2 + · · ·+ π1ψ0 + π0ψ1 + C1+

πSψ−S+2 + πS−1ψ−S+3 + · · ·+ π1ψ1 + π0ψ2 + C2+

πSψ−S+3 + πS−1ψ−S+4 + · · ·+ π1ψ2 + π0ψ3 + C3+

· · ·

πSψT−S + · · · · · · · · · + π1ψT−1 + π0ψT + 0

≤
T−1∑
t=0

ψt + C

=

T−1∑
t=0

η2
tE
[
‖∇f (xt)‖2

]
+ C

where C is a suitable, finite, constant. We thus proved a strict bound on the sum of
magnitudes of delayed gradients as

T−1∑
t=0

η2
tE
[
‖∇f (xτt)‖

2
]
≤
T−1∑
t=0

η2
tE
[
‖∇f (xt)‖2

]
+ C.

6.5.5 Derivation of the theorem

We start the derivation from Equation (6.2). We rearrange the inequality to bound the
increment of cost function at time instant t as:

f (xt+1)− f (xt) ≤ −ηt 〈Φk [g (xτt , ξt)] ,∇f (xt)〉

+
η2
tL

2
‖Φk [g (xτt , ξt)]‖

2
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Written in this form, we are still dealing with random quantities. We are interested in
taking the expectation of above inequality with respect to all random processes. Then:

EΩ [f (xt+1)− f (xt)]

≤ EΩ

[
−ηt 〈Φk [g (xτt , ξt)] ,∇f (xt)〉+

η2
tL

2
‖Φk [g (xτt , ξt)]‖

2

]
The strategy to continue the proof is to find an upper bound for the expectation term
EΩ

[
‖Φk [g (xτt , ξt)]‖

2
]
and a lower bound for the expectation term EΩ [〈Φk [g (xτt , ξt)] ,∇f (xt)〉].

We start with the upper bound as:

EΩ

[
‖Φk [g (xτt , ξt)]‖

2
]
≤ EΩ

[
‖g (xτt , ξt)‖

2
]

≤ E
[
‖∇f (xτt)‖

2
]

+ σ2,

where the first inequality is a trivial consequence of sparsification and the second is the
application of Equation (6.3).

As anticipated, we aim at lower bounding the term: EΩ [〈Φk [g (xτt , ξt)] ,∇f (xt)〉]. We
start with Assumption 5 and write:

EΩ [〈Φk (g (xτt , ξt)) ,∇f (xt)〉]

≥ µEΩ [‖Φk (g (xτt , ξt)) ‖ ‖∇f (xt) ‖]

= µE∼ξt [Eξt [‖Φk (g (xτt , ξt)) ‖ ‖∇f (xt) ‖]]

= µE∼ξt [Eξt [‖Φk (g (xτt , ξt)) ‖] ‖∇f (xt) ‖]

We focus on the term Eξt [‖Φk (g (xτt , ξt)) ‖] and, thanks to the k-contraction property and
the inequality of the norm of expected values, we can write:

EΩ [〈Φk (g (xτt , ξt)) ,∇f (xt)〉]

≥ µρE∼ξt [Eξt [‖g (xτt , ξt) ‖] ‖∇f (xt) ‖]

≥ µρE∼ξt [‖Eξt [g (xτt , ξt)] ‖ ‖∇f (xt) ‖]

= µρE∼ξt [‖∇f (xτt) ‖ ‖∇f (xt) ‖]

Before proceeding, we reasonably assume that:

E∼ξt [‖∇f (xτt) ‖ ‖∇f (xt) ‖] ≥ E∼ξt
[
‖∇f (xt) ‖2

]
, (6.5)

since stale versions of the gradient should be larger, in magnitude, than recent versions.

Combining everything together we rewrite our initial inequality as:
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∆t = EΩ [f (xt+1)− f (xt)] ≤ −ηtρµE∼ξt
[
‖∇f (xt) ‖2

]
+
η2
tL

2

(
E∼ξt

[
‖∇f (xτt)‖

2
]

+ σ2
)
.

To derive a convergence bound it is necessary to sum all the increments over t from 0 to T :

T−1∑
t=0

∆t ≤
T−1∑
t=0

(
−ηtρµE∼ξt

[
‖∇f (xt) ‖2

]
+

η2
tL

2

(
E∼ξt

[
‖∇f (xτt)‖

2
]

+ σ2
))

≤

(
T−1∑
t=0

−ηtρµE∼ξt
[
‖∇f (xt) ‖2

]
+

η2
tL

2

(
E∼ξt

[
‖∇f (xt)‖2

]
+ σ2

))
+ C =(

T−1∑
t=0

(
−ηtρµ+

η2
tL

2

)
E∼ξt

[
‖∇f (xt) ‖2

]
+
η2
tL

2
σ2

)
+ C,

where for the second inequality we used the result of Section 6.5.4.

We further manipulate the result by noticing that:
∑T−1
t=0 ∆t = EΩ [f(xt+1)− f(x0)]. More-

over since Λ = EΩ [f (x0)] − inf
x
f (x) , it is easy to show that Λ ≥ EΩ [f(x0)− f(xt+1)] =

−
∑T−1
t=0 ∆t. We combine the bounds together as:

− Λ ≤
T−1∑
t=0

∆t ≤

(
T−1∑
t=0

(
−ηtρµ+

η2
tL

2

)
E∼ξt

[
‖∇f (xt) ‖2

]
+
η2
tL

2
σ2

)
+ C.

Then:

− Λ− C ≤

(
T−1∑
t=0

(
−ηtρµ+

η2
tL

2

)
E∼ξt

[
‖∇f (xt) ‖2

]
+
η2
tL

2
σ2

)
,

and finally: (
T−1∑
t=0

(
ηtρµ−

η2
tL

2

)
E
[
‖∇f (xt) ‖2

])

≤

(
T−1∑
t=0

(
η2
tL

2
σ2

))
+ Λ + C.
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We conclude that:

min
0≤t≤T

E
[
‖∇f (xt)‖2

]
≤

(∑T−1
t=0

(
η2tL

2 σ2
))

+ Λ + C∑T−1
t=0

(
ηtρµ− η2tL

2

) .

We then proceed by prooving the simple corollary 6.4.1 of Theorem 6.4.1. By choosing a
suitable constant learning rate ηt = η = ρµ

L
√
T

we can rewrite the inequality as

min
0≤t≤T

E
[
‖∇f (xt)‖2

]
≤

(
T
(
η2L

2 σ2
))

+ Λ
′

T
(
ηρµ− η2L

2

) .

where for simplicity we have defined Λ
′

= Λ + C.

We then notice that ηρµ = (ρµ)2

L
√
T

and that η2L
2 = (ρµ)2

2LT , consequently we can rewrite the
upper bound as

(ρµ)2σ2

2L + Λ
′

(ρµ)2
√
T

L − (ρµ)2

2L

=
(ρµ)2σ2

2L + Λ
′

(ρµ)2

L

(√
T − 1

2

) .
Since we are intersted in O convergence rate, we can safely assume that

(√
T − 1

2

)
'
√
T

and that thus

min
0≤t≤T

E
[
‖∇f (xt)‖2

]
.

(ρµ)2σ2

2L + Λ
′

(ρµ)2

L

√
T

=

(
σ2

2
+

Λ
′
L

(ρµ)2

)
1√
T

6.6 Experiments

While the benefits of sparsification have been extensively validated in the literature [84,
85, 81, 86, 82], such works focus on communication costs in a synchronous setup, with the
exception of the work in [87], which illustrates a simple experiment in a multi-core asyn-
chronous setup. Instead, our experiments focus on verifying that: 1) the effects of staleness
are negligible; 2) sparsification does not harm convergence rates, using test accuracy as a
proxy; 3) the benefits of the memory mechanism applied to sparsified SGD. We consider
several worker delay distributions, and we compare the performance of the three SGD vari-
ants: standard SGD, and sparsified SGD with and without memory. We also investigate
the effects of scaling-out the system, by going up to 128 workers.

For our experimental campaign, we have built a custom simulator that plugs into existing
machine learning libraries to leverage automatic differentiation and the vast availability
of models, but abstracts away the complications of a real distributed setting. With this
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setup, it is easy to compare a variety of stochastic optimization algorithms on realistic and
complex loss functions. More details about our simulator are given in Paragraph 6.6.1.0.3.

6.6.1 Experimental setup

6.6.1.0.1 SGD variants

We compare sparsified SGD without (φSGD) and with memory (φMemSGD) to “vanilla”
asynchronous SGD (ASGD). For all algorithms, and for all scenarios, we perform a grid
search to find the best learning rate. When relevant, Figures report standard deviation,
obtained by repeating our experiments 5 times. Note that for direct comparisons on indi-
vidual experiments to be fair, we make sure to use the same algorithmic initialization for
SGD (e.g., we use the same initial model parameters), and the same simulation seed.

6.6.1.0.2 Parameters

We configure the system architecture as follows: we consider a “parameter server” setup,
whereby a given number of worker machines are connected to a master by a simple network
model, we do not simulate network congestion, we impose fair bandwidth sharing, and we
do not account for routing overheads.
In our simulations, both computation and communication costs can be modeled according
to a variety of distributions. In this work we use uniformly distributed computation times
with a small support, that are indicative of an homogeneous system. Instead of directly
controlling the staleness of gradient updates, as done in other studies [107, 110], we indi-
rectly induce staleness by imposing synthetic network delays, which we generate according
to an exponential distribution with rate λ (the inverse of the mean). In particular, each
worker samples a value for λ from a log-normal distribution with mean 0 and variance
σ2. Figure 6.2 shows the resulting delay distribution for the entire training period in a
simulation with 8 workers, using different values of σ2. As we increase σ2, the maximum
delay experienced by the workers increases, up to very large values. In addition, the mass
of the distribution shifts towards lower delays; indeed, for higher values of σ2, the majority
of workers have small delays and only few workers experience very large delays. This is
confirmed by the average staleness τ̄ , which decreases as σ2 increases. Notice that the in-
terplay between communication delay and staleness is subtle: we provide a comprehensive
description of the staleness generation process in Paragraph 6.6.1.0.3, with illustrations that
help understanding the shape of the τt distribution.

6.6.1.0.3 The simulator and a note on staleness

In this Section we provide additional details to clarify the simulator structure, the definition
of staleness and its generating process in our empirical validation. Figure 6.3 is an abstract
representation of the distributed architecture we consider in this work. It consists of a
time-line for each machine in the system: one for the parameter server (PS), and one for
each worker Wi (i = 3 in the Figure).
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Figure 6.2 – Delay distributions of a simulation run with LeNet on Mnist, in a distributed
setting with 8 workers. For each worker we generate a network delay according to an
exponential distribution with rate λ. We sample λ from a log-normal distribution with
mean 0 and variance σ2. For each configuration, we also report the resulting average
staleness τ̄ .

In our system model, the PS accepts contributions from workers and updates the current
model iterate according to the variant of the SGD algorithm it implements. We use the
notation xn = U(xn−1,∇(xk)) to indicate that the nth model version at PS is obtained
by updating the n− 1th version using a gradient computed with the kth version, according
to the rules of the generic update algorithm U(·). In this case the staleness of the model
update is equal to n−1−k. It is assumed that as soon as the PS update the parameters the
worker immediately receives the updated model, indicated with Wi ← xn. Each worker is
going to transmit many different updates (Nupdates), each of which will reach the PS after
a random delay. We define the sequence of delays for the ith worker as {t(i)comm,r}

Nupdates
r=0 .

The random generation process will be shortly after explained.
We are then ready to explain the example depicted in Figure 6.3:

1. At time instant t0 = 0 all workers and PS are initialized with model x0.

2. At t1 = t
(1)
comm,0 the PS receives the first gradient computed by W1 using model x0.

The PS updates the model (x1 = U(x0,∇(x0))) and send the update to W1. In this
case the staleness of the update is 0

3. At t2 = t
(2)
comm,0 the PS receives the first gradient computed by W2 using model x0.

The PS updates the model (x2 = U(x1,∇(x0))) and send the update to W2. In this
case the staleness is 1− 0 = 1.

4. At t3 = t
(3)
comm,0 the PS receives the first gradient computed by W3 using model x0.

The PS updates the model (x3 = U(x2,∇(x0))) and send the update to W3. In this
case the staleness is 3− 1 = 2.

5. At t4 = t1 + t
(1)
comm,1 the PS receives the second gradient computed by W1 using model

x1. The PS updates the model (x4 = U(x3,∇(x1))) and send the update to W1. In
this case the staleness is 2− 0 = 2.

6. At t5 = t2 + t
(2)
comm,1 the PS receives the second gradient computed by W2 using model

x2. The PS updates the model (x5 = U(x4,∇(x2))) and send the update to W2. In
this case the staleness is 4− 2 = 2.
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Figure 6.3 – Illustration of the distributed system operation. Example with one PS and 3
workers.

7. . . .

Each communication delay is generated according to an exponential probability distribution
with rate λ. To simulate network hetereogenity each worker has its own (fixed throughout
the simulation) rate λi. These rates are extracted independently for each worker according
to a lognormal distribution, i.e. ln(λi) ∼ N (0, σ2) where σ2 is a user defined parameter
that can be used to change statistical configurations of the system. We use Figure 6.2
to illustrate the delay distribution for an entire simulation, that is, from the first model
iterate, until the end of the training phase. Every time the PS receives a contribution from
a worker, it increments the count in the bin corresponding to the staleness of the stochastic
gradient message. In the Figure we vary σ2 to obtain different delay distributions. Using a
larger variance induces very large delay values (long tail in the distribution). However, if we
observe the average staleness τ̄ , we notice it decreases, because the mass of the distribution
is concentrated on the left, which in practice means the majority of workers experience
small delays.
From an implementation point of view, our work is divided in two tasks: the simulation
of the delays and the simulation of the distributed architecture. The delays simulation is
simply a generation of a sequence of random variables according to a given distribution,
while to simulate the distributed system it is sufficient allocate in memory Nworker + 1

versions of the model (workers and PS) and update them according to the order of arrival
of messages. It is important to notice that the simulator is transparent to the underling
mechanisms for computing gradients and updates. In this work, we use the PyTorch-

1.4 library to describe models, and how they are trained. The interface between the high
and low level layers allows exchanging model iterates, and gradients. Note that we use
automatic differentiation from PyTorch-1.4 to compute gradients.
Overall, the above software design allows to: 1) easily introduce new models to study,
as they can be readily imported from legacy PyTorch-1.4 code; 2) easily implement
variants of stochastic optimization algorithms; 3) experiment with a variety of system con-
figurations, including heterogeneity, various communication patterns, and various staleness
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distributions.

6.6.1.0.4 Models and datasets.

We consider a classification task, where we train two convolutional neural network (Cnn)
variants of increasing model complexity, to gain insight on the role of sparsification for
large deep network models. First, we study the behavior of LeNet, using the Mnist

dataset, then we move on to ResNet-56, using the Cifar10 dataset. The model pa-
rameter and gradients dimensionality are approximately d ∈ {60K, 600K} for LeNet and
ResNet-56, respectively. We use a training mini-batch size of 64 for Mnist and 128 for
ResNet-56 and a testing mini-batch size of 128 samples. For each experimental setting,
we run 5 simulations. The number of workers has been selected as the best in the set
{1, 2, 4, 8, 16, 32, 64, 128}, tcomm ∼ Exp (λ), ln(λ) ∼ N (0, σ2), σ2 = {0.1, 1, 3}.

η φMemSGD φMemSGD ASGD
LeNet 0.01 0.01 0.01

ResNet-56 0.1 0.1 0.1
ResNet-56 - 32 workers 0.005 0.005 0.005

Table 6.1 – Learning rate parameters.

momentum φMemSGD φMemSGD ASGD
LeNet 0.5 0.5 0.5

ResNet-56 0.9 0.9 0.9

Table 6.2 – Momentum parameters.

All model parameters we used, including learning rates and momentum, are specified in
Table 6.1 and Table 6.2. Additional details are as follows.

• Training epochs = 5 (LeNet), 161 (ResNet-56)

• Training mini-batch size = 64 (LeNet), 128 (ResNet-56)

• Testing mini-batch size = 64 (LeNet), 128 (ResNet-56)

The Cnn models are implemented in PyTorch-1.x.

• LeNet: architecture, d = 61706

• ResNet-56: architecture, d = 590426

6.6.2 Comparative analysis

We compare φSGD and φMemSGD with ASGD by measuring the test accuracy reached
after a fixed number of epochs, which we set to 5 for LeNet on Mnist and 161 for ResNet-

56 on Cifar10. We consider three scenarios, with 8 workers: each has a different delay
distribution, given by the parameter σ2, as shown in Figure 6.2. For sparsified methods,
we use the best sparsification coefficient ρ. We discuss how ρ can be tuned in Section 6.6.3.
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Figure 6.4 – Comparison of test accuracy of LeNet on Mnist, for three different asyn-
chronous settings with 8 workers. In each setting we sample the exponential rates λ from
a log-normal distribution with mean 0 and variance σ2. For sparsified methods, the best ρ
has been taken.

φMemSGD φSGD ASGD
87.05 ± 0.53 86.21 ± 1.06 85.90 ± 1.01

Table 6.3 – Comparison of test accuracy of ResNet-56 on Cifar10, with σ2 = 0.1.

Figure 6.4 illustrates results obtained using a LeNet architecture with the Mnist dataset,
while Table 6.3 reports the results obtained with ResNet-56 on Cifar10, fixing σ2 = 0.1.

Clearly, for both simple and deep models, the effects of sparsification on test accuracy are
negligible. Given a reasonable choice of sparsification ρ, all variants achieve similar test
accuracy using the same number of training iterations. Moreover, sparsified methods con-
sistently achieve comparable performance to the non-sparse method irrespectively of the
delay distribution. This confirms the result in Corollary 6.4.1, which indicates asymptot-
ically vanishing effects of staleness on convergence (indeed, the term τ does not appear
in the bound). We also observe that, as expected, the memory-based variant of sparsified
SGD has an edge on the memory-less method, because it achieves better performance for
lower values of ρ. This results clarifies the impact of memory-based error correction as a
method to recover lost information due to aggressive sparsification.

Finally, note that we explicitly do not compare the methods using wall-clock times, as we
are not interested in measuring the well-known benefits of sparsification in terms of reduced
communication costs.

6.6.3 Tuning gradient sparsification

Using theorem 6.4.1 alone, it can be difficult to understand how ρ can be tuned. Next, we
focus on the LeNet architecture using the Mnist, trained for 5 epochs, to understand how
this affects the accuracy of sparsified SGD.

The results in Figure 6.5 show the impact of different values of the sparsification coefficient
ρ on test accuracy. We notice a stark difference between φMemSGD and φSGD: the
latter is much more sensitive to appropriate choices of ρ, and requires larger coefficients
to achieve a reasonable test accuracy. For φMemSGD, instead, aggressive sparsification
doesn’t penalize performance noticeably, thanks to the memory mechanism. Then, even
aggressive sparsification can be viable, as the cost per iteration (in terms of transmission
times) decreases drastically, compared to standard SGD. Also, note that the top-k operator
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Figure 6.5 – Detailed study to understand how to tune the sparsification ρ , for LeNet on
Mnist. Test accuracy as a function of ρ, in a system with 8 workers and σ2 = 0.1
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Figure 6.6 – Comparison of test accuracy, as a function of the number of workers. Results
for LeNet on Mnist.

can be executed efficiently on GPUs [118], so that computational costs per iteration are
equivalent to standard SGD.

6.6.4 Scalability

We now investigate how the three SGD variants scale with an increasing number of workers.
As shown in Figure 6.6, all variants of SGD incur a slight drop in performance with more
workers. Indeed, with more workers, the delay distribution in the system changes accord-
ing to Figure 6.2, due to an increase in the probability of picking large delays. We note
again that applying sparsification does not harm the performance of SGD, in that both
φMemSGD and φSGD reach a comparable test accuracy with respect to ASGD. This is
valid also for a deep convolutional network: for example, we run ResNet-56 on Cifar10

with 32 workers and we obtained a test accuracy of 85.30±1.24 for ASGD and 86.01±0.49

for φMemSGD with a sparsification coefficient ρ = 1%.
Our results reinforce the message that sparsified SGD should be preferred over vanilla SGD,
and this carries over to large scale scenarios in which, otherwise, excessively large message
sizes could entail network congestion and jeopardize algorithmic efficiency.

6.7 Conclusion

In this work we focused on the role of sparsification methods applied to distributed stochas-
tic optimization of non-convex loss functions, typically found in many modern machine
learning settings.
For the first time, we provided a simple and concise analysis of the joint effects of asyn-
chronicity and sparsification on mini-batch SGD, and showed that it converges asymptot-
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ically as O
(

1/
√
T
)
. Intuitively, top-k sparsification restricts the path taken by model

iterates in the optimization landscape to follow the principal components of a stochastic
gradient update, as also noticed in [88].
We complemented our theoretical results with a thorough empirical campaign. Our exper-
iments covered both variants of sparsified SGD, with and without memory, and compared
them to standard SGD. We used a simple system simulator, which allowed us to explore
scenarios with different delay distributions, as wel as an increasing number of workers.
Our results substantiated the theoretical findings of this work: the effects of staleness
vanish asymptotically, and the impact of sparsification is negligible on convergence rate
and test accuracy. We also studied how to appropriately chose the sparsification factor, and
concluded that the memory mechanism applied to sparsified SGD allows to substantially
sparsify gradients, save on communication costs, while obtaining comparable performance
to standard SGD.
Our future plan is to establish a connection between gradient sparsification and recent
studies showing that the landscape of the loss surface of deep models is typically sparse [119,
100, 120]. In light of such works, [121] suggests that sparsification can be directly applied
to model parameters, albeit training requires multiple stages. Gradient sparsification could
then be studied as a mechanism to favor model compression at training time.



7

Isotropic SGD: Practical Bayesian
Posterior Sampling

Despite mathematical elegance and some promising results restricted to simple models,
standard stochastic gradient (sg) methods for mcmc-based Bayesian posterior sampling [16,
98, 122, 17, 99] fall short in easily dealing with the complexity of the loss landscape of deep
models [100, 101], for which stochastic optimization poses serious challenges [123, 124].
Existing methods are often unpractical, as they require ad-hoc, sophisticated vanishing
learning rate schedules, and hyper-parameter tuning.
In general, sg-mcmc algorithms inject random noise to sg descent algorithms: the co-
variance of such noise and the learning rate are tightly related to the assumptions on the
loss landscape, which together with the sg noise, determine their sampling properties [99].
Current sg-mcmc algorithms applied to popular complex models such as Deep Nets, can-
not satisfy the simplifying assumptions on loss landscapes and on the behavior of the sg

noise covariances, while operating with practical requirements, such as non-vanishing learn-
ing rates and ease of use. A recent work [125] argues for fixed step sizes, but settles for
variational approximations of simple quadratic losses. In a generic Bayesian deep learning
setting, none of the existing implementations of sg-mcmc methods converge to the true
posterior without learning rate annealing.
While we are not the first to highlight these issues [100, 101], we believe that studying
the role of noise in sg-mcmc algorithms has not received enough attention, and a deeper
understanding is truly desirable, as it can clarify how various methods compare. We adapt
the unified notation framework of [99] to understand the role of noise magnitude from a
practitioner point of view. This framework suggests us to propose a simple, yet unexplored,
sg-mcmc algorithm relying on fewer tunable parameters and less restrictive assumptions.
Our goal is to study under which algorithmic conditions we can relax the assumptions while
still having theoretical guarantees.
In this chapter, we make use of a mathematical framework [126] that emphasizes the role
of sg noise covariance and learning rate on the behavior of sg-mcmc algorithms (Sec. 7.1).
As a result, the equivalence between learning rate annealing and the injection of noise with
extremely large variance becomes clear. This intuition, together with the technical condi-
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tions described by Theorem 1, allows us to propose a novel, practical sg-mcmc algorithm
(Sec. 7.4) that produces (approximate) posterior samples with a fixed, analytically derived,
learning rate. In the considered algorithm, a non annealed learning rate is possible thanks
to the choice of making the sg noise isotropic, a finite identity covariance matrix, instead
of the usual, approaching to infinity one. The proposed sg-mcmc method is a valid, theo-
retically sound, and simple alternative to popular techniques, that have shortcomings when
it comes to the assumptions they rely on [72].

We furthermore address a concern that has emerged only very recently in the stochastic op-
timization community for deep complex models: the sg noise is not Gaussianly distributed
but follows an heavy tailed distribution [127, 128]. As carefully explained in Sec. 7.4, we
incorporate this knowledge in a simple way in our Bayesian sampling scheme and show that
this incorporation helps us improve performance.

We evaluate sg-mcmc algorithms (Sec. 7.6) through an extensive experimental campaign,
where we compare our approach to a number of alternatives, including Monte Carlo Dropout
(mcd) [72] and Stochastic Weighted Averaging Gaussian (swag) [124], which have been
successfully applied to the Bayesian deep learning setting. Our results indicate that our
approach is competitive to the state-of-the-art, in terms of accuracy and uncertainty, and
its analytically derived (constant) learning rate make it a worthy unexplored alternative in
the panorama of sg-mcmc methods.

7.1 MCMC Through the Lenses of Langevin Dynamics

Consider a data-set of m−dimensional observations D = {U i}Ni=1 and a statistical model
defined through a likelihood function p(D|θ) parameterized through a d-dimensional set of
parameters θ. Given a prior p(θ) the posterior over the parameters is obtained by means
of Bayes theorem as:

p(θ|D) =
p(D|θ) p(θ)

p(D)
, (7.1)

where p(D) is also known as the model evidence, defined as the integral p(D) =
∫
p(D|θ) p(θ)dθ.

The posterior distribution is necessary in order to obtain predictive distributions for new
test observations U∗: p(U∗|D) =

∫
p(U∗|θ)p(θ|D)dθ. We focus on Monte Carlo meth-

ods to obtain an estimate of this predictive distribution, by averaging over NMC samples
obtained from the posterior over θ, that is θ(i) ∼ p(θ|D):

p(U∗|D) ≈ 1

NMC

NMC∑
i=1

p(U∗|θ(i)). (7.2)

Since Eq. (7.1) is analytically intractable [2], unless the prior is conjugate to the likelihood,
we work with an unnormalized version of the logarithm of the posterior density, and express
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the negative logarithm of the joint distribution of the data-set D and parameters θ as:

− f(θ) =

N∑
i=1

log p(U i|θ) + log p(θ). (7.3)

For computational efficiency, we use a mini-batch stochastic gradient g(θ), which guar-
antees that the estimated gradient is an unbiased estimate of the true gradient ∇f(θ),
and we assume that the randomness due to the mini-batch introduces a Gaussian noise:1

g(θ) ∼ N(∇f(θ), 2B(θ)), where the matrix B(θ) denotes the sg noise covariance, which
depends on the parametric model, the data distribution and the mini-batch size.

Mini-batch gradient approximation Starting from the gradient of the logarithm of the
posterior density:

−∇f(θ) =

N∑
i=1

∇ log p(U i|θ) +∇ log p(θ),

it is possible to define its minibatch version by computing the gradient on a random subset
INb with cardinality Nb of all the indexes. The minibatch gradient g(θ) is computed as

−g(θ) =
N

Nb

Nb∑
i=1

∇ log p(U i|θ) +∇ log p(θ),

By simple calculations it is possible to show that the estimation is unbiased (E(g(θ)) =

∇f(θ)). The estimation error covariance is defined to be E
[
(g(θ)−∇f(θ)) (g(θ)−∇f(θ))

>
]

=

2B(θ).

If the minibatch size is large enough, invoking the central limit theorem, we can state that
the minibatch gradient is normally distributed:

g(θ) ∼ N(∇f(θ), 2B(θ)).

A survey of algorithms to sample from the posterior using sg methods can be found in [99].
As shown in the literature [129, 125], there are structural similarities between sg-mcmc

algorithms and stochastic optimization methods, and both can be used to draw samples
from posterior distributions. In what follows, we define a unified notation to compare many
existing algorithms in light of the role played by their noise components.

Stochastic gradient descent (sgd) can be studied through the following stochastic differen-
tial equation (sde) [130, 131, 132], when the learning rate η is small enough:

dzt = s(zt)dt+
√

2ηD(zt)dW t. (7.4)

Here we use a generic form of the sde, with variable z instead of θ, that accommodates sgd

variants, with and without momentum. It is typical sg-mcmc practice [16, 98, 122, 125] to

1This is an ordinary assumption in the literature. In light of recent work [127, 128], we will address the
case for an α-stable sg noise distribution in Section 7.4.1.
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allow the stochastic process induced by Eq. (7.4) to go through an initial adaptation phase
where the learning rate is annealed, followed by fixing the learning rate to a small value, to
ensure the process reaches and maintains a stationary distribution thereafter.

Definition 1 A distribution ρ(z) ∝ exp(−φ(z)) is said to be a stationary distribution for
the sde of the form (7.4), if and only if it satisfies the following Fokker-Planck equation
( fpe):

0 = Tr
{
∇
[
−s(z)>ρ(z) + η∇> (D (z) ρ(z))

]}
. (7.5)

Note that, the operator ∇> applied to matrix D(z) produces a row vector whose elements
are the divergences of the D(z) columns [17].

In general, the stationary distribution does not converge to the desired posterior distribu-
tion, i.e., φ(z) 6= f(z), as shown by [123]. Additionally, given an initial condition for zt, its
distribution is going to converge to ρ(z) only for t→∞.

Next, we revisit known approaches to Bayesian posterior sampling, and interpret them as
variants of an sgd process, using the fpe formalism. In what follows, we use n to indicate
discrete time, and t for continuous time.

Gradient methods without momentum. The generalized update rule of sgd, described
as a discrete-time stochastic process, writes as:

δθn = −ηP (θn−1)(g(θn−1) +wn), (7.6)

where P (θn−1) is a user-defined preconditioning matrix, and wn is a noise term, dis-
tributed as wn ∼ N(0, 2C(θn)), with a user-defined covariance matrix C(θn). Then, the
corresponding continuous-time sde is [130]:

dθt = −P (θt)∇f(θt)dt+
√

2ηP (θt)2Σ(θt)dW t. (7.7)

The derivation is as follows. Since g(θn−1) ∼ N(∇f(θn−1), 2B(θn−1)) we can rewrite the
Equation (7.6) as:

δθn = −ηP (θn−1)(∇f(θn−1) +w
′

n),

where w
′

n ∼ N(0, 2Σ(θn−1)). If we separate deterministic and random component we can
equivalently write:

δθn = −ηP (θn−1)∇f(θn−1) + ηP (θn−1)w
′

n = −ηP (θn−1)∇f(θn−1) +

√
2ηP 2(θn−1)Σ(θn−1)vn

where vn ∼ N(0, ηE). When η is small enough ( η → dt) we can interpret the above
equation as the discrete time simulation of the following sde [130]:

dθt = −P (θt)∇f(θt)dt+
√

2ηP (θt)2Σ(θt)dW t,
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where dW t is a d−dimensional Brownian motion.
We denote by C(θ) the covariance of the injected noise and by Σ(θt) = B(θt) +C(θt) the
composite noise covariance, which combines the sg and the injected noise.
We define the stationary distribution of the sde in Equation (7.7) as ρ(θ) ∝ exp(−φ(θ)),
noting that when C = 0, the potential φ(θ) differs from the desired posterior f(θ) [123].
The following theorem, which is an adaptation of known results in light of our formalism,
states the conditions for which the noisy sgd converges to the true posterior distribution.

Theorem 1 Consider dynamics of the form (7.7) and define the stationary distribution
ρ(θ) ∝ exp(−φ(θ)). If ∇>

(
Σ(θ)−1

)
= 0> and ηP (θ) = Σ(θ)−1, then φ(θ) = f(θ).

The proof of Theorem 1 is in Appendix B.0.1.
sgld [16] is a simple approach to satisfy Theorem 1; it uses no preconditioning, P (θ) = E,
and sets the injected noise covariance to C(θ) = η−1E. In the limit for η → 0, it holds that
Σ(θ) = B(θ) + η−1E ' η−1E. Then, ∇>

(
Σ(θ)−1

)
= η∇>E = 0>, and ηP (θ) = Σ(θ)−1.

While sgld succeeds in (asymptotically) generating samples from the true posterior, its
mixing rate is unnecessarily slow, due to the extremely small learning rate [98].
An extension to sgld is Stochastic Gradient Fisher Scoring (sgfs) [98], which can be
tuned to switch between sampling from an approximate posterior, using a non-vanishing
learning rate, and the true posterior, by annealing the learning rate to zero. sgfs uses
preconditioning, P (θ) ∝ B(θ)−1. Generally, however, B(θ) is ill conditioned: many of its
eigenvalues are almost zero [123], and computing B(θ)−1 is problematic. Moreover, using
a non-vanishing learning rate, the conditions of Theorem 1 are met only if, at convergence,
∇>(B(θ)−1) = 0>, which would be trivially true if B(θ) was constant. However, recent
work [100, 101] suggests that this condition is difficult to justify.
The Stochastic Gradient Riemannian Langevin Dynamics (sgrld) algorithm [122] extends
sgfs to the setting in which ∇>(B(θ)−1) 6= 0>. The process dynamics are adjusted by
adding the term∇>(B(θ)−1) which, however, cannot be easily estimated, restricting sgrld

to cases where it can be computed analytically.
The work in [133] considers a regularized diagonal preconditioning matrix P (θ), derived
from the sg noise. However, in the sampling phase, the method neglects the term ∇>P (θ)

and the regularization term is a user-defined parameter, which is not trivial to tune.
The approach in [125] investigates constant-rate sgd (with no injected noise), and deter-
mines analytically the learning rate and preconditioning that minimize the Kullback–Leibler
(kl) divergence between an approximation and the true posterior. Moreover, it shows that
the preconditioning used in sgfs is optimal, in the sense that it converges to the true
posterior, when B(θ) is constant and the true posterior has a quadratic form.
In summary, to claim convergence to the true posterior distribution, existing approaches
require either vanishing learning rates or assumptions on the sg noise covariance that are
difficult to verify in practice, especially when considering deep models. We instead propose
a novel practical method, that induces isotropic sg noise and thus satisfies Theorem 1. We
determine analytically a fixed learning rate and we require weaker assumptions on the loss
geometry.
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Gradient methods with momentum. Momentum-corrected methods emerge as a nat-
ural extension of sgd approaches. The general set of update equations for (discrete-time)
momentum-based algorithms is:δθn = ηP (θn−1)M−1rn−1

δrn = −ηA(θn−1)M−1rn−1 − ηP (θn−1)(g(θn−1) +wn),
(7.8)

where P (θn−1) is a preconditioning matrix,M is the mass matrix and A(θn−1) is the fric-
tion matrix [17, 134]. Similarly to the first order counterpart, the noise term is distributed
as wn ∼ N(0, 2C(θn))). Then, the sde to describe continuous-time system dynamics is:dθt = P (θt)M

−1rtdt

drt = −(A(θt)M
−1rt + P (θt)∇f(θt))dt+

√
2ηP (θt)2Σ(θt)dW t.

(7.9)

where P (θt)
2 = P (θt)P (θt), and P (θt) is symmetric.

The derivation is as follows. Similarly to the case without momentum, we rewrite the
second equation in 7.8 as

δrn = −ηA(θn−1)M−1rn−1 − ηP (θn−1)(g(θn−1) +wn) = −ηA(θn−1)M−1rn−1 − ηP (θn−1)∇f(θn−1)+√
2ηP 2(θn−1)Σ(θn−1)vn

where again vn ∼ N(0, ηE). If we define the super-variable z = [θ, r]
>, we can rewrite the

system as:

δzn = −η

[
0 −P (θn−1)

P (θn−1) A(θn−1)

]
s(zn−1) +

√
2ηD(zn−1)νn

where s(z) =

[
∇f(θ)

M−1r

]
, D(z) =

[
0 0

0 P (θ)2Σ(θ)

]
and νn ∼ N(0,

√
ηE).

As the learning rate goes to zero (η → dt), similarly to the previous case, we can interpret
the above difference equation as a discretization of the following fpe

dzt = −

[
0 −P (θt)

P (θt) A(θt)

]
s(zt) +

√
2ηD(zt)dW t,

which corresponds to Equation (7.9)
The theorem hereafter describes the conditions for which the sde converges to the true
posterior distribution.

Theorem 2 Consider dynamics of the form (7.9) and define the stationary distribution for
θt as ρ(θ) ∝ exp(−φ(θ)). If ∇>P (θ) = 0> and A(θ) = ηP (θ)2Σ(θ), then φ(θ) = f(θ) .

The proof of Theorem 2 is in Appendix B.0.2.
In the naive case, where P (θ) = E,A(θ) = 0,C(θ) = 0, the conditions in Theorem 2



7.2. Bayesian Posterior Sampling by Layer-wise Isotropization 81

are not satisfied and the stationary distribution does not correspond to the true posterior
[17]. To generate samples from the true posterior, it is sufficient to set P (θ) = E,A(θ) =

ηB(θ),C(θ) = 0 (as in Eq. (9) in [17]).

Stochastic Gradient Hamiltonian Monte Carlo (sghmc) [17] suggests that estimating B(θ)

can be costly. Hence, the injected noise C(θ) is chosen such that C(θ) = η−1A(θ), where
A(θ) is user-defined. When η → 0, the following approximation holds: Σ(θ) ' C(θ). It
is then trivial to check that conditions in Theorem 2 hold without the need for explicitly
estimating B(θ). A further practical reason to avoid setting A(θ) = ηB(θ) is that the
computational cost for the operation A(θn−1)M−1rn−1 has O(D2) complexity, whereas if
C(θ) is diagonal, this is reduced to O(D). This however, severely slows down the sampling
process.

Stochastic Gradient Riemannian Hamiltonian Monte Carlo (sgrhmc) is an extension to
sghmc [99]), which considers a generic, space-varying preconditioning matrix P (θ) derived
from information geometric arguments [135]. sgrhmc suggests to set P (θ) = G(θ)−

1
2 ,

where G(θ) is the Fisher Information matrix. To meet the requirement ∇>P (θ) = 0>, it
includes a correction term, −∇>P (θ). The injected noise is set to C(θ) = η−1E −B(θ),
consequently Σ = η−1E, and the friction matrix is set to A(θ) = P (θ)2. With all these
choices, Theorem 2 is satisfied. While appealing, the main drawbacks of this method are the
need for an analytical expression of ∇>P (θ), and the assumption for B(θ) to be known.

Recently, the work in [136] suggests to use a cyclical learning rate schedule to better explore
the loss landscape and sample more efficiently. While the idea is appealing, it introduces
further hyper-parameters to tune, which is opposite to our quest for a simple, easy to use
method.

From a practical standpoint, momentum-based methods suffer from the complexity and
fragility of hyper-parameter tuning, including the learning rate schedule and those that
govern the simulation of a second-order Langevin dynamics. The method we propose in
this work can be applied to momentum-based algorithms as well; then, it can be viewed as
an extension to the work in [137], albeit addressing more complex loss landscapes. However,
we leave this avenue of research for future work.

7.2 Bayesian Posterior Sampling by Layer-wise Isotropiza-

tion

We present a simple and practical approach to inject noise to SGD iterates to perform
Bayesian posterior sampling. Our goal is to sample from the true posterior distribution (or
approximations thereof) using a constant learning rate, and to rely on more lenient assump-
tions about the geometry of the loss landscape that characterize deep models, compared to
previous works.

From Theorem 1, observe that P (θ),Σ(θ) are instrumental to determine the convergence
properties of sg methods to the true posterior. We consider the constructive approach of



82 7. Isotropic SGD: Practical Bayesian Posterior Sampling

Algorithm 1: Idealized posterior sampling

Sample (θ0,B(θ),Λ):
θ ← θ0 B Initialize θt
loop

g = ∇f̃(θ)
N B Compute sg

C(θ)
1
2 ← (Σ−B(θ))

1
2

n ∼ N(0, I)

w ← C(θ)
1
2n

δθ ← (NΣ)−1(g +
√

2w)
θ ← θ − δθ B Update θ

Table 7.1 – Idealized posterior sampling

designing ηP (θ) to be a constant, diagonal matrix, constrained to be layer-wise uniform:

ηP (θ) = Λ−1 = diag([λ(1), . . . , λ(1)︸ ︷︷ ︸
layer 1

, . . . , λ(Nl), . . . λ(Nl)︸ ︷︷ ︸
layer Nl

])−1. (7.10)

Notice that we treat biases and weights of the layers as unique groups of parameters. By
properly setting parameters λ(p), we achieve the simultaneous result of a non-vanishing
learning rate and a well-conditioned preconditioning matrix. This implies a layer-wise
learning rate η(p) = 1

λ(p) for the p-th layer, without further preconditioning. We can now
state, as a corollary to Theorem 1, that our method guarantees convergence to the true
posterior distribution.

Corollary 7.2.1 Given the dynamics of Eq. (7.7) and the stationary distribution ρ(θ) ∝
exp(−φ(θ)), if ηP (θ) = Λ−1 as in Eq. (7.10), and C(θ) = Λ − B(θ) � 0∀θ, i.e. it is
positive definite ,then φ(θ) = f(θ).

The requirement C(θ) � 0 ∀θ, ensures that the injected noise covariance is valid. The
composite noise matrix is equal to Σ(θ) = Λ. Since∇>Σ(θ) = ∇>Λ = 0 and ηP (θ) = Λ−1

by construction, then Theorem 1 is satisfied.
If the above conditions hold, it is simple to show that matrices P (θ) and C(θ) satisfy
Theorem 1. Then, we say that the composite noise covariance Σ(θ) = C(θ) + B(θ) =

diag
([
λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)

])
is isotropic within model layers. We set Λ to

be, among all valid matrices satisfying Λ −B(θ) � 0, the smallest, i.e., the one with the
smallest λ’s. Indeed, larger Λ induces a small learning rate, thus unnecessarily reducing
sampling speed.

7.3 An ideal method.

Now, let’s consider an ideal case, in which we assume the sg noise covariance B(θ) and Λ

to be known in advance. The procedure described in Algorithm 7.1 illustrates a naive sg

method that uses the injected noise covariance C(θ) to sample from the true posterior.
This deceivingly simple procedure is guaranteed to generate samples from the true posterior,
with a non-vanishing learning rate. Note that instead of computing the gradient of f(θ), we
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compute the (mini-batch) gradient of f(θ)
N , similarly to the notation used in [125], that we

indicate with ∇f̃(θ)
N . However, it cannot be used in practice as B(θ) and Λ are unknown.

Also, the algorithm is costly, as it requires computing (Σ−B(θ))
1
2 , which requires O(d3)

operations, and C(θ)
1
2 , which costs O(d2) multiplications. Next, we describe a practical

approach, where we use approximations at the expense of generating samples from the true
posterior distribution. Note that [125] suggests to explore a related preconditioning, but
does not develop the idea.

7.4 A practical method: Isotropic SGD.

To make the idealized sampling method practical, we require additional assumptions which
are milder than what is required by current approaches in the literature, as we explain at
the end of this section.

Assumption 6 The sg noise covariance B(θ) can be approximated with a diagonal matrix,
i.e., B(θ) = diag(b(θ)). Thus, the noise components are independent [137, 98].

Assumption 7 The signal to noise ratio (SNR) of a gradient is small enough such that,
in the stationary regime, the un-centered variance of the gradient is a good estimate of the
true variance [137, 138]. Hence, combining with assumption 6, b(θ) ' E[g(θ)�g(θ)]

2 (being
� the elementwise product of two vectors).

Assumption 8 In the stationary regime, the maximum of the variances of noise compo-
nents, layer by layer, are fixed constants (similarly to [139]): β(p) = maxj∈Ip bj(θ), where
Ip is the set of indexes of parameters belonging to pth layer.

Note that Assumptions 7 and 8 must hold only in the stationary regime when the process
reaches the bottom valley of the loss landscape. Concerning Assumption 8, we actually
test in practice two variants: the one, described in the text, where we assume that the
maximum of the variances is constant, and a variant in which we assume that the sum of
the variances is constant layerwise. We refer later to these two variants as the max and
sum variant of Assumption 8 respectively. Notice that a similar assumption is necessary
for all sg-mcmc methods. Without assumptions on the boundedness of the variances, it
is not possible to claim convergence to the true posterior even in the infinitesimal learning
rate regime. The proofs in the text are based on the max variant of the assumption, but
the results are trivially extended to the second case.
Given our assumptions, and our design choices, it is then possible to show that the optimal
(i.e., the smallest possible) Λ =

[
λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)

]
satisfying Corollary 7.2.1

can be obtained as λ(p) = β(p). The proof is reported hereafter.
By the assumptions the matrix B(θ) is diagonal, and consequently C(θ) = Λ −B(θ) is
diagonal as well. The preconditioner Λ must be chosen to satisfy the positive semi-definite
constraint, i.e. C(θ)ii ≥ 0 ∀i,∀θ. Equivalently, we must satisfy λ(p) − bj(θ) ≥ 0 ∀j ∈
Ip,∀p,∀θ, where Ip is the set of indexes of parameters belonging to pth layer. By assumption
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Algorithm 2: i-sgd: practical sampling

Sample (θ0):
θ ← θ0 B Initialize θt
loop

g = ∇f̃(θ)
N B Compute sg

C(θ)
1
2 (p) ← (λ(p) − 1

2 (σ̃(θ)(p))2)
1
2

n ∼ N(0, I)

w ← C(θ)
1
2 (p)n

δθ(p) ← (Nλ(p))−1
(
g(p) +

√
2w
)

θ ← θ − δθ B Update θ

Table 7.2 – Practical sampling

3, i.e. β(p) = maxk∈Ip bk(θ), to satisfy the positive semi-definite requirement in all cases
the minimum valid set of λ(p) is determined as λ(p) = β(p).

Since we cannot assume B(θ) to be known, in what follows we discuss two approaches
to estimate its components. A simple method to estimate B(θ) is as follows (see 7.4.1):
we compute λ(p) = maxj∈Ip bj(θ) = 1

2 maxj(gj(θ)(p))2,where g(θ)(p) is the portion of
stochastic gradient corresponding to the p-th layer. Our estimates can be extended to use
a moving average approach. Our empirical validation, however, indicates that this simple
method does not produce stable estimates.

Indeed, a shared assumption of sg-mcmc methods is that sg noise is Gaussian. While this
assumption can be justified with the C.L.T. for relatively simple models (linear models or
simple feed-forward networks), its validity has been challenged in the deep learning domain
[127, 128] (see 7.4.1 for a detailed discussion), suggesting that, for complex architectures,
the noise distribution is heavy tailed. Then, the hypothesis is that the various components
of sg noise follow an α-stable distribution: w ∼ p(w), where

∫ +∞
−∞ exp (j2πwt) p(w)dw =

exp(−|ct|α), with α ∈ (0, 2], where α, c can vary across different parameters. When α = 2,
p(w) becomes Gaussian, but for α < 2, its variance goes to infinity, thus estimating the sg

noise covariance is problematic.

Prior works [140], suggest to define a stochastic process governed by an sde that uses
Lévy Noise instead of a Brownian motion. However, this approach comes with its own
challenges, such as the approximation of a fractional derivative, and the use of full gradients.
Instead, we propose the following approximate method: we consider that the sg noise
follows a Gaussian distribution, with parameters set to minimize the l2-distance between
p(w) = (2πσ̃2)−

1
2 exp

(
− w2

2σ̃2

)
and q(w) =

∫ +∞
−∞ exp (−j2πwt) exp(−|ct|α)dt (see 7.4.1 for

details). We estimate the parameters of the α-stable distribution by extending [141] to space
varying settings, and derive the equivalent variances σ̃2 that minimize the l2 distance. Then,
the λ(p) are computed as 1

2 maxj(σ̃j(θ)(p))2.

Ultimately, the composite noise matrix Σ = Λ is a layer-wise isotropic covariance matrix,
which inspires the name of our proposed method as Isotropic SGD (i-sgd). Once all
parameters λ(p) have been estimated, the layer-wise learning rate is determined: for the
p-th layer, the learning rate is η(p) = 1

Nλ(p) .

The practical implementation of i-sgd is shown in Algorithm 7.2.
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The computational cost of i-sgd is as follows. Similarly to [17], we define the cost of
computing a gradient mini-batch as Cg(Nb, d), where, as in the previous Chapter, d is
the dimensionality of the parameter vector. Then (see 7.4.1), the computational cost for
estimating the noise covariance scales as O(d) logarithm computations. The computational
cost of generating random samples with the desired covariance scales as O(d) square roots
and O(d) multiplications. The overall cost of our method is the sum of the above terms.
Note that the cost of estimating the noise covariance does not depend on the mini-batch
size. The space complexity of i-sgd is the same as sghmc and sgfs and variants: it scales
as O(NMCd), where NMC is the number of posterior samples.

7.4.1 Estimation of λ(p)

As briefly introduced in the previous section, we modify the standard assumption of Gaus-
sian noise and generalize it to the case of heavy tailed noise. We hereafter provide the details
needed to build estimators of the variances for the two considered cases (the standard one
and the proposed one).

7.4.1.1 The case of Gaussian noise.

We here give additional details on the estimation of λ(p). The simple and naive estimation
described in the thesis is the following: λ(p) = maxj∈Ip(gj(θ)(p))2. For the Gaussian sg

noise case we found however the following (safe) looser estimation of the maximum noise
covariance to be more stable: λ(p) =

∑
j∈Ip

bj(θ) = ||g(θ)(p)||2
2 . From a practical point of view,

we found the following filtering procedure to be useful and robust:

λ(p) ← µλ(p) + (1− µ)
||g(p)(θ)||2

2
(7.11)

where an exponential moving average is performed with estimation momentum determined
by µ. Notice that during sampling, the same smoothing can be applied to the tracking
of B(θ). We refer to the variant of i-sgd implemented using this estimator as i-sgd-G.
We also considered the case of having a unique, and not layerwise, learning rate, that we
indicate by juxtaposing the (SLR) acronym to the right of the methods. In this case, the
unique equivalent λ is computed as

∑
p
λ(p).

7.4.1.2 The case of Heavy Tailed Noise.

As anticipated, we challenge the assumption that sg noise is Gaussianly distributed ([127,
128]) and consider instead heavy tailed distributions. In particular, the hypothesis is that
the noise follows and α-stable distribution, i.e.

w ∼ p(w) = F−1 (exp(−|ct|α)) (7.12)
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where α ∈ [0, 2]. Notice that except for particular cases, p(w) cannot be expressed in closed
form. In general, when α < 2 the variance of the distribution goes to infinity and thus
dealing with all methods that require the estimation or the usage of a covariance is tricky.
It is interesting to underline again that for α = 2 the distribution is the usual Gaussian
one.

Having acknowledged that the noise is not Gaussian for deep models (at least) two pos-
sibilities can be considered: the first one is to study the sde with Lèvy Noise instead of
Brownian, using a formalism similar to the one considered in [140], where fractional fpe

have been considered. Several practical difficulties are however tied to this choice, such as
the necessity to numerically approximate the fractional derivative of order α or the necessity
to have full batch evaluations.

The second possibility, that we name i-sgd-α, is to neglect the fact that the noise is non-
Gaussian, treat this as an approximation error, and use for the theoretical calculations the
Gaussian distribution that is closest to the real noise distribution. In particular, for the
one dimensional case, we minimize the l2-distance between p(x) and q(x), where p(x) =√

2πσ2 exp
(
− x2

2σ2

)
and q(x) = F−1 (exp(−|ct|α)). As stated above, in general no closed

form exists for q(x). Thanks to Parseval’s equality, however, we can compute the distance
in the frequency domain between the two distributions, i.e.

C =

+∞∫
−∞

|p(x)− q(x)|2dx =

+∞∫
−∞

|p(t)− q(t)|2dt (7.13)

where p(t) = exp(−σ
2t2

2 ) and q(t) = exp(−|ct|α). Since we are optimizing w.r.t. σ, we can
write the equivalent cost function

Ceq =

+∞∫
−∞

|p(t)|2dt− 2

+∞∫
−∞

p(t)q(t)dt =

+∞∫
−∞

exp(−σ2t2)dt− 2

+∞∫
−∞

exp(−σ
2t2

2
) exp(−|ct|α)dt

√
π

σ
− 2

σ

+∞∫
−∞

exp(−τ
2

2
) exp(−| c

σ
τ |α)dτ =

√
π

σ
− 2
√

2π

σ

+∞∫
−∞

1√
2π

exp(−τ
2

2
) exp(−| c

σ
τ |α)dτ =

1

σ

(√
π −
√

2πET∼N(0,1)[exp
(
−| c
σ
T |α
)

]
)
. (7.14)

Equivalently, we can maximize for r = c
σ , the following function

r
(√

π −
√

2πET∼N(0,1)[exp (−|rT |α)]
)
.

The expected value does not have a closed form solution, but since the integral is single
dimensional, it is possible to integrate numerically and derive the optimal r for a given tail
index, i.e. r̂ = arg minC(r, α) and consequently the optimal σ as σ̂ = c

r̂ . Notice that even
for moderately small values of α (i.e. α > 0.5), the optimal value is roughly 1√

2
, implying

that a matching of the scales is sufficient: σ̃2 = 2c2. The parameters α, c are estimated
(extending the results of [127, 141] to space varying settings) as described below. Given a
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Figure 7.1 – True and i-sgd predictive posterior distributions on a simple example.

sequence of N = N1 ×N2 samples w[n] from an alpha-stable distribution, it is possible to
estimate α, c using

1

α̂
=

1

log(N1)

 1

N2

N2−1∑
i=0

log

∣∣∣∣∣∣
N1−1∑
j=0

w[iN1 + j]

∣∣∣∣∣∣− 1

N

N−1∑
i=0

log |w[i]|

 (7.15)

ĉ = exp(
1

N

N−1∑
i=0

log |w[i]| −
(

1

α̂
− 1

)
γ) (7.16)

where γ = 0.5772156649015329 . . . is the Euler-Macheroni constant. Notice that the com-
putational cost for estimation of the two quantities is dominated by the calculation of
logarithms, in fact for a full sequence of N independent samples the cost is for the estima-
tion of α N + N2 absolute values, N + N2 logarithms, 2N sums, with a per sample cost
roughly equal to the cost of 1 logarithm evaluation, and for the estimation of c the cost
is N logarithms, sums and absolute values (and thus similarly the cost is dominated by
the log evaluation). When considering vectors of independent d−dimensional samples, the
computational cost scales as O(d) logarithms.

7.4.2 A simple toy example

We consider a simple numerical example whereby it is possible to analytically compute the
true posterior distribution. We define a simple 1-D regression problem, in which we have
D trigonometric basis functions: f(x) = w> cos(ωx − π/4), where w ∈ RD×1 contains
the weights of D features and ω ∈ RD×1 is a vector of fixed frequencies. We consider a
Gaussian likelihood with variance 0.1 and prior p(w) = N (0, ID); the true posterior over
w is known to be Gaussian and it can be calculated analytically.

To assess the quality of the samples from the posterior obtained by i-sgd, in Fig. 7.1 we show
the predictive posterior distribution (estimated using Eq. (7.2)) of i-sgd, in comparison to
the “ground truth” posterior. Visual inspection indicates that there is a good agreement
between predictive posterior distributions, especially in terms of uncertainty quantification
for test points far from the input training distribution.
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7.5 Assumptions and convergence to the true posterior.

Our theory shows that the ideal version of i-sgd (7.2.1 holds, andB(θ) is known) converges
to the true posterior with a constant learning rate. This is not the case for existing work.
Even whenB(θ) is assumed to be known, sgfs requires the correction term∇>B(θ)−1 = 0.
Also, both sgrld and sgrhmc require computing ∇>B(θ)−1, for which an estimation
procedure is elusive. The method in [137] needs a constant, diagonal B(θ), a condition
that does not necessarily hold for deep models. Among all the considered variants, i-

sgd is the one that can claim convergence to the true posterior in the broader range of
conditions with a constant learning rate determined according to the theory. Since B(θ)

is estimated, the practical i-sgd can only approximate the true posterior, but having a
consistent estimator the error can be made arbitrarily small by increasing the amount of
data used for the estimation. All other methods requires either restrictive assumptions
about the loss landscape or learning rate annealing to guarantee convergence to the true
posterior. Excluding the first case for preserving generality of the discussion, there is not a
clear way of determining the annealing procedure and the tradeoffs are often chosen based
on the designer experience more than on sound theoretical basis. Often (if not always), in
practice, for all the considered methods practitioners stop the annealing procedure and fix
the learning rate. This allows to gather samples in a finite amount of time but introduces
a bias in the approximation of the posterior that is not reducible by increasing the number
of collected samples. As will be clear from the content of Section 7.6.1, it is not possible to
validate the goodness of the various methods and choices in absolute terms since the true
posterior distribution is not available and only proxy metrics, with limited significance, are
available.

7.6 Experimental Results

We first study i-sgd using standard uci data-sets [142] and a fully connected Multi Layer
Perceptron. Then, we focus on classification and use a CNN (Convolutional Neural Net-
work) on Mnist [143]. We compare i-sgd (with the Gaussian approximation to the es-
timated α-stable distribution) to sghmc [17], sgld [16] and to alternative approaches to
approximate Bayesian inference, including mcd [72], and swag [124], the variational sgd

approach (v-sgd [125]). The code has been written in PYTHON.

7.6.1 A disclaimer on performance characterization

Before diving into the numerical results, the author find of paramount importance to stress
a detail on the analysis of the experimental campaign. The concept is seldom discussed in
the literature, but is important to underline the limitations of the current scientific status
on the subject.
Up to this point, the discussion has been focused on the goodness of the various methods
for representing the true posterior distribution. Different methods can or cannot claim
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convergence to the true posterior according to certain assumptions and the nature of the
hyperparameters (annealing learning rate, etc...). When it comes down to the experimental
validation of the results the following fundamental problem arises: in general we do not have
access to the form of the true posterior, the whole point of sg-mcmc sampling methods is
exactly that we are not able to compute posteriors in general, and thus there is no explicit
way of measuring the goodness of the collected samples. Only in a limited, uninteresting set
of cases, such as the Bayesian linear regression, we can analytically compute the posterior
and measure consequently the performance of the various methods.

In absence of closed form solutions, the usual methodology adopted in the literature is to
adopt sghmc as the golden standard and the various methods are compared against it.
This choice comes however with at least two shortcomings: the first one is that in every
practical situation we are incurring in a logical loop. As long as the learning rate is not
strictly infinitesimal sghmc does not converge to the true posterior. In the literature various
theoretical rates of convergence have been presented for these non ideal cases, but usually
such rates contains unknown constants that are either impossible of extremely difficult to be
estimated. Any comparison with sghmc is therefore, at least in line of principle, vacuous.

Even accepting sghmc as the golden standard, with a leap of faith, it still remains an other
important practical problem: having samples from sghmc and the competitor method that
we want to characterize, how to compute the goodness (distance in probability space)?
Choosing any valid probability distance metric, such as the KL-divergence, there is not an
explicit (and unbiased) way of computing such distance starting from samples. Different
techniques are available in literature but they either rely on parametric assumptions about
the generating distributions, or are not performing when the cardinality of the problem
increases.

The final solution adopted is to compare the different methods in terms of proxy metrics
evaluated on the test sets, such as the accuracy, the uncertainty quantification performance,
the capability of detecting out of distribution samples and many more. It has to be stressed
however that being better in terms of these performance metrics does not imply that the
sampling method is better at approximating the posterior distribution. The shape of the
true posterior distribution is in fact determined by the choice of the likelihood model and
the prior for the parameters. If the likelihood is badly chosen ( known as model misspecifi-
cation) or the prior is not representative of our initial knowledge about the problem, then
a distribution that is not the true posterior could have better test performance metrics. It
is then possible that a method is better than an other in terms of test metrics while being
poorer in terms of goodness of the posterior representation.

The two problems should be orthogonal and independent one on the other. In practice,
for the reasons above described they are not. Moreover, the considered metrics are useful
for any realistic implementation in which we care only about the performance in terms of
uncertainty quantification and similar on a test set, albeit they do not provide information
about the intrinsic quality of the sampling scheme.
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7.6.2 uci regression tasks, with a multi layer perceptron.

We use a multi layer perceptron (MLP) with two layers and a relu activation function;
the hidden layer has 50 units. We use the root mean square error (rmse) for the predictive
performance and the mean negative log-likelihood (mnll) for uncertainty quantification.
At test time we use 100 samples to estimate the predictive posterior distribution, using
Eq. (7.2). All our experiments use 10-splits. In this set of experiments we use for the class
of i-sgd variants an estimation momentum µ = 0.5. We perform a complete analysis of the
i-sgd methodology and consider 6 different variants, described in the following.

• i-sgd-G. The noise is estimated with the Gaussian hypothesis. We use the max
version of Assumption 8. The starting point of the sampling method is the same as
the beginning of sghmc sampling.

• i-sgd-α. It is equal to the previous variant, but the noise is estimated using the α
stable distribution.

• i-sgd-G sum. This variant is again equal to the first variant but we use instead the
sum version of Assumption 8.

• i-sgd-α sum. This variant is again equal to the i-sgd-α variant while using the
sum version of Assumption 8.

• i-sgd-G Ad. As the i-sgd-G variant, but the starting point is a model trained for
20000 iterations using Adam optimizer [75] and learning rate 0.01.

• i-sgd-α Ad. As i-sgd-α but again using as staring point a model trained with
Adam optimizer as the previous case.

We compare ourselves against the following methods:

• sghmc. We use learning rate equal to 0.01 and mdecay 0.01 ( check the original
paper [137] for more details). Notice that the sghmc version we are using is not the
standard one, but an already improved one with respect to the original [17].

• sgld. We use the annealing procedure described in the original paper [16], with initial
learning rate 10−6 and final learning rate 10−8. The warmup period corresponds to
40000 iterations. After the warmup we keep the learning rate constant, as suggested
in both [16] and [98].

• v-sgd C. It is the implementation of the variational scheme described in [125]. The
starting point of the sampling method is again a model trained for 20000 iterations
using Adam and learning rate 0.01.

• v-sgd. As v-sgd C, with the difference that the variance of the noise is estimated,
according to Assumption 7 without removing the mean (i.e. assuming variance equal
to second order moment). This experiment is included to perform an ablation study
on whether the superior performance of i-sgd with respect to v-sgd is due to the
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Table 7.3 – rmse results for regression on uci data-sets.

Method wine protein kin8nm energy power boston concrete
i-sgd-G 0.640 ± 0.04 4.758 ± 0.03 nan ± nan 0.492 ± 0.06 4.521 ± 0.16 3.651 ± 1.17 5.901 ± 0.16
i-sgd-α 0.640 ± 0.04 4.758 ± 0.03 0.078 ± 0.00 0.496 ± 0.06 4.521 ± 0.16 3.651 ± 1.17 5.895 ± 0.17
i-sgd-G sum 0.637 ± 0.04 4.723 ± 0.03 nan ± nan 0.490 ± 0.06 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
i-sgd-α sum 0.637 ± 0.05 4.723 ± 0.03 0.078 ± 0.00 0.491 ± 0.06 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
i-sgd-G Ad 0.637 ± 0.04 4.723 ± 0.03 nan ± nan 0.490 ± 0.06 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
i-sgd-α Ad 0.637 ± 0.04 4.723 ± 0.03 0.078 ± 0.00 0.490 ± 0.05 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
sghmc 0.629 ± 0.04 4.721 ± 0.03 0.077 ± 0.00 0.487 ± 0.05 4.309 ± 0.14 3.624 ± 1.22 5.791 ± 0.23
sgld 0.733 ± 0.05 5.602 ± 0.08 nan ± nan 2.862 ± 0.32 10.520 ± 2.24 9.454 ± 1.99 14.084 ± 0.94
v-sgd C 0.633 ± 0.04 4.684 ± 0.02 0.078 ± 0.00 nan ± nan nan ± nan nan ± nan 5.675 ± 0.54
v-sgd 0.636 ± 0.05 4.723 ± 0.03 0.078 ± 0.00 0.504 ± 0.08 6.085 ± 5.23 nan ± nan 5.669 ± 0.26
Baseline 0.635 ± 0.05 4.736 ± 0.03 0.080 ± 0.00 0.497 ± 0.06 4.353 ± 0.12 3.678 ± 1.21 5.544 ± 0.22

goodness of the sampling method or simply due to the stability introduced by As-
sumption 7.

• Baseline. The single sample result obtained by training the model 20000 iterations
using Adam and learning rate 0.01.

If not stated differently for the single methods, we consider a warmup period of 10000 and
we do store a sample every 1000 iterations (the technical name in the sg-mcmc community
is keepevery, whose value in this case is 1000) for all methods. In this set of experiments
we omit results for swag and mcd, which we keep for more involved scenarios.
Tabs. 7.3,7.4 present an overview of our results. The two metrics considered are the root
mean squared error (RMSE) and the mean negative log likelihood (MNLL) (in both cases
the lower, the better). As anticipated, all experiments are performed over 10 random splits.
If any of the runs over the splits for a particular algorithm did diverged we indicate it with
a nan (this is useful to assess robustness of the various methods). The sheer observation
of the best performing algorithm would indicate that, not differently from the literature
expectations, sghmc is the best performing algorithm. We would like to underline however
that in most cases i-sgd variants are very close, especially if considering the standard
deviations of the performance and the improvements with respect to the baseline. All i-

sgd methods perform essentially on par, outperforming alternatives in some cases. For this
set of experiments we had no luck in obtaining good results with sgld. The two considered
variants of v-sgd are generally slightly worse than the i-sgd family. However in most cases
they still improve the results with respect to the naive baseline. As a general comment, the
difference between the baseline and the different sampling schemes is more evident in terms
of MNLL, a metric more linked to uncertainty quantification than the basic RMSE.
We moreover include an analysis of the speed of convergence for i-sgd-α, i-sgd-G com-
pared with sghmc for the WINE dataset by continuing the sampling collecting 1000 sam-
ples (Figure 7.2). For this first set of experiments it seems that the presence of momentum
do help sghmc converging faster.

7.6.3 Classification tasks, with deeper models.

In this set of experiments we use a LeNet-5 (Convolutional Neural Network) on the Mnist

dataset [143] to perform classification.
We compare different methods in terms of
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Table 7.4 – mnll results for regression on uci data-sets

Method wine protein kin8nm energy power boston concrete
i-sgd-G 1.095 ± 0.12 4.396 ± 0.03 nan ± nan 0.711 ± 0.14 3.095 ± 0.06 3.141 ± 0.77 6.627 ± 0.54
i-sgd-α 1.095 ± 0.12 4.396 ± 0.03 -0.499 ± 0.65 0.737 ± 0.14 3.095 ± 0.06 3.140 ± 0.77 6.621 ± 0.53
i-sgd-G sum 1.085 ± 0.12 4.349 ± 0.03 nan ± nan 0.710 ± 0.13 3.083 ± 0.07 3.227 ± 0.88 6.384 ± 0.55
i-sgd-α sum 1.094 ± 0.13 4.349 ± 0.03 -0.508 ± 0.64 0.811 ± 0.21 3.083 ± 0.07 3.227 ± 0.88 6.385 ± 0.56
i-sgd-G Ad 1.085 ± 0.12 4.349 ± 0.03 nan ± nan 0.710 ± 0.13 3.083 ± 0.07 3.227 ± 0.88 6.384 ± 0.55
i-sgd-α Ad 1.085 ± 0.12 4.349 ± 0.03 -0.511 ± 0.65 0.716 ± 0.13 3.083 ± 0.07 3.227 ± 0.88 6.385 ± 0.56
sghmc 1.044 ± 0.12 4.150 ± 0.02 -0.785 ± 0.38 0.927 ± 0.27 2.932 ± 0.04 3.074 ± 0.84 5.601 ± 0.43
sgld 1.452 ± 0.18 5.496 ± 0.10 nan ± nan 99.089 ± 41.12 7.648 ± 2.24 35.004 ± 16.58 114.546 ± 38.16
v-sgd C 1.122 ± 0.14 4.347 ± 0.03 -0.506 ± 0.64 nan ± nan nan ± nan nan ± nan 39.396 ± 23.68
v-sgd 1.130 ± 0.14 4.393 ± 0.04 -0.497 ± 0.65 5.885 ± 2.69 3.685 ± 1.98 nan ± nan 41.911 ± 8.30
Baseline 1.179 ± 0.02 3.967 ± 0.03 0.924 ± 0.00 1.048 ± 0.03 3.071 ± 0.06 5.376 ± 2.79 13.838 ± 1.03
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Figure 7.2 – Convergence speed of sghmc and i-sgd for the WINE dataset. To improve
readability the metrics are shifted vertically with respect to the value of the sghmc method
at time instant 0.

• Accuracy (acc). The percentage of correctly classified samples (the higher, the better)

• Mean negative log likelihood mnll (the lower, the better).

• Mean entropy for the test dataset. The entropy of the output of an Ncl classes

classifier, represented by the vector p, is defined as −
Ncl∑
i=1

pi log pi (so the lower, the

better).

• Expected calibration error (ece). It is the average, across all values of p ∈ [0, 1],
of the difference between the confidence of the model and its actual precision. Zero
is a perfect value. A value greater than zero indicates an overconfident model and
viceversa for a value smaller than zero.

• Mean entropy for the NotMnist dataset. It is the entropy at the output of the
classifier when the input is taken from a different dataset. It is a test of detection
capability of out of distribution samples (the higher, the better).

Also in this set of experiments we consider different variants of i-sgd:

• i-sgd-G. Noise is estimated under the Gaussian hypothesis. The version of Assump-
tion 8 is the max one. The starting point of the sampling scheme is a model pretrained
for 20000 iterations using Adam with learning rate 0.01.

• i-sgd-α. As the previous version but using alpha stable noise estimation procedure.
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Table 7.5 – Results for classification on Mnist data-set.

Method acc mnll mean H0 ece mean H1

i-sgd-α 9926.3333 ± 1.8856 244.7462 ± 2.3174 0.0413 ± 0.0007 0.0512 ± 0.0002 0.8268 ± 0.0420
i-sgd-G 9924.6667 ± 2.6247 239.2841 ± 1.8637 0.0414 ± 0.0007 0.0509 ± 0.0004 0.7937 ± 0.0268
i-sgd-α sum 9922.0000 ± 1.4142 245.4821 ± 2.2720 0.0415 ± 0.0004 0.0506 ± 0.0001 0.8237 ± 0.0085
i-sgd-G sum 9924.3333 ± 0.9428 244.1239 ± 1.7034 0.0415 ± 0.0006 0.0508 ± 0.0002 0.8367 ± 0.0448
sghmc 9932.3333 ± 3.6818 259.7695 ± 11.2759 0.0584 ± 0.0016 0.0532 ± 0.0005 1.1733 ± 0.0596
sgld 9931.0000 ± 2.9439 240.1740 ± 5.5880 0.0485 ± 0.0008 0.0523 ± 0.0003 1.1940 ± 0.0664
v-sgd 9922.3333 ± 5.2493 229.5869 ± 5.9108 0.0288 ± 0.0003 0.0486 ± 0.0002 0.0619 ± 0.0066
v-sgd C 9922.6667 ± 4.7842 223.7863 ± 4.1745 0.0287 ± 0.0003 0.0485 ± 0.0001 0.0792 ± 0.0231
mcd 9923.0000 ± 4.9666 331.6276 ± 11.3830 0.0910 ± 0.0014 0.0543 ± 0.0003 0.6179 ± 0.0831
swag 9916.3333 ± 2.4944 282.0489 ± 6.1477 0.0524 ± 0.0018 0.0517 ± 0.0003 0.4667 ± 0.0562

• i-sgd-G sum. As the first version but using the sum version of Assumption 8.

• i-sgd-α sum. As the second version but using the sum version of Assumption 8.

We compare our method against the following competitors:

• sghmc. The learning rate is 0.01 and the mdecay is 0.01. The warmup period is
10000 iterations.

• sgld. The initial learning rate is set to 10−5 while the final one is 10−3. The warmup
period is 40000 iterations.

• v-sgd. and v-sgd C. The two variants of the sampling scheme are initialized with
a model pretrained using the same procedure as the i-sgd family.

• swag. The initial pretraining is again the same as the i-sgd cases. The measurements
are collected every epoch for 100 epochs.

• mcd. The pretraining is done for 20000 iterations using sgd with learning rate 0.001
and momentum 0.5. The model is modified to include learnable dropout rates for all
the parameters. Differently from the other schemes, at test time we use 1000 samples.

We stress the fact that neither swag or mcd are sg-mcmc methods. For all the sg-mcmc

methods, including v-sgd and variant, we collect 100 samples every 10000 iterations. The
considered batch size for all methods is 128. The estimation momentum for i-sgd is again
0.9 for all variants.

Results, obtained by averaging over three random seeds, are presented in Table 7.5. For
this set of experiments, v-sgd C is the best performing algorithm for most of the metrics,
besides from the out of distribution entropy where it fails spectacularly. The i-sgd variants
perform similarly to sgld and in general they outperform sghmc. An honest comment
is that however, in general, the sampling methods perform similarly. It is interesting to
notice the difference between the two non sg-mcmc methods (mcd and swag) for which
the performance are generally poorer than the cluster represented by sg-mcmc methods.
We stress that also this set of results confirms the desired behaviour: to be able to obtain
competitive results with a possibly simpler algorithm.
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7.7 Conclusion

sg methods allowed Bayesian posterior sampling algorithms, such as mcmc, to regain rel-
evance in an age when data-sets have reached extremely large sizes. However, despite
mathematical elegance and promising results, standard approaches from the literature are
restricted to simple models. The sampling properties of these algorithms are determined
by simplifying assumptions on the loss landscape, which do not hold for deep networks.
sg-mcmc algorithms require vanishing learning rates, which force practitioners to develop
creative annealing schedules that are often model specific and difficult to justify.
We have attempted to target these weaknesses by suggesting a simpler algorithm that relies
on fewer parameters and mild assumptions compared to the literature. We introduced a
unified mathematical notation to deepen our understanding of the role of the sg noise and
learning rate on the behavior of sg-mcmc algorithms. We presented a practical variant
of the sgd algorithm, which uses a constant learning rate, and an additional noise to
perform Bayesian posterior sampling. Our proposal is derived from an ideal method, which
guarantees that samples are generated from the true posterior. When the noise terms
are empirically estimated, our method automatically determines the learning rate, and it
offers a very good approximation to the posterior, as demonstrated by our experimental
campaign.
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Conclusion and Perspectives

The work presented in this thesis is meant to improve robustness and scalability of machine
learning models, with applications to the airline industry. We conclude this thesis by
summarising the principal themes and contributions presented in the preceding chapters,
with particular emphasis on their significance in the context of complementary work in this
direction of research. This is followed by a brief outlook on possible avenues for future work
where we indicate how one might go about achieving these objectives.

8.1 Themes and Contributions

In this thesis, we primarily investigated the following themes related to machine learning
and airline industry:

• Uncertainty in ticket price evolution [Chapter 3]

Airline companies use convoluted dynamic pricing strategies to maximize their rev-
enues. This strong price instability causes concerns among travellers, which do not
know how to face the uncertainty arising therefrom. In Chapter 3 we proposed three
practical approaches to help travellers in dealing with uncertainty in ticket price evo-
lution. Using the Value at Risk concept, we provide information on the smallest
amount of money the user would pay in addition, with a certain probability, if he
waits α days to buy the ticket. The evaluation of the quantile regression models
shows generally calibrated predictions and good conditional density estimations. The
regret approach, instead, provides directly a suggestion about whether to buy or wait.
We evaluate it computing the amount of money that is lost, in relative terms, when
relying on the output provided by the model instead of the hindsight decision, which
shows that the proposed approach makes the user save money. The last approach
estimates the expected profit of the option of buying the ticket in α days with today’s
price. Compared to the actual profit, we show that the proposed pricing model is fair.
While the first and third approaches provide useful money information, the second
one has the advantages of lending a practical suggestion about whether to buy the
ticket or wait.
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• Model performance monitoring [Chapter 4]

Accurate travel products price forecasting is a highly desired feature that allows cus-
tomers to take informed decisions about purchases, and companies to build and offer
attractive tour packages. Thanks to machine learning, it is now relatively cheap to
develop highly accurate statistical models for price time-series forecasting. However,
once models are deployed in production, it is their monitoring, maintenance and im-
provement which carry most of the costs and difficulties over time. In Chapter 4 we
introduced a data-driven framework to continuously monitor and maintain deployed
time-series forecasting models’ performance, to guarantee stable performance of travel
products price forecasting models. Under a supervised learning approach, we predict
the errors of time-series forecasting models over time, and use this predicted perfor-
mance measure to achieve both model monitoring and maintenance. The experimental
evaluation shows accurate forecasting error predictions, which proves the framework’s
reliability in carrying out model monitoring and allows for dynamic model selection.

• Sparsified Asynchronous SGD [Chapter 6]

The latest advances in machine learning, together with the increasing availability of
massive datasets, have given rise to the research field of large-scale machine learn-
ing, where deep learning models with billions of parameters are trained on very big
datasets. Large-scale machine learning relies on distributed optimization, whereby
several machines contribute to the training process of a statistical model, using
Stochastic Gradient Descent as optimization method. In Chapter 6 we studied the
performance of asynchronous, distributed settings, when applying sparsification, a
technique used to reduce communication overheads. In particular, for the first time
in an asynchronous, non-convex setting, we theoretically prove that, in presence of
staleness, sparsification does not harm SGD performance: the ergodic convergence
rate matches the known result of standard SGD, that is O(1/

√
T ). The empirical

study that we carried out to complement our theory confirms that the effects of spar-
sification on the convergence rate are negligible, when compared to “vanilla” SGD,
even in the challenging scenario of an asynchronous, distributed system. These re-
sults carry over when the system scales out, which is a truly desirable property.

• Bayesian posterior sampling [Chapter 7]

Latest advances in machine learning research have led to the use of such models in
an ever increasing number of applications, including ones previously requiring hu-
man expertise. The adoption of machine learning models to sensitive applications has
hence sparked a resurgence of interest in probabilistic modelling, which is inherently
intended to capture the uncertainty or lack of knowledge a model might have about
a learned task, through the use of Bayesian inference. Although conceptually sim-
ple, applying Bayesian inference poses a number of computational challenges, due to
high-dimension operations and non-analytical equations. Several stochastic gradient
MCMC algorithms have been proposed to carry out approximate Bayesian inference.
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Despite mathematical elegance and some promising results restricted to simple mod-
els, however, most of these works fall short in easily dealing with the complexity of the
loss landscape of deep models, for which stochastic optimization poses serious chal-
lenges. In Chapter 7 we introduced a novel, practical approach to posterior sampling,
which makes the SG noise isotropic using a fixed learning rate that we determine
analytically, and that requires weaker assumptions than existing algorithms. Our ex-
tensive experimental validations indicate that our proposal is competitive with the
state-of-the-art on SG-MCMC, while being much more practical to use.

8.2 Future work

Beyond the extensive discussion featured in this thesis, the themes explored in this body of
work not only motivate immediate extensions for improvement, but also set the foundations
for broader long-term objectives. In this section, we expand upon the directions for future
work which we believe to be particularly pertinent to ongoing developments in both the
practical and theoretical aspects of machine learning discussed in this thesis.

8.2.1 Uncertainty in ticket price evolution

Finding the best moment to buy. In Section 3.2 we proposed three approaches to deal
with uncertainty in ticket price evolution. All of them consider two options: buying the
ticket at time t or at time t+ α. However, this kind of application turns out to be limited.
If we consider a normal user which searches for a flight ticket, usually this is interested in
knowing which is the best moment to buy the ticket, considering the whole period before
the departure. Thus, the use-cases we discussed in this work represent just particular cases
of the more general application, which acts as a decision-making tool and suggests the best
moment to buy a ticket.
This setting is similar to the well-known secretary problem [144] and it can be solved using
the optimal stopping theory [145], which is concerned with the problem of choosing a time to
take a particular action, in order to maximise an expected reward or minimise an expected
cost. The approach we described in Section 3.2.5 can be therefore improved by applying
such theory.
Quantile regression approach. In Section 3.2.5 we introduced a strategy to help trav-
ellers in dealing with uncertainty in ticket price evolution which provides a suggestion about
whether to buy at time t or wait α days more, using the quantile function of ∆ = pt+α− pt
(Table 3.3). However, we saw that this strategy has some limitations. Firstly, it signifi-
cantly depends on the quantile τ , a parameter that represents the user’s risk appetite, thus
its generalization is reduced. Secondly, even fixing τ , an important role is played by the
distribution of ∆ and we have seen an example where by following the model’s suggestion,
we end up taking the risk of loosing a large amount of money, to save a small amount.
A solution to this problem is to introduce some thresholds on the ∆ values. In this way
we could define what are the significant gains and losses, which are crucial in the decision
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about whether to buy or wait. This problem is related to prospect theory [146], which
assumes that losses and gains are valued differently and thus individuals make decisions
based on perceived gains instead of perceived losses.

8.2.2 Stochastic optimization

Sparsified asynchronous SGD. In Section 6.4 we provided the convergence analysis of
SGD when the joint effects of sparsification and asynchrony are taken into account and we
limited the study to the memory-less variant of SGD. However, in our empirical study we
compared also the memory variant and we verified that this considerably benefits from the
error correction technique. Thus, the first extension of this work is to study the convergence
of sparsified SGD with memory, in asynchronous settings.
Beside this, it would be interesting to investigate the connection between gradient sparsifi-
cation and recent studies showing that the landscape of the loss surface of deep models is
typically sparse [119, 100, 120]. In light of such works, [121] suggests that sparsification can
be directly applied to model parameters, albeit training requires multiple stages. Gradient
sparsification could then be studied as a mechanism to favor model compression at training
time.
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Appendix A

Additional regret results

In Section 3.2.5 we introduced two approaches to help travellers in dealing with uncertainty
in ticket price evolution, both providing a suggestion about whether to buy at time t or
wait α days more. We put in this section the regret results obtained using the strategy
in Table 3.3, using SQR as quantile regression model. To simplify the procedure, we select the
quantile τ that gives the minimum regret. Results show that the two machine learning models
have similar performance, with RF providing slightly smaller expected regret.

α = 1 α = 7 α = 30
RF 0.0087 0.0076 0.0301
SQR 0.0088 0.0094 0.0325
Now 0.0088 0.0133 0.0447
Later 0.0177 0.0118 0.0341
Random 0.0132 0.0125 0.0395

Table A.1 – Expected regret results for different values of lag α, time-based split.

α = 1 α = 7 α = 30
RF 0.0092 0.0094 0.0185
SQR 0.0111 0.0135 0.0190
Now 0.0111 0.0152 0.0437
Later 0.0205 0.0153 0.0361
Random 0.0158 0.0152 0.0398

Table A.2 – Expected regret results for different values of lag α, random split.

A.0.1 Optimal τ

Given that in the results shown above we used the best τ , it is worth to understand how this
optimal τ varies with respect to α and DTD. In Figure A.1 we see that this has high values when
dealing with α = 1, while in the two remaining cases the behavior is different. For α = 7 we can
use very low quantiles, in case of large DTDs, and medium quantiles for the rest. The trend is
similar with α = 30, except that the quantiles are much larger when DTD is small. This tells us
that when the decision about whether to buy or wait relates 1 or 30 days (up to 6 months before
the departure) of lag, the verdict helps risk-adverse people, corresponding to bigger τ . Instead,
when the problem is about whether to buy now or wait one week, the model is more suited for
risk-tolerant people. These results are in line with what we have seen in Figure 3.11, in that 30 days
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is a lag where prices vary a lot and make risk-adverse people to naively adopt the Now strategy,
because of the future uncertainty. For seven days, instead, the model addresses people who are
ready to wait one more week, but that doing this end up paying more. In this case, results show
that using SQR it is possible to save money.

Figure A.1 – Optimal τ as function of α and DTD



Appendix B

Isotropic SGD: Proof of theorems

B.0.1 Proof of Theorem 1

The stationary distribution of the above sde, ρ(θ) ∝ exp(−φ(θ)), satisfies the following fpe:

0 = Tr
{
∇
[
∇> (f(θ))P (θ)ρ(θ) + η∇>(P (θ)2Σ(θ)ρ(θ))

]}
,

that we rewrite as

0 = Tr{∇[∇> (f(θ))P (θ)ρ(θ)− η∇>(φ(θ))P (θ)2Σ(θ)ρ(θ) + η∇>(P (θ)2Σ(θ))ρ(θ)]}.

The above equation is verified with ∇f(θ) = ∇φ(θ) if∇
>(P (θ)2Σ(θ)) = 0

ηP (θ)2Σ(θ) = P (θ)→ ηP (θ) = Σ(θ)−1

that proves Theorem 1.

B.0.2 Proof of Theorem 2

As before we assume that the stationary distribution has form ρ(z) ∝ exp(−φ(z)). The corre-
sponding fpe is:

0 = Tr

(
∇

(
s(z)>

[
0 −P (θ)

P (θ) A(θ)

]
ρ(z) + η

(
∇> (D(z)ρ(z))

)))
.

Notice that since ∇>D (z) = 0 we can rewrite:

0 = Tr

(
∇

(
s(z)>

[
0 −P (θ)

P (θ) A(θ)

]
ρ(z) + η∇>(ρ(z))D(z)

))

= Tr

(
∇

(
s(z)>

[
0 −P (θ)

P (θ) A(θ)

]
ρ(z)− η∇>(φ(z))D(z)ρ(z)

))

= Tr

(
∇

(
s(z)>

[
0 −P (θ)

P (θ) A(θ)

]
ρ(z)− η∇>(φ(z))

[
0 0

0 P (θ)2Σ(θ)

]
ρ(z)

))
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that is verified with ∇φ(z) = s(z) if:∇
>P (θ) = 0

A(θ) = ηP (θ)2Σ(θ).

If ∇>P (θ) = 0, in fact:

Tr

(
∇

(
∇>(φ(z))ρ(z)

[
0 −P (θ)

P (θ) 0

]))
= ∇>

([
0 −P (θ)

P (θ) 0

]
∇(φ(z))ρ(z)

)
=

∇>
([

0 −P (θ)

P (θ) 0

])
∇(φ(z))ρ(z) + Tr

([
0 −P (θ)

P (θ) 0

]
∇
(
∇>(φ(z))ρ(z)

))
= 0,

since ∇>
[

0 −P (θ)

P (θ) 0

]
= 0 and the second term is zero due to the fact that

[
0 −P (θ)

P (θ) 0

]
is anti-symmetric while ∇

(
∇>(φ(z))ρ(z)

)
is symmetric.

Thus we can rewrite:

Tr

(
∇

(
s(z)>

[
0 −P (θ)

P (θ) A(θ)

]
ρ(z)− η∇>(φ(z))

[
0 0

0 P (θ)2Σ(θ)

]
ρ(z)

))
=

Tr

(
∇

(
s(z)>

[
0 −P (θ)

P (θ) A(θ)

]
ρ(z)−∇>(φ(z))

[
0 0

0 ηP (θ)2Σ(θ)

]
ρ(z)

))
=

Tr

(
∇

(
s(z)>

[
0 −P (θ)

P (θ) A(θ)

]
ρ(z)−∇>(φ(z))

[
0 0

0 A(θ)

]
ρ(z)

))
=

Tr

(
∇

((
s(z)> −∇>(φ(z))

)[ 0 −P (θ)

P (θ) A(θ)

]
ρ(z)

))
= 0

then, ∇φ(z) = s(z), proving Theorem 2.
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