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Abstract—Network slicing is considered to be the enabler
for a coexistence of a multitude of services with heterogeneous
requirements on a multi-tenant 5G infrastructure. In the core
network, it has shown its potential in customizing and extending
service-specific functionality beyond a mere configuration. In the
radio access network (RAN) however, service customization and
functionality extension remain a challenge due to the rigid and
complex nature of the RAN and the fact that all services have
to be mapped onto the scarce radio resources. In this article, we
present the RAN service engine that allows services to customize
and extend RAN functionality using containerized micro-services.
This is achieved through micro-SDKs that abstract key RAN
control endpoints, and which can then be used by the services
to flexibly customize and extend the RAN in order to steer
control plane behavior. Through these micro-SDKs, the engine
can enforce isolation between services while multiplexing them
efficiently onto the infrastructure. We also present a concrete
implementation of the engine with its key micro-SDKs, and
demonstrate the feasibility through a prototype for the MAC
scheduling control endpoint, showing the versatility of the RAN
engine.

Index Terms—5G, RAN, Service, Customization, Extension,
Slicing, Cloud-Native.

I. INTRODUCTION

The forthcoming fifth generation (5G) mobile communi-
cation standards is a paradigm shift beyond the new radio
and wider spectrum. It is about the evolution of computing
for wireless networks in support of a variety of services and
capabilities in diverse usage scenarios, such as low-latency and
ultra-reliable communication (URLLC) [1]. These use cases
exhibit characteristics that are partially incompatible to a mere
enhancement of network performance or protocols. Given that
the vertical market is the main driving force of 5G, the network
shall be tailored to meet the respective service requirements
in terms of (a) openness to allow services to control and
customize the network towards their needs, and (b) network
delivery on an as-a-service basis [2].

To tackle this problem, the concept of network slicing [3]
emerged to overlay a common infrastructure with multiple,
logically separated spaces for each service. In such an architec-
ture, an infrastructure provider owns the network and requires
to efficiently multiplex many services onto this multi-tenant
infrastructure. On the other hand, service providers such as
verticals wish to provide their service without having to run
a full-fledged network. However, they need to customize the
network to tailor it towards their needs, and ideally maintain
control over the network running their service.

For the radio access network (RAN), the concept of RAN-
as-a-service (RANaaS) [4] emerged as a way of running
multiple services concurrently and efficiently, while having a
relative freedom of customization. However, to the best of
our knowledge, the current state of the art does not fully
address how RANaaS could be realized. Instead, different
concepts have been applied to realize aforementioned service-
oriented vision: software-defined networking (SDN) and its
close relative software-defined RAN (SD-RAN) have been
used to bring programmability to the network for monitoring,
control and coordination of the network. Network function
virtualization (NFV) has been used to facilitate the life cycle
management of the RAN, and cloud-native principles such
as containerization and micro-services have been applied to
quickly deliver and update new features. This calls for a holis-
tic approach combining mentioned principles when realizing
RANaaS. In particular, it is of paramount importance to use
5G’s flexibility and enable a lightweight and customizable
RAN service definition on top of a common infrastructure,
rather than overloading service providers by running quasi-
complete virtualized RANs (e.g., through a hypervisor [5]).

To address these issues, we analyze the existing RAN ar-
chitecture and propose a system that allows to specify services
and their behavior with minimal overhead while guaranteeing
functional isolation and efficient multiplexing. In particular,
the proposed solution does not depend on a full-fledged
hypervisor approach, rendering the service implementation a
complicated task. Instead, it abstracts (synthesizes) a base
station, virtualizes control plane endpoints as micro Service
Development Kits (micro-SDKs) and delivers it on an as-a-
service basis. The micro-SDKs are abstractions of atomic RAN
control plane functionality, such as scheduling, and enable
services to configure, customize and extend the desired pro-
cessing behavior independently on top of a shared base station
processing pipeline, i.e., chained RAN processing functions,
using service-specific RAN controllers while capturing the
service characteristics and preserving security. Furthermore,
similar to NFV, services can register service-specific control
logic in the form of micro-services, effectively opening up the
RAN towards service-specific customization and extensions.

In summary, this paper makes the following contributions:
• A RAN service engine that multiplexes services onto a

common RAN infrastructure;
• A synthesized description of a base station with micro-

SDKs that allow to modify RAN control plane behavior;
• A description of services as a set of containerized micro-
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TABLE I
MAIN ACRONYMS USED IN THIS ARTICLE.

Name Approach

CP Control Plane
CU-CP Centralized Unit-Control Plane
CU-UP Centralized Unit-User Plane
DU Distributed Unit
eMBB enhanced Mobile BroadBand
MAC Medium Access Control
micro-SDK micro Service Development Kit
NFV Network Function Virtualization
PDCP Packet Data Convergence Protocol
PHY PHYsical layer
RANaaS RAN-as-a-Service
RAN Radio Access Network
RLC Radio Link Control
RRC Radio Resource Control
RRM Radio Resource Management
RU Remote Unit
SDAP Service Data Adaptation Protocol
SDN Software-Defined Networking
SD-RAN Software-Defined RAN
UP User Plane
URLLC Ultra-Reliable Low-Latency Communications

services to customize the RAN’s control plane behavior,
allowing to implement a service-specific RAN controller;

• A concrete prototype implementation of a selected set of
micro-SDKs and micro-services based on the OpenAir-
Interface [6] and Mosaic5G [7] platforms, and experimen-
tal results highlighting its performance and capabilities.

The paper is organized as follows: in Section II, we review
related work on network slicing and RAN customization. In
Section III, we explain the current RAN architecture and the
challenges that lie on the way to create a service-oriented
network. Section IV gives an overview of how to customize
the existing RAN through our envisioned architecture. The
description of a service as well as how processing can be
customized is explained in Section V, and the micro-SDKs
are discussed in Section VI. Section VII evaluates the archi-
tecture, Section VIII briefly highlights the lesson learned, and
Section IX concludes.

II. RELATED WORK

Network slicing is an actively researched field. In the core
network, network slices can be deployed and customized
through virtual network functions running on a common
infrastructure [8] through the concept of network function
virtualization (NFV). The slice-based “network store” archi-
tecture [9] proposes a collection of 5G network functions
to chain service-specific functionality, similar to a mobile
app store. Furthermore, the application of cloud-native princi-
ples [10], such as containerized micro-services, improves the
life cycle management of slices. The aspects of agility and
scalability, i.e., fast deployment of network slices and scaling
to network load, are further desirable aspects of cloud-native
architectures1.

Regarding the RAN domain, many works focus on the
virtualization of radio resources. The network virtualization

1Cf. the Cloud Native Computing Foundation CNCF: https://www.cncf.io/

substrate (NVS) [11] virtualizes radio resources at the level
of the medium access control (MAC) layer for different
resource provisioning resources for an arbitrary number of
service providers, but without considering functional isolation
between them. The work in [12] generalizes this concept to a
two-level scheduler that abstracts radio resources from physi-
cal resource blocks (PRB) to virtual resource blocks (vRB) to
accommodate slices slices. However, no further customization
of the RAN is considered. The two-level scheduler approach
is further formalized in [13], showing that a parameterization
can strike a balance between isolation and multiplexing gains.

In recent years, RAN slicing with a focus on customization
and extensibility is investigated to enable a multi-tenant RAN,
e.g., to enable service delivery for verticals. Early works [14]
focused on the flexible RAN, i.e., using functional splits, to
realize network slices. A parameterization of the upper RAN
layers was proposed to realize different slices. The param-
eterization concept was further investigated by using slice
descriptors [15] to configure the RAN towards different slices.
However, in both cases the authors do not consider dynamic
service-specific functional customizations of the slices. The
work in [16] analyzes gaps in the current 5G architecture and
proposes a slice-aware programmable architecture including
a cloud-enabled protocol stack for slice differentiation in the
RAN. Furthermore, the authors of [2] investigate enablers and
open challenges for slicing with a focus on the openness of
the RAN for vertical service customization. The customization
capabilities and trade-offs of the 5G RAN on slicing are
investigated in [17] with a particular focus on physical layer
considerations for different slices. However, the authors do not
consider the customization of higher layers.

With the disaggregation of the RAN into network func-
tions (distributed unit, DU, centralized unit-control plane,
CU-CP, and centralized unit-user plane, CU-UP) as specified
by 3GPP [18], the RAN enables finer per-network function
customization following NFV principles. In [19], the authors
analyze the 5G RAN network functions with respect to the
different sharing options, and investigate the level of cus-
tomization and isolation of these options. Reference [20] crit-
icizes that the current 5G-RAN standard does not specify the
slice behavior, and harmonizes 3GPP and NFV viewpoints to
enable the translation of slice requirements into customized
RAN functionality through virtual network functions.

Programmability has been introduced through the applica-
tion of software-defined networking (SDN) which decouples
control plane from user plane processing to facilitate the
customization of RAN processing. Early works [21], [22],
[23] centralized control plane functionality to benefit from
cloudification and virtualization for customization and coordi-
nation purposes. SDN in the RAN has been explored with the
software-defined RAN (SD-RAN) controller FlexRAN [24],
[25] that implements a customized south-bound API for such
control plane (CP) and user plane (UP) separation. This allows
to push programmable logic into the base station, but no
service isolation has been studied. Recently, such software-
defined RAN control has also attracted interest from a com-
mercial perspective with the emergence of the O-RAN RAN
Intelligent Controller (RIC) [26].
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TABLE II
COMPARISON OF SOME BASE STATION AND SERVICE CUSTOMIZATION APPROACHES IN THE LITERATURE.

Name Approach Isolation Level Cust. Granularity Cust. Overhead Processing State

Network Store [9] NFV Service Network Function Fat Stateful
FlexRAN [24], [25] SDN Controller Base station Push control logic Light N/A
O-RAN RIC [26] SDN Controller Base station No N/A N/A
Ferrús [15] Configuration/SDN Service No N/A N/A
Orion [5] Hypervisor Service Complete control plane Fat Stateful Slice Controller
RAN Runtime [27] Multi-level SDN Controller Service RAN Layer Medium Stateful RAN layer
Engine (this paper) Micro-SDK Composition Service Per control endpoint Light Stateless Micro-services

The authors of [27] propose a RAN runtime system that
can dynamically slice and customize a RAN to meet slice
requirements, such as isolation, sharing, and customization
options. The system fulfills RAN customization requirements
by replacing RAN layers, but does not address micro-
customizations for individual control plane logic and possible
state conflicts between the slice-specific RAN layers. Full slice
virtualization has been explored through Orion [5]. The idea
is that a hypervisor abstracts the RAN on a per-service basis
and multiplexes the radio resources of each service onto the
common resources. However, this approach has the drawback
of a “fat virtualization” approach where a stateful network
function implements the control plane of a complete service
on top of the hypervisor.

Table II summarizes a selection of the existing work on
RAN customization and extension and compares it with
respect to the used approach, the level of isolation, what
processing elements can be customized and the corresponding
overhead, and whether these processing elements are stateful
or not. We observe that the existing work only partially
combine and apply SDN, NFV, and cloud-native principles
in the design of a multi-service RAN architecture. Simultane-
ously enabling programmability, virtualization, customizability
and extensibility, as well as agility and scalability on the
fundamentally shared multi-tenant RAN infrastructure, is the
main, yet unresolved, challenge addressed by this paper.

III. BACKGROUND AND RAN CUSTOMIZATION
CHALLENGES

From a conceptual perspective, the base station can be
divided into multiple RAN network functions with distinct
functionalities [18], [28], forming a RAN processing pipeline
(we will use the terms “base station” and “(RAN) pipeline”
interchangeably): the CU-CP contains the radio resource con-
trol (RRC) for radio resource management (RRM), the CU-
UP handles user plane-related functionality, and both are con-
nected via the F1 midhaul [29] to the DU, which handles MAC
functionality, such as radio resource scheduling. The DU in
turn connects to one or more remote units (RU) via a fronthaul
split such as eCPRI [30] or the O-RAN fronthaul [31], which
also defines the split point of the physical (PHY) layer.

To link these network functions, 3GPP defined functional
splits. It is therefore possible to disaggregate a base station
and place parts of a base station in a central cloud (e.g.,
the CU), whereas others remain closer to the edge of the
network (e.g., DU in a cell aggregation site, the RU is at the

cell towers). With RAN disaggregation, a base station may
be partially shared and partially dedicated, e.g. multiple CU-
UPs can be created to (a) balance load and (b) implement
service-specific functionalities on top of the shared RAN.
However, the architecture is also quite coarse in the sense
that service-specific customizations can only be carried out
on a per-network function base, and typically only one CU-
CP exists for many DUs and CU-UPs. Furthermore, the cus-
tomization of RAN network functions to meet service needs
is implementation-specific. For instance, each cell is typically
composed of one DU and no standard way for service-specific
customizations exists. Scalability and agility are limited, since
no clear framework for instantiation and migration of services
is in place.

SDN is supported through the decoupling of the CU into a
CP and UP part. However, we note that each CU-UP might
host service-specific control plane functions (e.g., scheduling
of multiple applications within the service data adaptation
protocol [SDAP]/packet data convergence protocol [PDCP]
layers), and that the CU-CP hosts control functions for dif-
ferent services which need to be isolated from each other.
Furthermore, no control and user plane separation exists on
the level of the DU, despite the importance of the MAC-level
scheduling on the base station performance in general and
service-specific aspects of scheduling and selection of PHY-
layer functionality, and that the F1-C midhaul is not sufficient
to control the DU on a real-time basis. Also, 3GPP does
not foresee a cross-layer communication path between the
RLC (DU) and SDAP (CU-UP) to minimize queuing delays,
which furthermore might be governed on a per-service basis.
Therefore, we conclude that the separation of control and user
plane has to be considered incomplete in the current state, and
cross-RAN network function optimization is limited.

Additionally, a single SDN controller for RAN control
brings its own security problems like denial-of-service attacks
or confidentiality issues [32]. Distributing the control among
services, limiting access through access control, and enforcing
isolation between them through service-specific controllers can
give service-providers access to their network while limiting
potential security-related impacts.

Finally, the current pipeline has the underlying notion of
layers instead of tasks. This complicates the description of
services and their requirements (e.g., specific rate or latency
requirements) as well as the composition and customization
of service-specific functionality (e.g., hand-over logic for load
balancing) according to these service-specific requirements,
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especially when considering many services, since a whole
layer might need to be customized, instead of just a par-
ticular control end-point. Implementing service customiza-
tions involves understanding and modifying all RAN network
functions in the pipeline, which typically is outside of the
expertise of a service provider. Instead, a more structured
approach of chaining and meshing the control and user plane
functionalities for multiple services is required. Such structure
should include a consolidation of control plane functionality
across RAN network functions and the isolation of specific
RAN functionalities that are typically modified by a service,
opening up each pipeline for service modification.

The above observations call for a truly service-oriented
RAN architecture that allows services to be mapped onto an
underlying infrastructure, while abstracting network specifici-
ties such as disaggregation or deployment type. A consoli-
dated control plane would allow a simpler access to control
endpoints for service modification, contain state of different
services in a central place, and manage the base station
pipeline through an API that allows to isolate multiple services
from each other, while giving access to user plane (state)
modification and control. Such architecture could be enabled
by a base station-local service container engine, allowing a
more modular description of service processing extensions.

IV. OVERVIEW OF RAN SERVICE ENGINE

To realize the service-oriented (SO) RAN, we consider a
base station as a RAN infrastructure pipeline, shown in Fig. 1.
The pipeline consists of multiple RAN network functions that
may be shared across multiple services. Through a service con-
tainer engine, services are mapped and multiplexed onto this
infrastructure allowing them to monitor, configure, customize,
and extend (parts of) the pipeline subject to access control.

A service is characterized by a service descriptor consist-
ing of specific SO resources (R), processing (P), and state
(S). This triple defines the amount of (radio) resources this
service is allowed to use, a number of customizations and
extensions for this service in the pipeline’s processing stages
(execution logic), and associated state, such as configuration
or user association. The descriptor delineates the service level
agreement, including customizations, and corresponds to the
service instance layer in NGMN terminology [3].

To map each service onto the infrastructure pipeline, we
employ a service container engine to extend the capabilities
and customization options of the infrastructure pipeline. The
engine synthesizes a descriptor based on the pipeline descrip-
tor to (i) reserve the appropriate amount of (radio) resources,
(ii) integrate the processing customization in or apply control
commands to the pipeline, and (iii) keep and expose the state
of each service. The engine maps multiple services to the
pipeline by effectively generating and exposing the topology
of the underlying RAN network functions for each service
with the desired level of granularity. The engine corresponds
to the network slice instance layer in NGMN terminology,
instantiating the network services.

The infrastructure is a 3GPP-compliant 5G-RAN base
station, consisting of a CU-CP, multiple CU-UPs, the DU-CP

and a DU-UP as the resource layer. In the proposed SO-RAN
infrastructure, the DU is further decoupled into control plane
and user plane to allow consolidation of the control plane at
the service engine. This enables the coordination among CUs
and DUs and increases the flexibility for network services.

As an example, consider the two enhanced mobile broad-
band (eMBB) [1] services in Fig. 1. Service “eMBB 1” uses all
macro- and micro-cell sites, and deploys additional CU-UPs to
efficiently handle the traffic; due to this reason, topology infor-
mation is also exposed to the service itself. It also customizes
handover logic (for mobility load balancing) and scheduling
(efficient cross-site scheduling). Service “eMBB 2” merely
reserves some resources; therefore, no topology information
is exposed. No processing is customized either.

The service engine’s task is to multiplex services onto
the common RAN infrastructure while allowing per-service
control plane customization and extension and ensuring iso-
lation between multiple services. The service engine allows
pipeline customization through micro service development
kits (micro-SDKs), encapsulating pipeline control endpoints
through which the desired behavior of the control plane is
synthesized before being applied to the user plane, such as
mobility management. Services can customize the behavior
of the pipeline by providing isolated, stateless micro-services
that implement the interface towards micro-SDKs, such as a
specific handover policy for mobility load balancing. Service-
specific state information is partitioned through a monitoring
micro-SDK to ensure isolation while common state informa-
tion, e.g., base station info, are shared across multiple services.

The micro-SDKs open up the RAN for per-service cus-
tomizations and extensions and are used by micro-services to
reprogram and reconfigure the infrastructure pipeline. They
are deployed through an internal runtime to manage service
lifecycles. The micro-SDKs allow a light-weight virtualization
of the base station’s control plane when needed as well as
a composition of a service-specific RAN controller. Existing
work such as Orion [5] requires the full implementation of
a virtual control plane above the specified abstraction (e.g.,
S1 and X2 protocols, as mentioned in the paper), leading to
a “fat” hypervisor approach, regardless of whether services
need to customize this control plane or not, whereas the engine
only abstracts specific control end-points, enabling more light-
weight controllers. Orion might then be implemented as a
micro-SDK. From an information exposure point of view,
the service container engine exposes the same information
as does the E2 interface towards O-RAN’s RAN Intelligent
Controller [26], or the FlexRAN controller [24].

The engine “re-aggregates” (i.e., consolidates) the control
plane of the infrastructure towards the services through the
micro-SDKs, which only expose granted RAN customization
and extension facilities as requested by a service and regardless
of the physical deployment type (e.g. monolithic, cloud-RAN,
or disaggregated). Such re-aggregation facilitates the life-cycle
management of services, since each specific control point is
encapsulated on a per-micro-SDK basis. Furthermore, it allows
to decouple the control plane behavior and configuration,
which might be customized on a per-service basis, from the
control plane protocol and user plane handling, governed by
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Fig. 1. Overview of our architecture, consisting of an infrastructure, the service engine, and services that are multiplexed onto the infrastructure. The service
engine exposes deployment and topology information to the services as depicted in the little RAN representations within the service engine.

the specification. This decoupling is done through a protocol
between the service container engine and the services, ensur-
ing strong functional isolation, while the micro-SDKs have
the task of efficient multiplexing of control decisions onto
the pipeline. Each service can then be easily deployed and
modified, and control the part of the infrastructure belonging
to this service independent from other services.

As also shown in Fig. 1, one service container engine
governs one infrastructure pipeline, whereas multiple services
connect to multiple infrastructure pipelines in the network:

• The engines synthesizes the infrastructure pipeline: it
represents the available resources, and aggregates the
state of multiple RAN functions, similar to the first-
level physical-to-logical base station abstraction as done
in a RAN controller [25]. It also consolidates processing
control endpoints through micro-SDKs, allowing to re-
program control plane behavior for RAN customization
on a per-service basis.

• The engines maps multiple services onto a single infras-
tructure pipeline by partitioning state on a service basis,
mapping service-specific resources onto the physical re-
sources, and linking micro-services for RAN customiza-
tion through the micro-SDKs. Services control a sub-
network of the complete RAN by being mapped to multi-
ple pipelines (see Fig. 1). This corresponds to the second-
level logical-to-virtual base station abstraction [25].

The above abstraction allows (i) the coexistence of multiple
services on a shared infrastructure, (ii) an efficient multiplex-
ing of services onto the base station resources, and (iii) a full
isolation of services. Micro-services enable service controllers
that coordinate within both a single and multiple (disaggre-
gated) base stations through the composition of micro-SDKs:
across different resource dimensions in the RAN, i.e., (1) radio
resources (MAC), (2) connection and configuration control
(RRC), and (3) data flow management (SDAP/PDCP), as well
as across multiple base stations, e.g. mobility load balancing.
Each of these controllers might operate on different levels
of the abstraction, e.g., service providers control on top of
the second level of abstraction (e.g., specific micro-SDKs)

whereas the infrastructure provider has full control on the
consolidated control plane of the whole infrastructure (full
stack). This increases the security and isolation, since there
is no centralized (service) controller that might become a
“single point of failure”, unlike the existing solutions such
as O-RAN’s RIC [26] or FlexVRAN [25].

V. SERVICE ENGINE AND SERVICE EMBEDDING

The Service Engine abstracts the underlying infrastructure
in a network-deployment-independent fashion to provide a
unified execution environment. It has the tasks of mapping the
pipeline’s (i) resources, (ii) state, and (iii) customizable pro-
cessing control endpoints into a synthesized description that at
a time allows to reconstruct the pipeline, and that leans toward
a service-oriented description. Starting from this abstraction, a
unified description of services (second abstraction) allows to
describe service specificities and requirements that can then
be mapped onto the infrastructure by the engine, effectively
referring to a sub-pipeline specifically for this service.

To conceptualize the representation of a RAN pipeline and
the embedded services, we introduce descriptors for both the
pipeline and the service (c.f. Fig. 1). The pipeline descriptor
defines the actual infrastructure pipeline and available control
endpoints for independent base station control. The service
descriptor defines the mapping and the required customization
to tailor the pipeline to service requirements. The descriptors
consists of three elements:

• Resources denote the radio resources of the base sta-
tion, typically including operating bands, numerologies,
and operating bandwidths. Combined with processing, a
number of performance indicators can be inferred from
the resources such as sustainable data rate, number of de-
vices, or minimum latencies. Given that the radio resource
allocation among services is governed through a slicing
algorithm according to service objectives (rate, delay,
etc.), the service resources shall include such objectives.

• State consists of control and user plane parts that are
used by the service control logic to steer the behavior
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of the pipeline. This typically includes the deployment
configuration (e.g., separate CU-UP), RAN layer-related
configuration like user-to-service association and other
per-UE configuration like identifiers and bearers, and
(potentially ephemeral) user plane statistics.

• Processing denotes the functional control endpoints of
the pipeline and service customizations. Processing is
tightly bound to the resources and the state, since any
processing decision (steering control plane behavior) op-
erates on top of the current state, and has access to certain
resources and shall respect the constraints imposed by
the resources. In particular, the processing part lists the
customization of the pipeline that entails the embedding
of a particular service.

A. Synthesized Pipeline Representation

To capture the control plane of the pipeline, the engine
interfaces with the pipeline through an API as shown in Fig. 2.
As has been mentioned, the synthesized resources capture
properties such as the bandwidth and numerologies allowing
to infer a sustainable data rate during runtime for this pipeline
and to reserve resources in RAN layers (e.g., in terms of
CU-UP throughput requirements). Note that this corresponds
to a description of the resources of the pipeline and not an
abstraction which is ensured by processing customizations.

The synthesized state captures RAN configuration as well
as user context information and forwards it to a shared
storage that gathers this information, consolidating the state
information. Such state is then exposed to the services as
generic base station information or in relation to a micro-SDK,
i.e., a particular RAN control endpoint, to simplify control
handling within the services.

The synthesized processing of the pipeline descriptor ab-
stracts the access to specific control plane endpoints in the
form of micro-SDKs. From a service perspective, the engine
provides access to the pipeline via an API, and a runtime
manages the lifecycle of the micro-SDKs, which can be
deployed and released dynamically within the service engine
like applications [33]. The micro-SDKs provide atomic, in-
dependent, extendable CP abstractions through the APIs, and

implement an abstract interface towards the services for RAN
customization and extension. They provide operations to map,
deploy and release services for a control endpoint, apply
service actions, and resolve conflicts. Additionally, micro-
SDKs might compose existing micro-SDKs to reflect complex
operations.

The set of micro-SDKs of a RAN pipeline marks the
consolidation of the actual control plane APIs for services
in a deployment-independent and vendor-independent fashion.
These control plane APIs can be grouped into (1) UP handling,
e.g., packet scheduling of data flows at the SDAP, (2) radio
control handling, e.g., mobility control at the RRC, or (3) radio
resource handling, e.g., MAC scheduling. The micro-SDKs
thus reflect the pipeline’s modification possibilities in the form
of a capability that might be customized by a service. For
radio resource allocation for instance, a micro-SDK could give
access to a part of the spectrum for custom scheduling. The
implementation of the micro-SDKs further depends on the
actual endpoint, as described in Section VI.

This synthesis of the pipeline allows a consolidation of the
control plane of the base station. The processing descriptor
groups control endpoints for customization and configuration,
and the resources in the descriptor are used to reserve RAN
resources within the pipeline. The state of the pipeline is log-
ically centralized, allowing to execute control plane behavior
logic independently of the pipeline and rendering parts of the
pipeline “stateless”, i.e., control decisions may not need to
be taken in the pipeline. By definition, the pipeline cannot
be made completely stateless, since (instantaneous) state is
necessary for consistency in control plane operation (such as
HARQ) and interaction among the layers (e.g., amount of
buffered data). However, information such as user context,
identifiers, runtime configuration such as bearer information,
the scheduling policies, or active bandwidth parts, is stored
to perform failover or replication in the CU-UP and DU-
UP. Also, this means that the base station description is fun-
damentally independent of the deployment scenario (Cloud-
RAN, monolithic, or disaggregated), and a redeployment of
control logic on top of different base station pipelines within a
multi-vendor context becomes feasible, since the micro-SDKs
expose a consistent interface towards the services.

Through CP consolidation, a tighter control coordination
(e.g. joint signal processing) among different RAN network
functions becomes possible while retaining the benefit of
multiplexing gain and cross-layer optimization. As an exam-
ple, CP consolidation enables a joint SDAP (CU-UP) and
RLC (DU-UP) packet scheduling opportunity to reduce the
buffer bloat [34], which otherwise can not be supported in a
disaggregated RAN, since such information is not available
via the F1 interface.

B. Service Description

With the help of the synthesized pipeline descriptor, services
can now be multiplexed onto one or more pipelines based
on the agreement between service provider and infrastructure
provider, as shown in Fig. 3, providing a service-specific
and network-wide view. A service descriptor describes the
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resources that are to be reserved, service-specific configuration
(state), and provides service-specific processing customiza-
tions and extension to describe the behavior of the 5G-RAN
pipeline as per service requirements.

The service-oriented resources (SO-R) specify the desired
performance indicators that need to be supported in the
pipeline (e.g., the radio resources by an underlying slice
algorithm). Upon admission control, the resource is mapped
into a rate by the service engine in order to reserve resources
in RAN layers and select appropriate network functions, as
described further below. The service-oriented state (SO-S)
describes the non-ephemeral configuration of the service: next
to the obvious user association, this would include the usage
of specific features, e.g., enabling multi-path transmission, dis-
abling retransmission for latency-critical services, or specific
RAN network function configuration such as configuration for
a separate CU-UP, if applicable. Further, the state includes
ephemeral data such as statistics for service optimization. For a
configuration example, reconsider the URLLC service in Fig. 1
(overview figure). Such service might use a specialized CU-
UP for faster processing, limit the used RUs to macro cells
for better coverage, and perform special admission control to
ensure reliable transmissions at all times. State is partitioned
by a monitoring micro-SDK on a per-service basis in order to
provide isolation and privacy.

The service-oriented processing (SO-P) allows to customize
and extend processing functionality by combining micro-SDKs
at the service engine. The service processing descriptor marks
customization intentions for this service, and either supplies
the execution logic in binary form as a micro-service, or an
end-point for message-based interaction. Here, customization
refers not only to a reconfiguration or replacement of specific
RAN control end-points for a service, but also possible exten-
sions of control plane behavior logic, for instance using ma-
chine learning to predict user traffic and adjust the scheduling

algorithms. This allows the service provider to quickly deploy
and modify service-specific functionality, and extend basic
RAN functionality by composing multiple micro-services or
through specialized micro-SDKs in the engine. For instance, a
specialized micro-SDK reuses monitoring and MAC schedul-
ing micro-SDKs: through traffic analysis of a group of users
and reconfiguration of resource allocation, scheduling latencies
are reduced and quality of service (QoS) improved, as in the
“burst analysis” micro-SDK in Section VII-E.

Based on the actual RAN control endpoint and its tim-
ing requirements, the interaction between a service and its
associated micro-SDKs inside the engine shall support both
hard and soft real-time operations to meet deadlines. The
micro-SDKs link the infrastructure to the services, and thus
control triggers might come from the pipeline (e.g., event
for necessary handover) or the services (command for policy
update to improve service). This is supported by general event-
action messages, direct service-originated commands, or the
embedding of custom logic within or close to the engine
(“push”). As shown exemplary in Fig. 3, a service can supply
micro-services for mobility load balancing (MLB), active
queue management (AQM), and scheduling (Sched) to extend
pipeline processing. For the MLB, the service execution logic
might be triggered through an event which is handled remotely.
Similarly, the AQM micro-service continuously monitors the
RLC queue state to update the SDAP processing. For schedul-
ing, a co-location of execution logic is required to keep the
tight deadlines imposed by 5G, e.g., through shared memory
on the same execution environment.

The admission control process enforced through the service
engine is a three-step process: (1) the resource needs of the
service need to be fulfilled. This is dependent on a separate
admission control in at least a subset of micro-SDKs, such
as the scheduling, which needs to verify that radio resources
are available, potentially translating latency-based or other
requirements into rate requirements. (2) The specific config-
uration of the services, including rate requirements, need to
be checked for consistency with the current pipeline state,
and configuration conflicts need to be resolved. Consider an
eMBB service with high rate requirements, requiring the set-
up of a new CU-UP; or semi-persistent scheduling (SPS)
for a machine-to-machine service that needs to be aligned
with existing SPS configurations. (3) The service engine’s
micro-SDKs need to accommodate the micro-services of the
new services, e.g., start MAC scheduling micro-services. If
admission control passes, the service engine will finally map
the service onto the existing RAN network functions.

If a service has been admitted, a set of micro-SDKs are
revealed, allowing this service to implement a service-specific
controller as shown in Figure 3. Each controller is only
aware of state pertaining to the corresponding service, and
controls, reconfigures and/or reprograms its subnetwork (i.e.,
the service). This is fundamentally different from current RAN
controllers such as O-RAN’s RIC or FlexRAN, which control
the whole base station, whereas the proposed service-specific
controller remains isolated from other controllers and a failure
in micro-services of one service leave operation of other
services unaffected.
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VI. MICRO-SDKS

The service-specific execution logic are containerized, state-
less micro-services with a limited, service-specific view on
parts of the control plane, which is enabled through micro-
SDKs. The micro-SDKs encapsulate an API to a control
endpoint in the RAN, effectively programming the pipeline.
In the following, we describe exemplary micro-SDKs for
monitoring as well as in CU-CP and DU-CP, and how they
enable the micro-services to act on control points in the RAN
network functions.

A. Monitoring Micro-SDK

The monitoring micro-SDK is possibly one of the most
fundamental micro-SDKs: monitoring of the RAN allows a
service to observe the RAN, react on changes in the user
plane, and reprogram the control plane through other micro-
SDKs. Therefore, it is an integral part of the service engine of
all RAN network functions. As shown previously in Fig. 3, it
partitions the state information of the pipeline on a per-service
basis and exports RAN layer, deployment, and ephemeral
user plane information in the form of messages. Due to the
possibly high number of users in the pipeline and the high
frequency of information generation (every TTI), scalability
is a major characteristic, which we evaluate in Section VII-D.
The reporting frequency (i.e., how often) and granularity (i.e.,
which information) is configurable to reflect the differing
requirements among services.

B. Micro-SDKs in the CU-CP

The RRC contained in the CU-CP hosts functionality for
connection management, mobility, radio resources manage-
ment, and QoS, among others. The functionality can be divided
into cell-common and user-specific functions [27]. Common
functionality includes information not destined to individual
users, such as cell information broadcast or emergency ser-
vices, and remains at the CU-CP, as shown in Fig 3.

User-specific functionality can be handled by services in
an isolated fashion, exposed through a micro-SDK that en-
capsulates the corresponding control endpoint. User-specific
functionality includes layer configuration, UE connection re-
configuration (bearers, measurements, . . . ), as well as admis-
sion, mobility and secondary cell control. As processing in the
CU-CP has soft real-time requirements, service processing is
executed remotely, allowing to (a) customize specific control
plane aspects while extending the possibilities of control plane
actions, and (b) deploy at scale with isolated context among
services through state partitioning. Micro-SDK and micro-
service exchange through event/action messages, where events
trigger a decision process resulting in an emitted action.
Finally, the micro-SDK checks the result and handles conflicts.

For instance, a mobility management micro-SDK might
handle handover commands and check for valid source and
target base stations, rejecting the request otherwise. Similarly,
upon the admission of a new (dedicated) bearer, the engine
might adjust the guaranteed bitrate (GBR) to accommodate
all the services, e.g., when the sum of GBRs of all UEs for
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Fig. 4. DU CP & UP deconstruction. The DU-CP is part of the Service Engine
and implements the “Scheduling” Micro-SDK. Micro-Services are pushed into
the engine, or might be connected through a low-latency interface.

this service exceeds the amount of resources allowed in the
service descriptor.

C. Micro-SDKs in the DU-CP

The DU-CP provides a micro-SDK for the MAC scheduling
control endpoint of the RAN infrastructure. This micro-SDK
is realized by means of a two-level scheduler as an extension
to our previous work [12] with an additional feature that
guarantees isolation and conflict resolution among the services.
The proposed architecture is shown in Fig. 4. It consists of
an inter-slice scheduler for resource slicing, and a per-service
intra-slice scheduler for user scheduling. The inter scheduler
implements the micro-SDK to accommodate multiple micro-
services in the form of the intra schedulers. Both schedulers
belong to the control plane part of the DU. The MAC
multiplexing functionality (mux) in the user plane receives
the control plane actions and applies them in the pipeline. The
scheduler indirectly controls RLC and PHY: the mux fetches
data from RLC and multiplexing it onto the PHY layer as a
result of control plane actions.

In every slot, the inter-slice scheduler partitions the eligible
resources for the slices. Note that the actual resource parti-
tioning between multiple slices is still under active research,
and out of scope of this work. The inter scheduler informs the
intra-slice scheduler about the allowed RBs using a bitmap
(i.e., bandwidth parts), and a list of slice-associated users
that this slice should schedule. This list also includes per-
UE information required for scheduling, such as buffer status,
QoS, or channel quality indicators (CQI). The intra-scheduler
then schedules active users on the allowed time-frequency
resources. Here, any scheduling strategy might be imple-
mented, e.g., a simple round-robin, more advanced channel-
aware or QoS-aware scheduling schemes, or beamforming-
based scheduling schemes, among others. Finally, the inter-
slice scheduler resolves possible conflicts in the final schedul-
ing decision, such as an attempt to schedule resources outside
the assigned radio resources, before applying it via the MAC
multiplexing functionality of the pipeline.
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The decoupling of service and user scheduling has a dual ad-
vantage of (i) enforcement of various slice scheduling schemes
or policies within the inter-slice scheduler, i.e., the micro-SDK,
and (ii) customizability of user scheduling within the micro-
service. The intra scheduler either runs within the engine for
real time purposes or in a separate execution environment for
isolation purposes, is implemented as a micro-service, and
its current state (e.g. user channel quality, buffer status) is
fetched with every request. Such a stateless behavior allows
to dynamically manage the life cycle of the scheduler as per
service needs or when a failure occurs while retaining service
continuity and performance requirements. To guarantee a se-
cure, functional isolation between service and user scheduling,
the inter-slice scheduler uses shared memory per service:
services implement their own intra-slice scheduler, which is
run in a separate process, and shielded within a container.

We claim that such separation between inter- and intra-slice
schedulers in the micro-SDK allows increased customizability
of the system, and decreases complexity by separating the
scheduling problems of slices and users. This allows to push
a service-specific radio resource allocation that exploits the
future channel quality as a function of predicted user mobility
to ensure QoS by relying on remote machine-learning within
the system.

VII. EVALUATION OF THE ARCHITECTURE

To verify our design for an extensible and customizable
RAN, we implemented prototypes of the scheduling, mon-
itoring, and “burst analysis” micro-SDKs, and scheduling
micro-services, within OpenAirInterface [6] (OAI), an open-
source LTE implementation, and FlexRAN [25], an SD-RAN
controller. Also, we implemented multiple slice scheduling al-
gorithms as well as user scheduling algorithms corresponding
to the inter and intra schedulers of the scheduling micro-SDK.

For our experiments, we used OAI in the “L2 simulator”
flavor: in this deployment, the eNB directly exchanges MAC-
layer nFAPI [35] messages with an UE emulator, also based
on OAI. Thus, no PHY layer is present, and no PHY channels
(with associated noise, interference, or other models) are
emulated. The remaining layers are, however, fully standard-
compliant, and we claim that such deployment (1) suffices to
demonstrate our RAN customization and extension prototype
and (2) has the advantage of scalability, since a large number
of UEs can be emulated, which would be infeasible with
full PHY channel emulation. Besides, the prototype includes
an OAI-based core network, connected to the eNB, and a
modified FlexRAN controller to support the newly developed
micro-SDKs. The eNB uses a 5 MHz-wide (25 RB) channel
that has a maximum capacity of 17,36 Mbps and minimum
application plane (ping) round-trip time of roughly 15 ms.
Table III summarizes the experimental parameters.

In the following, we present results for the scheduling
micro-SDK: (Section VII-A) on slicing in the inter scheduler,
(VII-B) its scalability in terms of scheduling processing time,
and (VII-C) the extensibility of the RAN with respect to
the intra scheduler; further, (VII-D) the signaling overhead
using the monitoring micro-SDK; and, finally, (VII-E) a case

TABLE III
EXPERIMENTAL PARAMETERS

Parameter Value

Access Technology LTE
Bandwidth 5 MHz/25 RBs
Channel Model Static (CQI 15) unless noted otherwise
No. of Users 2–128
Mobility Static
Traffic Full buffer unless noted otherwise
Slice schedulers Static, NVS [11], SCN19 [36]
User schedulers Round robin, prop. fair, max. throughput [38]
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Fig. 5. Cell utilization and slice throughput during dynamic slice algorithm
changes. Both share the same x-axis (time). At first, a static slice algorithm is
set with decreasing amount of RBGs for slice 2, as indicated at the top. After
a switch to NVS (t = 20 s), resources are shared automatically (t = 33 s),
and precise slice throughputs can be set.

study of the “burst analysis” micro-SDK. Note that while
these results have been obtained using an emulator setup, the
prototype can also be used together with custom-of-the-shelf
UEs.

A. Slicing in the Service-Oriented Architecture

The infrastructure provider might change the active slice al-
gorithm in inter phase of the scheduling micro-SDK (cf. Fig. 4)
to fulfill slice requirements when deploying new services,
or adapting to the network behavior. Such automation might
happen at any time during runtime of the pipeline.

We implemented two slicing strategies: static and NVS [11]
within the inter scheduler of the micro-SDK. In static slic-
ing, each slice receives a fixed share of the radio resource
in every subframe as per slice requirements, and the slice
users are scheduled freely. The advantages are low schedul-
ing delays and a strict isolation in frequency, making this
scheme more adequate for public safety networks, interfer-
ence scenarios, or constant traffic load. For fluctuating traffic
demands, this means less sharing opportunities (unless a
frequent re-configuration takes place), and only a couple of
slices can be active due to the limited number of control
channel elements (CCE) in LTE. Also, the minimum sliceable
resource granularity is the resource block group (RBG). NVS
performs slicing by tracking the amount of resources that each
slice received through a weight, and scheduling slices in a
complete subframe. Therefore, an arbitrary number of slices
can be present, and both rate-based (Mbps) and resource-based
(percentage of aggregate RBs) slices with arbitrary precision
are available. Also, the algorithm adapts to traffic fluctuations.
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Consider the exemplary time series in Fig. 5. Starting at
t = 0, two slices are present, and slice 2 has 5 RBGs as noted
at the top of the graph. Note how slice 2 has no traffic at
t = 4 s. Since static slicing has no notion of sharing resources,
the cell remains underloaded. The resources of slice 2 are
increasingly reduced by setting the number of RBGs down to
3, 2, and 1 RBGs. Note that the resource granularity is coarse.

By dynamically switching the slice algorithm, the architec-
ture is able to address the problems regarding sharing and
resource granularity. At t = 20 s, the slicing algorithm is
changed to NVS without any impact on cell performance. At
t = 30 s, the throughput of slice 2 is reconfigured to 5 Mbps,
but uses the assigned resources only briefly before stopping
transmission. The resources are shared with slice 1 automat-
ically by NVS, leading to a multiplexing gain of 27,7 %. It
is furthermore possible to set exact rates as indicated, e.g.,
10 Mbps at t = 35 s, or 3 Mbps at t = 40 s. The delays for
reaching the assigned throughput are due to the exponential
moving average used by NVS to track the resource usage of
the slices.

We configured eight slices with equal throughput and each
one user, as shown in Fig. 6 (application throughput with iperf
over 10 s). To assess both the isolation between the slices as
well as the scalability for many slices, we connected additional
UEs: slices 1, 3, 5, and 7 have 1, 2, 3, and 4 UEs, respectively,
and all other slices have 10 UEs. Note how the throughput per
slice does not change. This shows, that (a) isolation between
slices is guaranteed, and (b) the scheduling SDK is scalable
enough to handle eight concurrent slices with 50 UEs.

B. Execution Time of the Scheduling Micro-SDK

To verify that the scheduling micro-SDK is indeed capa-
ble of handling multiple service providers, we compare the
scheduling execution time of the micro-SDK (cf. Fig. 4)
against the non-service-oriented, monolithic scheduler as a
baseline. For the micro-SDK, we measure all phases, i.e.,
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Fig. 8. Cell throughput over time and switching schedulers dynamically (RR,
R: round robin; PF, P: proportional fair; MT: maximum throughput).

intra, inter scheduler, and mux functionality to have a direct
comparison to the baseline. Since the inter scheduler typically
partitions resources in a fixed manner (Static) or according to
a weight (NVS), we assume a limited overhead for the inter
scheduler. However, the intra slice schedulers scale with the
number of users, frequency resources, and space.

Fig. 7 shows the scheduling execution time as a boxplot,
measured for every subframe over 30 s. For the micro-SDK,
we use one slice and the default round-robin scheduler; the
monolithic implementation uses round-robin, too. The service-
oriented scheduling micro-SDK shows an approximately linear
overhead with the number of users. This indicates that running
multiple intra-schedulers sequentially will incur an additional
execution time that is linear to the number of users (roughly
1µs/UE), plus a small fixed overhead. On the other hand, the
monolithic implementation’s execution complexity not only
seems to be sup-linear, but the execution time also shows a
higher variance, making it impractical for sequential execu-
tion. Additionally, the monolithic version is a multi-threaded
implementation. Since the micro-SDK is not multi-threaded
yet, we see potential for an even lower execution time.

C. Extensibility through Cloud-Native Behavior

The scheduling algorithm of a service is a stateless micro-
service that can be set by the slice owner (cf. Fig. 3). This
micro-service corresponds to the intra scheduler (see Fig. 4)
that is pushed into the scheduling micro-SDK. Since the
scheduling state such as UE information (CQI, etc.) is kept
outside of the intra scheduler, the intra scheduler can be
changed on-the-fly by service owners to adapt to user behavior.

We implemented the classic round-robin, proportional fair
and maximum throughput scheduling algorithms [38]. We
consider one slice with eight users with fast fading, including
sporadic deep fading, and a full buffer traffic model. Note that
in this evaluation, we do not attempt an exact assessment of the
scheduling schemes already present in the literature, but rather
highlight the extension capabilities through the micro-SDK.
For simplicity, we use one intra scheduler, but multiple might
have been used together with the presented slice algorithms.

Fig. 8 shows a sample cell throughput at the MAC layer
over time when changing scheduling schemes dynamically.
In the beginning, due to the channel-unawareness of round-
robin (RR) scheduling, the cell throughput is low, but all
UEs get a fair, equal amount of resources. When changing
to proportional fair (PF) scheduling, the cell throughput dou-
bles, since PF scheduling opportunistically schedules high-
CQI UEs. At the time of change, no performance degradation
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is visible, since the proposed design and implementation is
able to switch the scheduler atomically between subframes.
Switching to maximum throughput (MT) yields only marginal
gains, with no fairness being ensured.

Note the dynamicity of the scheduling scheme switches,
starting around 25 s in Fig. 8. The slice owner can arbitrarily
change the schedulers without any impact on service continu-
ity, which is guaranteed at all times.

D. Overhead of Monitoring micro-SDK

Monitoring is a separate micro-SDK that exports config-
urable, service-specific traces of pipeline statistics. Service
providers might use these traces for performance monitoring,
service optimization, or other service-related tasks, and scal-
ability is of paramount importance in order to serve all of
them. For isolation purposes, the micro-SDK supports different
services by partitioning state per service and exporting data
only towards the corresponding service, as shown in Fig. 3.

We studied the incurred monitoring overhead for four dif-
ferent services. (1) The infrastructure provider traces all data
every ms for debug purposes. (2) Another service performs
remote MAC scheduling and needs data of the PHY, MAC,
and radio link control (RLC) sublayers every ms. Furthermore,
(3) a service performs mobility management: it receives all
RRC-related measurements every 30 ms. Finally, (4) a video
optimization service receives packet data convergence protocol
(PDCP) and CQI traces every 100 ms.

Fig. 9 shows the signaling overhead, measured over 10 s.
When exporting all data, every UE causes a monitoring
overhead of approx. 250 kB/s. The overhead drops by roughly
50% for the MAC scheduling use case. Considering that the
user plane throughput of an active UE will be much higher,
this seems reasonable. The overhead of the mobility and video
optimization use cases is two order of magnitudes lower and
thus negligible, even for many UEs. Thus, the results confirm
the scalability of the monitoring micro-SDK.

E. Use case: “Burst Analysis” Micro-SDK

NVS allows to translate the spectrum into a notion of rates
and can effectively share the resources, but its design can
lead to increased scheduling delays, since a low-rate slice
might be scheduled only seldom. In our previous work [36],
[37], we designed a slice algorithm (“SCN19”) that extends
NVS with delay-bound slices while enforcing a maximum
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Fig. 10. Comparison of the slice algorithms SCN19 [36] and NVS [11] w.r.t.
scheduling delays [36], used resources [36], and measured ping latency [33].
SCN19 keeps scheduling delays lower than NVS while using less resources.

aggregate resource share over a time window. This allows
delay-bound slices to temporarily use more resources when
needed, effectively sharing resources in favor of low-latency
slices, but resources are lost if not used. Thus, for UE groups
with mixed traffic patterns, it is beneficial to create delay-
bound slices if low-latency users are active, and share those
resources with the remaining users otherwise.

The recognition of the low-latency users necessitates a real-
time analysis of the traffic of such users, which can be resource
intensive when done frequently (see Section VII-D). We thus
developed the “burst analysis” micro-SDK that composes
monitoring and scheduling micro-SDKs: it analyzes traffic of
users in a specific slice, and if an intermittent, bursty traffic
pattern specific to low-latency traffic is recognized, it creates
an SCN19 delay-bound slice for such user.

Fig. 10 compares SCN19 and NVS in terms of schedul-
ing delays, used resources, and application round-trip time:
SCN19 guarantees service providers short scheduling delays
while using less resources, since only a part of a subframe
is used when scheduling a slice. It thus strikes a balance
between the multiplexing needs (here, a gain of 3.6%) of
the infrastructure provider and the latency-sensitive service
requirements of service providers. On the application level,
this can mean up to 20 ms shorter round-trip time.

VIII. LESSON LEARNED

We found that modularity and flexibility principles are two
enablers to implement a service-oriented architecture, espe-
cially for time-critical network functions such as scheduling
and resource allocation: (1) by clearly identifiying responsibil-
ities and, as a result, refactoring existing code, the scheduling
functionality became both modular and efficient; and (2) the
resulting flexibility allowed to seemlessly integrate multiple
services including the switch between multiple slice and user
scheduling algorithm implementations (dynamically). Further-
more, we hope that this work will inspire other researchers to
equally contribute to open, available platforms.

IX. CONCLUSION

We presented the RAN service engine, a versatile system
that allows to customize and extend the functionality of the
RAN. The service engine presents RAN control endpoints for
control plane behavior steering through platform-independent
micro-SDKs which services use to customize and extend
RAN functionality through containerized micro-services. We
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showed the definition of a synthesized base station at the
level of the service engine and the corresponding definition
of services, matching micro-services onto micro-SDKs. We
furthermore presented key micro-SDKs such as MAC schedul-
ing and monitoring. The former allows to change slicing and
user scheduling algorithms, efficiently multiplexing services
while retaining functional isolation between services, with no
additional execution overhead. The latter incurs only small
monitoring overhead. Thus, we demonstrated the feasibility
of light-weight RAN service customizations, indicating that
micro-SDKs are a promising way to achieve the RAN-as-a-
service concept. The service-oriented base station approach
coupled with micro-services allows verticals to easily define
and integrate their RAN customizations, tailored to their
requirements with fine-grained control over their service.

We believe that service-specific RAN controllers will be the
next step in RAN slicing, since they allow service providers
such as verticals to customize and optimize their network
without the intervention of the infrastructure provider, and
increase security by shielding services from each other. As
has been shown, such a controller can be realized through
a composition of dedicated micro-SDKs, and we consider
implementing more micro-SDKs in our future work.
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